
Methods for Event Time Series Prediction and Anomaly Detection

by

Siqi Liu

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/328827286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Siqi Liu

It was defended on

June 22, 2020

and approved by

Milos Hauskrecht, Department of Computer Science, University of Pittsburgh

Adriana Kovashka, Department of Computer Science, University of Pittsburgh

Diane Litman, Department of Computer Science, University of Pittsburgh

Barnabas Poczos, Machine Learning Department, Carnegie Mellon University

Dissertation Director: Milos Hauskrecht, Department of Computer Science, University of

Pittsburgh

ii

Methods for Event Time Series Prediction and Anomaly Detection

Siqi Liu, PhD

University of Pittsburgh, 2020

Event time series are sequences of events occurring in continuous time. They arise in many

real-world problems and may represent, for example, posts in social media, administrations of

medications to patients, or adverse events, such as episodes of atrial fibrillation or earthquakes.

In this work, we study and develop methods for prediction and anomaly detection on event

time series. We study two general approaches. The first approach converts event time series

to regular time series of counts via time discretization. We develop methods relying on (a)

nonparametric time series decomposition and (b) dynamic linear models for regular time

series. The second approach models the events in continuous time directly. We develop

methods relying on point processes. For prediction, we develop a new model based on point

processes to combine the advantages of existing models. It is flexible enough to capture

complex dependency structures between events, while not sacrificing applicability in common

scenarios. For anomaly detection, we develop methods that can detect new types of anomalies

in continuous time and that show advantages compared to time discretization.

iii

Table of Contents

Preface . x

1.0 Introduction . 1

1.1 Problems and Approaches . 4

1.1.1 Predictive Modeling of Event Time Series 4

1.1.2 Anomaly Detection in Event Time Series 6

1.1.3 Approaches . 8

1.2 Contributions . 9

2.0 Background . 11

2.1 Predictive Modeling of Time Series . 11

2.1.1 Regular Time Series Models . 11

2.1.1.1 ARIMA Models . 11

2.1.1.2 State-Space Models . 13

2.1.1.3 Binary Event Prediction Models 14

2.1.2 Event Time Series Models . 15

2.1.2.1 Gaussian Process Modulated Point Processes 17

2.1.2.2 Hawkes Processes . 20

2.1.2.3 Other Point Process Models 22

2.2 Anomaly Detection in Time Series . 23

2.2.1 Anomaly Detection in Regular Time Series 24

2.2.1.1 Outlier Detection in Regular Time Series 25

2.2.1.2 Change-Point Detection in Regular Time Series 27

2.2.2 Anomaly Detection in Event Time Series 28

3.0 Outlier Detection in Time Series . 30

3.1 Method . 30

3.1.1 Variance Stabilization . 31

3.1.2 Seasonal-Trend Decomposition with LOESS 31

iv

3.1.3 First-Layer Model . 31

3.1.4 Second-Layer Model . 33

3.2 Experiments . 34

3.2.1 Datasets . 34

3.2.2 Experiment Setup . 35

3.2.3 Methods . 35

3.2.4 Evaluation . 36

3.2.5 Results . 37

4.0 Change-Point Detection in Time Series . 43

4.1 Likelihood-Ratio-Based Change-Point Detection 43

4.1.1 Likelihood Ratio Statistics . 44

4.1.2 EM for MLE . 45

4.1.3 Further Improvements . 45

4.2 Generative-Model-Based Change-Point Detection 46

4.2.1 Dynamic Linear Model . 47

4.2.2 Dynamic Linear Model with Seasonal Variation 47

4.2.3 Multi-Process Dynamic Linear Model 49

4.2.4 Inference . 50

4.2.5 Parameter Setting . 52

4.3 Experiments . 53

4.3.1 Experiment Design . 53

4.3.2 Results on Data with Known Change-Points 54

4.3.3 Results on Data with Simulated Change-Points 55

5.0 Event Sequence Model . 57

5.1 Introduction . 57

5.2 Preliminary . 58

5.3 GP Regressive Point Processes . 60

5.4 Conditional GPRPP . 62

5.4.1 Learning . 67

5.4.2 Inference . 67

v

5.4.3 Time Prediction . 67

5.4.4 Conditional Point Placement . 68

5.5 Experiments . 69

5.5.1 Synthetic Datasets . 69

5.5.2 Conditional GP vs. Variational Sparse GP 71

5.5.3 Effect of Varying Q . 71

5.5.4 IPTV Dataset . 71

5.5.5 MIMIC Datasets . 73

5.5.6 Time Prediction Evaluation . 75

6.0 Outlier Detection in Event Sequences . 83

6.1 Introduction . 83

6.2 Method . 85

6.2.1 Problem Formulation . 85

6.2.2 Probabilistic Models . 86

6.2.3 Continuous-Time LSTM with Context 87

6.2.4 Detecting Commission Outliers . 88

6.2.5 Detecting Omission Outliers . 90

6.2.6 Bounds on FDR and FPR . 92

6.3 Experiments . 94

6.3.1 Compared Methods . 94

6.3.2 Experiments on Synthetic Event Sequences 95

6.3.2.1 Simulation of Commission and Omission Outliers 96

6.3.2.2 Detection of Commission and Omission Outliers 96

6.3.2.3 Results . 97

6.3.2.4 Empirical Verification of the Bounds on FDR and FPR 98

6.3.3 Experiments on Real-World Clinical Data 98

6.3.3.1 Results . 100

7.0 Change-Point Detection in Event Sequences 105

7.1 Introduction . 105

7.2 Problem Statement . 106

vi

7.3 Method . 107

7.3.1 Detecting Change-Points in Discretized Time 107

7.3.2 Detecting Change-Points in Continuous Time 109

7.4 Properties of the Methods in Poisson Processes 110

7.4.1 Discretized-Time Estimation . 110

7.4.2 Continuous-Time Estimation . 112

7.5 Experiments . 113

7.5.1 Experiment Setup . 113

7.5.2 Results . 114

7.6 Discussion . 115

8.0 Conclusion and Future Work . 120

Bibliography . 124

vii

List of Tables

1 AUC-PAR for Bike data. 40

2 AUC-PAR for CDS data. 41

3 AUC-PAR for Traffic data. 42

4 The mean AUC-AMOC averaged over all change-points. 55

5 Test log-likelihood on synthetic datasets. 76

6 Test log-likelihood on IPTV dataset. 76

7 IPTV event types and counts. 77

8 Target lab classes used for experiments. 78

9 Predictors selected for lab class 355. 79

10 Test log-likelihood on MIMIC datasets. 80

11 RMSE of time predictions on MIMIC datasets. 82

12 AUROC on synthetic data. 100

13 Names of target and context events from MIMIC. 103

14 AUROC on MIMIC data. 104

15 Likelihood ratios on five simulated event sequences. 117

16 Likelihood ratios on simulated event sequences. 118

17 Distances on simulated event sequences. 119

viii

List of Figures

1 Bay area bike rental daily counts. 2

2 Bay area bike rental events. 3

3 Example time series with anomalies. 8

4 Graphical representation of a DLM . 14

5 Marked and multivariate event time series. 16

6 Simulated time series with anomalies. 25

7 Seasonal-Trend decomposition of a time series 32

8 PAR curves for Bike data. 39

9 Applying MPDLM to a rule-firing count time series. 51

10 AMOC curves on simulated data. 56

11 Illustrations of different point process models. 59

12 Influences from past events on synthetic datasets. 76

13 Test log-likelihood of GPRPP. 77

14 Influences from past events on class 355. 81

15 ROC curves on synthetic data (Poisson process). 98

16 ROC curves on synthetic data (Gamma process). 99

17 FDR and FPR on synthetic data (Poisson process). 101

18 FDR and FPR on synthetic data (Gamma process). 102

19 FDR (omission outlier) on synthetic data (Poisson process). 102

ix

Preface

First of all, I would like to thank my advisor, Dr. Milos Hauskrecht. This dissertation

would not be possible without his academic guidance and the financial support from the

funding he received. I would also like to thank all the other professors in my dissertation com-

mittee: Dr. Adriana Kovashka, Dr. Diane Litman, and Dr. Barnabas Poczos. They provided

many insightful comments and suggestions that helped me to improve the dissertation.

I had the fortune to collaborate with several people outside our department during my

PhD study, including Dr. Adam Wright, Dr. Dean F. Sittig, Dr. Gilles Clermont, Dr.

Gregory Cooper, and Dr. Shyam Visweswaran. I would like to thank all of them for the help

and inspiration they provided.

I am grateful for the continuous financial support provided by the grants from the National

Institutes of Health (NIH) and the fellowships and assistantships from the Department of

Computer Science, previously at the Dietrich School of Arts and Sciences and now at the

School of Computing and Information, University of Pittsburgh. Also, I would like to thank

the staff at our department and schools for their help and support, especially Keena Walker,

who is always responsive and tries to help as much as she can.

I am grateful for all the professors teaching the interesting courses I took both inside and

outside our department. They helped to widen my horizons and lay the foundation of my

research. I also appreciate the help I received from my friends and fellow PhD students and

would like to thank all of them, especially the students from our lab, with whom I had many

fun moments and interesting discussions.

Last but not least, I would like to thank my parents, relatives, and old friends for all

kinds of support and encouragement they gave to me at different times during the entire

course of pursing my PhD.

x

1.0 Introduction

In the past decades, artificial intelligence (AI) has gained increasing attention from both

academia and industry. Machine learning, which enables automated systems to improve

their performance through experience, is at the core of modern AI systems. The experience

is typically collected as data. Due to theoretical simplicity, machine learning research has

traditionally focused on data that consist of instances that are assumed to independent (from

each other) and come from a fixed probability distribution. That is, they are independent

and identically distributed (IID). However, with success in learning models from IID data,

researchers have begun to explore more challenging data types that exhibit various dependences

and relations. Time series have been one of the most important data types.

In everyday life, time is an essential component of the information we perceive from

the world. In fact, time is always in the data we collect, and the IID assumption is only a

simplification of the more complex real world we observe. Different from IID data, in a time

series, a timestamp is associated with each observation. Usually, the timestamp records when

the observation has been made.

By bringing in the dimension of time, we can get many interesting and useful insights

that would otherwise be impossible to get. For example, trends are the overall changes of

the time series over time. They can be increasing or decreasing, and they are important in

problems like forecasting stock prices. For instance, if we ignore them and treat the price of

a stock over the past few weeks as IID, then a reasonable prediction of the price tomorrow

could be based on the mean of part or all of the past data. But if we consider the trends (e.g.,

the price has been increasing for the past few weeks), then our prediction could be a linear or

nonlinear extrapolation of the past data, which should be more reasonable and accurate in

most cases.

In Figure 1, we show an example of time series. These are the numbers of bike rentals

that occurred every day in the Bay area 1. Each data point represent the observed counts for

a day, while the location of the point on the X-axis corresponds to the time of the observation.

1https://www.kaggle.com/benhamner/sf-bay-area-bike-share

1

https://www.kaggle.com/benhamner/sf-bay-area-bike-share

0 5 10 15 20 25 30
day

400

600

800

1000

1200

1400

bi

ke
 re

nt
al

s

Figure 1: Bay area bike rental daily counts. Each point in the figure represents the number

of bike trips in a day. Time is restricted to July 1 to July 31 in 2014.

By arranging the data according to the time, we can see some patterns in the data across the

time that would otherwise be invisible.

In most cases, time series are observed at regular time intervals as we saw in the previous

example, but some of these observations are actually aggregations of lower level observations.

Again, consider the bike rental count time series in Figure 1. Each point is the total number

of bike rentals in a day, which is the aggregation of all the bike rentals that happened in that

day. If we record each individual bike rental with its time, then we get a different view of

the same process with more details as shown in Figure 2. In the figure, each point (and its

stem) represent an individual event of bike rental. The location of the point on the X-axis

corresponds to the exact time of that event. We call this type of time series event time series

or event sequences.

The main difference between event time series and regular time series is in the role of the

times. In regular time series, the times are treated as indices that help to order the sequence

of values of the target variable observed at different times. In event time series, the times are

one of the targets, if not the only one. In many cases, we do not have any values associated

with each event and only observe the occurrence of the event. The task is to learn the time

dependencies between the events, to infer the states based on the occurrences of the events,

2

2 4 6
hour

Figure 2: Bay area bike rental events. Each stem in the figure represents the event of a trip

beginning in a bike share system. Time is restricted to 0:00 to 7:00 on July 1, 2014.

or to make predictions of the times of future events. Another difference between regular

time series and event time series is the regularity of the times. The times in a regular time

series are regular, meaning the time intervals between consecutive observations are always

of the same length. In contrast, the times of an event time series are typically irregular,

meaning the time intervals between consecutive observations have different lengths. In fact,

the irregularity in time is assumed to be part of the randomness in most probabilistic models

for event time series.

In real life, events are abundant, and being able to predict their occurrences can be very

valuable. For example, in automated driving, by monitoring the condition of the car and the

surroundings, it would be very useful if we can reliably predict whether a traffic accident is

likely to happen in the foreseeable future, and in case it is, we can take measures to prevent

it beforehand. In clinical care, by monitoring the condition of the patient, it would be very

helpful if we can reliably predict whether the patient will experience an adverse event in

the near future, e.g., an episode of atrial fibrillation, and in the case they will, we can alert

the physicians to mitigate the negative effects of the events beforehand or at least notify

3

them to anticipate the event. Both the car accidents and the adverse events for a patient can

be represented as events in continuous time and therefore form an event time series. The

occurrences of the events themselves are the main target we wish to precisely model and

predict.

Meanwhile, by modeling event time series, we can learn the patterns of the occurrences

of the events in time. The patterns reflect the expected behaviors of the underlying systems

that generate the events. However, in reality, there could be abnormal interruptions to

these patterns that appear differently from the expected behaviors. Algorithmic detection of

these abnormal behaviors or anomalies can be very useful. For example, the events of the

administration of a medication are expected to be dependent on the recent medical condition

of the patient. However, there could be cases that the medication is not administered when

the condition requires it, or that it is administered when it should not. By learning a model

on the pattern of the expected behaviors, we can potentially detect these anomalous behaviors

automatically and send timely alerts to the health care provider. Therefore, algorithmic

detection of anomalies in event time series can be really important and useful.

1.1 Problems and Approaches

In this dissertation, we study two general problems in event time series: predictive

modeling and anomaly detection. We claim that these two problems are highly related, as a

predictive model can help us develop anomaly detection methods. This point is revisited as

one of our hypotheses in Section 1.2 and demonstrated in our methods for anomaly detection

in event time series in later chapters. We briefly introduce both problems in the following

sections.

1.1.1 Predictive Modeling of Event Time Series

We first highlight the questions we might wish to answer related to predictive modeling.

We use the bike rental events as an example. Suppose we have observed these events for a

4

period of time. In terms of predictive modeling, we may wish to answer different types of

questions as follows.

Q1 When will the next bike rental happen?

Q2 How many bike rentals will happen in the next 1, 12, or 24 hours?

Q3 Will there be any bike rental in the next 1, 12, or 24 hours?

To answer these questions, we may model the event time series differently depending

on the requirements. In general, time series and their models can be categorized into three

types:

• Regular time series. This is the type of time series that has been most widely

studied. The observations are made at regular time points, e.g., every day, where the

intervals between consecutive time points always have the same length. The times of the

observations act as the indices of the data. In this case, the focus of predictive modeling

is on capturing the dependencies between the observed values of the time series and

forecasting the future values based on the dependencies and the history.

• Irregular time series. This is the type of time series that is closely related to the

previous case. The difference is that the observations are made at irregular time points,

such that the intervals between time points may have different lengths. The times of

the observations still act as the indices of the data, although the indices are not regular

anymore. The focus of predictive modeling is still the same as in regular time series, but

the irregular indices can create difficulties that need to be addressed.

• Event time series. This is the type of time series we study. They represent discrete

events happening in continuous time. Since the times of the events are also irregular,

they may look similar to irregular time series. However, fundamentally they are different,

because for event time series, the irregular time points themselves are the observations

with randomness that we intend to model, while in irregular time series, they only serve as

the indices of the data. The focus of predictive modeling is on capturing the dependencies

between the events according to their times and forecasting the times of future events

based on the dependencies and the history.

5

For event time series, the occurrences of events can depend on previous events or other

context information. For example, for bike rental events, they may depend on the recent

rental events, the time of the day, the day of the week, current weather condition, and so

on. For medication administration events, the action of giving a specific medication may

depend on the previous administration of the same or other medications, or on the patient’s

underlying health condition reflected by various values in the medical records. It is important

for predictive models to be able to capture these dependencies. If we model these dependencies

directly in continuous time, we can answer questions of all types (Q1, Q2, and Q3).

Despite the clear distinction, there is also a strong connection between event time series

and regular time series. As we saw in Figure 1 and 2, the same data can be presented as

either type of time series. The transformation between them is time discretization. To convert

an event time series to a regular time series, we can discretize the time by dividing the time

line into consecutive bins with equal length and counting the number of events in each bin.

The counts will form a regular time series, or more specifically, a count time series. This is

the second way to model event time series, which is modeling the corresponding count time

series after transformation. In this case, we can answer questions of type Q2, and Q3 but

not type Q1, due to the loss of information.

Finally, we can take the abstraction in time discretization one step further. Instead of

counting the number of events within each bin, we can binarize the data as an indicator

of whether any events occurred within the bin. This is an even higher level of abstraction

compared with count time series, but it can help to simplify the data, if we only care about

whether the events occurred or not. In this case, we can still answer questions of type Q3

but not type Q1 or Q2.

1.1.2 Anomaly Detection in Event Time Series

Next, we highlight the questions we might wish to answer related to anomaly detection

using the bike rental events as an example. Given the observations of the events for a period

of time, in terms of anomaly detection, we may wish to answer different types of questions as

follows.

6

Q4 Given that it has been 4.36 hours since the previous bike rental, is there anything

abnormal?

Q5 Given the pattern of the previous bike rentals, is the last bike rental too soon that may

indicate something is wrong?

Q6 Is the number of bike rentals yesterday abnormally high?

Q7 Does the high numbers of bike rentals in the last month compared to the previous months

indicate something has changed?

Q8 Is it normal that there are any/no bike rentals in the last hour?

In general, anomaly detection [11, 2] aims to identify data instances that are unusual

when compared to other instances in data. It has been applied in variety of areas to identify

rare or novel instances or patterns, such as fraud detection [27], network intrusion detection

[32], disease outbreak detection [110], and medical error detection [40].

Anomaly detection in time series has also been an important topic [36]. Here, we categorize

anomalies in time series into two types:

• Temporary outliers. These are abnormal observations that only last for an instant,

after which the time series return to normal.

• Change-points. These are long-term changes in the data that show up as consecutive

observations that are very different from previous observations and last for a large or

indefinite amount of time.

Figure 3 shows examples of both a temporary outlier and a change-point on a time series.

The temporary outlier is an individual observation with abnormally low value compared with

previous patterns in the data, but it does not have any effect on the observations after it,

while the change-point marks the time point after which all the observations have increased

values compared with before.

We can use any one of the three types of models of event time series with different levels

of abstraction as the model to study anomaly detection in event time series. If we model

event time series without any time discretization, we have access to the detailed information

of each event and the different lengths of intervals between the events, so we can answer

questions of all types (Q4, Q5, Q6, Q7, and Q8). If we convert event time series to count

7

Oc
t 0

4

Oc
t 1

1

Oc
t 1

8

Oc
t 2

5

No
v

01

No
v

08

No
v

15

0

100

200

300

400

Figure 3: An example time series containing both a temporary outlier and a change-point.

October 11 is a change-point. November 11 is a temporary outlier.

time series with time discretization, we lose the detailed information related to each event

and the intervals between events, but we still have the numbers of the events in each fixed

regular time interval, so we can still answer questions of type Q6, Q7, and Q8 but not type

Q4 or Q5. Finally, if we convert event time series into time series of indicators of whether

any events occurred within regular time intervals, then we can only answer questions of type

Q8.

1.1.3 Approaches

To study the problems of predictive modeling and anomaly detection in event time series,

we follow two general approaches based on the connection between event time series and

count time series.

• Discretized-time approach. In this approach, we first convert event time series to

count time series and then solve the problems in the discretized time domain.

• Continuous-time approach. In this approach, we directly solve the problems in the

original continuous time domain.

8

We briefly state our motivations for following the discretized-time approach. First, regular

time series have been studied more widely in the literature, so we expect to take advantage

of the existing research and build our solutions on top of the existing works. Second, in

practice, there could be cases when collecting the timing of each event is impossible, and

only available data are the summarized counts of the events over regular period of time, so

only discretized-time approach can be applied.

Meanwhile, we also have motivations for following the continuous-time approach. First,

by utilizing the detailed information collected in event time series, we expect to solve the

problems from a novel aspect that is not possible in the discretized-time approach, e.g.,

predicting the occurrences of individual events. Second, due to the relatively limited research

on event time series compared to regular time series, we expect to find more open questions

to answer following this approach.

1.2 Contributions

Following the discretized-time or continuous-time approach for predictive modeling or

anomaly detection, we can have four different combinations. We summarize our contributions

from these four aspects.

• Modeling count time series. Because regular time series modeling is a widely-studied

problem, we focus on applying and adapting existing models of time series to the problem

of anomaly detection. In Chapter 3 and Chapter 4, we try to build models that can

account for properties of time series, such as seasonality, that are usually not considered

for anomaly detection in existing methods, although they are common in real data and

can have significant impact on the performance of anomaly detection.

• Anomaly detection in count time series. We study two main types of anomalies:

(temporary) outliers and change-points. In Chapter 3 and Chapter 4, we develop new

anomaly detection methods based on better models of the time series that account for

properties of the time series such as trends and seasonality. With extensive experiments,

9

we show that by using these improved models we can detect temporary outliers and

change-points with better performance.

• Modeling event time series. The existing models for event time series are limited in

different ways. Some of these models are easy to apply in practice but not very flexible,

while the others are more flexible but harder to apply. In Chapter 5, we develop a new

model for event time series that is more flexible than the former and more applicable

than the latter, and therefore combines the benefits from both types of models.

• Anomaly detection in event time series. Anomaly detection in continuous time is

an area that has barely been studied. We attempt to solve new problems in this area

with practical implications. In Chapter 6, we define two new types of anomalies that can

be detected in continuous time and develop new methods to detect them. We provide

theoretical justifications for the proposed methods, prove performance guarantees, and

show the effectiveness of the methods using experiments. In Chapter 7, we develop methods

for change-point detection in event time series using the continuous-time approach and

compare the continuous-time approach with the discretized-time approach. We discover

interesting theoretical properties of these two approaches and compare their performance

using experiments.

We formalize the four hypotheses that we evaluate in the dissertation as follows.

H1 By using more accurate models, we can detect anomalies more accurately in time series

(Chapter 3 and 4).

H2 By combining nonparametric and regressive models for point processes, we can build

more flexible and applicable models for event time series (Chapter 5).

H3 There are new types of anomalies that we can detect in continuous time for event time

series (Chapter 6).

H4 There are anomalies that we can detect in continuous time with better accuracy than via

time discretization for event time series (Chapter 7).

10

2.0 Background

In this chapter, we introduce preliminary background for our problems and review related

works in the literature. Overall it consists of two parts. First, we introduce and review works

related to models of time series, including regular time series and event time series. Second,

we introduce and review works related to anomaly detection in general and specifically in

time series.

2.1 Predictive Modeling of Time Series

2.1.1 Regular Time Series Models

Although predictive modeling of regular time series is not our focus, we will see that

many anomaly detection algorithms are based on specific models of the time series. Since one

approach of detecting anomalies in event time series is by converting them to regular time

series, these models are also related to anomaly detection in event time series. We give a brief

introduction to these models in this section. For more details, Box et al. [9] and Shumway

and Stoffer [96] provide good references.

2.1.1.1 ARIMA Models Autoregressive (AR) models are simple, intuitive, and popular

models for time series, where the recent history of the observations are used to predict the

future through regression. Let {xt|t ∈ Z} denote the time series observed at discrete time t.

Then an AR model of order p assumes

xt =

p∑
i=1

φixt−i + wt, (2.1)

where wt ∼ N(0, σ2
w) and φi are parameters.

11

Moving average (MA) models are another popular type of models using regression on the

past noises/errors, instead of observations as in AR models, to predict the future. An MA

model of order q assumes

xt =

q∑
j=1

θjwt−i + wt, (2.2)

where wt ∼ N(0, σ2
w) and θj are parameters.

Autoregressive moving average (ARMA) models are combinations of AR models and MA

models. An ARMA model of order (p, q) has the following form:

xt =

p∑
i=1

φixt−i +

q∑
j=1

θjwt−i + wt. (2.3)

In the above model definitions, we have assumed zero mean for xt for simplicity, but it is

not hard to model nonzero means by adding another parameter to the RHS of the equations.

Although these models can represent a wide variety of time series, none of them handle

common nonstationarity such as trends and seasonality. Trends are long-term changes

(increase/decrease) in the mean of the observations. Seasonality is the periodic (e.g., weekly)

changes in the mean. When a time series has any type of nonstationarity, the distribution

of data may change over time. Nonstationarity is very common in real data due to the

ever-changing nature of the real world.

Autoregressive integrated moving average (ARIMA) models extend ARMA models, such

that trends and seasonality can be modeled. Essentially, we take difference of observations

at different times with lags. For example, with a lag of 1, we calculate xt − xt−1. Then, we

model the resulted differences with an ARMA model. Depending on the lag of the difference,

we can model both trend and seasonality, given that we know the period of the seasonality.

However, ARIMA models (specifically differencing) are problematic for time series with

outliers or change-points. For example, suppose there is an outlier at time t with an extremely

large value, while all the other points are normal. Assume we are taking differences with a

lag of 1. Then the point at time t+ 1 after differencing will be extremely small and becomes

an “artificial outlier”. By taking multiple and/or higher order differences (i.e. compounded

differences), these artificial outliers can spread even further. How to detect anomalies in

nonstationary time series is a nontrivial question to answer.

12

2.1.1.2 State-Space Models State-space models are another type of models for time

series. Different from ARIMA models, latent (or hidden) states are introduced to model the

underlying dynamics of the time series. The observations are assumed to be drawn from

distributions determined by the latent states. The most widely used and studied state-space

models are dynamic linear models (DLMs) [37] or linear dynamical systems (LDSs) [49],

where the state transition equation and the emission equation are both linear.

Specifically, let {yt ∈ Rp : t = 1, 2, . . .} be the observed time series and {xt ∈ Rd : t =

1, 2, . . .} be the latent states. A DLM is defined as

yt = Ftxt + vt, vt ∼ N(0, Vt).

xt = Gtxt−1 + wt, wt ∼ N(0,Wt),
(2.4)

where Ft and Gt are matrices that respectively model the emission of the observation yt from

the current hidden state xt, and the transition of the latent states over time. Zero-mean

Gaussian noises vt and wt are added to both equations with covariance matrices Vt and Wt.

The former accounts for the fact that our observations of the time series can be noisy. The

latter accounts for possible (unexpected) innovations in the state transition that are not

captured by Gt.

Here, the model is defined in its most general form. However, in many cases, Ft, Gt,

Vt, and Wt will be time independent, so they become F , G, V , and W . To complete the

definition, we also need to define the latent state at the beginning (t = 0), x0 ∼ N(m0, C0),

where m0 and C0 are the mean and covariance of x0 respectively. Figure 4 shows the graphical

representation of a DLM with 3 time steps. The arrows in the graph indicate the dependencies

between the latent states and the observations.

Researchers have extended state-space models in different ways. One common way is to

allow the parameters of the model, such as F and G, which are usually fixed and learned from

data, to change by switching to different values over time [30, 84, 83, 86]. The second way

of extending the models is to allow non-Gaussian observations [54, 109]. The third way of

extending the models is to replace the linear transition and emission equations with nonlinear

functions [90, 103]. Finally, practical approaches have been developed to fill the gap for

applications of state-space models, including regularization based algorithms for learning the

13

Figure 4: The graphical representation of a DLM with 3 time steps. x0, . . . , x3 are the latent

states. y1, . . . , y3 are the observations. The arrows indicate the dependencies between the

latent states and the observations.

model [69, 72], handling irregularly sampled observations [74, 70], and learning models that

can adapt to time series generated from different individuals [71, 73].

2.1.1.3 Binary Event Prediction Models So far we have reviewed models for regular

time series, which can be used to model event time series after converting them into count time

series through time discretization. However, we can take one step further in the abstraction

and convert the counts resulted from time discretization to binary indicators of whether there

are any events within each time interval.

Given the simplified view from this approach, the key issue to address is how to effectively

summarize the history observed in the data up to a given time point, the result of which can

be fed into a model to predict whether there will be any events in the next time interval.

More formally, the event prediction problem is modeled as P (xt+1|H0:t), where xt+1 is the

observation at time t + 1 of the binary regular time series converted from the event time

series, and H0:t is a summary of past observations up to time t relevant for the prediction.

These models often require summarizing the history of past observations that are defined by

complex multivariate time series.

Such models have been, for example, used to support event detection and prediction in

clinical time series [39, 40, 41]. Valko and Hauskrecht [104], Hauskrecht et al. [39] define a

fixed set of feature templates placed on individual time series. Batal et al. [5, 6] define and

14

select pattern-based features summarizing the history by mining so-called recent temporal

patterns. Lee and Hauskrecht [58, 59, 60] use various temporal mechanisms based on recurrent

neural networks to summarize the history of observations.

2.1.2 Event Time Series Models

Event time series or event sequences (we use these two terms interchangeably) are

sequences of timestamps recording events observed over time. A distinctive feature of event

time series compared with regular time series is that timestamps are irregular and in a

continuous domain instead of regular and in an essentially discrete domain. Another feature

is that there is randomness in the times of the events, and the main goal of modeling event

time series is to model the distribution of the event times taking account of the randomness.

Point processes [18, 19] are probabilistic models for points randomly distributed over a

domain. Although they have also been widely used for modeling random point patterns in

both spatial and temporal domains, here we focus on the cases when the domain is the time

(R+). In these cases, they are also called temporal point processes to distinguish them from

spatial point processes. We will not make this distinction and focus only on temporal point

processes unless there is an ambiguity in the context.

In the most general form, an event time series will contain not only timestamps, but

also additional information associated with each time. For example, we can collect data

about patients’ visits to a hospital. For each visit, besides its time, we can also collect the

patient’s gender and/or the reason for the visit. The data can be denoted as a sequence

of tuples {(ti, vi)|i ∈ N}, where ti is the time of the ith point, and vi is the corresponding

information associated to the point. This additional information is called marks in the context

of point processes, and this type of data (models) are sometimes called marked event time

series (marked point processes) to distinguish them from time-only event time series (point

processes), where vi = ∅.

One special case of the marked event time series that is worth mentioning due to its wide

availability is when the marks are discrete labels, where we can assume vi ∈ N. In this case,

instead of viewing the labels as marks associated to each time, we can alternatively view the

15

21.0 21.5 22.0 22.5 23.0
hour

music
entertainment
drama

21.0 21.5 22.0 22.5 23.0
hour

music
entertainment
drama

Figure 5: A marked event time series (left) and its equivalent multivariate representation

(right). The data is extracted from the IPTV dataset [77] for one user on February 8, 2012

from 21:00 to 24:00. Each stem represents the event that the user starts watching a TV

program of a specific type (music, entertainment, or drama).

event time series as a compound of multiple event time series, one for each label. Therefore,

this specific type of data (models) are also called multivariate or multidimensional event time

series (point processes).

Figure 5 shows an example of a marked event time series with its equivalent multivariate

representation. It is extracted from the IPTV dataset [77] for one user. Each stem in the

figure represents the event that the user starts watching a TV program. The type of the

program is associated with the event as the mark (or label). If we treat each type of program

as a separate sequence of events, we get multiple sequences of events, each with a single type,

which form a multivariate (or multidimensional) event time series.

The key component of a temporal point process is its conditional intensity function

(CIF). In fact, the CIF uniquely defines the temporal point process. The CIF specifies the

instantaneous rates of the occurrences of events at any time t, given the history up to time t.

Let λ(t) denote the CIF. Then

λ(t)dt = E [N([t, t+ dt))|Ht−] , (2.5)

16

where Ht− is the history of the events up to (excluding) time t, and N(·) counts the number

of points in an interval. The intensity is assumed to be always positive. For an event time

series y = {ti}ni=1, its log-likelihood given the CIF is

ln p(y|λ) =
n∑
i=1

lnλ(ti)−
∫
T
λ(s)ds, (2.6)

where T is the time range within which the event time series is observed.

The simplest type of point processes are homogeneous Poisson processes, where the

intensity function is just a constant and does not depend on the history. That is λ(t) = λ0

for all t and some λ0 > 0. By allowing the intensity function to change over time but still

independent of the history, we get inhomogeneous Poisson processes, which are generalizations

over the homogeneous Poisson processes.

If we take this generalization one step further, we can assume λ(t) depend on the history

either implicitly or explicitly. The models we will discuss in the next few sections will fall

into either one of these categories.

2.1.2.1 Gaussian Process Modulated Point Processes Gaussian processes (GPs)

are probabilistic models for functions [92]. One way of modeling the dependencies between

points in event time series is to assume the data are generated from an inhomogeneous Poisson

process, and then model the intensity function of the Poisson processes as random functions

drawn from a GP prior with some transformation to make sure it is positive. That is

f ∼ GP(µ,Σ),

λ(t) = g(f(t)),

y ∼ PP(λ),

where µ and Σ are the mean and covariance functions of the GP, g is a model-specific

transformation that ensures the model to be well-defined, and y = {ti}ni=1 is the event

time series we observe. When we observe a sequence of events, we can infer the posterior

distribution of the intensity function given the observed data. Moreover, if we wish to make

predictions, we can first predict the intensity function in the future conditioned on the data,

17

and then infer the values in which we are interested (e.g., expected number of events within

a window) using the predicted intensity function.

This can be viewed as a latent-state model, where the latent state is the random function

drawn from the GP. Given the latent state, the intensity function and therefore the distribution

of the points are uniquely defined. Furthermore, given the latent state, the distributions of

any nonoverlapping regions in the domain (time) are independent with each other, due to

the Poisson process assumption. However, the marginal distributions (without conditioning

on the latent state) are not independent.

Using the latent random function enables us to model the dependencies between the points.

These models are sometimes called Cox processes or doubly-stochastic Poisson processes, due

to the fact that the intensity function itself is stochastic. Adams et al. [1] propose an MCMC

inference algorithm for a Sigmoidal Gaussian Cox process (SGCP), where the GP is mapped

through a logistic function to the intensity function. Rao and Teh [91] propose an MCMC

inference algorithm based on thinning for a generalization of SGCP, GP modulated renewal

process, where the logistic mapping from the GP to the intensity function is augmented

(multiplied) by a time dependent function (which used to be a constant in SGCP). Lasko

[56] proposes to use the exponential transformation of a GP as the intensity function. In this

way, there is no upper bound on the intensity function, so, the author argues, it can model

bursty events, while SGCP cannot. However, due to this change, the thinning algorithm in

the previous MCMC inference methods no longer works. The author instead proposes to use

direct numerical integration in the MCMC inference. Samo and Roberts [93] improve the

efficiency of inference in GP-modulated point processes with the exponential transformation

by using inducing points and marginalizing out the log-intensity term in the log-likelihood at

each event, while overall still using MCMC plus numerical integration.

In contrast to the previous works, where sampling algorithms are used for inference, Lloyd

et al. [75] propose a variational inference algorithm for GP modulated point processes. The

key difference is that the intensity function is assumed to be a square transformation of a

GP. This enables analytical evaluation for the integration of the intensity function, which

was always a problem in these models and “forced” the previous methods to use thinning

or numerical integration with MCMC sampling. Kim [53] combines Markov jump processes

18

(MJPs) with GPs to model nonstationary (the author calls it semi-stationary) point processes.

MJPs and GPs are both used as models for the intensity function in inhomogeneous Poisson

processes. However, MJPs are piecewise constant with discontinuous jumps, while GPs are

continuous across the whole domain without any discontinuity. By combining them, the

resulted intensity function are piecewise continuous, which is more general than piecewise

constant, and can have discontinuous jumps. This can be viewed as a nonstationary version

of the previous GP modulated point processes. Instead of having one GP drive the point

process, multiple GPs are switched on and off over time. A variational inference algorithm is

developed based on [75].

All the aforementioned methods are for univariate event time series, where each sample is

a single sequence of points. On the other hand, there are works addressing the problem of

modeling multivariate event time series, where each sample is multiple sequences of points. As

we discussed in the previous section, multivariate event time series are equivalent to marked

event time series with discrete marks. A key problem here is to model the dependencies

across the sequences in addition to the dependencies within the sequences. Gunter et al. [35]

propose an extension of SGCP [1] to multivariate point processes. To model the dependencies

between sequences, the authors propose to model the intensity function of each variate as a

convolution of a set of GPs, which are shared across all variates. A tractable MCMC algorithm

is developed for inference. Lloyd et al. [76] extend [75] to multivariate point processes, and

call their model Latent Point Process Allocation (LPPA). In LPPA, the intensity function

of each variate is assumed to be a positive weighted sum of squared GPs, and the GPs are

shared across all variates. Ding et al. [20] further extend LPPA, where each intensity function

is an infinite, instead of finite, weighted sum of squared GPs. The weights are assumed to

be drawn from a Dirichlet process. This resolves the problem of choosing an appropriate

number of hidden GPs beforehand in LPPA.

A big limitation of GP-modulated point processes is that they are learned sequence

by sequence. Each sequence has its own latent state, which is independent from the other

sequences. What we learn from the training data are only the hyperparameters. In the

prediction stage, we still have to infer the latent state from scratch whenever we have a new

sequence. This prevents training on a sample from the population and applying the learned

19

model on unseen examples directly. In the existing works, the models are all trained and

tested on the same sequences across time (trained on the past and tested on the future).

Although this is still useful, it is a significant limitation compared with the models we describe

in the next section.

2.1.2.2 Hawkes Processes Another way of modeling dependencies between events is to

explicitly put the dependency structure in the model. Hawkes processes [42] are the most

widely used models in this category. A Hawkes process can model both self-exciting and

mutually exciting. The former refers to the cases when events happened in the past can

temporarily increase the rate of the events of the same type. The latter refers to the cases

when events happened in the past can temporarily increase the rates of the events of other

types.

The CIF of a Hawkes process is a sum of the influences from the points in the past. Let

(ti, ui) denote the time and type (mark) of the ith event. Then the CIF for events of type ui

is

λui(t) = µui +
∑
tj<t

φuiuj(t− tj), (2.7)

where µui > 0 is the baseline intensity, and each φ(·) ≥ 0 is called a triggering kernel. A

concrete example would be φuiuj(t) = Auiuj exp(−βt), where Auiuj ≥ 0, and β > 0. The

triggering kernel captures the influences of the past events of type uj to the future events

of type ui. The significance of the influence is controlled by Auiuj , while how long it lasts

depends on β. As the signs of these parameters indicate, the influences are assumed to be

excitatory and temporary, that is the occurrences of events can increase the rates of other

events for a limited amount of time.

Hawkes processes have been used for modeling the interactions between entities such

as humans, countries, or websites. Blundell et al. [7] models reciprocating relationships

by combining a Chinese restaurant process (CRP) with a multivariate Hawkes process,

where each variate corresponds to actions from one group to the other, and the individuals

are assigned to groups through the CRP. The intensity function is explicitly assumed to

reciprocating, that is actions from group A to B are excited by actions from group B to A.

20

Zhou et al. [119] assume sparsity and low-rank in the social interactions and therefore in the

infectivity matrix of the Hawkes process, which models the influences between the entities.

An alternating direction method of multipliers (ADMM) is developed to solve the regularized

maximum likelihood estimation problem.

One drawback of Hawkes processes is that its triggering kernels take a parametric form,

which needs to be specified using prior knowledge. Researchers have made much effort

in extending Hawkes processes to learn the triggering kernels nonparametrically. Zhou

et al. [118] propose to learn the triggering kernels of a Hawkes process nonparametrically.

Each triggering kernel is assumed to be a linear combination of a set of base kernels, and

the base kernels are learned nonparametrically by discretization. They solve a penalized

maximum likelihood optimization problem by transforming an infinite dimensional functional

optimization problem to an ordinary differential equation problem. Eichler et al. [25] also

use discretization of the triggering kernels, but their model learns the triggering kernels by

solving a least-square problem. Xu et al. [114] propose to use a set of basis functions to

approximate the triggering kernel nonparametrically, which does not require discretization,

and their method shows better performance than the previous works.

There are also works trying to extend Hawkes processes to be more flexible other than

learning nonparametric triggering kernels. Du et al. [23] propose Dirichlet-Hawkes process

(DHP), where the parameters of the kernels are generated nonparametrically through a

Dirichlet process for each point. Lee et al. [61] use a stochastic process to model the evolution

of the excitations (weights) in a Hawkes process, so the weights become random variables

instead of constant parameters. Restricting the kernels to the same exponential kernel

(sharing one parameter) for efficiency, they propose a simulation algorithm and an inference

algorithm based on a hybrid of MCMC algorithms. Wang et al. [106] define an isotonic

Hawkes process, where the intensity function of the original Hawkes process is transformed

through a monotonic discretized nonparametric link function. They assume the link function

is piecewise-constant non-decreasing, and the jumps are only at the intensities of the observed

points, so the integral can be computed analytically. The optimization problem is formed by

moment matching instead of traditional maximum likelihood estimation and can be solved

with the proposed algorithm having a proved convergence rate.

21

Although the above works have significantly extended the flexibility of Hawkes processes,

these models still have some limitations preventing them from successfully capturing some

common phenomena in real world. For example, in most of the Hawkes process variants,

events in the past can only increase the rates of events happening (with or without delays).

Although some of them can also model decreases, none of them, except for [25], can model a

mix of both (e.g. an increase following a decrease). However, this is a common phenomena in

real world. For example, giving a medication to a patient will increase the overall chance of

giving the same medication due to the fact that the patient’s medical condition can last for a

long time and therefore repeated treatments are needed. But right after a medication being

given, the chance of giving the same medication will decrease for a while (e.g., 24 hours),

since there is a limit of how much medication can be taken within a period of time. Similar

behaviors are also observed in our neural systems [25], where there is “a self-inhibition after

the firing of a neuron”.

2.1.2.3 Other Point Process Models Neural networks have also been studied as a

way of modeling the intensity functions of point processes. Du et al. [24] develop a recurrent

neural network (RNN) model for event time series. Event labels and inter-event times are

used as the input at each step, and the logarithm of the intensity function between two

consecutive events are assumed to be a linear function. The likelihood function has a closed

form and is maximized through gradient ascent, although for prediction, numerical integration

has to be invoked for the calculation of expected time. Mei and Eisner [80] combine Hawkes

processes with long short term memory (LSTM [43]) and develop a continuous-time LSTM,

where the memory cell has an exponential decay (with learnable parameters) between two

consecutive events, while in a traditional LSTM, the memory cell is simply preserved between

two consecutive inputs. The softplus transformation of the output is used as the intensity at

each time t continuously, i.e., it is defined even between events when no input is provided.

Due to the complex nonlinear transformations, the integral cannot be evaluated in closed

form, and the authors resort to Monte-Carlo sampling for both training and prediction. Xiao

et al. [112] define a Wasserstein distance for point processes and combine it with Generative

Adversarial Networks [33] to train generative models. However, their model is limited to

22

univariate point processes.

Another type of point-process models are based on featurization of the history. Gu-

nawardana et al. [34] propose piecewise-constant intensity models (PCIMs), assuming the

intensity function is a piecewise-constant function of the past events. This function is modeled

as a decision tree mapping features extracted with window-based functions from the past

events (e.g., events with label u occurred more than τ times within a window of size w)

to a constant intensity. The parameters and the structure of the tree can be learned. An

importance sampling algorithm is developed for predicting the probability of a sequence of

events happening in the future within a sequence of time intervals. Weiss and Page [108]

apply the multiplicative-forest technique [107] to PCIMs, assuming the decision tree can be

factorized into multiple trees with the final intensity being the product of the outputs of all

the trees. Lian et al. [62] also assume a piecewise-constant intensity function, but extends it

to multitask problems using a hierarchical model.

2.2 Anomaly Detection in Time Series

Anomaly detection [11] aims to identify data instances that are unusual when compared

to other instances in data. It has been widely studied on both independent and identically

distributed data and time series. We first briefly review general anomaly detection.

In general, anomalies are unusual instances or patterns in the data. The specific definition

of anomalies can change slightly depending on the specific applications. In many cases,

anomalies are data instances that deviate significantly from the majority of the data such

that they might be generated differently than the normal data, in which case they may also

be called outliers [44, 2]. In other cases, anomalies are new or unknown instances or patterns

in the data that have not been seen before, in which case they may also be called novelties

[78, 79]. Anomaly detection has diverse applications in different domains, such as fraud

detection [27], network intrusion detection [32], disease outbreak detection [110], and medical

error detection [40, 41, 39].

Basic anomaly detection methods aim to identify unusual instances among all the data.

23

Statistical anomaly detection methods [78] address the problem by defining and modeling

the distribution of the normal instances p(x), where x represents an instance, and identifying

instances that fall into a low probability region. However, in some cases, whether an instance

is an anomaly or not may depend on additional information provided as context. Conditional

(or contextual) anomaly detection [98, 38, 39, 105] aims to identify unusual responses given

the context. To illustrate conditional anomaly detection, consider a medication for which the

dosage varies depending on the patient age. A low dosage may look like an anomaly with

respect to the whole population, but it could be perfectly normal for a child. Similarly, a

dosage that is normal for an adult should be considered as anomalous for a child. Statistically,

conditional anomaly detection tries to identify instances that come from regions with a low

conditional probability p(y|z), where y is the response, and z defines the context. Depending

on the form of y, conditional anomaly detection can be either univariate (the response is

defined by one scalar random variable) or multivariate/multidimensional [45, 46, 47] (the

response is defined by multiple, possibly dependent, random variables). Gaussian mixture

models [98] or multilabel classification models [45] have been used to define the model p(y|z).

2.2.1 Anomaly Detection in Regular Time Series

As event time series can be converted to regular time series through time discretization,

we can solve some event time series anomaly detection problems based on anomaly detection

in regular time series. Therefore, we review existing works related to anomaly detection in

regular time series. Specifically, we focus on outlier detection and change-point detection in

time series.

Outlier detection is treated as synonyms for anomaly detection in many existing works,

where outliers are the data points that show unusual behaviors or patterns. On the other

hand, change-points are the points when the behaviors of the data change, supposedly caused

by the change in the underlying process generating the data. They can be viewed as a

specific type of anomalies but have also received research on their own. Most outliers are

usually temporary instead permanent. That is, the behavior of the time series will return to

normal after a limited amount of time of being abnormal. In contrast, change-points mark

24

0 2 4 6 8
2

4

6

8

10

12

0 2 4 6 8
2

4

6

8

10

12

Figure 6: A simulated time series with a temporary outlier (left). A simulated time series

with a change point (right). Both the temporary outlier (red circle) and the change-point

(blue circle) occur at time 4.

the changes in the time series that can last for indefinite amount of time. Figure 6 shows

examples for a temporary outlier and a change-point.

2.2.1.1 Outlier Detection in Regular Time Series In this section, we review existing

works for outlier detection in regular time series. Over the years, different types of outliers

have been defined and studied in the context of different time series models (e.g., AR and

MA models) [29, 8, 101, 12]. The essential method of these works is the likelihood ratio test.

Specifically, a model (e.g., AR) is assumed for the time series without outliers. Then, for a

specific type of outliers, an alternative model with an outlier inserted is defined. These two

models form two hypotheses

H0 : there is no outlier; H1 : there is an outlier.

Then a likelihood ratio test statistic [10] can be derived based on the likelihood of these two

models to test whether there is an outlier.

Tsay [102] provides a good summary of previously studied outliers. Furthermore, the

author extends previous work [12] and proposes two procedures to handle outliers in the context

of ARMA models. The procedures are iterative and cycles among parameter estimation,

25

outlier detection, and outlier removal. Through cycles, the most significant outlier is removed

one by one. Chen and Liu [13] propose to jointly estimate multiple outlier effects and model

parameters, instead of removing outliers one by one as in the previous work, although their

procedure still uses the previous procedure in the initial stage.

There are some common traits shared by the above methods. First, they are all retrospec-

tive, i.e., they assume the whole time series (including “future” for the outliers) is available,

and they look back to find all outliers in the past. In reality, online detection, where we wish

to detect outliers in the newly observed data as soon as they arrive (without access to the

future data), might be of more interest, since it can be applied to monitoring systems to alert

on outliers in real time. Second, most of the above methods assume the time series follow

ARMA models (or their subsets). However, ARMA models cannot deal with some of the

nonstationarity that is very common in practice, such as seasonality and trends. We note that

both seasonality and trends can be addressed by adding (seasonal) differencing to the models,

resulting in the (seasonal) autoregressive integrated moving average ((S)ARIMA) models

[96, 9]. However, normal points differenced with outliers can become “artificial outliers” and

result in false alarms, unless they are properly accounted for. Therefore, these methods by

themselves are not suitable for online outlier detection in nonstationary time series.

More recently, Yamanishi and Takeuchi [116] develop an online algorithm for nonstationary

time series. The authors assume the time series follow the AR models and introduce a

sequential discounting algorithm to estimate its parameters and to make inference. However,

as they assume AR, which is a subset of ARMA, their method suffers from some of the same

problems as the above methods (e.g., not able to model time series with seasonality). Laptev

et al. [55] propose an outlier detection framework for time series data that allows one to

exclude outliers that may be explained by contextual variables. This is done by defining

rules on these variables. For example, one may define a rule checking whether a day is a

holiday and exclude all these days from consideration. A limitation of this approach is that

it prevents us from detecting outliers on holidays that differ from typical holiday patterns.

Another limitation is that building these rules requires human knowledge. Using statistical

machine learning to learn probabilistic models conditioned on contextual variables from the

data is a potential improvement, since we can then make decisions using “soft” probabilistic

26

scores instead of “hard” rules, and we only need to provide a list of contextual variables

that might be useful and let the data tell us which are more useful than the others through

learning.

2.2.1.2 Change-Point Detection in Regular Time Series In the statistics commu-

nity, most change-point detection methods, similar to outlier detection methods, also focus

on retrospective analysis (i.e., offline detection), where the complete data is available for

analysis, and the methods try to find changes in the past. Both parametric (e.g., [94])

and nonparametric (e.g., [87]) methods have been developed. Because the complete data

is available, it is common to have multiple change-points in one time series. For detecting

multiple change-points, much work has been done to improve the computational efficiency

(e.g., [52], [31]).

Besides the above works that focus on offline detection, there is some related research on

online detection (e.g., CUSUM [85]). These methods perform tests in a sequential manner

such that a change is detected as soon as possible. However, these methods are designed

to detect changes with respect to a reference value provided beforehand. In cases when the

data are nonstationary, it is hard to decide such a value. Furthermore, although they are

able to output a score at each time step, every time a change is detected, i.e., the score

is above/below a pre-specified threshold, the procedure (including the score) needs to be

reset. Therefore, a different threshold on the score can drastically change the operation of

the procedure, since it determines when the resets should happen.

More importantly, all the above methods, online or offline, assume the data are independent

and identically distributed (IID). The assumption does not hold for time series in general

(e.g., a time series generated from a simple AR(1) model). Even worse, if the data have

nonstationarity, such as trends or seasonality, the method can get many false positives and/or

false negatives due to the IID assumption.

In the data mining community, researchers have made efforts to address online change-

point detection in time series. Yamanishi and Takeuchi [116] propose a unified framework

for detecting both temporary outliers and change-points. However, their method is based

on AR models, which limits the applicability of the method to many nonstationary time

27

series (e.g., time series with seasonality) in practice. Kawahara and Sugiyama [50] solve a

change-point detection problem that is different from the traditional setting. Their goal is to

detect whether there is a change between two consecutive time intervals. Within each time

interval, samples are formed by sliding a small window and extracting the subsequences. Then

the likelihood ratio between the null hypothesis (no change) and the alternative hypothesis is

modeled as a linear combination of kernels defined on the subsequences. Besides solving a

different problem, where the change-point is fixed, a drawback of their method is that the

time intervals both before and after the change-point must be long enough to draw enough

samples. Therefore, the delay of the detection is always bounded below by a large number,

which is not preferable for online detection.

2.2.2 Anomaly Detection in Event Time Series

The main focus of research in event time series has been centered around the development

of more flexible models to better fit the data and make more accurate predictions. Anomaly

detection in event time series has not received much attention. A relatively related line

of works are about learning from noisy data. Recently researchers have started to develop

methods to deal with noisy data, such as incomplete data [115, 95, 81] and desynchronized

data [100]. They assume the data has been corrupted by some source (e.g., censoring or

noise), and the goal is to recover the original data and/or learn a model nonetheless.

In some cases, anomaly detection may be related to learning from missing data, but we

note that the goals of anomaly detection and learning from missing data are completely

different. For anomaly detection, the goal is to detect these outliers as accurately as possible,

i.e., to distinguish them from normal data. For learning from missing data, the goal is to

learn an accurate model of the data without being affected by the noisy or missing data

much. Also, the settings in these two problems can be different. In anomaly detection, it is

most interesting and common to have an online setting, where we only have access to the

history not the the future when we try to decide whether there is any anomaly at the current

time. In contrast, for learning from noisy or missing data, it is common to have an offline

setting, where the whole sequence of each event time series is available for us to infer the

28

missing data and fit a model.

Although anomaly detection in event time series has barely been researched, we note

that a good probabilistic model lays the foundation for a good method to detect anomalies

in many cases, since we can use models trained on normal data to evaluate how “normal”

or equivalently “abnormal” new observations are. However, the exact form of an inference

algorithm making use of such a model is still unclear, and even a clear definition of anomalies

in a continuous time domain is lacking. Overall, there are still open questions related to

detecting anomalies in event time series in continuous time, which we try to resolve in the

later chapters.

29

3.0 Outlier Detection in Time Series

In this chapter, we address the problem of detecting outliers in regular time series. The

challenges here include: (1) The time series are nonstationary, meaning its distribution

changes over time. (2) There are often contextual variables (e.g., whether the day of the

observation is a holiday) that can explain some of the abnormal behaviors in the time series.

We would rather not treat these points as outliers once we have an explanation from the

contextual variables. (3) The opposite of (2) can also happen. Some points seem normal

by themselves, but when conditioned on the contextual variables, they may become very

atypical, and therefore should be detected as outliers. We try to address these challenges by

combining several ideas and techniques in statistics and machine learning. Part of this work

has been published at FLAIRS 2017 [66].

3.1 Method

In this section, we introduce our method. Let the time series be y = {yt ∈ R : t = 1, 2, . . .}

with context variables x = {xt ∈ Rp : t = 1, 2, . . .}. Our goal is to compute an outlier score

vt ∈ R at each t based on the data available at t. Our method consists of two layers. In the

first layer, we remove nonstationarity and temporal dependencies from the data and derive the

local deviation scores. In the second layer, we model the local deviation scores conditioned on

the context variables by Bayesian linear regression. We adopt Bayesian inference because it

supports more robust online learning by allowing us to add uncertainty to the model through

priors. This is important, because typically context variable observations for learning the

second layer model are scarce at the beginning (e.g. the number of observed holidays is

small). Adding uncertainty can reduce false alarms caused by high variance in the estimated

parameters.

30

3.1.1 Variance Stabilization

Count data usually have heteroscedasticity, i.e., the variance changes with the mean.

Therefore, we apply the square-root transformation (f(x) =
√
x+ 0.5) to stabilize the

variance [4], which is commonly used for Poisson distribution.

3.1.2 Seasonal-Trend Decomposition with LOESS

We introduce the Seasonal-Trend decomposition with LOESS (STL) [15] that is used as a

building block for our first-layer model. STL is a nonparametric decomposition algorithm using

locally weighted regression (LOESS) [16, 17]. Given a set of points {(xi, yi) : i = 1, . . . , n},

LOESS fits a smoothed curve y = g(x). For any x, to compute g(x), it fits a d-degree

polynomial to {(xi, yi)} weighted by vi(x) = W
(
|xi−x|
λq(x)

)
, where W (u) = (1−u3)3, if u ∈ [0, 1],

and 0 otherwise. λq(x) is the distance between x and its q-th nearest neighbor in {xi}. If

q > n, it is λn(x) q
n
.

The main steps of STL are as follows. To separate out seasonal signal, STL fits a curve

to each subseries that consists of the points in the same phase of the cycles in the time series.

After removing the seasonal signal, it fits another curve to all the points consecutively to get

the trend. The residuals after further removing the trend are called remainders.

It is worth noting that STL is a robust algorithm. It deals with outliers by down-weighting

them and iterating the procedure. The bisquare weight function, B(u) = (1−u2)2, if u ∈ [0, 1],

and 0 otherwise, is used for this purpose, where u is the normalized remainder for each point.

Figure 7 shows an example of STL.

3.1.3 First-Layer Model

The first-layer model takes the input time series, yt, and outputs a local deviation score, zt,

at each time t. Since the time series are usually nonstationary and may even have structural

changes (nonstationarity other than seasonality and trends), we use a sliding window to

restrict the time span considered, and assume that the time series in an appropriate-sized

window does not have structural changes. Let n(p) be the period of y. The window size u

31

trend remainder

data seasonal

0 10 20 30 0 10 20 30

−300
−200
−100

0
100

−400
−300
−200
−100

0
100

0

200

400

320

325

330

335

340

time

va
lu

e

Figure 7: Seasonal-Trend decomposition of a time series. The top-right graph shows the

original data, which has a strong (weekly) seasonality. The following graphs show the seasonal,

trend, and remainder signals decomposed from the original time series. Notice the point at

time 16 is an outlier.

cannot be too small compared to n(p) because STL needs enough cycles of data for smoothing.

But also it cannot be too large due to nonstationarity. We found 5n(p) is good to be used as

a default value.

At time t, we denote the local time series of length u in the sliding window as

yu(t) = {y(t−u+1), y(t−u+2), . . . , yt}.

STL is applied to decompose it into trend, seasonal, and remainder. On the remainder,

r(yu(t)), we calculate the deviation, zt, of the last point, r(yt), from the population

zt =
r(yt)− µ̂t

σ̂t
, (3.1)

where µ̂t and σ̂t are estimates of the population mean and standard deviation. Here we use

the common choices: the sample mean and the sample standard deviation.

By keeping sliding the window as new data arrive, we get a sequence of local deviation

scores, z, as the output of the first-layer model.

32

3.1.4 Second-Layer Model

The second-layer model takes the output of the first-layer model, zt, and a set of contextual

variables, xt, as input, at each time t, and outputs a final outlier score, vt. We adopt a

Bayesian approach to model zt given xt. Specifically, we assume the following linear model

zt|w, β, xt ∼ N(xTt w, β
−1).

That is, given w, β, and xt, zt follows a normal distribution. For the prior distribution of

(w, β), we use the conjugate prior, which is a normal-Gamma distribution

w, β ∼ N(w|m0, β
−1S0)Gam(β|a0, b0),

where we use the following parameterization for the probability density function (PDF) of

the Gamma distribution

f(β|a, b) =
ba

Γ(a)
βa−1e−bβ.

Let Dt = {(z1, x1), (z2, x2), . . . , (zt, xt)} denote the data we observe so far at time t. When we

observe a new sample (zt+1, xt+1), the posterior distribution for (w, β) is again normal-Gamma

with recursively updated parameters

w, β|Dt, zt+1, xt+1 ∼ N(w|mt+1, β
−1St+1)Gam(β|at+1, bt+1),

where

S−1
t+1 = S−1

t + xt+1x
T
t+1,

mt+1 = St+1(S−1
t mt + zt+1xt+1), at+1 = at +

1

2
,

bt+1 = bt +
1

2
(z2
t+1 −mT

t+1S
−1
t+1mt+1 +mT

t S
−1
t mt).

(3.2)

The predictive distribution for z, given Dt and the corresponding context variable x, is a

Student’s t-distribution with location and scale

z|Dt, x ∼ St(z|µ, σ2, ν),

where the PDF of the distribution is

f(z|µ, σ2, ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνσ2

(
1 +

1

ν

(z − µ)2

σ2

)− ν+1
2

,

33

and

ν = 2at, µ = xTmt, σ
2 =

bt
at

(1 + xTStx). (3.3)

We define the outlier score for zt+1, given Dt and xt+1, as

vt+1 = 1− pt+1 = 1− P
(
|Tν | >

|zt+1 − µ|
σ

)
, (3.4)

where Tν follows the standard t-distribution with ν degree(s) of freedom, and pt+1 is the

probability of zt+1 taking a more extreme value than the current value.

In summary, for t = 0, 1, . . ., given (zt+1, xt+1), we compute the outlier score as in (3.3)

and (3.4). Then, we update the distribution of the parameters as in (3.2).

3.2 Experiments

3.2.1 Datasets

We evaluate our method on time series data from three different domains.

Bike data consists of the time series (of length 733) that record the daily bike trip counts

taken in San Francisco Bay Area through the bike share system from August 2013 to August

2015 1. Additional context variables available for the count data are holiday indicators and

weather data. The weather data include precipitation, cloud cover, wind direction, mean

temperature, mean dew point, mean humidity, mean sea level pressure, mean visibility, and

mean wind speed. For temperature, we perform a preprocessing that transforms the value

into the absolute value of the local deviation (similar to (3.1) with absolute value), because we

expect both very high and very low temperatures to have an impact the number of bike trips.

Outliers detected in such a time series may reflect various unaccounted events influencing

the number of bike rentals, including unexpected closures due to malfunctions of the rental

system.

CDS data consists of daily rule firing counts of a clinical decision support (CDS) system

in a large teaching hospital [111]. The rules in the CDS are used to either alert on some

1https://www.kaggle.com/benhamner/sf-bay-area-bike-share

34

https://www.kaggle.com/benhamner/sf-bay-area-bike-share

adverse conditions or recommend certain actions (such as vaccinations). The data include

time series for 111 such rules, and each time series is of length 1187. Additional context

variables collected are holiday indicators and the number of electronic health records (EHR)

opened. Both are believed to influence the rule firings. Holidays may reduce the number of

visits, and the number of EHR opened may give a rough estimate of the number of patients

potentially screened by the rules during that day. Outliers may reflect the different events

influencing the rules such as the beginning of the flu season, or CDS system malfunctions

that may lead to rule silencing or aberrant rule firings.

Traffic data consists of time series of vehicular traffic volume measurements collected

by sensors placed on major highways in Pittsburgh area [97]. The time series we use here

are sampled at a fixed time across days for a year. We use data from two such sensors. The

context variable available for these data is holiday indicator. Outliers in the time series may

indicate traffic accidents, road repairs, severe weather patterns, or events such as concerts

that lead to the surge in the traffic.

3.2.2 Experiment Setup

Since there are no outliers marked for our data, we test the performance of the detection

methods on simulated outliers that correspond to randomly introduced changes in the original

signal. More specifically, outliers are injected into the time series by randomly sampling a small

percentage p of points and changing the value by a specified size δ as yi = yi ·δ for each point yi.

The values are rounded to the closest integers, so they are still counts. We use multiplicative

change instead of additive, because the data show heteroscedasticity (the variance increases

as the mean increases). We set p = {0.01, 0.05, 0.1} and δ = {2/1, 3/2, 6/5, 5/6, 2/3, 1/2}

respectively to see the influence of different settings on the performance. We consider the

injected outliers as the ground-truth outliers when evaluating the performance.

3.2.3 Methods

We compare our method with a random baseline and baseline methods based on the

widely-used probabilistic model for time series, (S)ARIMA [96, 9]:

35

• RND - detects outliers randomly.

• SARI - ARIMA(1, 1, 0)× (1, 1, 0)7, SARIMA with a weekly period, (seasonal) differencing,

and (seasonal) order 1 autoregressive term.

• SIMA - ARIMA(0, 1, 1)×(0, 1, 1)7, SARIMA with a weekly period, (seasonal) differencing,

and (seasonal) order 1 moving-average term.

• SARIMA - ARIMA(1, 1, 1)× (1, 1, 1)7, SARIMA combining the above two.

For all the ARIMA based methods we also use a sliding window. We estimate the parameters

from the past points and make a prediction for the latest point. The outlier scores are derived

similarly as in (4.16). We compare the following variants of our method:

• ND - our first-layer model, using the absolute value of the output as outlier scores.

• TL1 - our two-layer model using holiday information as a context variable.

• TL2 - our two-layer model using holiday and additional information (if available) as

context variables.

We use R [89] for all the experiments. All methods compared use a sliding window of

size 35 (5n(p)). The hyperparameters for the two-layer method are m0 = 0, S0 = I, a0 = 1,

and b0 = 100, where I is the identity matrix. They are not tuned, but we intentionally set

the prior variance to make the model uncertain when the data are still scarce, so it does not

raise many false alarms at the beginning. We add a bias term for the regression. For STL,

we set the seasonal smoothing window size, n(s) = 7, which is the smallest reasonable value

according to [15], and n(p) = 7, for the weekly periodicity, and use recommended values for

the other parameters.

3.2.4 Evaluation

We use precision-alert-rate (PAR) curves to evaluate the methods [41]. Outlier detection

methods are usually applied in monitoring and alerting systems, where the alert rate needs

to be controlled by setting a threshold for the outlier score. The precision for a given alert

rate is the most important factor in evaluating the performance, because whether it is high

or low decides whether the system is useful or annoying, even harmful [41]. If the alert rate

and the precision are not well-controlled, it may lead to so-called alert fatigue [57, 26], that

36

is users stop responding to the alerts due to their ineffectiveness. Since the probability of

getting an outlier is assumed to be low by definition, alert rates cannot be set to be high

in reality. We do not use precision-recall (PR) curves to evaluate the methods, because in

reality, it is usually very hard to get all the outliers without causing alert fatigue. People

instead control the alert rate while maintaining good precision.

3.2.5 Results

Figure 8 shows the PAR curves for Bike data with different outlier rates, p, and different

outlier sizes (folds of changes), δ, leading to 18 data sets. The results are organized in a grid

with different folds of changes in rows, and different outlier rates in columns. The maximum

alert rate is kept at 0.1 (10% of data). We show the precision at different alert rates. The

results show that it is easier to detect stronger outliers (corresponding to a larger fold of

change), which is expected, since they are more likely to rise above the natural noise in the

data. If the outlier signal is very weak, it may fall into the natural noise level, which is

reflected by the PAR curves approaching RND. Also, as expected, the precision generally is

higher, when more outliers are injected in the data.

Comparing the detection methods tested, we see the two versions of our two-layer method

outperform other methods with the margin increasing for stronger and more frequent outliers.

To make the comparison in different settings easier, we calculate the areas under the PAR

curves (AUC-PAR). To make them comparable for different outlier rates, we normalize the

alert rate relative to the outlier rates. That is, we calculate the precisions at alert rates

corresponding to α times the outlier rate p, where α ∈ [0, 1], and normalize the AUC to be

in [0, 1]. Table 1 shows the AUC-PAR for Bike data. Similar to the results in Figure 8, our

two-layer methods are the best performing methods across a wide range of outlier sizes (folds)

and rates.

We have performed the same experiments on CDS and Traffic data. We show the AUC-

PAR results in Table 2 and 3 respectively. We note that for these two data sets we have

multiple time series, so we report the averaged results. That is, given an alert rate, we average

the precision over all time series. Once again the results show that our two-layer method

37

outperforms the baselines.

By comparing the results across different data sets, we notice that the quality of the

detection may vary widely. This is due to the properties of the original time series. For

example, while Bike data is relatively clean, Traffic and especially CDS data have much more

noise and irregularities, that are detected as outliers. Hence the precision calculated based

on injected outliers gets smaller.

Comparing ND with ARIMA based methods, we notice that ND performs either close to

or better than the others in almost all the experiments. We think the main reason is that

ND accounts for seasonality without differencing, so it does not “pollute” normal points like

ARIMA based methods.

Comparing TL1 with ND and ARIMA based methods, we see an advantage in most cases.

This confirms our assumption that whether the day is a holiday has a significant influence

on the value observed on that day. TL1 makes use of that information to explain some of

the “outliers” in the data. This can largely reduce the number of false alarms and therefore

increase the precision.

Comparing TL2 with TL1, TL2 dominates TL1 in almost all cases. This proves the

usefulness of additional information (EHR counts for CDS data and weather for Bike data),

and demonstrates the flexibility of our method. Whenever there is new potentially useful

information, we can add it as new context variable(s) to improve the performance. In reality,

it is hard to tell beforehand which context variables will be helpful for detecting outliers. For

our method, we can just add all the variables that might be helpful and have the model learn

which are. This, we think, is a big advantage over a rule-based model, which needs expert

knowledge and/or trial-and-error to find out which variables are useful and to define correct

rules to filter out false alarms.

38

0.01 0.05 0.1

2
/1

1
/2

3
/2

2
/3

6
/5

5
/6

0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

alert rate

p
re

c
is

io
n

method
RND

SARI

SIMA

SARIMA

ND

TL1

TL2

Figure 8: PAR curves for Bike data. Each column has a different rate for injection of outliers,

indicated by the labels at the top. Each row has a different size (fold of change) for outliers,

indicated by the labels on the right.

39

Table 1: AUC-PAR for Bike data.

rate fold RND SARI SIMA SARIMA ND TL1 TL2

0.01 2/1 0.00 0.09 0.16 0.24 0.14 0.19 0.16

0.01 1/2 0.00 0.00 0.00 0.00 0.00 0.05 0.09

0.01 3/2 0.00 0.00 0.00 0.00 0.00 0.05 0.05

0.01 2/3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 6/5 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 5/6 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 2/1 0.05 0.56 0.56 0.55 0.71 0.75 0.77

0.05 1/2 0.04 0.31 0.38 0.35 0.48 0.58 0.57

0.05 3/2 0.03 0.33 0.30 0.31 0.38 0.47 0.55

0.05 2/3 0.02 0.13 0.16 0.23 0.24 0.31 0.32

0.05 6/5 0.12 0.07 0.06 0.06 0.10 0.15 0.17

0.05 5/6 0.09 0.02 0.04 0.05 0.08 0.10 0.11

0.1 2/1 0.06 0.54 0.58 0.55 0.72 0.78 0.82

0.1 1/2 0.04 0.29 0.42 0.36 0.44 0.51 0.52

0.1 3/2 0.09 0.27 0.27 0.29 0.38 0.49 0.56

0.1 2/3 0.11 0.12 0.22 0.19 0.25 0.29 0.32

0.1 6/5 0.03 0.08 0.10 0.09 0.13 0.16 0.20

0.1 5/6 0.05 0.05 0.10 0.08 0.14 0.14 0.15

40

Table 2: AUC-PAR for CDS data.

rate fold RND SARI SIMA SARIMA ND TL1 TL2

0.01 2/1 0.00 0.06 0.05 0.05 0.03 0.07 0.12

0.01 1/2 0.01 0.02 0.02 0.02 0.03 0.03 0.05

0.01 3/2 0.00 0.02 0.02 0.02 0.02 0.02 0.03

0.01 2/3 0.00 0.02 0.02 0.02 0.02 0.02 0.02

0.01 6/5 0.01 0.01 0.01 0.01 0.02 0.02 0.01

0.01 5/6 0.01 0.01 0.01 0.01 0.02 0.02 0.01

0.05 2/1 0.05 0.22 0.22 0.22 0.25 0.30 0.35

0.05 1/2 0.05 0.10 0.11 0.11 0.16 0.17 0.22

0.05 3/2 0.05 0.11 0.11 0.11 0.14 0.14 0.19

0.05 2/3 0.05 0.07 0.08 0.08 0.11 0.10 0.13

0.05 6/5 0.05 0.07 0.07 0.07 0.08 0.07 0.08

0.05 5/6 0.05 0.06 0.06 0.06 0.08 0.07 0.07

0.1 2/1 0.10 0.32 0.37 0.35 0.43 0.47 0.53

0.1 1/2 0.10 0.18 0.22 0.21 0.30 0.31 0.36

0.1 3/2 0.10 0.20 0.22 0.21 0.28 0.28 0.34

0.1 2/3 0.10 0.13 0.15 0.14 0.22 0.21 0.24

0.1 6/5 0.10 0.14 0.14 0.14 0.17 0.16 0.17

0.1 5/6 0.09 0.11 0.12 0.11 0.15 0.14 0.15

41

Table 3: AUC-PAR for Traffic data.

rate fold RND SARI SIMA SARIMA ND TL1

0.01 2/1 0.00 0.50 0.50 0.58 0.50 0.64

0.01 1/2 0.00 0.42 0.39 0.39 0.14 0.58

0.01 3/2 0.00 0.00 0.11 0.11 0.11 0.47

0.01 2/3 0.00 0.03 0.14 0.11 0.11 0.00

0.01 6/5 0.00 0.00 0.00 0.00 0.00 0.00

0.01 5/6 0.00 0.00 0.00 0.00 0.00 0.00

0.05 2/1 0.18 0.61 0.74 0.69 0.67 0.85

0.05 1/2 0.04 0.29 0.36 0.35 0.39 0.55

0.05 3/2 0.00 0.29 0.43 0.40 0.41 0.53

0.05 2/3 0.21 0.14 0.26 0.22 0.19 0.28

0.05 6/5 0.00 0.06 0.03 0.02 0.05 0.08

0.05 5/6 0.07 0.04 0.03 0.06 0.01 0.03

0.1 2/1 0.12 0.61 0.74 0.68 0.74 0.86

0.1 1/2 0.05 0.28 0.47 0.43 0.54 0.61

0.1 3/2 0.11 0.38 0.52 0.45 0.51 0.63

0.1 2/3 0.07 0.13 0.30 0.26 0.27 0.30

0.1 6/5 0.12 0.19 0.18 0.19 0.18 0.21

0.1 5/6 0.10 0.06 0.10 0.10 0.07 0.07

42

4.0 Change-Point Detection in Time Series

In this chapter, we address the problem of detecting change-points in regular time series.

Change-points refer to the time points when the distribution of the data is changed. We only

focus on changes in the mean here. Besides the nonstationarity, a new challenge specific to

change-point detection is that we need to filter out outliers that are abnormal but temporary

and therefore are not change-points. If care is not taken, those temporary outliers can

trigger many false alarms as false change-points. We develop two methods. One is based on

likelihood-ratio statistics accompanies by several techniques to make the detection algorithm

as robust to temporary outliers as possible. The other is based on Bayesian generative

models, where we define generative models for normal and different abnormal behaviors of

the time series to detect change-points while filtering out temporary outliers. Part of this

work has been published at AIME 2017 [65], at BIBM 2017 [67], and in Artificial Intelligence

in Medicine [68].

4.1 Likelihood-Ratio-Based Change-Point Detection

First, we propose a change-point detection method using likelihood-ratios. The overall

detection framework is based on a sliding window, that is, at each time point, it looks back a

constant amount of time, referred to as a window. All analysis is done only on the data within

the window. We use the sliding window to restrict our attention to recent data, because the

distribution of the time series can drift over time. In such a case, old data add bias to the

inference on recent data. The sliding window not only deals with nonstationary behaviors,

but also reduces the computational cost of the algorithm, so that it is suitable for online

detection. For the data within the window, we perform several steps to get the final output,

the score that reflects how significant the change in time series behavior is.

The first step is variance stabilization for count data, which is the same as in Section 3.1.1.

Then, to deal with seasonality in the time series, we use STL, which is introduced in

43

Section 3.1.2. However, here we try to detect change-points, so we only remove the seasonal

component and keep both trend and remainder components for the remaining steps. Next, we

calculate the likelihood ratio statistics based on the sum of these components as the scores.

4.1.1 Likelihood Ratio Statistics

Given a set of data points x = {x1, x2, . . . , xn} within a window at time t with the

seasonal signal removed, we wish to derive a score indicating how likely a change in the mean

has occurred in the time span [t − n + 1, t]. Ultimately, we wish to know if a change has

occurred or not (1 or 0), and a score is a continuous quantity representing our belief that a

change has occurred. By applying a threshold to the scores, we can convert them to binary

labels indicating changes.

To calculate the scores, we formulate the following hypothesis test for each possible

change-point c, 1 < c ≤ n.

H0 : xi ∼ F (µ0), 1 ≤ i ≤ n.

H1 : xi ∼ F (µ1), xj ∼ F (µn), 1 ≤ i < c ≤ j ≤ n.

F is a distribution family with a parameter for the mean. If we fix c, then the likelihood

ratio statistic would be

rc = logLHc − logLH0 , (4.1)

where LH0 is the maximum likelihood of the sample x under the null hypothesis, and LHc is

under the alternative hypothesis with known c. Since we do not know c, and instead try to

detect whether there is a change at any point, the score for the sample x is

r∗ = max
1<c≤n

rc, (4.2)

and the corresponding maximizer is the suspected change-point.

The statistics depend on the distribution family F . Because the data can be quite noisy

and contain outliers, we use Student’s t-distribution to model the data. Specifically, the

probability density function (PDF) is

p(x|ν, µ, σ2) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνσ2

(
1 +

(x− µ)2

νσ2

)− ν+1
2

, (4.3)

44

where ν is the degrees of freedom, µ is the location, and σ2 is the scale.

4.1.2 EM for MLE

We consider ν in Eq. 4.3 as given and only estimate µ and σ2. For t-distributions, the

maximum likelihood estimators (MLEs) do not have a closed-form solution, so we follow Liu

and Rubin [63] and develop an EM algorithm for estimating the parameters under either the

null or the alternative hypothesis. The EM algorithm is based on an equivalent form of the

distribution as an infinite mixture of Gaussians, which includes an additional hidden variable

τ :

τ ∼ Gamma(ν/2, ν/2), x ∼ N(µ, σ2/τ), (4.4)

where the parameters of the Gamma distribution are shape and rate. The marginal distribution

of x in Eq. 4.4 is the t-distribution in Eq. 4.3.

Based on the above, for the null hypothesis, the EM algorithm is as follows. The E-step

is

wi = E[τi|xi, ν, µ0, σ
2] =

ν + 1
(xi−µ0)2

σ2 + ν
. (4.5)

The M-step is

µ0 =

∑
iwixi∑
iwi

, σ2 =

∑
iwi(xi − µ)2

n
. (4.6)

We alternate between the E-step and M-step till convergence, use the final values of µ0 and

σ2 as the MLEs.

For the alternative hypothesis, the E-step is almost the same as Eq. 4.5, except that µ0 is

replaced by µ1 or µn depending on whether i < c or not. The M-step is

µ1 =

∑
i<cwixi∑
i<cwi

, µn =

∑
i≥cwixi∑
i≥cwi

,

σ2 =

∑
i<cwi(xi − µ1)2 +

∑
i≥cwi(xi − µn)2

n
.

(4.7)

4.1.3 Further Improvements

The data are counts, and even with transformation, low counts are problematic, because

the variance is too low. To improve the performance, we add a small noise to the data.

45

Specifically, for every point x in the time series after transformation, we add a noise as

x′ = x+ ε, ε = u− 0.5, u ∼ Beta(a, a). (4.8)

We use a (symmetric) beta-distribution, so the size of the noise is within control, ε ∈ [−0.5, 0.5],

and the mean of ε is 0.

The second improvement is based on the following observation. When calculating the

likelihood ratio statistics, if say c = 2 or n, only one point is used for estimating µ1 or µn, so

the sample size is small. But our data contain outliers, which can bias the inference especially

when the sample size is small. We can make sure the sample size is always greater than l

by restricting l < c ≤ n− l + 1, but an obvious drawback is that the expected delay of the

detection would increase. However, noticing that new data always come from the right of

the sliding window, and that usually the change can be detected quickly (in the right half of

the window), we restrict l < c ≤ n instead, so the sample size for estimating µ1 is at least

l, while the delay of the detection would not be affected at all, if without the restriction it

would be detected within n− l observations after the change.

4.2 Generative-Model-Based Change-Point Detection

Our second approach for change-point detection is based on a Bayesian generative model,

specifically the dynamic linear model (DLM). In the following, we present specifics of our

approach. We start with a brief review of the dynamic linear model (DLM) which is used to

model the time series. Then, we introduce a DLM extension that allows us to model seasonal

(weekly) variations. Finally, we show how to build DLMs reflecting different normal and

abnormal behaviors, and how to use them to detect anomalies. Again, we transform counts

to real values using the variance stabilization transformation.

46

4.2.1 Dynamic Linear Model

A dynamic linear model (DLM) [37] is a time-series model where a sequence of observations

{yt ∈ R : t = 1, 2, . . .} is modeled indirectly using a sequence of hidden state vectors

{xt ∈ Rd : t = 1, 2, . . .} of dimension d. The dynamics of the model is captured by:

yt = Fxt + vt, vt ∼ N(0, V).

xt = Gxt−1 + wt, wt ∼ N(0,W),
(4.9)

where G is a transition matrix that models the change in the hidden state over time, and F

is an emission matrix that reflects the expression of observations yt given the current hidden

state xt. Both transition and observation behaviors are stochastic and corrupted by a zero

mean Gaussian noise. The noise components are denoted as wt and vt in Equation 4.9. W

and V are the covariance matrices of these noise components. At the beginning (at time

t = 0), we assume the hidden state x0 ∼ N(m0, C0), where m0 and C0 are the mean and

covariance of x0 respectively.

4.2.2 Dynamic Linear Model with Seasonal Variation

The DLM is very flexible in that it can define many different behaviors of the time series

including seasonality. Here, we use it to represent weekly cycles, but it can be applied to

different seasonality (e.g., monthly) with straightforward changes.

The best way to understand the seasonal DLM is to break the model into multiple

components representing the dynamics of the hidden state (xt). The components are: a

baseline value (ut), a slope value (lt) reflecting the trend, and a seasonal component (st). The

seasonal component reflects a seasonal cycle that varies over a period (e.g., 7 days). Let p

denote this period. Using p we can define a function of time [t]p = (t+ p− 1) mod p+ 1 that

distributes the times into different phases of a cycle (e.g. individual days of the week). Then

the dynamics of the time series of observations {yt} can be modeled using the baseline, slope

47

and seasonal subcomponents of the dynamics as:

yt = ut + s
([t]p)
t + vt,

ut = ut−1 + lt + w
(u)
t ,

lt = lt−1 + w
(l)
t ,

s
(i)
t = s

(i)
t−1 + w

(i)
t , ∀i = 1, 2, . . . , p.

(4.10)

In this Equation, vt and wt are independent noises following Gaussian distributions. Note

that s(i) is the seasonal level of phase i in the cycle. To avoid redundancy in the parameters

we assume:
p∑
i=1

s
(i)
t = 0. (4.11)

To represent this model as a DLM, we construct xt as a composition of the three components

above:

xt = (ut, lt, s
([t]p), s([t−1]p), . . . , s([t−p+2]p))T . (4.12)

Given xt, the transition and emission matrices in Equation (4.9) can be built from the

transitions of its components in Equation (4.10). This leads to the following definitions of F

and G matrices:

F =
[
1 0 1 0 0 . . . 0

]
1×d

,

G =



1 1 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 −1 −1 . . . −1 −1

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0


d×d

,
(4.13)

where d is the length of x as in (4.12).

48

4.2.3 Multi-Process Dynamic Linear Model

The seasonal DLM can be used to model time series with trend and seasonality. However,

our main objective is to use the model to detect anomalies in the time series. We address this

problem by defining multiple DLMs representing normal and different abnormal behaviors

and switching between them.

One way to define a collection of switching DLMs is to use a multi-process dynamic linear

model (MPDLM) [37]. Briefly, let φ(i) = {F (i), G(i), V (i),W (i)} be the parameters of a DLM i

reflecting one of the many time series behaviors. In the MPDLM, the individual DLMs may

switch on and off over time depending on what model is driving the behavior of the time

series at the moment. Let M
(i)
t be a random variable indicating whether model i is driving

the time series at time t and generating yt, and Mt be the vector containing M
(i)
t for all i.

Now let Yt denote the time series up to time t, that is, Yt = {yu : u = 1, 2, . . . , t}. Given

the MPDLM and its parameters, we can calculate the prior probability of a model i driving

the time series right before observing yt: p(M
(i)
t = 1|Yt−1). After observing yt, we can

calculate the posterior probability of a model i driving the time series: p(M
(i)
t = 1|Yt). These

probabilities can help us to infer if there was a switch in the model at time t and hence a

change in the time series behavior. We will elaborate the details of the above calculations in

Section 4.2.4.

In this work, we use a combination of three DLMs: MS (Model Stable), MAO (Model

Additive Outlier), and MLS (Model Level Shift). MS is a model for normal time series behavior,

while MAO and MLS model abnormal behaviors. MAO represents a temporary outlier

behavior in which the most recent observation is very different from previous observations

(defined by the normal model), and this difference is limited to just one time point. MLS

represents a baseline change behavior (change-point) in which the new observations are very

different from the previous observations (again defined by the normal model), and the changes

persist for a longer time.

The main difference between these models is in the variance and covariance V and W

(Eq. 4.9). Take MS as the reference model. MAO has a much larger value in the variance V

but not W , because a temporary outlier is treated as a temporary noise in the observation

49

and has no influence on the hidden state of the time series. On the other hand, MLS has a

much larger value in some components of W . This makes it easier to absorb the change in

the baseline, and as a result, modify the hidden state and its future evolution.

Notice that if we observe an aberrant yt for the first time, there is no way we can tell

whether MAO or MLS has generated it, because the aberrancy could be explained by either

the noise in the observation or in the state. Therefore, we wait for the next observation yt+1

and calculate p(M
(i)
t = 1|Yt+1). Figure 9 shows an example of applying the method to a

real time series. The top graph shows the observed time series. The remaining three graphs

show the posterior probabilities of the three models, as indicated by the labels on the side.

Notice that there is one time unit delay in the probability outputs as described above. Briefly

most of the time, the time-series behavior is stable and explained by the normal model (MS).

This is captured by high posterior probabilities for MS (second graph). However, there are

observations that deviate from the normal model. In that case, the posterior probabilities of

the other two models (MAO or MLS) go up. The posterior probabilities can be used to infer

which model is most likely to explain the observed deviation from the normal model.

4.2.4 Inference

In this section, we describe how to compute p(Mt|Yt) and p(Mt−1|Yt). This calculation is

relatively straightforward as long as we have the joint distribution of the models at time t

and t− 1

p(Mt−1,Mt|Yt) ∝ p(Mt−1|Yt−1)p(Mt|Mt−1, Yt−1)p(yt|Mt,Mt−1, Yt−1), (4.14)

where p(Mt−1|Yt−1) is known, since the computation is carried out recursively along time.

To make the computation of p(Mt|Mt−1, Yt−1) tractable, we need to make some inde-

pendence assumptions. It is reasonable to assume p(Mt|Mt−1, Yt−1) = p(Mt|Mt−1), i.e., the

transition between the DLMs is first-order Markovian. Since it is more intuitive to spec-

ify p(Mt) than p(Mt|Mt−1) from prior knowledge, we further assume p(Mt|Mt−1) = p(Mt),

although the inference algorithm presented here still works without this simplification.

50

da
ta

p(
M

S
)

p(
M

A
O

)
p(

M
LS

)

1010 1020 1030 1040 1050

0
5

10
15
20

0.00
0.25
0.50
0.75
1.00

0.0
0.2
0.4

0.0
0.2
0.4
0.6
0.8

time

Figure 9: Applying the MPDLM method to a rule-firing count time series. The top graph

shows the observed rule firing counts after the transformation. The remaining graphs plot

the posterior probabilities of the three models (MS, MAO, MLS). There is one time unit

delay for the probability outputs.

The last term in Equation 4.14 can be further broken down as

p(yt|Mt,Mt−1, Yt−1) =

∫∫
p(xt−1|Mt−1, Yt−1)p(xt|xt−1,Mt)p(yt|xt,Mt)dxt−1dxt. (4.15)

The challenge here is to compute p(xt−1|Mt−1, Yt−1) or in general p(xt|Mt, Yt). Conditioning

on all Mt−i, i > 0 at all time points before t, the computation can be carried out through

Kalman filter [49] in polynomial time. But for the marginal distribution, the computation

is intractable, because the number of possible configurations for the chain of Mt’s grows

exponentially over t, and therefore p(xt|Mt, Yt) is a mixture distribution whose number of

mixtures is exponential in t. We approximate the mixture distribution by “collapsing” it at

every time step to a single Gaussian distribution to make the inference tractable [37].

51

4.2.5 Parameter Setting

The prior distribution of the models p(Mt) is a multinomial distribution. In the case

that we have information about the frequency of different types of behaviors in the data, we

can set the probabilities for the models accordingly. Otherwise, we can set a noninformative

prior, that is each model has an equal probability.

In the parameters of each model, F and G are already known and fixed in Eq. 4.13, so

we only need to set V and W . However, it is tricky to estimate them from the data, because

(1) we do not have labels for the data, and since the data could be a mix of normal and

abnormal data, the estimates could be biased; (2) even if we have labels, we may not have

enough data to estimate the parameters for the abnormal models, MAO and MLS. Therefore,

instead we derive some heuristics to set the parameters.

We use three tuning parameters to control the ratios of the variance parameters: κ >

1, δ > 1, γ ∈ [0, 1]. Let V̂ be an estimate of the variance for normal data. For MS, we set

V = V̂ and W = 0. For MAO, we set V = κV̂ and W = 0. For MLS, we set V = V̂ ,

W (u) = γδV̂ , W (l) = 0, and W (i) = (1− γ)δV̂ ,∀i. Notice that W is a diagonal matrix, and

we used the notation in (4.10) to indicate the components on the diagonal. Intuitively, κ

represents the ratio of the size of a temporary outlier to a normal point. Without prior

information, setting δ = κ− 1 is recommended, because MAO and MLS would have the same

variance for y. γ further breaks down the variance in MLS into variance in the baseline and

the seasonal levels. We may keep changing these parameters over time if needed, but we

found keeping them as constants would suffice in our case.

We can either set V̂ using our knowledge of the data, or estimate it from data. For

example, one way to estimate the variance is

V̂ =

(
1

p

p∑
i=1

CMAD({yt : [t]p = i})

)2

(4.16)

where p is the number of phases in a cycle, and CMAD is the median absolute deviation

adjusted by a constant factor for consistency. CMAD for all yt on the same phase is averaged

over all phases. CMAD is a robust estimator, making it more desirable than sample variance,

given that we know there will be abnormal data.

52

4.3 Experiments

4.3.1 Experiment Design

We test our method and compare it to alternative methods on rule firing counts from a

large teaching hospital collected over a period of approximately 5 years [111]. We run and

evaluate the methods by considering both (1) known and (2) simulated changes in their time

series.

In the first part of the experiments, we use 14 CDSS rules with a total of 22 labeled

change-points. These reflect known changes in the rule logic or confirmed changes in the

firing rates due to various issues. In the second part, we simulate changes on the existing

rule firing counts to help us analyze the sensitivity of the methods to the magnitude of the

changes. We use the firing counts of 4 CDSS rules with no known change-points, and simulate

change-points on these data by randomly sampling 10 segments of length 240 per rule and

simulating a change in the middle of these segments. We simulate the change at time c in

time series x by changing the values as x′i = λxi, i ≥ c. In different experiments, we set λ to

2/1, 3/2, 6/5, 1/2, 2/3, and 5/6 respectively, to cover both increasing and decreasing changes

in different sizes. The final values xi are rounded, so they are still nonnegative integers

consistent with counts. We use multiplicative instead of additive changes, because the data

are counts and have heteroscedasticity.

We use AMOC curves [28] to evaluate the performance of the methods. In general, a

change-point can be detected within an acceptable delay. Meanwhile, normal points can be

falsely detected as “change-points”, resulting in false positives. In an AMOC curve, the delay

of a detection is plotted against the false positive rate (FPR) by varying the threshold on the

scores. If a change is not detected at all, a penalty is used as the delay. In the experiments,

the maximum delay is 13, which is related to the sliding window size explained later, and the

penalty is 14. The first 140 points in each time series are used as a warm-up, and no scores

are produced.

We compare our methods with the following widely-used statistical methods for detecting

changes in distributions:

53

• RND: a baseline that gives uniformly sampled scores;

• SCP: single change-point detection method for normal distribution [14, 51];

• MW: a method based on Mann-Whitney nonparametric statistics [87];

• Pois: a method based on Poisson likelihood ratios [14].

We compare two versions of the likelihood-ratio-based method and the generative-model-based

method:

• NDT1: our method based on likelihood-ratios without restricting l < c;

• NDT2: our method based on likelihood-ratios with restricting l < c, where l = 7;

• DLM: our method based on DLM.

A window of 14 is used for change detection, while a window of 140 is for STL. The square-root

transformation is also used for SCP.

For NDT, we use the robust STL implemented in R [89] and set the period to 7 (a week)

and s.window = 7 (even smaller values are not recommended [15]). Default values are used

for other parameters. ν = 3 for Eq. 4.3 and 4.4. a = 1 for Eq. 4.8.

For DLM, the prior distribution of x0 is set to be N(0, 106I), where I is the identity

matrix. We set κ = 100, δ = κ − 1, γ = 0.99 and V̂ = 1 for MPDLM. We also tried to

estimate V̂ as in (4.16), but the performance was slightly worse than using a constant in

these experiments. The reason, we think, is that the ratios between the variances in different

models matters more than the values of the variances. We prefer setting V̂ as a constant for

simplicity and robustness.

4.3.2 Results on Data with Known Change-Points

The means of the areas under the AMOC curves (AUC-AMOC) are in Table 4 (row 1).

These are calculated by treating the data around each change-point as a single example. For

each example, the AUC summarizes the AMOC curve by integrating the delay w.r.t. the FPR.

These results show that NDT1 dominates the baselines, while NDT2 is better than NDT1,

showing that the proposed likelihood-ratio-based method is better than traditional methods,

and the further improvements we proposed in Section 4.1.3 are effective. Meanwhile, DLM is

54

Table 4: The mean AUC-AMOC averaged over all change-points. *Wilcoxon signed rank

tests show that NDT2 and DLM are significantly (p < 0.05) better than all the baselines.

data RND SCP MW Pois NDT1 NDT2 DLM

real 1.88 0.98 1.16 0.62 0.37 0.32* 0.19*

sim (2/1) 2.37 1.26 1.21 1.19 0.63 0.39* 0.28*

sim (3/2) 1.97 1.86 1.36 1.88 1.05 0.82* 0.68*

sim (6/5) 2.01 2.24 1.74 2.26 2.01 1.72 1.88

sim (1/2) 2.36 1.22 1.74 1.19 0.71 0.57* 0.50*

sim (2/3) 2.16 1.67 1.86 1.66 1.28 1.11* 0.94*

sim (5/6) 2.19 2.06 2.33 2.05 2.05 1.89 2.17

also outperforming all the baselines and is even better than NDT2, showing the benefit of

using a generative model to take account of both temporary outliers and change-points.

4.3.3 Results on Data with Simulated Change-Points

Table 4 (row 2–7) shows the mean AUC-AMOC for different folds of the simulated changes

(λ). NDT2 performs better than the baselines in all cases, while NDT1, although being worse

than NDT2, is still better than or similar to the baselines. When λ = 6/5, 5/6, the differences

between NDT2 and the baselines are not significant. DLM is better than NDT2 in all cases

except when the change is small (λ = 6/5, 5/6), corresponding to the cases when NDT2 is

not significantly better. This shows that when the changes are really small, it becomes a

challenge for all the methods to reliably detect them.

To further investigate the difficulties in detecting smaller changes, we examine closely

the AMOC curves. Figure 10 shows all the AMOC curves on the simulated data. They are

grouped by experiment settings, i.e., the fold of the simulated changes (λ). Each subgraph

corresponds to a different fold, shown in the label on the top. A general trend in these graphs

is that, as the changes become smaller, all the curves get closer to the random baseline (RND).

55

1/2 2/3 5/6

2/1 3/2 6/5

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

FPR

d
e
la

y
method

RND

SCP

MW

Pois

NDT1

NDT2

DLM

Figure 10: AMOC curves on simulated data averaged over all change-points. The label on

top of each subgraph indicates the fold of the changes (λ).

This reflects that the smaller the change, the harder to detect it (in time). However, except

when the change is at the smallest setting (the last column of the graphs), our methods

dominate the baselines almost everywhere by a noticeable margin.

56

5.0 Event Sequence Model

In this chapter, we address the problem of modeling event sequences in continuous time.

We propose a new nonparametric point process based on Gaussian processes (GP), which

has the flexibility similar to GP-modulated point processes (see Section 2.1.2.1) and the

applicability similar to Hawkes processes (see Section 2.1.2.2). Part of this work has been

published at NeurIPS 2019 [64].

5.1 Introduction

Two main types of point process models have been developed independently over years.

One type is what we call “regressive point processes”, where the dependencies of the intensity

function on the past events are directly modeled. Hawkes processes [42] are the most studied

and used class of regressive point processes (e.g., [119],[118],[3],[61],[106],[114],[25]). A benefit

of the regressive point processes is that they are easy to apply and interpret. They can be

learned on a set of sequences and then applied on another unseen set of sequences. Since

the influence of each past event on the intensity is explicitly modeled, it is easy to see how

different types of events influence each other over time.

Another type is what we call “latent-state point processes”, where the dependencies of the

intensity on the past events are indirectly modeled through a latent state. Based on the past

latent state, we can infer the future latent state and thereby predict future events. The most

studied class of latent-state point processes are Gaussian-process-modulated point processes

(e.g., [1],[56],[91],[35],[75],[76],[21],[53]). They use some transformation of a Gaussian process

(GP) as the prior for the intensity function, which provides a probabilistic distribution over

possible intensity functions and acts as the latent state. Then the posterior of the intensity

function can be inferred from the data. The main benefit of GP-modulated point processes

is that they provide a principled way to flexibly model the intensity functions. However, a

significant drawback is that they are harder to apply, compared with Hawkes processes, due

57

to the need of inferring a separate latent state for each sequence. To make inference on any

new sequence, long enough history of the sequence must be available. It is impossible to

learn a model from a set of sequences and apply it to other unseen sequences (i.e. cold start).

In this work, we propose a new nonparametric model, GP regressive point process

(GPRPP), combining the advantages of the above two models: the flexibility of GP-modulated

point processes and the applicability of Hawkes processes. Similar to Hawkes processes, our

model directly captures the dependencies of the intensity function on the past events. However,

unlike Hawkes processes, the dependencies are modeled nonparametrically through a GP.

Meanwhile, different from GP-modulated point processes, the input of our GP is not defined

by the “absolute” time relative to each sequence, but by the collection of “relative” times from

past events of different types. This defines a latent state independent of specific sequences,

and therefore can be learned from and applied to different sequences. Figure 11 illustrates

the differences between GPRPP and the previous models.

To better model the dependencies of the intensity function on the past events, we propose

a conditional GP model for GPRPP. It relies on a set of points introduced in the input

space of the GP to capture the dependencies independent of specific sequences. These points,

although bearing a similarity to the inducing points in sparse GPs [88, 99], function quite

differently, because instead of marginalizing them out, we condition on them for inference.

5.2 Preliminary

The training data consist of multiple sequences D = {yc}|D|c=1. Each yc is a sequence of

(time, label) pairs yc = {(ti, ui)}|yc|i=1, representing the time and the type of each event, where

ti ∈ R≥0 and ui = 1, . . . , U . A (temporal) point process has a conditional intensity function

(CIF) λ(t) = limdt→0+
E[N([t,t+dt))|Ht−]

dt
as the instantaneous rate of events at time t given the

history Ht− up to t, where N(·) counts the number of events in an interval. For example, for

a Hawkes process, the CIF of event type ui is defined as

λui(t) = µui +
∑
tj<t

φuiuj(t− tj) (5.1)

58

(a) Hawkes process (b) GP-modulated point process (c) GP regressive point process

Figure 11: Illustrations of different point process models. The first three rows are a multi-

variate event sequence consisting of events (stems) of three types (u) on the timeline. The

vertical line t marks the current time. The last row is the estimated conditional intensity

function (CIF) λ3(·) for event type u = 3. (a) In a Hawkes process, the CIF depends on

the past events through the triggering kernels φuiuj (Eq. 5.1). (b) In a GP-modulated point

process, the entire (transformed) CIF on the specific sequence is a function with a GP prior.

(c) In a GPRPP, the (transformed) CIF depends on the past events through a function with

a GP prior.

where φuiuj is a function of time that characterizes the influence of past events of type uj on

type ui. It is called a triggering kernel in previous works. Meanwhile, µui defines the baseline

intensity.

Given the CIF, the probability density of the data D is

p(D) =

|D|∏
c=1

p(yc) =

|D|∏
c=1

|yc|∏
i=1

λui(ti) exp

(
−
∫ T c

tc0

U∑
u=1

λu(t)dt

)
(5.2)

where tc0 and T c are the start and end time of yc. Without loss of generality, we assume tc0 = 0

from now on. We note that the density of the data factorizes over the individual sequences

yc (Eq. 5.2), while the density of each sequence factorizes over the event types (Eq. 5.3):

p(yc) =
U∏
u=1

 |yc|∏
i=1

λu(ti)
δ(ui,u) exp

(
−
∫ T c

tc0

λu(t)dt

) ,
U∏
u=1

pu(yc) (5.3)

where δ(x, y) = 1 when x = y, and 0 otherwise. In this way, a point process can be viewed

as a set of sub-models, one for each type of events. The total likelihood is the product of

59

the likelihood of all the sub-models. For a Hawkes process, each sub-model is similar to a

regression model, where the predictors are the elapsed times since the past events of all types,

transformed through the triggering kernels.

5.3 GP Regressive Point Processes

Inspired by the regressive view of Hawkes processes, we propose a new model based on

Gaussian processes (GPs). Since the density factorizes over sequences (Eq. 5.2), we describe

the method for one sequence yc in the following. To avoid cluttering, we use y to denote the

sequence. Since the density of each sequence factorizes over event types (Eq. 5.3), we describe

the method for pũ(y) of one type ũ (target type) and call the events of type ũ the target

events. The same method can be repetitively applied to all pu(y), u = 1, . . . , U . However, we

stress that even for one target type ũ, pũ(y) can depend on all types of events in the history

through the CIF (Eq. 5.1 and 5.4).

In our model, for each target type ũ, the CIF λũ(t) is a transformation of a function f

drawn from a GP with mean µ and covariance function K, f ∼ GP(µ,K). We note that

f , µ and K can be different for λu(t) of a different type u. The input of f consists of the

elapsed times since the last Q events of all the types. That is, f : X → R, where X ⊆ RD
≥0,

D = U ×Q, and U is the size of the label set. To convert it to a valid CIF, we use the square

transformation

λũ(t) = f(x(t))2 = f(t− s1
1(t), . . . , t− sQU (t))2 (5.4)

where squ(t) is the time of the q-th (from last) event of type u before time t, which could be

undefined when no such event exists. The input of the GP is x(t) = (t− squ(t))
U,Q
u=1,q=1 ∈ X .

That is, x depends on the current time t and the last Q events of all types. The d-th

dimension of x(t) is xd(t) = t− squ(t), corresponding to the time elapsed since the q-th (from

last) event of type u. In fact, Q does not have to be the same for each type u, i.e., we can

have a different Qu for each type u, but for notational simplicity, we use Q as if it were the

same for all types. We note that the CIF of the model directly depends on the past events

and call the model a GP regressive point process (GPRPP).

60

The square transformation ensures nonnegativity of λ and enables closed-form evaluation

of the integrals in the likelihood as shown in the next section. It was originally proposed in

[75] for GP-modulated point processes for event sequences without types and then exploited

in later works (e.g, [76, 21]). Compared with these works, where the GP is a function of the

single “absolute” time, in our model, the GP is a function of multiple “relative” times since

past events, which keeps changing as new events happen. This makes the inference much

harder, and new efficient algorithms to evaluate the integrals are developed in this work.

A key challenge in the model definition is to deal with undefined inputs. That is, inevitably

at some time t (e.g., at the very beginning of a sequence), the q-th (from last) event of type

u may not exist. Inspired by Hawkes processes, we come up with a novel kernel for the GP.

We start by augmenting each input xd(t) with an additional indicator I [xd(t)] to indicate

whether the q-th (from last) event of type u exists, i.e., whether squ(t) (correspondingly xd(t))

is defined. When squ(t) is undefined (there are less than q events of type u in the past), we can

set a dummy value for xd(t) (e.g., xd(t) =∞), and I [xd(t)] = 0. Otherwise, xd(t) = t− squ(t)

as before, and I [xd(t)] = 1. The dimensionality of the input essentially becomes 2D, but for

notational simplicity, the indicators are implicit in x(t). We define the kernel as

K(x(t), x′(t′)) =
D∑
d=1

I [xd(t)] I [x′d(t
′)]︸ ︷︷ ︸

K1

γd exp

(
−(xd(t)− x′d(t′))2

2αd

)
︸ ︷︷ ︸

K2

(5.5)

where γd, αd > 0. This is essentially a sum of D kernels, each of which is a product of two

kernels K1 and K2. K2 is the squared-exponential kernel on the value of xd(t). K1 is the

inner product on the indicator I [xd(t)]. We use the squared-exponential kernel, because it is

widely used and has closed-form evaluations of ψ and Ψ as shown in the next section, but it

can be replaced by any kernel with the latter property.

Remark. The two inputs of the kernel have different notations for x and t, indicating they

can come from different sequences at different absolute times. The kernel is actually isolated

from the absolute time t in the individual sequences, since it only depends on the value of

x(·) at t. This is very different from previous GP-based models (e.g., [75, 76, 21]), where

the inputs of the kernel always come from the same sequence, and the kernel depends on the

absolute time t in the sequence.

61

We make the following two assumptions to justify the definition of our model.

Assumption 5.3.1. For each type u of events, they have time-limited influences on the

target events. That is, there is a time limit, ∆Tu <∞, for each type u of event, such that for

any event of type u occurring at su, λũ(t) may depend on su only if 0 < t− su ≤ ∆Tu.

Assumption 5.3.2. For each type u of events, there exists Mu : R → Z such that for

any bounded time interval I = [tbeg, tend), |I| = tend − tbeg < ∞, the number of events

Nu(I) ≤Mu(|I|) <∞.

Theorem 5.3.1. Given that assumption 5.3.1 and 5.3.2 hold, there exists Q <∞ such that

λũ(t) depends on at most the last Q events of any type at any time t.

Proof. Given any event sequence y = {(ti, ui)}|y|i , the CIF λũ(t) at any time t may only

depend on the subset of events {(ti, ui) ∈ y : 0 < t−ti ≤ ∆Tui}, according to Assumption 5.3.1.

Focusing on a specific type u, the subset of events that λũ(t) may depend on is {(ti, ui) ∈

y : 0 < t− ti ≤ ∆Tu, ui = u}. Notice that all of these events occur within the time interval

[t−∆Tu, t), which is a bounded interval, since ∆Tu <∞. Therefore, from Assumption 5.3.2,

we have Nu([t−∆Tu, t)) ≤Mu(∆Tu) <∞ for some Mu, which holds for any time t. That is,

λũ(t) depends on at most the last Mu(∆Tu) events of type u at any time t. To complete the

proof, let Q = maxu=1,...,U Mu(∆Tu).

5.4 Conditional GPRPP

In this section, we propose a conditional GP model for GPRPP and call it conditional GP

regressive point process (CGPRPP). The input of the GP is defined in the previous section

and denoted as x = x(t). When t is not important or clear from the context, we just denote

the input as x.

Previously, different forms of sparse GPs based on inducing variables have been proposed

to improve the efficiency of GPs (e.g., [88, 99]). Typically, a set of inducing points are

introduced in the input space, and the inducing variables corresponding to the points are

marginalized out for learning and inference. Our idea is similar, but the difference is that we

62

condition on the inducing variables, which correspond to the values of the CIF given different

situations of the history. Therefore, we call these points conditional points.

Let Z ∈ XM be a sequence of M conditional points in the input space. We will explain

how to pick these points later. Given any input x ∈ X , the output of the GP is fx = f(x) ∈ R.

Let fZ = f(Z) ∈ RM . We define µx and µZ as the prior mean µ of the appropriate dimensions

for x and Z respectively. Let Kxx′ = K(x, x′) as defined in Eq. 5.5 for any inputs x and

x′. If x and x′ are vectors, Kxx′ is the Gram matrix of the corresponding size. Then

p(fZ) = N (µZ , KZZ), and p(fx|fZ) = N (µx|Z , σ
2
x|Z), where

µx|Z = µx +KxZK
−1
ZZ(fZ − µZ), σ2

x|Z = Kxx −KxZK
−1
ZZKZx (5.6)

From Eq. 5.3 and 5.4, the conditional density of the sequence y given fx is

ln pũ(y|fx) =
N∑
n=1

δ(un, ũ) ln f(x(tn))2 −
∫ T

0

f(x(t))2dt (5.7)

where N = |y| is the total number of all types of events in y.

Remark. It is worth noting that the conditional points in Z are independent of any specific

sequence y, since they are points in X .

Assuming we observe fZ = mZ , we can maximize the conditional density pũ(y|mZ) to

learn the hyper-parameters of the model:

ln pũ(y|mZ) = ln

∫
pũ(y|fx)p(fx|mZ)dfx

where p(fx|mZ) is defined by Eq. 5.6 with fZ = mZ . Because there is a correspondence

between f(x(t)) and the CIF λ(t), mZ essentially corresponds to different values of the CIF

given different situations of the history, determined by different z ∈ Z. Even given the exact

same history, the CIF may still be stochastic. Therefore, we allow noise in fZ , which is a

generalization of the noiseless case, so fZ = mZ + εZ , where p(εZ) = N (0, Sε). Then we can

marginalize out εZ by integrating w.r.t. p(εz). In the end, we maximize

ln pũ(y|mZ) = ln

∫∫
pũ(y|fx)p(fx|mZ , εZ)p(εZ)dfxdεZ = ln

∫
pũ(y|fx)p(fx|mZ)dfx (5.8)

63

where p(fx|mZ , εZ) is defined by Eq. 5.6, and

p(fx|mZ) =

∫
p(fx|mZ , εZ)p(εZ)dεZ = N (µ̃x, σ̃

2
x)

has a closed-form solution

µ̃x = µx +KxZK
−1
ZZ(mZ − µZ), σ̃2

x = Kxx −KxZK
−1
ZZKZx +KxZK

−1
ZZSεK

−1
ZZKZx. (5.9)

Remark. Because we condition on the pseudo-observations mZ, they can move freely when

we optimize Eq. 5.8, and their values are determined by fitting to the training data. Intuitively,

they act as key points of the CIF, which are supposed to capture the key information regarding

the entire CIF.

Eq. 5.8 is hard to maximize directly. Instead, we derive a lower bound using Jensen’s

inequality and maximize the lower bound

ln

∫
pũ(y|fx)p(fx|mZ)dfx = lnE [pũ(y|fx)] ≥ E [ln pũ(y|fx)] (5.10)

where the expectation is w.r.t. p(fx|mZ), and from Eq. 5.7

E [ln pũ(y|fx)] =
N∑
n=1

δ(un, ũ)E
[
ln f(x(tn))2

]
−

N+1∑
n=1

∫ tn

tn−1

(
E [f(x(t))]2 + Var [f(x(t))]

)
dt

where we define t0 = 0 and tN+1 = T to be the start and end time of the sequence y.

From [75], we have

E
[
ln f(x(tn))2

]
= −G̃

(
− µ̃2

x

2σ̃2
x

)
+ ln

(
σ̃2
x

2

)
− C (5.11)

where C ≈ 0.57721566 is the Euler-Mascheroni constant, G̃ is defined via the confluent

hypergeometric function, and µ̃2
x = E [fx]

2 , σ̃2
x = Var [fx] can be computed as in Eq. 5.9.

Meanwhile,∫ tn

tn−1

E [fx]
2 dt =(tn − tn−1)µ2

x + 2µxψ
T
nK

−1
ZZ(mZ − µZ)

+ (mZ − µZ)TK−1
ZZΨnK

−1
ZZ(mZ − µZ), (5.12)∫ tn

tn−1

Var [fx] dt =
D∑
d=1

∫ tn

tn−1

γdI [xd(t)] dt− Tr
(
K−1
ZZΨn

)
+ Tr

(
K−1
ZZSεK

−1
ZZΨn

)
. (5.13)

64

The definitions of ψ and Ψ are as follows. Define vd,n,m = tn− sd(tm), where sd(t) is the qd-th

(from last) point of type ud before t (qd and ud are determined by the dimension d). Then for

any z, z′ ∈ Z

ψn(z) =
D∑
d=1

I [zd] I [sd(tn)] γd

√
παd√

2

[
erf

(
vd,n,n − zd√

2αd

)
− erf

(
vd,n−1,n − zd√

2αd

)]
, (5.14)

Ψn(z, z′) =
D∑
i,j

I [zi] I
[
z′j
]
I [si(tn)] I [sj(tn)] γiγj

√
παiαj√

2(αi + αj)

exp

(
−

(zi + si(tn)− z′j − sj(tn))2

2(αi + αj)

)
[

erf

(
αi(vj,n,n − z′j) + αj(vi,n,n − zi)√

2αiαj(αi + αj)

)

−erf

(
αi(vj,n−1,n − z′j) + αj(vi,n−1,n − zi)√

2αiαj(αi + αj)

)]
. (5.15)

We note that both
∑

n ψn and
∑

n Ψn can be combined to improve efficiency. A straight-

forward implementation would cost O(ND2), where N is the total number of points. The

key thing to notice is that for fixed dimensions d, i, j, the types of points that matter are

only the ones related to the dimensions, while we can integrate over the other types of points

in closed form. Specifically,∑
n

ψn(z) =
D∑
d=1

I [zd] γd

√
παd√

2
gd, (5.16)

∑
n

Ψn(z, z′) =
D∑
i,j

I [zi] I
[
z′j
]
γiγj

√
παiαj√

2(αi + αj)
Gij, (5.17)

where

gd =

Nud+1∑
k=bd

[
erf

(
vd,(k),(k) − zd√

2αd

)
− erf

(
vd,(k−1),(k) − zd√

2αd

)]
,

Gij =

Nui,uj+1∑
k=bij

exp

(
−

(zi + si(t(k))− z′j − sj(t(k)))
2

2(αi + αj)

)
[

erf

(
αi(vj,(k),(k) − z′j) + αj(vi,(k),(k) − zi)√

2αiαj(αi + αj)

)

−erf

(
αi(vj,(k−1),(k) − z′j) + αj(vi,(k−1),(k) − zi)√

2αiαj(αi + αj)

)]
.

65

For gd, Nud is the number of points of type ud, t(k) is the time of the k-th such point (i.e.,

(k) maps the index k in the sub-sequence of type ud to the index of the same point in the

full sequence), bd is the index of the first such point with at least qd points of type ud before

it, and t(Nud+1) = T . For Gij, Nui,uj = Nui + Nuj is the number of points in the combined

sequence of points of both type ui and type uj, t(k) is the time of the k-th such point, bij is

the index of the first such point with at least qi points of type ui and qj points of type uj

before it, and t(Nui,uj+1) = T .

In this way, the calculation of
∑

n ψn(z) and
∑

n Ψn(z, z′) can be done in O(NDQ) if we

share the same Q across all types u. If we only set Q > 1 for one type, e.g., for u = 1, and

set Q = 1 for the other types, and if N1Q1 = O(N), then the bound becomes O(ND). Either

way, it is an improvement compared with O(ND2) for a straightforward implementation.

Empirically, we can improve the performance even further by pre-calculating once and storing

the values of v and si − sj at the beginning.

Theorem 5.4.1. The time complexity for calculating ψ and Ψ using our algorithm is

O(M2NDQ). By setting each conditional point to be active on only one dimension and

Qu = 1 for u 6= ũ, the complexity can be reduced to O(M2N).

Proof. We only prove the bound for
∑

n Ψn(z, z′), since
∑

n ψn(z) is more efficient to compute.

To compute
∑

n Ψn(z, z′), we need to sum over all pairs of dimensions i, j = 1, . . . , D. However,

for each pair of (i, j), we only need to sum over at most Nui +Nuj items, where Nu is the

number of points of type u, and ui, uj are the types for dimension i, j. The reason is that the

points of the other types in the middle can be integrated over in closed-form. Therefore, the

total number of items to sum over is at most

D∑
i=1

D∑
j=1

(Nui +Nuj) = 2D
U∑
u=1

NuQu

where Qu is the regression hyper-parameter Q for type u.

In summary, in the most general case, the complexity is O(D
∑

uNuQu). If we use the

same Q for all types, then it becomes O(NDQ). If we use Q > 1 for only one type, say u = 1,

and N1Q1 = O(N), then it becomes O(ND). In practice, we can use the symmetric property

of the sum and almost halve the amount of computation.

66

In the most general case when each conditional point can have D active dimensions, we

need to do the above computation for each pair of (z, z′). The total complexity is O(M2NDQ),

where M is the total number of conditional points. However, if we set each conditional point

active on only one dimension, then the complexity becomes O(M2NQ). Additionally, if we

set Q > 1 for only one type, say u = 1, and N1Q1 = O(N), then it becomes O(M2N).

5.4.1 Learning

We also add an independent noise kernel σ2I to the existing kernel (Eq. 5.5), which results

in a new term in the integral of the variance (Eq. 5.13). For learning the model, we maximize

the lower bound (Eq. 5.10) w.r.t. the set of hyper-parameters Θ = {µ, α, γ, σ,mZ , Sε}.

We assume that mZ provides sufficient information for the inference on the test data D∗.

Assumption 5.4.1. Conditioned on mZ, the test data D∗ is independent from the training

data D, p(D∗|D,mZ) = p(D∗|mZ).

5.4.2 Inference

For inference of the test likelihood, to compare with non-Bayesian models, we use a point

estimate of the CIF, instead of model averaging. We use the optimal hyper-parameters Θ∗

learned from the training data D to estimate the mean CIF

λ∗ũ(t) = E [λũ(t)|Θ∗] = E [f(x(t))|Θ∗]2 + Var [f(x(t))|Θ∗] (5.18)

on the test data D∗, where the conditional mean and variance are defined in Eq. 5.9. Then

we use the mean CIF as our prediction to compute the likelihood p(D∗|λ∗) on the test data.

5.4.3 Time Prediction

For predicting the time of the next target event, given the history up to a time point t,

we compute the expected time for the next target event given the CIF λũ

E [sũ|λũ] =

∫ ∞
t

sũλũ(sũ) exp

(
−
∫ sũ

t

λũ(v)dv

)
dsũ (5.19)

67

for sũ ∈ (t,∞), where λũ depends on the history Ht− and fx. That is

E [sũ|λũ] = E [sũ|Ht− , fx] =

∫ ∞
t

sũf(x(sũ))
2 exp

(
−
∫ sũ

t

f(x(v))2dv

)
dsũ (5.20)

From here, we can take expectation w.r.t. fx using the conditional-point approximation. In

the end, the prediction is

E [sũ|Ht−] =

∫∫
E [sũ|Ht− , fx] p(fx|m∗Z , εZ)p(εZ |S∗ε)dfxdεZ

=

∫
E [sũ|Ht− , fx] p(fx|m∗Z , S∗ε)dfx

(5.21)

where m∗Z and S∗ε are part of the hyper-parameters Θ∗ learned from the training data. The

expectation w.r.t. fx is evaluated using Monte-Carlo sampling, and E [s|Ht− , fx] is evaluated

by sampling the point process through Ogata’s modified thinning algorithm [82].

An alternative approach, which is more efficient, is to use the mean CIF

λ∗ũ(sũ) = E [λũ(sũ)|Θ∗] = E [f(x(sũ))|Θ∗]2 + Var [f(x(sũ))|Θ∗] , sũ ∈ (t,∞) (5.22)

to predict the events without sampling fx. That is, we estimate λ∗ũ using the learned hyper-

parameters Θ∗ and the history Ht− , and plug λ∗ũ into Eq. 5.19 to estimate the time to the

next event. We used this approach in the experiments and found it to be effective.

5.4.4 Conditional Point Placement

Due to the high dimensionality of the input space of f , it is preferable that the conditional

points are placed beforehand and fixed in the learning procedure. Based on the additive

form of our kernel, we place the conditional points independently on each dimension. Each

conditional point will be active on only one dimension. In our experiments, for simplicity, we

put the conditional points regularly on each dimension within a region. If prior knowledge is

available, it can be used to determine the region; otherwise, we can use the following heuristics.

The left bound of the region is usually 0. The right bound can be set to the maximum (or

some quantile) of the time span between two (Q = 1) or more (Q > 1) consecutive points of

the same type, since beyond that, the conditional points will have limited effects.

68

5.5 Experiments

We compare our method with two state-of-the-art nonparametric Hawkes process variants.

HP-GS [114] is a nonparametric Hawkes process using a set of (Gaussian) basis functions

to approximate the triggering kernels, with sparse and group lasso regularization. For each

experiment, we tune its tuning parameters αS and αG in a wide range {10−2, 10−1, . . . , 104}

as in the original work using cross-validation based on the likelihood. In all the experiments,

the bandwidth of the Gaussian kernels is set to be optimal, that is the inverse of the cut-off

frequency, based on the positions of the kernels. The cut-off frequency ω0 = πM/T , where

M is the number of kernels and T is the right bound on the kernels. HP-LS [25] is another

nonparametric Hawkes process. This method allows very flexible triggering kernels to be

estimated by discretizing the kernels and solving a least-square problem. Its parameters are

set in accordance with the other methods for each experiment. For our method, to improve

efficiency, when we set Q > 1, we only set it for the target type and keep Q = 1 for the others.

We tie the parameters for different dimensions q = 1, . . . , Q of the same type u.

5.5.1 Synthetic Datasets

First we generate two synthetic datasets representing two distinctive types of event

sequences using the thinning algorithm [82]. The first dataset is generated through a renewal

process. The baseline intensity is µ. When there is a new event, the intensity temporarily

becomes A(1− sin(2πt/τ)), for a limited time t ∈ (0, τ) after the event. Each new event will

reset the intensity. We set µ = 0.1, A = 0.1, τ = 20.

The second dataset is generated through a Hawkes process. The baseline intensity is

µ. The triggering kernel is A exp(−(t − b)2/σ2), i.e., a Gaussian kernel. Different from

the renewal process, each new event will add a new Gaussian kernel on top of the existing

intensity. We set µ = 0.1, A = 0.1, b = 10, σ2 = 4.

For each dataset we generate 200 sequences of length of 100 time units each. Each dataset

is split into 100 training sequences and 100 testing sequences. For the first dataset, we set

Q = 1 and conditional points at 0, 5, . . . , 15 for CGPRPP. For HP-GS, the kernels are also

69

placed at 0, 5, . . . , 15. For HP-LS, we set h = 1, k = 20. For the second dataset, we use the

same settings for all the methods, except that we vary Q = 1, 5, 10, 20, 40 for CGPRPP to

see the effect of adding more regression terms.

We visualize the influence from a past event of a specific type to the target events as the

changes in the intensity of the target type over time since that event. For Hawkes processes,

it is similar to plotting the triggering kernels, except that the triggering kernels are added on

top of the baseline intensity, so we can compare the intensity after an event with the baseline

intensity. For CGPRPP, it is equivalent to simulating an event at time 0 and plotting the

changes in the intensity as time elapses.

The true influence functions are in the first column in Figure 12, followed by the inferred

influence functions for each method. For the first dataset, HP-GS cannot learn the influence

function, because its limitation in the dependencies of the CIF on the past events. Although

the triggering kernels are nonparametric, the baseline intensity and the triggering kernels

are additive in the CIF. This limitation is quite common in nonparametric Hawkes processes

(e.g., [117, 22, 118]). HP-LS is more flexible and learns a better influence function, but the

discretization tends to make the function noisy. CGPRPP almost completely recovers the

true influence function. We note that this influence represents an inhibition followed by an

excitation, which is common in practice such as neural spike trains [25]. However, most

Hawkes process variants can only model either excitations or inhibitions, but not a mix of

both at the same time. In contrast, CGPRPP models the whole CIF as a nonparametric

function of the past events and therefore can model these more complex dependencies.

For the second dataset, HP-GS is a perfect match for the data, so unsurprisingly it

recovers the influence function very well. HP-LS also learns the influence reasonably well,

although still suffering from discretization. Interestingly, CGPRPP with Q = 40 (similar for

Q = 10, 20) learns an influence function very close to HP-GS.

The test log-likelihood on the synthetic datasets are shown in Table 5. CGPRPP performs

the best on the first dataset, while HP-GS and CGPRPP perform similarly on the second

dataset, with CGPRPP being marginally better. The likelihood results are concordant with

how well the models recovered the influence function. For the second dataset, we show the

performance of CGPRPP selected with the training likelihood (Q = 40). A comparison of

70

GPRPP based on variational sparse GP [75] and conditional GP, and the effect of varying Q

on the performance of CGPRPP are in the following sections.

5.5.2 Conditional GP vs. Variational Sparse GP

We compare the performance of GPRPP based on variational sparse GP with inducing

points [75] and CGPRPP based on conditional GP with conditional points. Figure 13 shows

the test log-likelihood of GPRPP and CGPRPP with Q = 1, 5, 10, 20, 40 on the second

synthetic dataset. Conditional-GP-based model outperforms variational-sparse-GP-based

model in all cases, showing that conditional GP can capture the dependencies between events

better.

5.5.3 Effect of Varying Q

Figure 13 shows the test log-likelihood of CGPRPP with Q = 1, 5, 10, 20, 40 on the second

synthetic dataset. We notice that Q does affect the performance of CGPRPP, especially

when it is small and the model is a mismatch for the data. However, as Q increases, the

performance tends to stabilize. For data generated through Hawkes processes, it is beneficial

to have Q large enough so the model is capable of approximating the compound influences

from all the past events. However, in general, for data generated through processes other than

Hawkes processes, an optimal Q may need to be neither too small nor too large, and therefore

selecting Q may be necessary. In the experiments, we simply use the training likelihood to

select Q, which turns out to be effective in most cases. A potential improvement is to use

cross-validation, which we do not explore in this work.

5.5.4 IPTV Dataset

The IPTV dataset consists of TV viewing records of users over 11 months [77, 114]. Each

sequence consists of times and types of the TV programs viewed by a user. Events in this

dataset are generally very bursty, i.e., one event tends to trigger a group of events of the

same type happening in a relatively short amount of time, while the distance between these

71

burst groups are relatively large. This is a distinctive characteristic of data generated by

Hawkes processes, so we expect the Hawkes process baselines to perform well. To the best of

our knowledge, HP-GS has the best performance on this dataset, but our goal is to confirm

whether CGPRPP can also fit the data well and achieve similar or better performance.

The data are extracted from THAP1 [113], which contain 302 users in total. For efficiency,

we randomly sample 200 users and use 100 for training and the others for testing. The original

dataset contains 302 users and 16 different types of events (genres of TV programs). Table 7

shows the counts of these different types of events. For efficiency, we randomly sampled 200

users and used 100 users for training and the others for testing. We removed the last two

types of programs, “education” and “ads”, due to extremely low counts.

All the models are trained on one month and tested on the following three months. We

used data in March for training and the following months for testing (on separate users). We

picked March a priori, because it has fewer irregularities such as holidays than the first two

months.

For HP-GS, we put the kernels at every 20 minutes from 0 up to 24 hours, since the length

of most TV programs is about 20 to 40 minutes [114]. For HP-LS, we train multiple models

with h = 1.25, 5, 20 minutes and k = (24 ∗ 60 + 20)/h correspondingly. For CGPRPP, the

conditional points are also placed at every 20 minutes up to 24 hours. We set Q = 5, 10, 20

and select Q based on the training likelihood.

Table 6 shows the test log-likelihood of the models on different months. This is the

total log-likelihood of all types of events. For HP-LS, we show the best test log-likelihood

across different h and k. As expected, HP-GS performs the best, confirming the bursty

characteristic of the data. However, HP-LS does not perform well. A problem of HP-LS is

that the discretization tends to make the influence function noisy and fail to generalize well.

CGPRPP has a competitive performance close to HP-GS, showing its capability to model

bursty events.

1https://github.com/HongtengXu/Hawkes-Process-Toolkit

72

https://github.com/HongtengXu/Hawkes-Process-Toolkit

5.5.5 MIMIC Datasets

To show the flexibility of CGPRPP in modeling other complex event patterns than the

bursty patterns as in many previously used datasets similar to the IPTV dataset, we derive

multiple new event sequence datasets from MIMIC III [48] consisting of lab tests ordered to

patients in a hospital. Lab orders tend to have more complex dependencies such as a complex

mix of multiple inhibitions and excitations over time (e.g., see Figure 14).

In MIMIC III, there are types of labs that tend to occur together. We collect these labs

into groups, which we call lab classes. These classes are built using the following procedure.

First, we collect the occurrences of all the labs. Then, we calculate the Intersection over

Union (IoU) for each pair of labs based on their occurrence timestamps. That is, if two labs

always co-occur, then their IoU will be 1. In contrast, if they never co-occur, then it will be

0. Finally, we put two labs into the same class, if their IoU is above 0.95.

In the experiments, we focus on patients that have been admitted to the hospital. Within

these patients, we have 710 types of labs. After grouping them, we get 598 classes. We

extract 20 different datasets targeting the most frequent 20 classes. Each dataset consists of

10 different lab classes, one of which is the target we try to predict, while the others are the

predictors. The target classes are shown in Table 8. The labels of the labs in the same class

are separated by semicolons. For each class, the labs all share the same property (without

forcing it) in terms of “fluid” and “category”, confirming that our grouping algorithm is

reasonable.

To build the predictors for each target lab class, we find 10 different lab classes using

heuristics. First, we find the admissions that have at least one occurrence of the target.

Then, we calculate the event-wise probability of occurrence and admission-wise probability

of occurrence for each class. The former is defined as the number of occurrences for the

class divided by the total number of occurrences for all classes. The latter is defined as the

number of admissions having at least one occurrence of the class divided by the total number

of admissions. The difference between the two is that the former puts the frequency of the

class over time into consideration, while the latter only considers the “popularity” of the

class among the admissions.

73

After calculating the two probabilities, we keep only the classes that have an admission-

wise probability greater than 0.5. Then we rank these classes by the ratio of the event-wise

probabilities of occurrence between the subpopulation of admissions containing at least

one target and the whole population, and pick the top 10. The intuition is that the latter

probability can be seen as a prior probability of the event occurring, while the former as a

posterior probability conditioned on that the target is present in the sequence (admission).

Denote the event that, given a lab occurs, it is of the specific class u as Eu, and the event

that a lab of the target class ũ also occurs in the same sequence as Oũ. Then essentially, we

iteratively find each predictor u as

arg max
u

p(Eu|Oũ)

p(Eu)
= arg max

u

p(Eu|Oũ)p(Oũ)

p(Eu)
= arg max

u
p(Oũ|Eu).

Using the above heuristics, the target itself will always be selected as the top 1 predictor.

Table 9 shows an example of the selected predictors for lab class 355. The first row is the

target class itself, followed by the other predictors.

We sample 200 admissions (sequences) randomly from each dataset, where 100 admissions

are used for training and the others for testing. For HP-GS, we put the kernels at 0, 8, . . . , 48

hours. We also test a different version of the method, HP-GS-A, using the adaptive basis-

function-selection algorithm in [114] to place the kernels. For HP-LS, we train multiple

models with h = 0.5, 2, 8 hours and k = (48 + 8)/h correspondingly. For CGPRPP, the

conditional points are also placed at 0, 8, . . . , 48 hours. We set Q = 1, 10 and select Q based

on the training likelihood. As a reference, we also test against a model based on deep neural

networks, the neural self-modulating multivariate point process (NSMMPP) [80]. The number

of hidden units is selected from 64, 128, . . . , 1024 as in the original work through a validation

set (80/20 split from the full training set).

Table 10 shows the full results of test log-likelihood on the MIMIC datasets. Each column

is a different dataset with a different target lab class. They are ordered from the most frequent

(355) to the least frequent (18) based on their occurrences. We compare CGPRPP with

Q = 1 and Q = 10, while CGPRPP* is the model selected with the best training likelihood.

For HP-LS, we show the best test log-likelihood across different h and k on each dataset.

CGPRPP* achieves the best or close to the best performance on all datasets except class

74

550 and 18. On class 355, 60, 151, 113, and 140, CGPRPP* outperforms the second best by

a large margin. In some cases (e.g., class 550) CGPRPP with a different Q actually has a

much better result, although not being selected.

As an example, we plot the influence functions for class 355 from past events of the same

type in Figure 14. HP-GS learns a smooth influence function with excitations around 24 and

48 hours. This corresponds to the fact that right after a lab being ordered, it might need to

be repeated after one or two days. In contrast, HP-LS (h = 0.5 with the best test likelihood)

learns a much noisier pattern due to discretization, which is harder to interpret. Compared

with HP-GS, CGPRPP learns not only similar excitations around 24 and 48 hours, but also

a strong inhibition after each excitation, showing a more flexible fit to the data.

5.5.6 Time Prediction Evaluation

We also evaluate the performance of our method for predicting the time of each target

event on the MIMIC datasets. On each dataset, we repeat the experiment for each method 5

times and show the average results. The setting of each method is the same as for likelihood

evaluation, except for HP-LS, where we only test for h = 2. We sample 100 times to estimate

the expected time to each next event for all the methods.

We evaluate the accuracy of the time predications using root mean square error (RMSE),

where the difference between the predicted time and the true time of each event is calculated.

The results are in Table 11. The unit is hour. CGPRPP* has the best or close to best

results in most cases, except for lab class 8. In that case, CGPRPP (Q = 10) is selected over

CGPRPP (Q = 1) based on the training likelihood, although the latter has a much better

time prediction accuracy on the test data.

75

Time elapsed

0 10 20

In
fl
u
e
n
c
e

0

0.05

0.1

0.15

0.2

Time elapsed

0 10 20

In
fl
u

e
n

c
e

0.07

0.072

0.074

0.076

0.078

Time elapsed

0 10 20

In
fl
u

e
n

c
e

0.04

0.06

0.08

0.1

0.12

0.14

Time elapsed

0 10 20

In
fl
u

e
n

c
e

0

0.05

0.1

0.15

Time elapsed

0 10 20

In
fl
u
e
n
c
e

0.1

0.15

0.2

(a) Ground truth

Time elapsed

0 10 20

In
fl
u

e
n

c
e

0.1

0.12

0.14

0.16

0.18

(b) HP-GS

Time elapsed

0 10 20

In
fl
u

e
n

c
e

0.15

0.2

0.25

(c) HP-LS

Time elapsed

0 10 20

In
fl
u

e
n

c
e

0.1

0.12

0.14

0.16

(d) CGPRPP

Figure 12: Influences from past events on the first (top) and second (bottom) synthetic

datasets. Solid lines are the CIFs after an event. Dashed lines are the baseline intensities.

The ground truth is in the first column, followed by the result of each method.

Table 5: Test log-likelihood on synthetic datasets.

Data HP-GS HP-LS CGPRPP

1 -2671 -2770 -2455

2 -4074 -4161 -4071

Table 6: Test log-likelihood on IPTV dataset.

Month HP-GS HP-LS CGPRPP

1 -1.477e+05 -1.779e+05 -1.479e+05

2 -1.509e+05 -1.825e+05 -1.502e+05

3 -1.608e+05 -1.928e+05 -1.608e+05

76

Q

0 20 40

lo
g
-l
ik

e
lih

o
o
d

-4300

-4200

-4100

-4000

CGPRPP

GPRPP

Figure 13: Test log-likelihood of GPRPP based on variational sparse GP (GPRPP) and

conditional GP (CGPRPP) with Q = 1, 5, 10, 20, 40.

Table 7: IPTV event types and counts.

Type Count

drama 284092

news 190584

entertainment 122773

others 116449

sports 74502

kids 39712

movie 33437

daily life 33225

economy 23985

law 13636

music 12456

documentary 11162

military 10007

science 6790

education 798

ads 390

77

Table 8: Target lab classes used for experiments.

ID Lab labels Fluid Category Count

355 Hemoglobin; MCH; MCHC; MCV; Platelet Count;

RDW; Red Blood Cells; White Blood Cells

Blood Hematology 4619733

60 Anion Gap; Bicarbonate; Chloride; Sodium Blood Chemistry 2500535

3 Base Excess; Calculated Total CO2; pCO2; pO2 Blood Blood Gas 1942338

95 Creatinine; Urea Nitrogen Blood Chemistry 1236906

368 INR(PT); PT Blood Hematology 756797

354 Hematocrit Blood Hematology 693788

151 Potassium Blood Chemistry 669880

550 Bilirubin; Blood; Glucose; Ketone; Leukocytes; Ni-

trite; Urine Appearance; Urine Color; Urobilinogen

Urine Hematology 598026

113 Glucose Blood Chemistry 595635

140 Magnesium Blood Chemistry 559517

294 Basophils; Eosinophils; Lymphocytes; Monocytes;

Neutrophils

Blood Hematology 547408

17 pH Blood Blood Gas 524600

150 Phosphate Blood Chemistry 489990

80 Calcium, Total Blood Chemistry 484701

394 PTT Blood Hematology 403567

1 Specimen Type Blood Blood Gas 398697

53 Alanine Aminotransferase (ALT); Asparate Amino-

transferase (AST)

Blood Chemistry 296876

7 Free Calcium Blood Blood Gas 246208

8 Glucose Blood Blood Gas 193253

18 Potassium, Whole Blood Blood Blood Gas 187020

78

Table 9: Predictors selected for lab class 355.

Class ID Lab labels Fluid Category

355 Hemoglobin; MCH; MCHC; MCV;

Platelet Count; RDW; Red Blood

Cells; White Blood Cells

Blood Hematology

294 Basophils; Eosinophils; Lympho-

cytes; Monocytes; Neutrophils

Blood Hematology

394 PTT Blood Hematology

368 INR(PT); PT Blood Hematology

140 Magnesium Blood Chemistry

113 Glucose Blood Chemistry

53 Alanine Aminotransferase (ALT);

Asparate Aminotransferase (AST)

Blood Chemistry

150 Phosphate Blood Chemistry

95 Creatinine; Urea Nitrogen Blood Chemistry

54 Albumin Blood Chemistry

79

Table 10: Test log-likelihood on MIMIC datasets.

CGPRPP

Data HP-GS HP-GS-A HP-LS NSMMPP Q = 1 Q = 10 *selected

355 -3668 -3947 -6510 -3664 -3249 -3374 -3249

60 -4673 -5051 -7299 -4660 -4246 -4203 -4246

3 -3721 -3733 -5722 -3737 -3759 -3847 -3759

95 -4064 -4390 -5712 -3982 -3817 -3933 -3933

368 -3366 -3711 -5625 -3309 -3378 -3538 -3378

354 -4344 -4792 -7185 -4409 -4225 -3984 -4225

151 -3338 -3574 -5323 -3763 -3093 -3313 -3093

550 -1053 -1064 -1744 -1039 -1175 -1063 -1175

113 -4656 -5049 -7143 -4539 -4276 -4142 -4276

140 -3206 -3475 -4625 -3244 -2942 -2933 -2942

294 -1011 -1054 -1308 -941.2 -993.6 -1131 -993.6

17 -3783 -3807 -5339 -3758 -3808 -4120 -3808

150 -3238 -3537 -4894 -3377 -3100 -3144 -3100

80 -3388 -3772 -5365 -3903 -3402 -3426 -3402

394 -3098 -3251 -4945 -3268 -3010 -3127 -3010

1 -3220 -3291 -3772 -3228 -3234 -3737 -3234

53 -1913 -2138 -2963 -1916 -1900 -1803 -1900

7 -2502 -2533 -3514 -2626 -2512 -2729 -2512

8 -1633 -1667 -3142 -1786 -1694 -1652 -1694

18 -1596 -1678 -3085 -1532 -1648 -1817 -1648

80

Time elapsed

0 50

In
fl
u

e
n

c
e

0.02

0.03

0.04

(a) HP-GS

Time elapsed

0 50

In
fl
u

e
n

c
e

0

0.05

0.1

0.15

(b) HP-LS

Time elapsed

0 50

In
fl
u

e
n

c
e

0

0.05

0.1

(c) CGPRPP

Figure 14: Influences from past events of the same type as the target class 355 on the MIMIC

dataset.

81

Table 11: RMSE (hour) of time predictions on MIMIC datasets.

CGPRPP

Data HP-GS HP-GS-A HP-LS NSMMPP Q = 1 Q = 10 *selected

355 16.43 14.78 16.98 22.06 13.79 16.59 13.79

60 11.81 10.4 11.19 13.2 9.956 10.6 9.956

3 13.46 13.45 24.75 60.44 19.13 18.85 19.13

95 17.43 17.17 17.36 15.99 16.17 17.43 17.43

368 25.32 19.24 31.7 19.71 17.03 22.18 17.03

354 49.1 50.13 50.46 46.87 49.61 48.52 48.52

151 23.36 23.3 23.53 24.12 22.37 25.91 22.37

550 101.4 96.11 139.3 177 96.97 91.01 96.97

113 13.32 11.65 13.4 9.457 11.22 10.52 11.22

140 17.45 11.86 11.8 9.633 9.892 11.49 9.892

294 98.16 87.78 104.3 185.6 74.12 76.23 74.12

17 28.19 28.18 31.96 29.16 28.63 95.36 28.63

150 22.65 15.76 15.45 16.27 15.87 15.86 15.86

80 44.9 44.53 46.39 43.67 44.15 44.18 44.15

394 29.76 26 46.24 30.05 25.45 21.04 25.45

1 25.85 25.84 32.43 26.53 25.97 29.36 25.97

53 51.7 36.41 59.48 38.55 27.84 27.49 27.49

7 24.02 22.92 34 56.59 25.71 24.54 25.71

8 25 24.64 63.39 26.08 28.75 65.34 65.34

18 58.99 57.89 86.18 1611 62.2 56.49 62.2

82

6.0 Outlier Detection in Event Sequences

In this chapter, we study the problem of detecting outliers in event sequences in continuous

time. We define two new types of outliers corresponding to unexpected absences and unexpected

occurrences of events using generative models based on point processes. Scoring methods

for detecting these outliers are developed based on Bayesian decision theory and hypothesis

testing with theoretical guarantees.

6.1 Introduction

The focus of this work is on anomaly/outlier detection methods in event sequences. The

problem we want to solve is, given the current time and the history of the event sequence,

to determine whether the recent occurrence or absence of events is anomalous. There are

two types of outliers that may arise here. First, given the history of past events and the

recent absence of the events, the event may be overdue. We refer to these as omission outliers.

Second, given the history of past events, the event that has just arrived is unexpected in

terms of its timing, that is, it has arrived either too early or was not expected at all. We

refer to these as commission outliers.

Both types of outliers are often related to problems of practical importance. Take for

example, a person suffering from a disease and taking specific medications on a regular

schedule to treat the disease. Given the schedule, the history of past events and current time,

we may infer that the person has not taken the medication yet and the medication is overdue

(omission). The detection of the overdue medication can be then used to generate a reminder

alert. Another important problem could be related to communication failures. Assume

the messages arrive with some frequency (that may vary to a certain degree), but there is

currently a long period of silence. This, when compared to expected/normal behavior, may

indicate a communication failure (disconnection), and its detection can be very important

in practice. To illustrate the second problem (commission) and its importance, consider a

83

patient who takes a medication too early compared to the normal schedule. The detection

of this event or its prevention (if we have information to detect the intention prior to the

administration of the medication) is extremely important and may prevent adverse situations

like high concentration of the drug and its possible toxic effects. Similar situations may

happen when one receives a medication that is unrelated to his/her condition. The occurrence

of this event may indicate a medical error, and once again its timely detection that can

prevent or alleviate the consequences of its occurrence is extremely important.

In order to solve the above outlier detection problems, we study models that are able to

accurately represent the event sequences, and outlier detection methods based on the models

that are able to detect both omission and commission outliers. To build a flexible model of

event sequences, we explore general point process models that permit inclusion of context and

event history to model the occurrence of the next event. Briefly, the occurrences of events

may, in many problems of practical importance, depend on the context. For example, a

medication is administered only to a patient who suffers from a specific disease or a condition,

so the disease defines a context inducing the occurrences of the events. Similarly, the patient

who does not have the disease should not take the medication, so medication administration

events under normal circumstances should not occur. Given a point-process model for normal

event sequences, we propose and develop probabilistic outlier detection methods based on

the distribution defined by the point process. We develop decision rules and scoring methods

for detecting these outliers based on Bayesian decision theory and hypothesis testing with

theoretical guarantees.

To demonstrate the performance of our outlier detection methods and their abilities to

detect outliers in event sequences, we conduct experiments on both synthetic and real-world

data. We show that our methods can successfully detect omission and commission outliers,

even when the occurrences of events depend on the context, and the context may change

dynamically in time.

84

6.2 Method

6.2.1 Problem Formulation

First, we formally define the problem of contextual outlier detection in continuous-time

event sequences. An event sequence can be formulated as Sũ = {(ti : ti ∈ T }Nũi=1, i.e., a

sequence of timestamps ti of the events, where ti is the time of the i-th event, Nũ is the

total number of the events in the sequence, and T ⊆ R is the domain of time. We call Sũ

the target sequence and the events the target events, because they are the targets in which

we aim to detect outliers. Meanwhile, we may observe contextual information along with

Sũ. We assume the contextual information can be either represented as or converted to

discrete events. For example, continuous variables can be converted to discrete events via

discretization. We denote these events as SC = {(ti, ui) : ti ∈ T , ui ∈ C}NCi=1, where ti and ui

are the time and type (mark) of the i-th event, NC is the total number of the events, and

C ⊆ Z is the finite set of distinct marks for different types of events. We call SC the context

sequence and the events the context events.

We stress that Sũ and SC share the same time domain T and, therefore, we can combine

them into a single sequence SM = {(ti, ui) : (ti, ui) ∈ SC or ti ∈ Sũ, ui = ũ}, where a new type

ũ /∈ C is assigned to all the events in Sũ. For detecting outliers, we only rely on information

in the past from both Sũ and SC. We denote the combined history of Sũ and SC up to time

t as HMt = {(ti, ui) : (ti, ui) ∈ SM, ti < t}. Meanwhile, Ht−t = {ti : ti ∈ Sũ, ti < t} is the

history of the target sequence Sũ only without any contextual information.

Now, we are ready to define two types of outlier detection problems we want to solve.

The first one is to detect commission outliers (unexpected events). Given an observed target

event at time tn, and the combined history HMtn of the target sequence Sũ and the context

sequence SC up to time tn, the goal is to assign a label yc(tn) ∈ {0, 1} to tn indicating whether

it is a commission outlier. Notice that yc(t) is only defined if t is the time of a target event.

In this work, instead of hard labels, we consider outputting a commission outlier score sc(tn)

for tn to indicate how likely it is a commission outlier.

The second problem is to detect omission outliers. We define a blank interval B ⊆ T as

85

an interval in which there is no event of type ũ, i.e., no event from the target event sequence

Sũ. Given a blank interval B = (tb, te) and the combined history HMtb of the target sequence

Sũ and the context sequence SC up to time tb, the goal is to assign a label yo(B) ∈ {0, 1} to

B indicating whether there are any omission outliers in B. Notice that yo(B) is only defined

when B is a blank interval for Sũ (no target event within). In this work, instead of hard

labels, we consider outputting an omission outlier score so(B) for B to indicate how likely it

contains any omission outliers.

6.2.2 Probabilistic Models

We develop algorithms for detecting outliers in continuous-time event sequences based on

probabilistic models, specifically (temporal) point processes. Point processes are probabilistic

models for discrete points in continuous domains. For a continuous-time event sequence, the

points are the events, and the domain is the time T . In this case, the models are also called

temporal point processes. A temporal point process can be defined as a counting process

N(·) on T , where N(τ) is the number of points in the interval τ ⊆ T . We make the common

assumption that at most one event can happen at a given time.

For a temporal point process, the conditional intensity function (CIF), λ(t), characterizes

the probability of observing an event in an infinitesimal time interval [t, t+ dt) ⊆ T given

the history up to time t. That is

λ(t)dt = p(N([t, t+ dt)) = 1|Ht). (6.1)

For our problem, we only model the target events using a point process, while the history

Ht = HMt contains both the target events and the context events. Because λ(t) is conditioned

on Ht by definition, we omit Ht for the rest of the paper and always condition on it implicitly.

For a sequence of target events Sũ = {ti : ti ∈ T }Nũi=1 generated from the point process

with CIF λ(t) (conditioned on the combined history HMt), the probability density is

p(Sũ) =

Nũ∏
i=1

λ(ti) exp

(
−
∫
T
λ(s)ds

)
. (6.2)

86

An intuitive interpretation of the equation is that for the observed events at time ti, i =

1, . . . , Nũ, λ(ti)dt is the probability of observing the events at those specific time points.

Meanwhile, exp
(
−
∫
T λ(s)ds

)
corresponds to the fact that there are no events at any other

time points in T .

When detecting outliers, we assume that we already have a point-process model for the

target events in normal cases. The model may be specified by an expert or, more generally,

learned from existing data. If the model is learned from data, we assume that either the

training data is outlier-free or that the outliers in the training data are insignificant for

learning a model to detect outliers in the test data.

In general, the model should be able to represent the dependencies between the target

events and the context events. For a point-process model, it means that instead of a CIF

that only depends on the target events, λ(t) = f(Ht−t), it has a CIF that also depends on

the context events, λ(t) = f(HMt), where f(·) denotes the mapping represented by the model.

In this work, we use a flexible model adapted from the continuous-time LSTM [80], which we

briefly describe in the next section.

6.2.3 Continuous-Time LSTM with Context

The input to the continuous-time LSTM consists of the marked events in the combined

sequence, (ti, ui) ∈ SM. That is, we not only use the target events but also the context events

as input, although we only model the CIF of the target events, λ(t). The output consists

of the hidden states h(ti) corresponding to the input. It is a nonlinear mapping from the

content in the memory cell c(ti) of the LSTM at time ti. As in a traditional LSTM, each

continuous-time LSTM unit also has an input gate i, an output gate o, and a forget gate f .

The relations between the memory cells, the hidden states, the input, and these gates are

summarized as follows.

Let ui be a vector representation of the mark ui, which is a learnable embedding. For

t ∈ (ti−1, ti], c(t) is a continuous function changing over time from ci to c̄i, and for ci and c̄i

87

there are separate input gates and forget gates:

h(t) = oi � tanh(c(t)) (6.3)

c(t) = c̄i + (ci − c̄i) exp (−δi(t− ti−1)) (6.4)

[ii+1;oi+1;fi+1] = σ(Wui +Uh(ti) + d) (6.5)

[̄ii+i; f̄i+1] = σ(W̄ui + Ūh(ti) + d̄) (6.6)

zi+1 = tanh(Wzui +Uzh(ti) + dz) (6.7)

ci+1 = fi+1 � c(ti) + ii+1 � zi+1 (6.8)

c̄i+1 = f̄i+1 � c̄i + īi+1 � zi+1 (6.9)

δi+1 = g(Wδui +Uδh(ti) + dδ, 1) (6.10)

where [a; b] denotes the concatenation of the vectors a and b, � is the elementwise product,

σ(·) is the logistic function, and g(x, s) = s log(1 + exp (x/s)) is the scaled softplus function

with parameter s. All the W , U and d with/without different subscripts and bars are

learnable parameters of the continuous-time LSTM.

Finally, to convert the output of the continuous-time LSTM to the CIF of the target

events, λ(t), we have λ(t) = g(wT
λh(t), s) where wλ and s are learnable parameters. The

model is learned by maximizing the likelihood (Eq. 6.2) for all sequences in the training data.

Monte-Carlo integration is used to evaluate
∫
λ(s)ds.

6.2.4 Detecting Commission Outliers

To derive an outlier scoring method for commission outliers (unexpected events), we first

describe a generative process for defining normal points and outliers. Then based on the

generative process, we derive a Bayes decision rule, from which we derive the scoring method

for commission outliers.

Suppose we are given a target event tn (and the history up to time tn, HMtn). Define a

random variable Zn, such that Zn = 1 if tn is a commission outlier, and Zn = 0 otherwise.

We are interested in calculating p(Zn = 1|tn).

Assume the process that generates outliers is independent from the process that generates

normal points. Then, the generative process for the normal points and outliers can be viewed

88

together as a marked point process. That is, for each event tn there is a hidden mark Zn

associated indicating whether it is an outlier. The overall CIF λg(t) = λ1(t) + λ0(t), where

λ0(t) is the CIF for the normal point process, and λ1(t) for the point process that generates

outliers.

Based on the definition of the CIF of a marked point process

p(tn) = λg(tn) exp

(
−
∫ tn

tc

λg(t)dt

)
, (6.11)

p(Zn = 1, tn) = λ1(tn) exp

(
−
∫ tn

tc

λg(t)dt

)
. (6.12)

From the above, we can derive the conditional distribution

p(Zn = 1|tn) =
λ1(tn)

λg(tn)
= 1− λ0(tn)

λg(tn)
. (6.13)

Therefore, the Bayes decision rule is

Z∗n = arg max
z

p(Zn = z|tn) = I [λ1(tn) > λ0(tn)] (6.14)

where I [x] = 1 if x is true, and 0 otherwise. However, this rule cannot be directly applied, be-

cause λ1 is unknown. Assuming λ1 is a constant, the decision rule becomes Z∗n = I [λ0(tn) < θc],

where θc is a threshold. This justifies ranking by

sc(tn) = −λ0(tn) (6.15)

across all n = 1, . . . , Nũ, so we use −λ0(tn) as the commission outlier score: the higher the

score, the more likely tn is a commission outlier.

89

6.2.5 Detecting Omission Outliers

To derive an outlier scoring method for omission outliers, we first describe a generative

process. Based on the process, we derive a Bayes decision rule, from which we derive the

scoring method for omission outliers. Finally, we provide an alternative justification for the

scoring method based on hypothesis testing.

Assume we have generated a sequence of normal points with the normal CIF λ0(t). To

generate omission outliers, we assume that each point can be removed independently with

probability p1. After the removal, we have a new sequence of points with (unobservable)

omission outliers. Then, given any blank interval B, we can derive the probability of at least

one removal occurring in the interval.

To derive the method, we first define some notations. For any interval τ ⊆ T , let N(τ) be

the number of points observed, and N0(τ) be the number of points generated by the normal

point process with CIF λ0(t), so N(·) is the result of combining N0(·) with random removal,

and we can observe N(·) but not N0(·). Furthermore, we define an auxiliary random variable

that counts the number of points removed in a blank interval B as KB.

For any blank interval B, we observe N(B) = 0, but KB = k can take different values

k = 0, 1, The joint probability for each k is

p(KB = k,N(B) = 0) =p(KB = k,N0(B) = k)

=pk1Fk(B)
(6.16)

where Fk(B) denotes the probability that k points are generated by the normal point process

N0(·) in B for k = 0, 1, They depend on the normal CIF λ0(t). Then the posterior

probability of KB = 0 can be calculated as

p(KB = 0|N(B) = 0) =
F0(B)∑∞

k=0 p
k
1Fk(B)

(6.17)

Define a random variable ZB to indicate whether there are any omission outliers in the

blank interval B: ZB = 0 is equivalent to KB = 0; ZB = 1 is equivalent to KB > 0.

p(ZB = 1|N(B) = 0) =1− p(ZB = 0|N(B) = 0)

=1− p(KB = 0|N(B) = 0).
(6.18)

90

Then the Bayes decision rule is

Z∗B = arg max
z

p(ZB = z|N(B) = 0)

= I [p(KB = 0|N(B) = 0) < 0.5] .

(6.19)

Without further assumptions, p(KB = 0|N(B) = 0) (Eq. 6.17) cannot be evaluated in

closed form, but we can get a lower bound

p(KB = 0|N(B) = 0) ≥ F0(B) = exp

(
−
∫
B

λ0(s)ds

)
(6.20)

because
∞∑
k=0

pk1Fk(B) ≤
∞∑
k=0

Fk(B) = 1.

Then the posterior probability of B containing any omission outliers can also be bounded

p(ZB = 1|N(B) = 0) ≤1− exp

(
−
∫
B

λ0(s)ds

)
. (6.21)

Therefore, we propose to use

so(B) =

∫
B

λ0(s)ds (6.22)

as the omission outlier score. When we rank the blank intervals by so(B), we essentially rank

them by an upper bound of p(ZB = 1|N(B) = 0).

There is a notable special case where we can get a closed-form p(KB = 0|N(B) = 0).

That is, if the normal point process N0(·) is an inhomogeneous Poisson process, then

Fk(B) =

(∫
B
λ0(s)ds

)k
k!

exp

(
−
∫
B

λ0(s)ds

)
(6.23)

for k = 0, 1, The posterior becomes

p(KB = 0|N(B) = 0) =
F0(B)∑∞

k=0 p
k
1Fk(B)

= exp

(
−p1

∫
B

λ0(s)ds

)
.

(6.24)

Therefore, the posterior probability of B containing any omission outliers is

p(ZB = 1|N(B) = 0) = 1− exp

(
−p1

∫
B

λ0(s)ds

)
. (6.25)

91

This justifies scoring the interval B by so(B) =
∫
B
λ0(s)ds, because if we rank the intervals

by their scores, the result will be the same as ranking by their posterior probabilities of

containing omission outliers, p(ZB = 1|N(B) = 0).

Without assuming that the process is an inhomogeneous Poisson process, an alternative

justification for using
∫
B
λ0(s)ds as the omission outlier score can be given based on hypothesis

testing for inter-event time, i.e., the time interval between two consecutive events tn−1 and tn.

Let Tn be the random variable for the inter-event time. Assume B is an observed inter-event

interval. The null and alternative hypotheses are

H0 : B is normal; H1 : B contains omission outliers.

Assuming the null hypothesis is true, i.e., B is an inter-event interval generated by the normal

point process with CIF λ0(t), the probability that the inter-event time is at least as long as

|B| is

p(Tn > |B|) = exp

(
−
∫
B

λ0(s)ds

)
(6.26)

which is the p-value. A lower p-value means that the observation is more extreme, given that

the null hypothesis is true, which means it is more likely to contain omission outliers. This

justifies scoring by
∫
B
λ0(s)ds, where a higher score means that B is more likely to contain

omission outliers.

6.2.6 Bounds on FDR and FPR

In this section, we prove some bounds on the performance of the proposed outlier scoring

methods. We recall the definitions of false discovery rate (FDR) and false positive rate (FPR).

Let y denote the true label (1=outlier, 0=normal) of an object (a target event or a blank

interval) and ŷ denote the predicted label. Then FDR and FPR are defined as

FDR = p(y = 0|ŷ = 1), FPR = p(ŷ = 1|y = 0).

Given the above definitions, we can prove the following theorems.

92

Theorem 6.2.1. If we use the commission outlier score sc(tn) = −λ0(tn), where tn is the time

of a target event, with a threshold θc ≤ 0, such that the decision rule is ŷc(tn) = I [sc(tn) > θc],

and let λ1 denote the CIF of the independent process generating commission outliers, then

the FDR is bounded above by −θc
λ1−θc .

Proof. From Eq. 6.13 and implicitly conditioned on the event tn and the history

p(yc(tn) = 0) = p(Zn = 0) =
λ0(tn)

λ0(tn) + λ1

Given that ŷc(tn) = 1, i.e., −λ0(tn) > θc, we get

p(yc(tn) = 0|ŷc(tn) = 1) <
−θc

−θc + λ1

Theorem 6.2.2. If we use the omission outlier score so(B) =
∫
B
λ0(s)ds for an inter-event

interval B, with a threshold θo ≥ 0, such that the decision rule is ŷo(B) = I [so(B) > θo], then

the FPR is bounded above by exp (−θo).

Proof. Let Tn be the random variable for the inter-event time corresponding to the observed

inter-event interval B, assuming it is generated from the normal point process. From Eq. 6.26

p(ŷo(B) = 1|yo(B) = 0)

=p

(∫
B

λ0(s)ds > θo

∣∣∣∣yo(B) = 0

)
=p

(
exp

(
−
∫
B

λ0(s)ds

)
< exp (−θo)

∣∣∣∣yo(B) = 0

)
=p (p(Tn > |B|) < exp (−θo))

= exp (−θo)

The last equality is justified by the fact that p(Tn > |B|) = 1− p(Tn ≤ |B|), and p(Tn ≤ |B|)

is the cumulative distribution function of Tn, implying it follows a uniform distribution.

Theorem 6.2.3. If we use the omission outlier score so(B) =
∫
B
λ0(s)ds for a blank interval

B, with a threshold θo ≥ 0, such that the decision rule is ŷo(B) = I [so(B) > θo], and assume

that the normal point process is an inhomogeneous Poisson process and the probability of

omission is p1, then the FDR is bounded above by exp (−p1θo).

93

Proof. From Eq. 6.25 and implicitly conditioned on N(B) = 0 and the history

p(yo(B) = 0) = p(KB = 0) = exp

(
−p1

∫
B

λ0(s)ds

)
Given that ŷo(B) = 1, i.e.,

∫
B
λ0(s)ds > θo, we get

p(yo(B) = 0|ŷo(B) = 1) < exp (−p1θo)

6.3 Experiments

We perform experiments on both synthetic and real-world event sequences. First, we

briefly describe the compared methods. Next, we conduct experiments on synthetic data.

Finally, we experiment with real-world clinical data.

6.3.1 Compared Methods

We compare the following methods in the experiments. RND: A baseline that generates

outlier scores by sampling from a uniform distribution on [0, 1]. LEN: A baseline that

detects outliers based on the empirical distribution of the inter-event time lengths. PPOD

(Point-Process Outlier Detection): Our method based on a point-process model but only

using the history of the target events as the context. CPPOD (Contextual Point-Process

Outlier Detection): Our method based on a point-process model using the history of both

the target events and the context events as the context. GT (Ground Truth): Our method

using the ground-truth point-process model to calculate the outlier scores (only available on

synthetic data).

Next we briefly describe the method LEN. For training, the lengths of all the inter-event

time of the target events, L = {li : li = ti+1− ti, (ti, ũ), (ti+1, ũ) ∈ Sũ} are collected. Then, an

empirical distribution of the inter-event time can be formulated as F̂ (l) = 1
|L|
∑|L|

i=1 I [li ≤ l].

Here, for simplicity, we describe the method as if we only had one sequence in the training

94

data, but it is easy to see how it works for multiple sequences, which is the case in our

experiments.

For testing, LEN outputs a commission outlier score for a target event at time tn ∈ Sũ as

sc(tn) = −min{F̂ (tn− tn−1), 1− F̂ (tn− tn−1)} where tn− tn−1 is the inter-event time between

the current and previous target events. Intuitively, if the inter-event time is too small (F̂ (·)

is small) or too big (1− F̂ (·) is small), it is likely that tn has occurred at an abnormal time

(too early or too late) and therefore is a commission outlier. The negation makes sure that a

higher score indicates that it is more likely to be an outlier. For a blank interval B, LEN

outputs an omission outlier score as the length of B, so(B) = |B|. Intuitively, the longer the

blank interval, the more likely it contains omission outliers.

PPOD and CPPOD rely on the continuous time LSTM [80] to model the CIF. We

choose the number of hidden units in the model from {64, 128, 256, 512, 1024} by maximizing

the likelihood on the internal validation set that consists of 20 percent of the training set.

We stress that for training and validation we do not use any labeled outlier data.

6.3.2 Experiments on Synthetic Event Sequences

We generate synthetic event sequences using two different types of point processes. One

is the inhomogeneous Poisson process. The other is the Gamma process. For each type of

processes, there is a set of parameters that determine the distribution of the points. We allow

the parameters to vary according to a context state x.

To keep things simple, we allow two different values for the state x ∈ {0, 1}. Associated

with each value of the state is a set of values of the parameters for the point process.

For the inhomogeneous Poisson process, the CIF is a piecewise constant function with

the value λ = f(x), where x is the context state. In the experiments, we set f(0) = 0.1 and

f(1) = 1.

For the Gamma process, the inter-event time follows a Gamma distribution Gam (ax, bx)

(ax shape, bx rate), where x is the context state. In the experiments, we set (a0, b0) = (10, 10)

and (a1, b1) = (100, 10).

The changes of the context state x are driven by a continuous-time Markov chain with a

95

transition matrix Q =

−0.05 0.05

0.05 −0.05

 such that

p (x(t+ dt) = j|x(t) = i) = I [i = j] +Qijdt

where dt is infinitesimal time. Each change of the state generates a context event.

For each point process type, we simulate 40 sequences. Each sequence is simulated in

the same time range T = [0, 1000]. We use 50 percent of the sequences for training and the

others for testing.

6.3.2.1 Simulation of Commission and Omission Outliers To define outliers, we

simulate commission and omission outliers on top of the existing data. In this way, we can

obtain ground-truth labels for testing.

To define commission outliers, we simulate a new sequence of target events independently

from the existing data, and then merge the new events with the existing events. We use a

Poisson process with a parameter λc to generate the outliers. λc controls the rate of such

outliers. In the experiments, for each dataset, we set λc = αλ̂test, where α = 0.1 and λ̂test is

the empirical rate of the target events calculated from the original test data. We also vary α

to study the effect.

To define omission outliers, we randomly remove target events in the original sequences

according to independent Bernoulli trials. That is, each event is removed with probability p1

and kept with probability 1− p1. We always keep the event if it marks the start time of the

sequence. In the experiments, we set p1 = α and α = 0.1. We also vary α to study the effect.

6.3.2.2 Detection of Commission and Omission Outliers We detect the presence

of commission and omission outliers differently. To test for commission outliers, each method

outputs an outlier score at the time of each target event. That is, whenever there is a new

target event, we ask the question: is this event a commission outlier or not?

Testing for omission outliers is trickier, because we need to decide the checkpoints more

carefully, i.e., when to ask for outlier scores. The simplest thing to do is to only check at the

96

target event times. That is, whenever there is a new target event, we ask the question: is

there any omission outlier starting from the previous target event till now?

However, this may become unsatisfactory in real-world applications, because there could

be cases when the target events just stop occurring for a long period of time or even

forever (potentially due to malfunctions of the underlying system). These are interesting

and important cases we are supposed to detect, but the above testing method will not work.

Therefore, we use a combined approach. We still have a checkpoint at each target event time,

but on top of that, we also randomly generate checkpoints in long blank intervals.

Specifically, we have a parameter w set to 2/λ̂train, where λ̂train is the empirical rate of

the target events estimated from the training data for each dataset, so within w, on average,

we should see two events normally. Then, whenever the blank interval from the previous

checkpoint till now is longer than w, we generate a new checkpoint within the interval by

uniform sampling, and set the previous checkpoint to the generated checkpoint. We keep

generating checkpoints until we reach the next target event or the end of the sequence.

6.3.2.3 Results Figure 15 and 16 show the receiver operating characteristic (ROC) curves

of the outlier detection methods on the synthetic data generated from inhomogeneous Poisson

processes and Gamma processes. The curves of GT and CPPOD are almost identical.

Both GT and CPPOD achieve the best performance for both commission and omission

outliers, showing the effectiveness of our outlier scoring methods. The fact that CPPOD

almost has the same performance as GT is an evidence that the model based on the

continuous-time LSTM is flexible enough to represent these different processes that generate

the data. PPOD being worse than CPPOD shows the importance of the context events in

these cases. Although LEN performs much better than RND, it is worse than our proposed

methods, because it is based on the empirical distribution of inter-event times instead of a

flexible model that can capture the dependencies of the target events on themselves and on

the context events.

We vary α for simulating commission and omission outliers, and see its effect. Table 12

shows the AUROC of the methods. As we can see, changing α does not affect the advantage

and disadvantage of each method.

97

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R

RND
LEN
PPOD
CPPOD
GT

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

RND
LEN
PPOD
CPPOD
GT

Figure 15: ROC curves on synthetic data (Poisson process). Left: commission. Right:

omission.

6.3.2.4 Empirical Verification of the Bounds on FDR and FPR To empirically

verify the bounds on FDR and FPR as presented in Section 6.2.6, we randomly repeat the

experiments using GT on the synthetic data 10 times, with the same training data but

different test data. Each time, we calculate the FDR and FPR for different thresholds on the

scores. For verifying FPR, we only test the inter-event time intervals for omission outliers.

Their means and standard deviations over all repetitions are shown with the theoretical

bounds in Figure 17 and 18. For FPR, the bounds overlap the empirical rates. Figure 19

shows the FDR (omission outlier) with means and standard deviations on data simulated

from inhomogeneous Poisson processes with the theoretical bound. As we can see, the FDR

has high variance when the threshold is high, because there are fewer samples above a higher

threshold. Nonetheless, the empirical FDR conforms with the bound.

6.3.3 Experiments on Real-World Clinical Data

In this part, we use real-world clinical data derived from MIMIC III [48]. MIMIC III

consists of de-identified electronic health records of ICU patients. We pick four types of

events as our targets and form four separate datasets by collecting the target events and

corresponding context events. The target events and their context events are listed in the

98

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R

RND
LEN
PPOD
CPPOD
GT

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

RND
LEN
PPOD
CPPOD
GT

Figure 16: ROC curves on synthetic data (Gamma process). Left: commission. Right:

omission.

Table 13. The medical category (medication, lab, or vital sign) of each type of events is in

brackets following the type. For example, Potassium Chloride is a type of medications, and

Potassium (Blood) is a type of lab tests. The latter is used as the context for the former, as

the administration of the medication can be triggered by observing an abnormally low value

in the lab test.

For every event type in the table, we record that type in the sequence data. However, for

Potassium (Blood) and Total Calcium (Blood), we further split the context events into three

subtypes depending on whether the value in the lab test is low, normal, or high. For INR(PT)

(previous state), we create context events of two subtypes based on whether the value of the

previous event is normal or abnormal (with a 1-second delay). For Arterial Blood Pressure

systolic (ABPs) and Non-invasive Blood Pressure systolic (NBPs), we split the events into

two subtypes depending on whether the value is normal or low. These subtypes help us define

better the contexts influencing the target events, since depending on their values, the target

events can be more/less likely to occur.

All target and context events for one patient admission form one event sequence. For the

first three datasets (first three targets), we have randomly selected 2000 sequences. For the

last one, we randomly selected 500 sequences, because each sequence contains much more

99

Table 12: AUROC on synthetic data. First column: dataset name abbreviation

(C=commission, O=omission) [α].

Dataset RND LEN PPOD CPPOD

Poi (C) [0.1] 0.500 (± 0.010) 0.601 (± 0.008) 0.684 (± 0.010) 0.711 (± 0.012)

Poi (C) [0.05] 0.493 (± 0.011) 0.627 (± 0.011) 0.684 (± 0.014) 0.716 (± 0.019)

Poi (O) [0.1] 0.503 (± 0.008) 0.650 (± 0.006) 0.737 (± 0.006) 0.778 (± 0.005)

Poi (O) [0.05] 0.491 (± 0.018) 0.650 (± 0.008) 0.736 (± 0.007) 0.776 (± 0.009)

Gam (C) [0.1] 0.485 (± 0.007) 0.754 (± 0.006) 0.816 (± 0.008) 0.871 (± 0.006)

Gam (C) [0.05] 0.479 (± 0.018) 0.776 (± 0.011) 0.840 (± 0.010) 0.897 (± 0.006)

Gam (O) [0.1] 0.505 (± 0.012) 0.799 (± 0.005) 0.901 (± 0.007) 0.956 (± 0.003)

Gam (O) [0.05] 0.503 (± 0.013) 0.803 (± 0.009) 0.919 (± 0.008) 0.961 (± 0.007)

events than the previous three. For each dataset, we use 50 percent of the sequences for

training and the others for testing.

We generate commission and omission outliers on top of the existing sequences with the

same processes described for synthetic data. This allows us to obtain ground-truth labels for

analyses. Similarly, we detect commission and omission outliers using the same approaches

applied to synthetic data.

6.3.3.1 Results Table 14 shows the AUROC of the methods for the datasets derived

from MIMIC data. The results have more variations across different datasets in this case,

which can be seen by examining the performance of LEN. Omission outliers appear to be

more challenging than commission outliers except for INR(PT) lab test. Comparing the

methods, CPPOD and PPOD outperform RND and LEN on all the datasets for both

commission and omission outliers.

In all cases, CPPOD is either the best or very close to the best. In the latter cases, the

best method is always PPOD, and the difference is very small. These are the cases where the

additional context events are not as influential as the history of the target events themselves

100

1.0 0.8 0.6 0.4 0.2
threshold

0.65

0.70

0.75

0.80

0.85

0.90

0.95
FD

R

bound
empirical

0 2 4 6 8 10
threshold

0.0

0.2

0.4

0.6

0.8

1.0

FP
R

bound
empirical

Figure 17: FDR (commission outlier) and FPR (omission outlier) on synthetic data (Poisson

process).

for the occurrences of the target events, so PPOD is as good as but simpler than CPPOD.

However, for Potassium Chloride and Calcium Gluconate, we can see a clear advantage of

CPPOD over PPOD by using additional context events.

101

6 5 4 3 2 1 0
threshold

0.2

0.0

0.2

0.4

0.6

0.8

1.0

FD
R

bound
empirical

0 20 40 60
threshold

0.0

0.2

0.4

0.6

0.8

1.0

FP
R

bound
empirical

Figure 18: FDR (commission outlier) and FPR (omission outlier) on synthetic data (Gamma

process).

0 2 4 6 8
threshold

0.2

0.4

0.6

0.8

1.0

FD
R

bound
empirical

Figure 19: FDR (omission outlier) on synthetic data (Poisson process).

102

Table 13: Names of target and context events from MIMIC. INR=international normalized

ratio; PT=prothrombin time.

Target Context

INR(PT) [Lab] INR(PT) [Lab] (previous state);

Heparin [Medication]; Warfarin [Medication]

Calcium Gluconate [Medication] Total Calcium (Blood) [Lab]

Potassium Chloride [Medication] Potassium (Blood) [Lab]

Norepinephrine [Medication] Arterial Blood Pressure systolic [Vital Sign];

Non-invasive Blood Pressure systolic [Vital Sign]

103

Table 14: AUROC on MIMIC data. First column: target name abbreviation (C=commission,

O=omission) [α].

Dataset RND LEN PPOD CPPOD

INR (C) [0.1] 0.496 (± 0.010) 0.596 (± 0.009) 0.682 (± 0.010) 0.687 (± 0.009)

INR (C) [0.05] 0.486 (± 0.014) 0.613 (± 0.018) 0.702 (± 0.014) 0.701 (± 0.018)

INR (O) [0.1] 0.498 (± 0.011) 0.726 (± 0.008) 0.747 (± 0.009) 0.746 (± 0.010)

INR (O) [0.05] 0.487 (± 0.013) 0.736 (± 0.011) 0.779 (± 0.012) 0.782 (± 0.012)

Cal (C) [0.1] 0.504 (± 0.013) 0.739 (± 0.012) 0.830 (± 0.010) 0.866 (± 0.006)

Cal (C) [0.05] 0.470 (± 0.020) 0.753 (± 0.017) 0.843 (± 0.012) 0.885 (± 0.010)

Cal (O) [0.1] 0.493 (± 0.016) 0.526 (± 0.009) 0.759 (± 0.009) 0.775 (± 0.008)

Cal (O) [0.05] 0.513 (± 0.021) 0.531 (± 0.014) 0.759 (± 0.014) 0.761 (± 0.014)

Pot (C) [0.1] 0.498 (± 0.012) 0.733 (± 0.013) 0.839 (± 0.009) 0.878 (± 0.009)

Pot (C) [0.05] 0.488 (± 0.020) 0.707 (± 0.016) 0.827 (± 0.012) 0.878 (± 0.009)

Pot (O) [0.1] 0.495 (± 0.017) 0.533 (± 0.012) 0.735 (± 0.011) 0.749 (± 0.011)

Pot (O) [0.05] 0.503 (± 0.015) 0.539 (± 0.014) 0.727 (± 0.015) 0.744 (± 0.015)

Nor (C) [0.1] 0.494 (± 0.014) 0.864 (± 0.010) 0.890 (± 0.012) 0.897 (± 0.013)

Nor (C) [0.05] 0.506 (± 0.013) 0.868 (± 0.014) 0.899 (± 0.013) 0.899 (± 0.013)

Nor (O) [0.1] 0.510 (± 0.010) 0.468 (± 0.016) 0.835 (± 0.010) 0.832 (± 0.009)

Nor (O) [0.05] 0.506 (± 0.023) 0.489 (± 0.018) 0.830 (± 0.013) 0.826 (± 0.012)

104

7.0 Change-Point Detection in Event Sequences

In this chapter, we study the problem of detecting change-points in event sequences,

focusing on using (temporal) point process models. We develop methods based on the

discretized-time approach and the continuous-time approach respectively. By studying their

properties, we draw important conclusions on these two approaches with practical implications.

Finally, through experiments, we verify these properties and compare the performance of the

methods.

7.1 Introduction

Point processes are widely-used generative models for event sequences, which consist

of discrete events in continuous time. As in traditional time series models, there might be

changes over time in the model generating the data. In reality, these changes could reflect

abnormal or novel events occurring in the underlying system that need human attention, so

it could be very valuable to detect these changes automatically and send alerts to relevant

people accordingly.

To detect change-points in event sequences, theoretically there are two possible approaches:

• Discretize the time by binning the events into counts across time and apply change-point

detection methods for count time series.

• Keep using continuous time and detect change-points based on point processes.

It is natural to assume that the first approach based on time discretization, while being

seemingly simple, will lose information and therefore result in worse performance in detection.

In contrast, the second approach should in general perform better, because it utilizes complete

information in the data. We develop a specific method based on the second approach, and

compare it with a method based on the first approach derived from change-point detection

method for count time series.

105

7.2 Problem Statement

Assume that the data we observe are events occurring continuously over a period of time

T ∈ R, so they can be represented as a sequence of points in T as S = {ti : ti ∈ T }Ni=1. Given

the observed data, we wish to know whether there is any change in the underlying model

and correspondingly the system generating the data.

Point processes are models that generate discrete points in continuous domains (such as

time). For a (temporal) point process, its conditional intensity function (CIF), denoted as

λ(t), defines the rate of events (or points) occurring at each instant t given the history of the

sequence Ht− = {ti ∈ S : ti < t}:

λ(t)dt = E [N([t, t+ dt))|Ht−] (7.1)

where N(·) is the count of points within any sub-interval in T , and dt is an infinitesimal

amount of time.

For different types of point processes, their CIFs are different. For example, for a

homogeneous Poisson process, the CIF at any instant is a constant that is not affected by

the time or the previous events

λ(t) = µ (7.2)

where µ > 0 is a constant. For a Hawkes process, however, the CIF is influenced by the

previous events

λ(t) = µ+
∑
ti<t

φ(t− ti) (7.3)

where µ > 0 is a constant, called the baseline intensity, ti is the time of the i-th events before

t, and φ(·) is a nonnegative function, called the triggering kernel (not to be confused with

kernels in Gaussian processes), characterizing the influences from the previous events over

time on λ(t). A simple example of the triggering kernel that is widely used is the exponential

kernel

φ(t) = αβ exp (−βt) , t > 0. (7.4)

Notice that the triggering kernels are defined only for t > 0, while for t ≤ 0 they are assumed

to be 0.

106

Given the CIF of a point process, the probability density of the sequence S generated

from the process is

p(S) =
N∏
i=1

λ(ti)

∫
T
λ(t)dt. (7.5)

In this work, we focus on the problem of detecting baseline shifts in the CIF λ(t) for

Poisson processes. That is, we wish to detect changes in µ. Given that the point process is a

Poisson process, this is equivalent to detecting any changes in the CIF. We note that the goal

of this work is to study the difference and connection between discretized-time change-point

detection approach and continuous-time change-point detection approach, which is why we

focus on Poisson processes.

7.3 Method

7.3.1 Detecting Change-Points in Discretized Time

We briefly explain how to detect change-points in discretized time, which also provides

some intuitions for how to detect change-points in continuous time. First. let ∆ be the

bin size. Without loss of generality, assume that the time domain T = (0, T] and T = |T |

is a multiplier of ∆. Then, we can discretize the time domain T into M = |T |
∆

bins,

{(0,∆], (∆, 2∆], . . . , ((M − 1)∆,M∆]}.

For the observed sequence of events S = {ti : ti ∈ T }Ni=1, we can count the number of

points within each bin as

yj =
N∑
i=1

I [ti ∈ ((j − 1)∆, j∆)] (7.6)

for j = 1, 2, . . . ,M , where I [x] = 1 if x is true and otherwise 0. Then Y = {yj}Mj=1 form a

time series of counts (integers). If the original event sequence S is generated from a Poisson

process, then each yj will follow a Poisson distribution Pois
(∫ j∆

(j−1)∆
λ(t)dt

)
, where the mean

of the Poisson distribution is equal to the integral of the CIF within the corresponding time

bin. When the CIF is a constant, λ(t) = µ, every yj follows the same Poisson distribution

Pois (µ∆).

107

The change-point in Y can be defined as the index c such that the counts before c,

Yc− = {yj : j <= c}, and the counts after c, Yc+ = {yj : j > c}, follow the Poisson

distributions Pois (µ1) and Pois (µ2) respectively, while µ1 6= µ2. If we have a method to

find c in the discretized time domain (indexes), then we can convert it back to the continuous

time domain as

tc = c∆ (7.7)

where tc is the suspected change-point corresponding to c in the continuous time domain.

Apparently, by going through the above process, we inevitably lose some accuracy in the

location of the change-point, since tc can only be a multiplier of ∆.

To find the change-point, we start from, given an index k, deciding whether k is a change-

point, or equivalently, whether the counts before and after k follow the same distribution.

For this purpose, we can design a likelihood ratio statistic

lk =
p(Yk−|µ̂1)p(Yk+ |µ̂2)

p(Y |µ̂0)
(7.8)

where µ̂1, µ̂2, and µ̂0 are the maximum likelihood estimates of the means of the Poisson

distributions fit to Yk− , Yk+ , and Y respectively. Since 2 ln lk asymptotically follows a Chi-

square distribution with one degree of freedom χ2(1), we can perform a hypothesis test to

decide whether k is a change-point.

The intuition behind the likelihood ratio statistic is that when k is really a change-point,

the distributions before and after k are expected to be different, such that trying to fit a single

distribution with µ0 will result in much lower likelihood compared with fitting two separate

distributions, and therefore lk should be large. Alternatively, if it is not a change-point, then

the numerator and denominator in lk should be similar, and therefore lk should be small

(close to 1).

Based on the intuition of the likelihood ratio statistic, the larger lk is, the more likely it

is a change-point. Therefore, we can estimate the location of the potential change-point as

ĉ = arg max
k=1,...,M−1

lk (7.9)

and decide whether ĉ is a true change-point based on lĉ.

108

7.3.2 Detecting Change-Points in Continuous Time

For detecting change-points in the baseline intensity in continuous time, we draw our

intuition from the previous section (with discretized time) using the likelihood ratio statistic.

Specifically, instead of considering the change-point to be a discrete index, c ∈ {1, . . . ,M−1},

we consider it to be in the original continuous time domain, τc ∈ T . From Eq. 7.8 and 7.9,

we derive their corresponding continuous-time versions

l(τ) =
p(Sτ− |µ̂1)p(Sτ+ |µ̂2)

p(S|µ̂0)
, (7.10)

and

τ̂c = arg max
τ∈T

l(τ), (7.11)

where St− = {ti ∈ S : ti <= t} and St+ = {ti ∈ S : ti > t}.

It may seem that we have already solved the problem, but notice that it is not clear how

to efficiently perform the optimization in Eq. 7.11, because µ̂1, µ̂2, and τ depend on each

other. When we move τ , we may get different estimates for µ̂1 and µ̂2, so we cannot fix µ̂1

and µ̂2 when we optimize w.r.t. τ . Furthermore, µ̂1 and µ̂2 depend on τ discontinuously as

the densities take the form in Eq. 7.5.

We develop a method based on a continuous approximation of the likelihood ratio. To

achieve that, we first develop a model that allows a change-point in the baseline intensity,

while the location of the change-point is treated as a parameter of the model. Let b be that

parameter. We define the CIF as

λ(t) = µ1σ1(t) + µ2σ2(t), (7.12)

where µ1 > 0, µ2 > 0, and

σ(x) =
1

1 + e−x
, (7.13)

σ1(t) = σ(w(b− t)), (7.14)

σ2(t) = σ(w(t− b)). (7.15)

109

If we set w to a large number, σ1(x) ≈ I [t < b] and σ2(t) ≈ I [t > b]. Meanwhile, it always

holds that σ1(t)+σ2(t) = 1. Therefore, the above CIF is essentially a mixture of two baselines

µ1 and µ2, and there is a “soft” switch at time b.

The benefit of the mixture model, compared with dealing with the original likelihood

ratio statistic, is that we can optimize jointly all the parameters, including the location of the

change-point b, since the likelihood is a continuous function of the parameters. Specifically,

we try to maximize the following function

`(θ) = ln(p(Sb−|µ1)) + ln(p(Sb+ |µ2)) (7.16)

where θ = (µ1, µ2, b). This is equivalent to maximizing Eq. 7.10 after taking a logarithm,

because the denominator in Eq. 7.10 does not depend on θ.

One more issue that we need to resolve is local optima. Because the original likelihood

ratio statistic can have many discontinuous points, the continuous approximation can also

have many local optima. To deal with this issue, we start from K randomly chosen initial

points when we perform the optimization, get K local optimal results Θ = {θ̂k}Kk=1, and pick

the best result θ̂ = arg maxθ∈Θ l(θ) as our final estimate.

7.4 Properties of the Methods in Poisson Processes

In this section, we study in detail the properties of the likelihood-ratio-based change-point

detection methods in Poisson processes. We develop closed-form solutions to the maximum

likelihood estimation (MLE) of the intensities for both discretized-time or continuous-time

versions.

7.4.1 Discretized-Time Estimation

For discretized time, the log-likelihood for a sequence of counts Y = {yj}Mj=1 is

`(µ) =

(
M∑
j=1

yj

)
lnµ− µM −

M∑
j=1

ln(yj!), (7.17)

110

so the MLE for the parameter µ is

µ̂ =
1

M

M∑
j=1

yj. (7.18)

Plug it into Eq. 7.8, we have

lk = N1 ln
N1

M1

+N2 ln
N2

M2

−N ln
N

M
(7.19)

where

N1 =
∑

yj∈Yk−

yj, N2 =
∑

yj∈Yk+

yj, N = N1 +N2 (7.20)

M1 = k, M2 = M − k. (7.21)

That is, N1 is the number of points with time t ≤ k∆, M1 is the corresponding number of

bins, and N2,M2 are similarly the opposite.

To study the effect of the bin size ∆, we map the discretized time back into the original

continuous time. Let τk = k∆ be the location of the potential change-point k in continuous

time, and T = M∆ be the total length of time. Then from the above equation we have

l(τk) = lk

= N1 lnN1 −N1 ln
τk
∆

+N2 lnN2 −N2 ln
T − τk

∆
−N lnN +N ln

T

∆

= N1 lnN1 −N1 ln τk +N2 lnN2 −N2 ln(T − τk)−N lnN +N lnT.

(7.22)

All the terms directly involving the bin size ∆ have been canceled out. Meanwhile, for a given

sequence, when we try to estimate the location of the change-point from Eq. 7.9, the total

number of points N and the total time length T are fixed, so the estimate of the change-point

only depends on the number of points N1 and N2 on each side of the change-point, but it

is independent of the bin size ∆. This is a somehow surprising result, since we would have

assumed the bin size has some influence on the likelihood ratio statistic.

Theorem 7.4.1. For an event sequence of time length T generated by a Poisson process with

a change-point and a given time t ∈ (0, T), assuming both T and τ are multipliers of the bin

size ∆ used for time discretization, then the likelihood ratio statistic l(τ) as in Eq. 7.10 and

the corresponding discretized-time version lτ/∆ as in Eq. 7.8 are independent of ∆.

111

This result has practical implications for choosing the bin size when we try to detect

change-points in Poisson processes using time discretization. Specifically, it implies that a

smaller bin size is always better as long as we have the capability to collect data with such a

fine time resolution in the first place and enough computational resources for storing and

processing the data.

7.4.2 Continuous-Time Estimation

For continuous time, the log-likelihood for a sequence of points S = {ti : t ∈ (0, T]}Ni=1

generated from a Poisson process with intensity λ in the interval (0, T] is

`(µ) = N lnλ− λT, (7.23)

so the MLE for the parameter λ is

λ̂ =
N

T
. (7.24)

Plug it into Eq. 7.10, we have

l(τ) = N1 ln
N1

T1

+N2 ln
N2

T2

−N ln
N

T
, (7.25)

where

N1 =
N∑
i=1

I [ti ≤ τ] , N2 =
N∑
i=1

I [ti > τ] , (7.26)

T1 = τ, T2 = T − τ. (7.27)

The equation is similar to the corresponding discretized-time version, except that the discrete

time indexes (integers) are replaced by the continuous time indexes (real numbers).

Because N1 and N2 depends on τ and the points in S, to analyze the properties of l(τ),

we focus on the segment between two consecutive points ti and ti+1 in S, where N1 and N2

are fixed. For τ ∈ [ti, ti+1),

∂l

∂τ
= −N1

τ
+

N2

T − τ
, (7.28)

∂2l

∂τ 2
=
N1

τ 2
+

N2

(T − τ)2
≥ 0. (7.29)

Therefore, within [ti, ti+1), l(τ) is convex, and overall in (0, T], l(τ) is piecewise convex with

jumps at the points in S.

112

Theorem 7.4.2. For an event sequence S generated from a Poisson process, the likelihood

ratio statistic defined in Eq. 7.10 is a piecewise convex function with jumps at the points

ti ∈ S.

To find the change-point estimate using Eq. 7.11, we find the maximum of l(τ) wrt τ .

From the above theorem, we have the following corollary.

Corollary 7.4.2.1. For an event sequence S generated from a Poisson process, a solution to

the change-point estimation (Eq. 7.11) must be either at an event time ti or its immediate

left ti − ε, where ε is infinitesimal.

From the corollary, we can design a very efficient algorithm for change-point estimation

(Algorithm 1). The time complexity of the algorithm is O(N).

Algorithm 1 Change-point estimation

Input: Event sequence S = {ti}Ni=1; a small constant ε representing infinitesimal.

Output: Change-point estimate τ̂c.

1: τ̂c = t1 . Initialize τ̂c

2: for τk ∈ {ti}Ni=1 ∪ {ti − ε}Ni=1 do . Check every point and its immediate left

3: τ̂c ← arg maxτ∈{τ̂c,τk} l(τ)

4: end for

5: return τ̂c

7.5 Experiments

7.5.1 Experiment Setup

We perform experiments to compare different methods we developed and discussed in the

previous sections. The methods we compare include

• DT: Discretized-time change-point detection with different bin sizes.

• C-Mix: continuous-time change-point detection by optimizing the likelihood ratio using

a mixture model.

113

• C-Sol: continuous-time change-point detection by solving the optimization problem in

closed-form as in Algorithm 1.

We repeat the experiments randomly for multiple times. Each time, to generate the data,

we simulate an event sequence of length T = 105 from a randomly generated Poisson process

with a change-point sampled from the uniform distribution Unif(1
3
T, 2

3
T). The intensities

before and after the change-point are sampled from Unif(0, 0.3) and Unif(0.7, 1) with a

random order. This makes sure we have enough difference in the intensity before and after

the change-point. We also tested on uniformly drawing intensity in Unif(0, 1) both before

and after the change-point. Although all the conclusions from the likelihood results still hold,

the change-point distance results have high variances to draw meaningful conclusions.

After generating the data, each method is independently applied to the same sequence.

For discretized-time change-point detection, we test against 10 different bin sizes 103/21,

103/22, . . ., 103/210, where the minimum bin size is less than 1. For C-Mix, because of local

optima, we repeat the optimization 200 times with initial values of the parameters randomly

sampled from uniform distributions in the corresponding domains of the parameters ((0, T)

for the change-point and (0, 1) for the intensities).

7.5.2 Results

First, we compare the performance of the methods by comparing the likelihood ratios

achieved in the end for 5 random experiments. Table 15 shows the results. We can see a clear

trend in discretized-time change-point detection: as we decrease the bin size, the performance

tends to get better (the likelihood ratio gets higher). However, C-Sol always has (slightly)

better results than even the finest bin size we tested.

C-Mix achieves results better than using large bins on some sequences but worse results

on the others. This is most likely due to the large amount of local optima making the

optimization procedure struggle to find the global optimum, since C-Sol does not have this

issue. Comparing C-Mix and C-Sol, the latter achieves better results than the former on

all the sequences. On top of that, we note that C-Sol is a more efficient algorithm, since it

does not rely on general optimization procedures but instead uses a closed-form solution.

114

Next, we compare both the likelihood ratio and the absolute distance between the estimate

change-point and true change-point, |τ̂c − τc|, for each method in each sequence by repeating

the experiment randomly for 100 times and computing the median, mean, and standard

deviation. The results are in Table 16 and 17. We did not compare with C-Mix, since it

showed inferior performance than C-Sol in the previous experiments.

For likelihood ratios, we can draw the same conclusions as in the previous small sample we

tested on. As the bin size gets smaller, we see a clear trend that the discretized-time approach

gets better performance. However, C-Sol achieves even better performance compared with

discretized time, and the difference is significant (Wilcoxon signed-rank test α = 0.0001).

For change-point distances, the discretized-time approach also tends to perform better

when the bin size gets smaller. When the bin size is small enough, the standard deviation

becomes small, and the performance becomes stable. C-Sol achieves similar performance

compared to the best result achieved across all the bin sizes. Using the smallest bins (103/210

and 103/29) achieves slightly better results than C-Sol, although the difference between C-Sol

and 103/210 or 103/29 is not statistically significant (Wilcoxon signed-rank test α = 0.05).

7.6 Discussion

In this work, we have studied two approaches to detect change-points in event sequences:

discretized-time approach and continuous-time approach. We have derived specific methods

for Poisson processes for both approaches and studied their properties. The methods are

based on likelihood ratios. For continuous-time approach, we propose to use a mixture model

to represent the intensity, such that the change-point can be estimated as part of the model

parameters jointly with the other parameters.

For discretized-time approach, we found a somehow surprising result: the bin size does

not directly affect the likelihood ratio we use for detecting change-points, which implies that

in theory a smaller bin will always result in a higher likelihood ratio.

For continuous-time approach, we found that the global maximum of the likelihood ratio

must be located near an event. Using this result, we developed a more efficient algorithm

115

than the mixture-model-based method to estimate the change-point in continuous time.

There are connections between the two approaches as shown in the similarity between the

equations of the likelihood ratios. When comparing the performance in the experiments, the

continuous-time approach achieves (slightly) better performance in terms of the likelihood

ratio and similar performance in terms of the error in the estimated change-point, compared

with the best performance achieved across all bin sizes for discretized-time approach. For

larger bins, the discretized-time approach generally gets worse performance with large amount

of variance. Given the efficiency of the improved continuous-time algorithm (O(N) where N

is the number of events in the sequence), we argue that the continuous-time approach should

be the better choice in general, since there is no need to choose a good bin size to get good

performance. The advantage of the discretized-time approach is in the ability of changing the

bin size to control the trade-off between accuracy (smaller bins) and efficiency (larger bins).

Also, in cases when there are restrictions on computational resources such that we have to

use time discretization, it is generally better to use a bin size as small as the resources allow

to get stable and good performance.

116

Table 15: Likelihood ratios on five simulated event sequences with change-points.

Sequence

Method Bin size 1 2 3 4 5

DT

103/21 25633.057 9154.329 13702.079 12402.339 27994.639

103/22 25647.890 9154.329 13818.393 12402.339 28212.430

103/23 25754.951 9154.329 13818.393 12402.339 28299.918

103/24 25778.447 9171.827 13822.594 12402.339 28299.918

103/25 25778.447 9176.786 13837.159 12402.339 28299.918

103/26 25784.063 9177.537 13842.360 12402.339 28312.799

103/27 25784.063 9177.537 13842.888 12402.339 28319.975

103/28 25784.814 9179.397 13842.888 12402.599 28323.564

103/29 25785.876 9179.397 13843.792 12403.866 28323.564

103/210 25786.783 9179.397 13843.792 12404.499 28324.461

C-Mix 25775.464 9141.904 13753.221 12098.199 28066.927

C-Sol 25787.152 9179.608 13844.305 12404.658 28325.051

117

Table 16: The medians, means, and standard deviations of the likelihood ratios on simulated

event sequences with change-points.

Method Bin size median mean std

DT

103/21 13584.850 14659.352 5963.812

103/22 13643.007 14706.218 5989.542

103/23 13653.604 14728.415 6005.381

103/24 13656.237 14737.715 6008.402

103/25 13670.651 14742.104 6010.383

103/26 13673.251 14744.494 6012.020

103/27 13673.515 14745.738 6012.482

103/28 13673.515 14746.396 6012.701

103/29 13673.967 14746.862 6012.849

103/210 13673.967 14747.170 6012.935

C-Sol 13674.493 14747.499 6012.964

118

Table 17: The medians, means, and standard deviations of the distances between the estimated

change-points and the true change-points on simulated event sequences.

Method Bin size median mean std

DT

103/21 122.321 146.862 101.855

103/22 64.774 70.966 51.229

103/23 29.041 32.759 24.799

103/24 13.460 16.223 12.115

103/25 7.570 8.293 5.877

103/26 5.167 5.979 5.187

103/27 2.297 3.803 4.004

103/28 2.060 3.387 3.954

103/29 1.231 3.229 4.257

103/210 1.168 2.865 4.054

C-Sol 1.309 2.932 3.934

119

8.0 Conclusion and Future Work

In this dissertation, we studied methods for event time series prediction and anomaly

detection. In general, we studied two highly-related problems: predictive modeling of event

time series (or event sequences) and anomaly detection in event time series. They are highly

related, because a model of the time series can be used to perform anomaly detection, and

the quality of the model directly affects the performance of the anomaly detection.

Meanwhile, in terms of methodology, we have developed methods according to two general

approaches:

1. Discretized time: convert the event time series into regular time series of counts and

perform any inference task on the regular time series instead.

2. Continuous time: model the event time series directly and make any inference in

continuous time.

The advantage of the first approach (discretized time) is that we can utilize existing

research in statistics related to time series models. By adapting and applying these models

to account for important properties of the converted time series, such as nonstationarity, we

developed anomaly detection algorithms with better performance compared with traditional

methods. Chapter 3 and 4 follow the first approach.

The advantage of the second approach (continuous time) is that we do not lose any

information compared with the first approach. By using the accurate timing information of

each event, we developed better models that can predict the occurrence of each event, defined

new types of anomalies related to the timing of each event, and developed algorithms that

can detect these new types of anomalies or that can detect an existing type of anomalies with

better accuracy. Chapter 5, 6, and 7 follow the second approach.

In Chapter 3 and 4, we developed anomaly detection methods for regular time series

of counts. To model the time series accurately, we utilized models based on nonparametric

decomposition (ND) and dynamic linear model (DLM). A key property that we tried to take

into account for modeling these time series is nonstationarity, especially trends and seasonality.

120

Both ND and DLM allow us to achieve this goal with some adaptations. We developed

methods for detecting two types of anomalies, temporary outliers and change-points, based

on these models. Experiments on synthetic and real data showed that our methods can detect

both types of anomalies better than methods based on traditional statistical models.

In Chapter 5, we proposed a new nonparametric method for modeling dependencies

between events in event sequences using Gaussian processes. Similar to Hawkes processes and

different from previous GP-modulated point processes, the proposed model can be learned

on a sample of sequences and then applied to other unseen sequences. However, we showed

that the proposed model is more flexible than state-of-the-art nonparametric Hawkes process

variants. It can learn the dependencies between events that are common in practice but

difficult for the Hawkes process variants to represent, e.g., a mix of inhibitions and excitations

after an event. Our method showed competitive or better performance on different datasets

compared with the Hawkes process variants.

In Chapter 6, we studied the new problem of detecting commission and omission outliers

in event sequences. These are new types of outliers that we defined in continuous time. We

proposed outlier scoring methods based on Bayesian decision theory and hypothesis testing

with theoretical guarantees. The proposed methods depend on a probabilistic model for

normal data. While any point-process model can be plugged in, we used a model adapted

from the continuous-time LSTM that can consider the contexts of the events. Experiments

on both synthetic and real-world event sequences showed the flexibility of the adapted model

and, more importantly, the effectiveness of the proposed outlier scoring methods.

In Chapter 7, we studied and compared two approaches to detect change-points in event

sequences: discretized-time approach and continuous-time approach. We developed specific

methods for Poisson processes for both approaches and studied their properties. Although for

both approaches, the methods are based on likelihood ratios, the algorithms for change-point

detection are quite different. In the experiments, we verified a result we found through

studying the theoretical properties: for the discretized-time approach, a smaller bin size

always gives the same or better result than a larger bin size. Furthermore, we showed that

the new algorithm we developed for the continuous-time approach, which has a linear time

complexity, can achieve the same or better performance than the discretized-time approach,

121

without the need to pick a bin size, which makes it a better choice in practice.

We note that the work presented in the dissertation is not free from limitations, and

anomaly detection in continuous-time event sequences is a relatively new direction that may

still need more exploration. Here we list these limitations and potential future work.

• For anomaly detection in time series using the discretized-time approach, the methods

based on nonparametric decomposition use an existing algorithm, STL [15], to perform

the decomposition of time series. However, the algorithm can only handle univariate

time series. Extension of STL to multivariate time series could be a challenging task for

future work. Meanwhile, the method based on dynamic linear models is relatively easier

to extend for multivariate time series, but dealing with the increased size of the latent

state could pose a challenge.

• When we model the time series, one important property of the time series considered

is seasonality. In our models, based on either nonparametric decomposition or dynamic

linear models, the seasonal period is assumed to be known. This is usually not hard

to achieve, if we can see a clear pattern when plotting the data, or there is domain

knowledge to help us decide it. However, in cases when it is hard to decide the period

or even to decide whether there is seasonality, we may rely on approaches from Fourier

analysis to decide the periodicity in the data from the frequency domain. Therefore,

combining frequency-domain approaches with our anomaly detection methods for practical

applications could be an interesting direction.

• For change-point detection in time series, we focused on sudden changes in the distribution,

but there could be more subtle changes that happen, instead of instantaneously, gradually

over a longer period of time. These gradual changes are harder to detect compared to

sudden changes and may require us to observe a larger amount of data before making any

decisions. Although some of the ideas, such as likelihood ratio statistics, may be applied

in both cases, care must be taken when detecting gradual changes, such that they would

not be confused with natural variations already present in the normal data.

• For outlier detection in event sequences using the continuous-time approach, the scoring

methods are targeting one type of events with context provided by multiple types of

events. In reality, we might also be interested in detecting outliers in multiple types

122

of events jointly. This can be achieved by combining the scores from all target types

of events in a reasonable way, such as taking a summary statistic of all the scores, but

developing a way that can be justified from a theoretical perspective would be important

and challenging.

• We developed algorithms that can detect anomalies in continuous time, but our methods

rely on a model learned from normal data. Although in practice, this is not necessarily

hard to achieve, it would make the methods even more applicable if we can learn the

model in presence of anomalies without any labeling. In the statistics community, theories

related to robust estimation can help us understand the theoretical performance and

limitations of any potential algorithms. In the machine learning community, there is

research on robust learning and learning from noisy labels in general. Further research

into this direction can help us understand the theoretical possibility and limitations of

learning event time series models in presence of different types of anomalies and provide

us with new models and algorithms that can adapt to these situations.

• We studied anomaly detection of an exiting type (change-points) and two new types

(commission and omission outliers) in continuous time. These are the types of anomalies

that we can see immediate practical usefulness, but they are by no means exhaustive. In

general, the dependencies between the events can be quite complex across different types

and different time. There are potentially new types of anomalies for event time series

defined according to these structural dependencies instead of occurrences and absence of

events. Defining new types of anomalies with practical usage and developing algorithms

to detect them could generate many interesting problems and solutions.

• For the continuous-time approach, we focused on point process models in the temporal

domain, but point processes can also be used in the spatial domain (or the combined spatial-

temporal domain). They have applications in problems such as modeling earthquakes or

crimes across different locations (over time). Extending our models and algorithms to

the spatial domain could be an important addition to the existing research with valuable

applications.

123

Bibliography

[1] Ryan Prescott Adams, Iain Murray, and David JC MacKay. Tractable nonparametric
Bayesian inference in Poisson processes with Gaussian process intensities. In Proceedings
of the 26th Annual International Conference on Machine Learning, pages 9–16. ACM,
2009.

[2] Charu C. Aggarwal. Outlier Analysis. Springer New York, 2013. ISBN 9781461463955.

[3] Emmanuel Bacry and Jean-Francois Muzy. Second order statistics characterization
of Hawkes processes and non-parametric estimation. arXiv:1401.0903 [physics, q-fin,
stat], January 2014.

[4] M. S. Bartlett. The use of transformations. Biometrics, 3(1):39–52, 1947. ISSN
0006-341X.

[5] Iyad Batal, Dmitriy Fradkin, James Harrison, Fabian Moerchen, and Milos Hauskrecht.
Mining recent temporal patterns for event detection in multivariate time series data.
In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 280–288, 2012.

[6] Iyad Batal, Gregory F Cooper, Dmitriy Fradkin, James Harrison, Fabian Moerchen,
and Milos Hauskrecht. An efficient pattern mining approach for event detection in
multivariate temporal data. Knowledge and Information Systems, 46(1):115–150, 2016.

[7] Charles Blundell, Jeff Beck, and Katherine A Heller. Modelling reciprocating relation-
ships with Hawkes processes. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
2600–2608. Curran Associates, Inc., 2012.

[8] G. E. P. Box and George C. Tiao. A change in level of a non-stationary time series.
Biometrika, 52(1/2):181–192, June 1965. ISSN 0006-3444.

[9] George EP Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time
Series Analysis: Forecasting and Control. John Wiley & Sons, 2015.

[10] G. Casella and R.L. Berger. Statistical Inference. Duxbury Advanced Series in Statistics
and Decision Sciences. Thomson Learning, 2002. ISBN 978-0-534-24312-8.

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, July 2009. ISSN 0360-0300.

[12] Ih Chang, George C. Tiao, and Chung Chen. Estimation of time series parameters in
the presence of outliers. Technometrics, 30(2):193–204, 1988. ISSN 0040-1706.

124

[13] Chung Chen and Lon-Mu Liu. Joint estimation of model parameters and outlier effects
in time series. Journal of the American Statistical Association, 88(421):284–297, 1993.
ISSN 01621459.

[14] Jie Chen and Arjun K. Gupta. Parametric Statistical Change Point Analysis.
Birkhäuser Boston, Boston, 2012. ISBN 978-0-8176-4800-8 978-0-8176-4801-5.

[15] Robert B. Cleveland, William S. Cleveland, Jean E. McRae, and Irma Terpenning.
STL: A seasonal-trend decomposition procedure based on loess. Journal of Official
Statistics, 6(1):3–73, 1990.

[16] William S. Cleveland and William S. Cleveland. Robust locally weighted regression
and smoothing scatterplots. Journal of the American Statistical Association, 74(368):
829–836, December 1979. ISSN 01621459.

[17] William S. Cleveland and Susan J. Devlin. Locally weighted regression: An approach
to regression analysis by local fitting. Journal of the American Statistical Association,
83(403):596–610, September 1988. ISSN 0162-1459.

[18] Daryl J. Daley and David Vere-Jones. An Introduction to the Theory of Point Processes:
Volume I: Elementary Theory and Methods. Springer, New York, 2003.

[19] Daryl J. Daley and David Vere-Jones. An Introduction to the Theory of Point Processes:
Volume II: General Theory and Structure. Springer Science & Business Media, 2007.

[20] Hongyi Ding, Mohammad Emtiyaz Khan, Issei Sato, and Masashi Sugiyama.
Bayesian nonparametric Poisson-process allocation for time-sequence modeling.
arXiv:1705.07006 [stat], May 2017.

[21] Hongyi Ding, Mohammad Khan, Issei Sato, and Masashi Sugiyama. Bayesian non-
parametric Poisson-process allocation for time-sequence modeling. In International
Conference on Artificial Intelligence and Statistics, pages 1108–1116, 2018.

[22] Sophie Donnet, Vincent Rivoirard, and Judith Rousseau. Nonparametric Bayesian
estimation of multivariate Hawkes processes. arXiv:1802.05975 [math, stat], February
2018.

[23] Nan Du, Mehrdad Farajtabar, Amr Ahmed, Alexander J. Smola, and Le Song. Dirichlet-
Hawkes processes with applications to clustering continuous-time document streams.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’15, pages 219–228, Sydney, NSW, Australia, 2015.
ACM Press. ISBN 978-1-4503-3664-2.

[24] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez,
and Le Song. Recurrent marked temporal point processes: Embedding event history
to vector. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1555–1564. ACM, 2016.

125

[25] Michael Eichler, Rainer Dahlhaus, and Johannes Dueck. Graphical modeling for
multivariate Hawkes processes with nonparametric link functions. Journal of Time
Series Analysis, 38(2):225–242, March 2017. ISSN 01439782.

[26] Peter J. Embi and Anthony C. Leonard. Evaluating alert fatigue over time to EHR-
based clinical trial alerts: Findings from a randomized controlled study. Journal of
the American Medical Informatics Association, 19(e1):e145–e148, 2012.

[27] Tom Fawcett and Foster Provost. Adaptive fraud detection. Data mining and knowledge
discovery, 1(3):291–316, 1997.

[28] Tom Fawcett and Foster Provost. Activity monitoring: Noticing interesting changes
in behavior. In Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, volume 1, pages 53–62, 1999. ISBN
1-58113-143-7.

[29] A. J. Fox. Outliers in time series. Journal of the Royal Statistical Society. Series B
(Methodological), 34(3):350–363, January 1972. ISSN 0035-9246.

[30] Emily Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. Nonparametric
Bayesian learning of switching linear dynamical systems. In Advances in Neural
Information Processing Systems, pages 457–464, 2008.

[31] Piotr Fryzlewicz. Wild Binary Segmentation for multiple change-point detection. The
Annals of Statistics, 42(6):2243–2281, 2014.

[32] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique Vázquez.
Anomaly-based network intrusion detection: Techniques, systems and challenges.
computers & security, 28(1):18–28, 2009.

[33] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, pages 2672–2680, 2014.

[34] Asela Gunawardana, Christopher Meek, and Puyang Xu. A model for temporal
dependencies in event streams. In Advances in Neural Information Processing Systems,
pages 1962–1970, 2011.

[35] Tom Gunter, Chris Lloyd, Michael A. Osborne, and Stephen J. Roberts. Efficient
Bayesian nonparametric modelling of structured point processes. In Proceedings of the
Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI’14, pages 310–319,
Arlington, Virginia, United States, 2014. AUAI Press. ISBN 978-0-9749039-1-0.

[36] Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. Outlier detection for
temporal data: A survey. IEEE Transactions on Knowledge and Data Engineering, 26
(9):2250–2267, 2013.

126

[37] P J Harrison and C F Stevens. Bayesian forecasting. Journal of the Royal Statistical
Society. Series B (Methodological), 38(3):205–247, 1976. ISSN 00359246.

[38] Milos Hauskrecht, Michal Valko, Branislav Kveton, Shyam Visweswaram, and Gregory
Cooper. Evidence-based anomaly detection. In Annual American Medical Informatics
Association Symposium, pages 319–324, November 2007.

[39] Milos Hauskrecht, Michal Valko, Iyad Batal, Gilles Clermont, Shyam Visweswaram,
and Gregory Cooper. Conditional outlier detection for clinical alerting. In Proceedings
of the American Medical Informatics Association, November 2010.

[40] Milos Hauskrecht, Iyad Batal, Michal Valko, Shyam Visweswaran, Gregory F Cooper,
and Gilles Clermont. Outlier detection for patient monitoring and alerting. Journal of
Biomedical Informatics, 46(1):47–55, 2013.

[41] Milos Hauskrecht, Iyad Batal, Charmgil Hong, Quang Nguyen, Gregory F Cooper,
Shyam Visweswaran, and Gilles Clermont. Outlier-based detection of unusual patient-
management actions: an ICU study. Journal of Biomedical Informatics, 64:211–221,
2016.

[42] Alan G. Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90, 1971. ISSN 0006-3444.

[43] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[44] Victoria J. Hodge and Jim Austin. A survey of outlier detection methodoligies. Artificial
Intelligence Review, 22(1969):85–126, October 2004. ISSN 0269-2821, 1573-7462.

[45] Charmgil Hong and Milos Hauskrecht. MCODE: multivariate conditional outlier
detection. CoRR, abs/1505.04097, 2015.

[46] Charmgil Hong and Milos Hauskrecht. Multivariate conditional anomaly detection
and its clinical application. In Proceedings of the 29th AAAI Conference on Artificial
Intelligence, pages 4239–4240, 2015.

[47] Charmgil Hong and Milos Hauskrecht. Multivariate conditional outlier detection and
its clinical application. In Proceedings of the 30th AAAI Conference on Artificial
Intelligence, pages 4216–4217, 2016.

[48] Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G. Mark. MIMIC-III, a freely accessible critical care database. Scientific Data,
3:160035, May 2016. ISSN 2052-4463.

[49] Re E Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME-Journal of Basic Engineering, 82(Series D):35–45, 1960. ISSN 00219223.

127

[50] Y. Kawahara and M. Sugiyama. Change-point detection in time-series data by direct
density-ratio estimation. In Proceedings of the 2009 SIAM International Conference
on Data Mining, Proceedings, pages 389–400. Society for Industrial and Applied
Mathematics, April 2009. ISBN 978-0-89871-682-5.

[51] Rebecca Killick and Ia Eckley. Changepoint: An R Package for changepoint analysis.
Lancaster University, pages 1–15, 2013. ISSN 1548-7660.

[52] Rebecca Killick, Paul Fearnhead, and I. A. Eckley. Optimal detection of changepoints
with a linear computational cost. Journal of the American Statistical Association, 107
(500):1590–1598, 2012.

[53] Minyoung Kim. Markov modulated Gaussian Cox processes for semi-stationary intensity
modeling of events data. In International Conference on Machine Learning, pages
2640–2648, July 2018.

[54] Genshiro Kitagawa. Non-gaussian state-space modeling of nonstationary time series.
Journal of the American Statistical Association, 82(400):1032–1041, 1987. ISSN 0162-
1459.

[55] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and scalable framework for
automated time-series anomaly detection. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1939–1947.
ACM, 2015.

[56] Thomas A. Lasko. Efficient inference of Gaussian-process-modulated renewal processes
with application to medical event data. In Proceedings of the Thirtieth Conference
on Uncertainty in Artificial Intelligence, UAI’14, pages 469–476, Arlington, Virginia,
United States, 2014. AUAI Press. ISBN 978-0-9749039-1-0.

[57] Eva K. Lee, Amanda F. Mejia, Tal Senior, and James Jose. Improving patient safety
through medical alert management: An automated decision tool to reduce alert fatigue.
AMIA Annual Symposium Proceedings, 2010:417–421, 2010. ISSN 1942-597X.

[58] Jeong Min Lee and Milos Hauskrecht. Recent-context-aware LSTM-based clinical
time-series prediction. In In Proceedings of AI in Medicine Europe (AIME), 2019.

[59] Jeong Min Lee and Milos Hauskrecht. Multi-scale temporal memory for clinical event
time-series prediction. In In Proceedings of the International Conference on AI in
Medicine (AIME), 2020.

[60] Jeong Min Lee and Milos Hauskrecht. Clinical event time-series modeling with periodic
events. In The Thirty-Third International Flairs Conference. AAAI, 2020.

[61] Young Lee, Kar Wai Lim, and Cheng Soon Ong. Hawkes processes with stochastic
excitations. In International Conference on Machine Learning, pages 79–88, 2016.

128

[62] Wenzhao Lian, Ricardo Henao, Vinayak Rao, Joseph Lucas, and Lawrence Carin. A
multitask point process predictive model. In International Conference on Machine
Learning, pages 2030–2038, 2015.

[63] Chuanhai Liu and Donald B. Rubin. ML estimation of the t distribution using EM
and its extensions, ECM and ECME. Statistica Sinica, 5:19–39, 1995.

[64] Siqi Liu and Milos Hauskrecht. Nonparametric regressive point processes based on
conditional Gaussian processes. In Advances in Neural Information Processing Systems,
pages 1062–1072, 2019.

[65] Siqi Liu, Adam Wright, and Milos Hauskrecht. Change-point detection method for
clinical decision support system rule monitoring. Conference on Artificial Intelligence
in Medicine, 10259:126–135, June 2017.

[66] Siqi Liu, Adam Wright, and Milos Hauskrecht. Online conditional outlier detection
in nonstationary time series. In The Thirtieth International Flairs Conference, pages
86–91, May 2017.

[67] Siqi Liu, Adam Wright, Dean F. Sittig, and Milos Hauskrecht. Change-point detection
for monitoring clinical decision support systems with a multi-process dynamic linear
model. In 2017 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 569–572. IEEE, 2017.

[68] Siqi Liu, Adam Wright, and Milos Hauskrecht. Change-point detection method for
clinical decision support system rule monitoring. Artificial Intelligence in Medicine,
July 2018. ISSN 0933-3657.

[69] Zitao Liu and Milos Hauskrecht. A regularized linear dynamical system framework
for multivariate time series analysis. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, 2015.

[70] Zitao Liu and Milos Hauskrecht. Clinical time series prediction: Towards a hierarchical
dynamical system framework. Artificial Intelligence in Medicine, 65(1):5–18, 2015.

[71] Zitao Liu and Milos Hauskrecht. Learning adaptive forecasting models from irregularly
sampled multivariate clinical data. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence, pages 1273–1279, 2016.

[72] Zitao Liu and Milos Hauskrecht. Learning linear dynamical systems from multivariate
time series: A matrix factorization based framework. In Proceedings of the 2016 SIAM
International Conference on Data Mining, pages 810–818. SIAM, 2016.

[73] Zitao Liu and Milos Hauskrecht. A personalized predictive framework for multivariate
clinical time series via adaptive model selection. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, pages 1169–1177, 2017.

129

[74] Zitao Liu, Lei Wu, and Milos Hauskrecht. Modeling clinical time series using gaussian
process sequences. In SIAM International Conference on Data Mining, 2013.

[75] Chris Lloyd, Tom Gunter, Michael Osborne, and Stephen Roberts. Variational inference
for Gaussian process modulated Poisson processes. In International Conference on
Machine Learning, pages 1814–1822, 2015.

[76] Chris Lloyd, Tom Gunter, Michael Osborne, Stephen Roberts, and Tom Nickson.
Latent point process allocation. In Artificial Intelligence and Statistics, pages 389–397,
May 2016.

[77] D. Luo, H. Xu, H. Zha, J. Du, R. Xie, X. Yang, and W. Zhang. You are what you
watch and when you watch: Inferring household structures from IPTV viewing data.
IEEE Transactions on Broadcasting, 60(1):61–72, March 2014. ISSN 0018-9316.

[78] Markos Markou and Sameer Singh. Novelty detection: A review—part 1: Statistical
approaches. Signal Processing, 83(12):2481–2497, December 2003. ISSN 0165-1684.

[79] Markos Markou and Sameer Singh. Novelty detection: A review—part 2:: Neural
network based approaches. Signal Processing, 83(12):2499–2521, December 2003. ISSN
0165-1684.

[80] Hongyuan Mei and Jason M. Eisner. The neural Hawkes process: A neurally self-
modulating multivariate point process. In Advances in Neural Information Processing
Systems, pages 6757–6767, 2017.

[81] Hongyuan Mei, Guanghui Qin, and Jason Eisner. Imputing missing events in continuous-
time event streams. arXiv:1905.05570 [cs, stat], May 2019.

[82] Y. Ogata. On Lewis’ simulation method for point processes. IEEE Transactions on
Information Theory, 27(1):23–31, January 1981. ISSN 0018-9448.

[83] Sang Min Oh, James M. Rehg, Tucker Balch, and Frank Dellaert. Learning and
inference in parametric switching linear dynamic systems. In Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, volume 2, pages 1161–1168.
IEEE, 2005.

[84] Sang Min Oh, James M. Rehg, Tucker Balch, and Frank Dellaert. Learning and
inferring motion patterns using parametric segmental switching linear dynamic systems.
International Journal of Computer Vision, 77(1-3):103–124, May 2008. ISSN 0920-5691,
1573-1405.

[85] E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954. ISSN
0006-3444.

[86] Vladimir Pavlovic, James M. Rehg, and John MacCormick. Learning switching linear
models of human motion. In NIPS, volume 2, page 4, 2000.

130

[87] A. N. Pettitt. A non-parametric approach to the change-point problem. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 28(2):126–135, 1979. ISSN
0035-9254.

[88] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Research, 6:
1939–1959, December 2005. ISSN 1532-4435.

[89] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2016.

[90] Syama Sundar Rangapuram, Matthias W. Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. Deep state space models for time series
forecasting. In Advances in Neural Information Processing Systems, pages 7785–7794,
2018.

[91] Vinayak Rao and Yee W. Teh. Gaussian process modulated renewal processes. In
Advances in Neural Information Processing Systems, pages 2474–2482, 2011.

[92] Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine
Learning. MIT press Cambridge, 2006.

[93] Yves-Laurent Kom Samo and Stephen Roberts. Scalable nonparametric Bayesian
inference on point processes with Gaussian processes. In PMLR, pages 2227–2236,
June 2015.

[94] Ashish Sen and Muni S. Srivastava. On tests for detecting change in mean. The Annals
of Statistics, 3(1):98–108, 1975. ISSN 0090-5364.

[95] Christian R. Shelton, Zhen Qin, and Chandini Shetty. Hawkes process inference with
missing data. In Thirty-Second AAAI Conference on Artificial Intelligence, April 2018.

[96] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications:
With R Examples. Springer Science & Business Media, 2010.

[97] Tomáš Šingliar and Miloš Hauskrecht. Learning to detect incidents from noisily labeled
data. Machine Learning, 79(3):335–354, June 2010. ISSN 0885-6125, 1573-0565.

[98] Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. Conditional
anomaly detection. Knowledge and Data Engineering, IEEE Transactions on, 19(5):
631–645, 2007.

[99] Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes.
In Artificial Intelligence and Statistics, pages 567–574, 2009.

[100] William Trouleau, Jalal Etesami, Matthias Grossglauser, Negar Kiyavash, and Patrick
Thiran. Learning Hawkes processes under synchronization noise. In International
Conference on Machine Learning, pages 6325–6334, May 2019.

131

[101] Ruey S. Tsay. Time series model specification in the presence of outliers. Journal of
the American Statistical Association, 81(393):132–141, 1986. ISSN 0162-1459.

[102] Ruey S. Tsay. Outliers, level shifts, and variance changes in time series. Journal of
Forecasting, 7(May 1987):1–20, 1988. ISSN 02776693.

[103] Ryan Turner, Marc Deisenroth, and Carl Rasmussen. State-Space Inference and
Learning with Gaussian Processes. In PMLR, pages 868–875, March 2010.

[104] Michal Valko and Milos Hauskrecht. Feature importance analysis for patient man-
agement decisions. Studies in Health Technology and Informatics, 160(Pt 2):861,
2010.

[105] Michal Valko, Branislav Kveton, Hamed Valizadegan, Gregory F. Cooper, and Mi-
los Hauskrecht. Conditional anomaly detection with soft harmonic functions. In
Proceedings of the 2011 IEEE International Conference on Data Mining, June 2011.

[106] Yichen Wang, Bo Xie, Nan Du, and Le Song. Isotonic Hawkes processes. In Interna-
tional Conference on Machine Learning, pages 2226–2234, 2016.

[107] Jeremy Weiss, Sriraam Natarajan, and David Page. Multiplicative forests for
continuous-time processes. In Advances in Neural Information Processing Systems,
pages 458–466, 2012.

[108] Jeremy C. Weiss and David Page. Forest-based point process for event prediction from
electronic health records. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 547–562. Springer, 2013.

[109] Mike West, P. Jeff Harrison, and Helio S. Migon. Dynamic generalized linear models
and Bayesian forecasting. Journal of the American Statistical Association, 80(389):
73–83, March 1985. ISSN 0162-1459.

[110] Weng Keen Wong, Andrew Moore, Gregory Cooper, and Michael Wagner. Bayesian
network anomaly pattern detection for disease outbreaks. In International Conference
on Machine Learning, pages 808–815, August 2003.

[111] Adam Wright, Thu-Trang T. Hickman, Dustin McEvoy, Skye Aaron, Angela Ai,
Jan Marie Andersen, Salman Hussain, Rachel Ramoni, Julie Fiskio, Dean F. Sittig,
and David W. Bates. Analysis of clinical decision support system malfunctions: A case
series and survey. Journal of the American Medical Informatics Association: JAMIA,
March 2016. ISSN 1527-974X.

[112] Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan
Zha. Wasserstein learning of deep generative point process models. In Advances in
Neural Information Processing Systems, pages 3247–3257, 2017.

[113] Hongteng Xu and Hongyuan Zha. THAP: A matlab toolkit for learning with Hawkes
processes. arXiv:1708.09252 [cs, stat], August 2017.

132

[114] Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning Granger causality for
Hawkes processes. In International Conference on Machine Learning, pages 1717–1726,
2016.

[115] Hongteng Xu, Dixin Luo, and Hongyuan Zha. Learning Hawkes processes from short
doubly-censored event sequences. In International Conference on Machine Learning,
pages 3831–3840, July 2017.

[116] Kenji Yamanishi and Jun-ichi Takeuchi. A unifying framework for detecting outliers
and change points from non-stationary time series data. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’02, pages 676–681, New York, NY, USA, 2002. ACM. ISBN 978-1-58113-567-1.

[117] Rui Zhang, Christian Walder, Marian-Andrei Rizoiu, and Lexing Xie. Efficient non-
parametric Bayesian Hawkes processes. arXiv:1810.03730 [cs, stat], October 2018.

[118] Ke Zhou, Hongyuan Zha, and Le Song. Learning triggering kernels for multi-
dimensional Hawkes processes. In International Conference on Machine Learning,
pages 1301–1309, 2013.

[119] Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank
networks using multi-dimensional Hawkes processes. In Artificial Intelligence and
Statistics, pages 641–649, 2013.

133

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. AUC-PAR for Bike data.
	2. AUC-PAR for CDS data.
	3. AUC-PAR for Traffic data.
	4. The mean AUC-AMOC averaged over all change-points.
	5. Test log-likelihood on synthetic datasets.
	6. Test log-likelihood on IPTV dataset.
	7. IPTV event types and counts.
	8. Target lab classes used for experiments.
	9. Predictors selected for lab class 355.
	10. Test log-likelihood on MIMIC datasets.
	11. RMSE of time predictions on MIMIC datasets.
	12. AUROC on synthetic data.
	13. Names of target and context events from MIMIC.
	14. AUROC on MIMIC data.
	15. Likelihood ratios on five simulated event sequences.
	16. Likelihood ratios on simulated event sequences.
	17. Distances on simulated event sequences.

	List of Figures
	1. Bay area bike rental daily counts.
	2. Bay area bike rental events.
	3. Example time series with anomalies.
	4. Graphical representation of a DLM
	5. Marked and multivariate event time series.
	6. Simulated time series with anomalies.
	7. Seasonal-Trend decomposition of a time series
	8. PAR curves for Bike data.
	9. Applying MPDLM to a rule-firing count time series.
	10. AMOC curves on simulated data.
	11. Illustrations of different point process models.
	12. Influences from past events on synthetic datasets.
	13. Test log-likelihood of GPRPP.
	14. Influences from past events on class 355.
	15. ROC curves on synthetic data (Poisson process).
	16. ROC curves on synthetic data (Gamma process).
	17. FDR and FPR on synthetic data (Poisson process).
	18. FDR and FPR on synthetic data (Gamma process).
	19. FDR (omission outlier) on synthetic data (Poisson process).

	Preface
	1.0 Introduction
	1.1 Problems and Approaches
	1.1.1 Predictive Modeling of Event Time Series
	1.1.2 Anomaly Detection in Event Time Series
	1.1.3 Approaches

	1.2 Contributions

	2.0 Background
	2.1 Predictive Modeling of Time Series
	2.1.1 Regular Time Series Models
	2.1.1.1 ARIMA Models
	2.1.1.2 State-Space Models
	2.1.1.3 Binary Event Prediction Models

	2.1.2 Event Time Series Models
	2.1.2.1 Gaussian Process Modulated Point Processes
	2.1.2.2 Hawkes Processes
	2.1.2.3 Other Point Process Models

	2.2 Anomaly Detection in Time Series
	2.2.1 Anomaly Detection in Regular Time Series
	2.2.1.1 Outlier Detection in Regular Time Series
	2.2.1.2 Change-Point Detection in Regular Time Series

	2.2.2 Anomaly Detection in Event Time Series

	3.0 Outlier Detection in Time Series
	3.1 Method
	3.1.1 Variance Stabilization
	3.1.2 Seasonal-Trend Decomposition with LOESS
	3.1.3 First-Layer Model
	3.1.4 Second-Layer Model

	3.2 Experiments
	3.2.1 Datasets
	3.2.2 Experiment Setup
	3.2.3 Methods
	3.2.4 Evaluation
	3.2.5 Results

	4.0 Change-Point Detection in Time Series
	4.1 Likelihood-Ratio-Based Change-Point Detection
	4.1.1 Likelihood Ratio Statistics
	4.1.2 EM for MLE
	4.1.3 Further Improvements

	4.2 Generative-Model-Based Change-Point Detection
	4.2.1 Dynamic Linear Model
	4.2.2 Dynamic Linear Model with Seasonal Variation
	4.2.3 Multi-Process Dynamic Linear Model
	4.2.4 Inference
	4.2.5 Parameter Setting

	4.3 Experiments
	4.3.1 Experiment Design
	4.3.2 Results on Data with Known Change-Points
	4.3.3 Results on Data with Simulated Change-Points

	5.0 Event Sequence Model
	5.1 Introduction
	5.2 Preliminary
	5.3 GP Regressive Point Processes
	5.4 Conditional GPRPP
	5.4.1 Learning
	5.4.2 Inference
	5.4.3 Time Prediction
	5.4.4 Conditional Point Placement

	5.5 Experiments
	5.5.1 Synthetic Datasets
	5.5.2 Conditional GP vs. Variational Sparse GP
	5.5.3 Effect of Varying Q
	5.5.4 IPTV Dataset
	5.5.5 MIMIC Datasets
	5.5.6 Time Prediction Evaluation

	6.0 Outlier Detection in Event Sequences
	6.1 Introduction
	6.2 Method
	6.2.1 Problem Formulation
	6.2.2 Probabilistic Models
	6.2.3 Continuous-Time LSTM with Context
	6.2.4 Detecting Commission Outliers
	6.2.5 Detecting Omission Outliers
	6.2.6 Bounds on FDR and FPR

	6.3 Experiments
	6.3.1 Compared Methods
	6.3.2 Experiments on Synthetic Event Sequences
	6.3.2.1 Simulation of Commission and Omission Outliers
	6.3.2.2 Detection of Commission and Omission Outliers
	6.3.2.3 Results
	6.3.2.4 Empirical Verification of the Bounds on FDR and FPR

	6.3.3 Experiments on Real-World Clinical Data
	6.3.3.1 Results

	7.0 Change-Point Detection in Event Sequences
	7.1 Introduction
	7.2 Problem Statement
	7.3 Method
	7.3.1 Detecting Change-Points in Discretized Time
	7.3.2 Detecting Change-Points in Continuous Time

	7.4 Properties of the Methods in Poisson Processes
	7.4.1 Discretized-Time Estimation
	7.4.2 Continuous-Time Estimation

	7.5 Experiments
	7.5.1 Experiment Setup
	7.5.2 Results

	7.6 Discussion

	8.0 Conclusion and Future Work
	Bibliography

