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Cells use complex signaling systems to constantly detect environmental changes, relay

extracellular information from the cell membrane to the nucleus, and drive cell responses,

such as transcription. The ability of each single cell to dynamically respond to changes in its

environment is the basis for healthy, functioning, multicellular beings. Diseases often arise

from dysregulated signaling, and our ability to manipulate cell responses, that stems from

our growing understanding of signaling processes, is often the basis for disease treatments.

Computational approaches can complement experimental studies of cellular systems,

allowing us to formalize our growing body of knowledge of cellular biochemistry. Mechanis-

tic modeling provides a natural framework to describe and simulate complex systems with

many system components and causal interactions that often lead to non-intuitive emergent

behavior, lending itself well to the analysis of signaling systems. Statistical approaches can

complement mechanistic modeling by enabling an analysis of complex input-output relation-

ships in the data, providing insight into how cells translate input environmental cues into

output responses, even when the underlying mechanisms are only partially understood.

In this thesis, we explore both mechanistic and statistical approaches and address several

challenges in modeling signaling processes within a cell, and signaling heterogeneity between

cells, using the NF-κB pathway as a model system. First, we evaluate methods to efficiently

determine numerical values of model parameters, enabling model simulations that are com-

parable to experimental data. Second, we develop methods to identify reduced submodels

that are sufficient for the data, highlighting simple mechanisms that drive emergent behav-

ior. Third, switching gears to study signaling heterogeneity, we use information-theoretic

analyses to evaluate the capabilities of the NF-κB pathway to effectively transduce cytokine

dosage information in the presence of biochemical noise. Finally, we develop a framework

to calibrate mechanistic models to heterogeneous signaling data, enabling simulation-based

analyses of single-cell signaling capabilities.
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1.0 Introduction

1.1 Cell signaling pathways and their computational representations

Cells are fundamental units of all living systems [1]. Signaling underlies the basic ability

of an individual cell to interact with its environment, communicate with other cells, and

effectively organize into complex hierarchical multicellular organisms [2,3]. Since dysregula-

tion of cell signaling is the basis for many human diseases [3,4], an increased understanding

of signaling mechanisms will lead to the ability to artificially manipulate cell responses and

design effective treatment strategies for disease [5–9]. Therefore, a key question in Systems

Biology, a discipline that studies the behavior of complex biological systems by considering

the many interactions between system components [10], is “How do cells signal?”.

Cell signaling can be described as the process by which cells use complex networks of

interacting proteins and other biomolecules to translate environmental cues into responses

and cell fate decisions [11,12]. While these environmental cues may be mechanical, electrical,

or biochemical in nature [11], we restrict the scope of this thesis to biochemical signal trans-

duction, which begins with a ligand that is detected by binding to a cell-surface receptor [3].

This usually triggers a cascade of biochemical reactions culminating in a cell response, such

as transcription of a particular gene [3,11]. The sequence of biochemical events starting from

a particular ligand binding its cognate receptor and ending in a cellular response, is referred

to as a signaling pathway [3]. Because signaling pathways are usually very complex and

nonlinear [13], and often include network components and interactions that cannot directly

be experimentally observed and confirmed [14], we have increasingly been turning towards

mathematical and computational models to understand signaling systems [15–17].

Models of biological systems include both statistical models, that aim to characterize

input-output relationships in biological data, and mechanistic models, that include explicit

descriptions of causal biological mechanisms [18,19]. In this thesis, we see instances of both

of these types of models applied to cell signaling. Mechanistic models describe both known

and hypothesized biological mechanisms, and enable predictions that test our hypotheses
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[20]. There are a variety of methods for simulations of mechanistic biochemical models, and

the exact choice of method often depends on the desired degree of spatial and molecular

resolution [21]. If the system is assumed to be well-mixed, implying that each biochemical

species is distributed uniformly throughout the cell (or cellular compartment being modeled),

then a commonly employed method is Ordinary Differential Equation (ODE) modeling [21,

22].

In an ODE model of signaling, every biochemical reaction proceeds at a rate that is

determined by a rate law. There is a differential equation for each biochemical species in

the signaling pathway that describes its evolution over time, as dictated by the rate laws

for reactions that include the species. Since the same biochemical species may participate

in multiple reactions, the equation describing its evolution may have contributions from

multiple rate laws. A common example of a rate law, given by the mass action assumption,

is the product of a rate constant and the abundances or concentrations of each reactant [23].

ODE models are associated with several parameters, such as the initial species abundances

that provide the initial conditions to solve the ODEs and the rate constants used in the

rate laws. The first set of challenges that we address in this thesis is, given a model of

signaling and some experimental data, how can we efficiently determine the numerical values

of these parameters such that the model output matches the data, a problem called parameter

estimation, and can we reduce the number of model parameters that are needed to explain

the data, a problem called model reduction.

1.1.1 Estimating parameters of cell signaling models

While there are several methods in the parameter estimation literature that span various

fields [24, 25], there are certain challenges that are more unique to mechanistic models in

systems biology. These challenges include the sparse availability of data compared to the

large number of model parameters that are needed to accurately express biochemical mech-

anisms [26], temporal correlations in the time-series data used for fitting, and correlations

in model parameters [27]. Mechanistic models of cell signaling therefore often possess a

property called non-identifiability [28], where many unique parameter sets may fit the data

2



equally well, and it becomes desirable to estimate not just best-fit parameters, but also the

uncertainty in the parameter estimates [20, 29]. Bayesian parameter estimation methods

achieve this by estimating the posterior probability distributions of model parameters given

the data [20,29–31]. In Chapter 2, we systematically investigate Parallel Tempering (PT), a

physics-based Bayesian sampling method that has gained widespread success in the field of

molecular dynamics simulations [30], for its utility and efficiency for estimating parameters

of cell signaling models [32].

1.1.2 Reducing cell signaling models

While having more reactions and parameters increases the expressiveness of mechanis-

tic biochemical models, the resulting large reaction networks may obscure simpler network

structures that can drive specific cell behaviors [33, 34]. Detailed models more accurately

represent our knowledge of a system, however the difficulty in parsing complex networks

of all known components and interactions has often led to them being described as “hair-

balls” [35–37]. As advances in experimental technology are allowing us to probe more detailed

aspects of a cell and our knowledge of cellular biochemistry is rapidly increasing, there is an

increased need for model reduction methods that can bridge the gap between detailed models

that can serve as libraries [38] for everything we know about a cell signaling system, and

simpler mechanistic explanations that are sufficient for particular emergent properties, for

example an incoherent feedforward loop that leads to fold-change detection [33]. As a step

in this direction, in Chapter 3, we develop a framework that combines Bayesian Parameter

Estimation using PT with Lasso, a sparsity-promoting penalty commonly used in Machine

Learning [39], for simultaneous parameter estimation and model reduction [12].

1.2 NF-κB signaling as a model signal transduction pathway

While we develop or use analyses that are broadly applicable to cell signaling studies,

in this thesis we focus on applications to the TNF-NF-κB signaling pathway, which is the
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activation of transcription factor NF-κB mediated by the inflammatory cytokine, Tumor

Necrosis Factor (TNF). NF-κB signaling is a key regulator of innate immunity and controls

the transcription of several inflammatory genes [40]. In a resting cell, NF-κB is sequestered in

the cytoplasm by binding to its inhibitor, IκB [40]. TNF on binding to its cognate receptor,

TNFR, stimulates the recruitment, and subsequent activation, of IκB kinases (IKKs) to

a protein complex at the receptor [41]. Active IKK phosphorylates IκB, targeting it for

degradation and freeing NF-κB to translocate into the nucleus where it drives transcription

of its own negative regulators, A20 and IκB, as well as various inflammatory genes. A20 and

IκB create negative feedback loops that drive NF-κB out of the nucleus [42].

A recurring theme in cell signaling is that dynamics are important. It has been shown

that different temporal patterns of TNF stimulation are capable of eliciting distinct cell

responses [43,44], and that the dynamics of NF-κB control expression of distinct genes that

can be classified as early, intermediate, or late responding [45]. To study the dynamics of

the TNF-NF-κB response in single cells, we use live-cell microscopy data [46]. A fluorescent

protein is fused with NF-κB, and live-cell microscopy is used to observe the translocation of

NF-κB in and out of the nucleus, measured as the change in nuclear fluorescence intensity,

allowing us to track the single-cell NF-κB response over time in several cells that are exposed

to the same TNF stimulus condition [46].

While NF-κB signaling is a relatively well-studied pathway, there are still open questions

surrounding mechanisms of regulation, such as the requirement of various feedback elements

under different temporal stimulus conditions, mechanisms of heterogeneity or noise, and the

impact of noise on the capabilities of the pathway to accurately transduce information about

the cellular environment, such as information about cytokine dose [47,48]. In this thesis, we

use both mechanistic approaches, with Bayesian parameter estimation and model reduction,

and statistical tools from information theory, to address these outstanding questions.

In Chapter 3, we demonstrate an application of PT with Lasso to test the requirement of

NF-κB signaling feedback loops in single cells exposed to either pulsatile or continuous TNF

stimulation [12]. In Chapters 4 and 5, we switch gears from studying mechanisms of NF-κB

signaling within independent single cells, to studying the heterogeneity in NF-κB signaling

that is commonly observed, even in genetically identical cell populations.
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1.3 Heterogeneity in cell signaling systems

In studying mechanisms of cell signaling, with the goal of manipulating cell behavior,

it is unavoidable to consider the commonly observed heterogeneity between cells. Hetero-

geneity is a common property in many biological signaling systems [49], and even genetically

identical cells often have markedly different responses to the same external stimulus [49–51].

This is somewhat surprising as dysregulation of signaling is associated with many human

diseases [3,4], for example dysregulation of TNF-NF-κB signaling is associated with chronic

inflammation [52], and so one might expect signaling to be strictly regulated and responses

across cells to be highly consistent. Understanding the mechanistic basis for cells responding

differently to the same stimulus, and understanding how the variability or “noise” in the

responses affects the signal processing capabilities of a cell, may provide valuable clues to

design optimal treatment strategies to manipulate cell responses.

In studying cell heterogeneity, the first question we consider is – does noise limit the

signal processing capabilities of individual cells [53]? An interpretation of the significant

heterogeneity observed in TNF-NF-κB signaling that arose in the field several years ago, us-

ing an information-theoretic analysis, is that this signaling system is too noisy to accurately

resolve environmental cues such as the concentration of extracellular TNF, and can instead,

simply behave as a switch that can detect the presence or absence of TNF [54]. However,

given the many roles of this pathway as a central mediator of inflammatory responses [52], an

inability of single cells to grade NF-κB responses to TNF dose would be rather surprising. In

Chapter 4, we combine more recent advances in the field of information theory for biochem-

ical systems [53, 55], advances in knowledge about NF-κB signaling [44, 56], and hundreds

of dynamic single-cell TNF-NF-κB responses measured in response to diverse experimen-

tal conditions using live-cell imaging, to investigate this question of dose-discrimination in

TNF-NF-κB signaling [46]. Understanding single-cell processing capabilities is a key step in

eventually being able to control cell responses. Knowing whether a single cell is acting as a

switch, or is able to grade its response to dose, may later help guide treatment strategies to

control single-cell behavior.

While in Chapter 4 we consider the effect of cell heterogeneity, in Chapter 5 we address
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the complementary question of understanding the cause of heterogeneity. An approach

that has been successfully applied in the literature is to hypothesize that variation arises

from systematic differences in signaling elements, that are expressed as differences in model

parameters [22, 57–59]. Often only a few individual-level parameters are assumed to drive

the heterogeneity, while the rest are shared and common to all the individuals [22,58,59]. In

particular, protein expression variation has commonly been reported as a source of signaling

variability in cellular systems [50,60–62]. Building closely on a previously described approach

[59], we present a workflow that uses PT and other sampling approaches to calibrate the

individual parameters, assumed to be abundances of key signaling proteins, and shared

parameters of a model [12] to a large set of heterogeneous single-cell NF-κB responses from

live-cell imaging data [46]. The calibrated model of heterogeneity is then further used to

simulate single-cell dose-response behavior and examine differences in signaling capabilities

of individual cells that can arise from differences in protein abundances.

1.4 Thesis goals

Overall, this thesis presents several computational strategies, both mechanistic and sta-

tistical, to improve our understanding of cell signaling and demonstrates applications to the

NF-κB signaling pathway as a model system. In Chapters 2 and 3 we address two technical

challenges in modeling complex signaling systems within cells, namely parameter estima-

tion and model reduction. Going further, in Chapters 4 and 5 we address the challenge of

studying the heterogeneity in signaling systems between cells, specifically applied to NF-κB

signaling. Finally, in Chapter 6 we summarize our conclusions and present our findings in

the broader context of the field of systems biology and cell signaling.

The work in Chapters 2, 3 and 4 has been published in articles [32], [12] and [46] re-

spectively. The work in Chapter 5 is preliminary, and we discuss several avenues for further

investigation. Additional graduate work, not included in this thesis, includes a book chap-

ter on spatial stochastic modeling using the software package, MCell, and graphical user

interface, CellBlender [21].
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2.0 Evaluation of Parallel Tempering to Accelerate Bayesian Parameter

Estimation in Systems Biology

This chapter is taken from © 2018 IEEE. Reprinted, with permission, from Gupta S,

Hainsworth L, Hogg J, Lee REC, Faeder JR, Evaluation of Parallel Tempering to Accelerate

Bayesian Parameter Estimation in Systems Biology, 26th Euromicro International Confer-

ence on Parallel, Distributed and Network-based Processing (PDP), 2018 [32]. Details of the

author contributions can be found in Section 2.5

2.1 Introduction

Mathematical and computational models have been gaining widespread use as tools to

summarize our understanding of biological systems and to make novel predictions that can

be tested experimentally [63,64]. Doing this requires a model to be correctly parameterized.

Parameter estimation, the process of inferring model parameters from experimental data,

typically involves defining a cost function that quantifies the discrepancy between the model

output and the data, and then performing a search for parameterizations that minimize the

cost [20, 65].

There are many commonly-used methods for finding parameter sets that minimize the

model cost. These can broadly be divided into gradient-based and gradient-free methods.

Gradient-based methods are local optimization methods that iteratively use the gradient of

the cost function to compute a search direction and step length, followed by updating the

parameters and checking for convergence [65]. Popular gradient-based methods in systems

biology include gradient descent, Newton’s method, the Gauss-Newton algorithm, and the

Levenberg-Marquardt algorithm [24]. However, these methods can fail to find the global

minimum when landscapes are discontinuous or multi-modal, as is frequently the case for

large biological models, which can have many more parameters than independent data points

to constrain the model [66].
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Gradient-free methods have the advantage that the landscape need not be smooth, but lo-

cal search methods, such as the Nelder-Mead simplex, become inefficient for high-dimensional

problems [25]. Gradient-free global optimization methods such as genetic algorithms and par-

ticle swarm optimization can be effective at finding optimal solutions in high-dimensional

spaces [67]. However, the combination of high-dimensional parameter spaces and the lim-

ited amount of data available from typical biological experiments often means that multiple

parameter combinations equivalently describe the experimental data, which is referred to as

the parameter identifiability problem [68]. When parameters are non-identifiable, a single

parameter set is insufficient to describe the feasible space of parameters associated with a

model.

Bayesian methods solve this problem naturally by attempting to estimate the probability

distribution of the model parameters given the experimental data [20], which allows simulta-

neous determination of best-fit parameters and parameter sensitivities, while also providing

a framework to introduce prior information that the modeler may have about the parame-

ters. Bayesian methods include likelihood-based approaches, such as Markov Chain Monte

Carlo (MCMC) methods [31], and likelihood-free approaches, such as Approximate Bayesian

Computation (ABC) [20].

MCMC is commonly used in systems biology, but slow convergence is often a major bot-

tleneck for standard sampling algorithms, such as Metropolis-Hastings (MH) [31]. The devel-

opment of modular and rule-based software for model construction and simulation [69–71],

allows for the construction of increasingly complex models (e.g., [72]), which combined with

the increasing availability of single-cell data [57] motivates the need for accelerated meth-

ods for Bayesian parameter estimation. Parallel tempering (PT) is a physics-based MCMC

method that efficiently samples a probability distribution and can accelerate convergence

over conventional MCMC methods [30]. This method has been widely used for molecular

dynamics simulations to sample the conformational space of biomolecules [73, 74], but is

less common in systems biology [66, 75, 76]. Here, we describe key algorithmic elements of

the method, provide a software implementation, and evaluate its performance on a series of

biological models of increasing complexity.

The remainder of this chapter is organized as follows: In Sec. 2.2, we describe the MH
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and PT algorithms as well as the ABC and ABC-SMC methods used by the software ABC-

SysBio [20], which we will later use for comparison. We also include a brief description of the

PTempEst software for Bayesian parameter estimation. In Sec. 2.3 we present a series of

examples of increasing complexity to test the performance of PT relative to MH with regards

to quality of fit, convergence speed, and sampling efficiency. We include a comparison with

ABC-SysBio and further show an application of using Bayesian methods with Laplace priors

to achieve model reduction. Finally, in Sec. 2.4 we discuss our main findings, limitations,

and areas for future work.

2.2 Methods

Bayesian parameter estimation methods infer the posterior distribution that describes

the uncertainty in the parameter values that remains even after the data is known [20]. The

probability of observing the parameter set θ given the data Y is given by Bayes’ rule

p(θ|Y ) ∝ p(Y |θ)p(θ),

where p(Y |θ) is the conditional probability of Y given θ, which is described by a likelihood

model, and p(θ) is the independent probability of θ, often referred to as the prior distribu-

tion on model parameters. This distribution represents our prior beliefs about the model

parameters, and can be used to restrict parameters to a range of values or even to limit the

number of nonzero parameters, as discussed further below.

2.2.1 MCMC Methods

MCMC methods for parameter estimation sample from the posterior distribution, p(θ|Y ),

by constructing a Markov chain with p(θ|Y ) as its stationary distribution. The key required

elements are:
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• A likelihood model that gives p(Y |θ). Assuming the model is continuous (e.g., an ordinary

differential equation (ODE) model) and Gaussian experimental measurement error, the

likelihood function is given by

L = e−ΣSΣT (Ysim−Yexpt)2/2σ2

,

where S is a list of the observed species and T is a list of the time points at which

observations are made. PTempEst allows other likelihood models, such as the built-in

t-distribution [77], or any user-supplied function.

• Prior distributions on the parameters to be estimated. Uniform priors are a common

choice when little is known about the parameters except for upper and lower limits.

Priors can also be introduced to simplify a model by reducing some of its parameters to

zero, a process called regularization. For example Lasso regularization [78] penalizes the

sum of absolute values of parameters (the L1 norm), and Ridge regression [79] penalizes

the sum of the squared parameter values (the L2-norm).

• A proposal function to define the probability distribution for the next parameter set to

sample given the current set. A common choice is a normal distribution centered at

the current value with a user-specified variance, which determines the effective step size.

PTempEst uses a single adaptive step-size to determine the change in all parameters,

but there are other MCMC implementations which permit different step sizes to govern

changes in different directions in parameter space [31].

Following Metropolis et al. [80], we define the energy of a parameter set θ as

E(θ) = − logL(θ)− log p(θ),

where L and p are the likelihood and prior distribution functions defined above.
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2.2.1.1 Metropolis-Hastings algorithm The Metropolis-Hastings (MH) algorithm is

one of the most popular MCMC methods [81]. If we assume a symmetric proposal function,

i.e., the probability of moving from a parameter set θi to θj equals that of moving from θj

to θi, then the algorithm to sample from p(θ|Y ) is as follows:

1. Select an initial parameter vector θ0 that has energy E(θ0) and set i = 0.

2. For each step i until i = N

a. Propose a new parameter vector θnew and calculate the E(θnew).

b. Set θi = θnew with probability min(1, e−∆E), where ∆E = E(θnew)−E(θi−1) (accep-

tance). Otherwise, set θi = θi−1 (rejection).

c. Increment i by 1.

2.2.1.2 Parallel Tempering One of the key differences between MH and PT is the ex-

istence of a temperature parameter, β, that scales the effective “shallowness” of the energy

landscape. Several Markov chains are constructed in parallel, each with a different β. A

Markov chain with a β value of 1 samples the true energy landscape, while higher temperature

chains have lower values of β and sample shallower landscapes with the acceptance prob-

ability now given by min(1, e−β∆E). Higher temperature chains accept unfavorable moves

with a higher probability and therefore sample parameter space more broadly. Tempering

refers to periodic attempts to swap configurations between high and low temperature chains.

These moves allow the low temperature chain to escape from local minima and improve both

convergence and sampling efficiency [30]. The PT algorithm is as follows:

1. For each of N swap attempts (called “swaps” for short)

a. For each of Nc chains (these can be run in parallel)

i. Run NMCMC MCMC steps

ii. Record the values of the parameters and energy on the final step.

b. For each consecutive pair in the set of chains in decreasing order of temperature,

accept swaps with probability min(1, e∆β∆E), where ∆E = Ej − Ej−1, and ∆β =

βj − βj−1, and Ej and βj are the energy and temperature parameter respectively of

the j chain.
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Adapting the step size and the temperature parameter can further increase the efficiency

of sampling [30]. However, varying parameters during the construction of the chain violates

the assumption of a symmetric proposal function (also referred to as “detailed balance”),

and it is advisable to do this during a “burn-in” phase prior to sampling.

2.2.1.3 Implementation In this work we present PTempEst, a MATLAB-based tool

for parameter estimation using PT that is integrated with the rule-based modeling software

BioNetGen [71]. Models specified in the BioNetGen language (BNGL) can be exported as

ODE models that are called as MATLAB functions by PTempEst. The BioNetGen com-

mands writeMfile or writeMexfile are used to export models in MATLAB’s M-file format,

which uses MATLAB’s built-in integrators, or as a MATLAB MEX-file, which encodes the

model in C and invokes the CVODE library [82], which is usually much more efficient in

our experience. For additional compatibility, models can be imported into BioNetGen in

the System Biology Markup Language (SBML) [83], or the user can write their own cost

function in MATLAB. The Bayesian parameter estimation capabilities of PTempEst com-

plement those of another tool for performing parameter estimation on rule-based models,

BioNetFit [84].

PTempEst uses adaptive step sizes and temperatures. The user provides the following

hyper-parameters to control sampling: initial step size, initial temperature, and adaptation

intervals and target acceptance probabilities for steps and swaps. At given intervals, the step

acceptance probabilities and swap acceptance probabilities are calculated, and the step sizes

and chain temperatures are adjusted to bring the step and swap acceptance probabilities

closer to their target values respectively. For example, if the step acceptance rates are too

high, the step size will be increased and vice versa. Similarly, if the swap acceptance rates

are too high, the chain temperatures will be increased and vice versa. Although there are a

considerable number of hyper-parameters associated with this method, we have found that

the default values provided in PTempEst generally work well in practice.

The MATLAB source code for PTempEst along with model and data files used in the

experiments described below are available at http://github.com/RuleWorld/ptempest.
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2.2.2 Approximate Bayesian Computation methods

2.2.2.1 ABC rejection The simplest ABC algorithm is a rejection algorithm [85], which

involves repeatedly sampling a parameter vector θi from the prior distribution, simulating

the model with the sampled parameters, and calculating the discrepancy (often in the form

of a distance function) between the simulated data Ysim and the experimental data Yexpt.

If the discrepancy is below a threshold, ε, θi is accepted as a member of the posterior

distribution; otherwise, it is discarded and another θi is drawn. This process continues

until the number of samples reaches a specified number, resulting in an approximation of

the distribution p(θ|Ysim − Yexpt < ε), which in the limit of ε → 0, will approach the true

posterior distribution p(θ|Yexpt).

2.2.2.2 Approximate Bayesian Computation-Sequential Monte Carlo (ABC-

SMC) The ABC rejection algorithm can suffer from low acceptance rates [85]. The ABC-

SMC algorithm uses a tolerance schedule to decrease ε, and sequentially constructs approx-

imate posterior distributions of increasing accuracy, which eventually converge to the true

posterior distribution [20,85]. We use ABC-SMC to generate the results shown in Sec. 2.3.2

2.2.3 Metrics for algorithm performance comparisons

In our analyses we fit ODE models to synthetic data generated using fixed parameter

values. For the comparison to ABC presented in Sec. 2.3.2 we used synthetic data with

additional noise, as was provided in the ABC-SysBio example files.

For models containing 3–6 parameters, both the MH and PT algorithms find the global

minimum, and we compared the performance using convergence time and sampling efficiency.

The convergence time is defined as the number of MCMC steps before the energy drops

below a specified threshold, determined empirically [86]. For PT convergence time is based

on the number of MCMC steps in the lowest temperature chain. With uniform priors and

data simulated without noise, the negative log likelihood approaches zero when the chain

converges to the global minimum.

The sampling efficiency is defined as the ratio of the range of the posterior distribution
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to the range of the prior distribution, either for a model parameter that is known to be

uniformly distributed, or for an added control parameter that does not contribute to the

model output and therefore should be uniformly distributed.

For more complex models (11-25 parameters), we do not always obtain parameter sets

that fit the data. In this case we compare the algorithms in terms of the negative log likeli-

hood of the best fit parameter sets. In the case of uniform priors, this directly corresponds

to the minimum energy attained by the Markov chain.

To compare disparate algorithms in terms of the total amount of computational resource

used, we allowed each to perform a specified number of model integrations. For MH the

number of model integrations is the number of MCMC steps, while for PT it is the number

of MCMC steps times the number of chains run in parallel. For ABC algorithms, which use

rejection sampling, the number of model integrations equals the total number of parameter

sets evaluated to generate the desired number of samples.

2.3 Results

2.3.1 Michaelis-Menten Kinetics

We start with a simple model to demonstrate how Bayesian methods can identify con-

strained parameter relationships even when individual parameters are unidentifiable. The

Michaelis-Menten model describes enzyme substrate kinetics using the following scheme:

E + S
kf⇀↽
kr
ES

kcat→E + P

When the total enzyme concentration, [E]T is much smaller than that of the substrate, the

rate of product formation is given by

d[P ]

dt
=
kcat[E]T[S]

(KM + [S])
,

where KM = (kcat +kr)/kf is the Michaelis constant. The product trajectory only constrains

kcat and KM, while the individual forward and backward rates kf and kr are unidentifiable.

We generated a synthetic product trajectory using parameters kf = 10−2.77, kr = 10−1, kcat =
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10−2, and constructed a likelihood function assuming 1% Gaussian error. The 3 model

parameters are sampled in log-space, with uniform priors on the intervals [−3, 1], [−1, 3] and

[−3, 3] for kf , kr and kcat respectively. The fit is repeated 100 times using MH, and PT with

4 chains, starting from an initial parameter set of [−1, 1, 0], corresponding to the midpoints

of the priors. Both algorithms were run for 250,000 MCMC steps.

The quality of fit produced by MH and PT is comparable (Figure 2.1A-B). However,

on average MH required 4203 MCMC steps to reach convergence, while PT required 369

(Figure 2.1C). Thus, even though each PT step needs 4 times as many model integrations,

the total number of model integrations is smaller than for MH. This is consistent with the

observation made in [30], that PT with M chains of length N can be more efficient than a

single-chain Monte Carlo search of length MN . PT also has higher sampling efficiency for

kr and kf compared to MH (Figure 2.1D).

As we would expect from the non-identifiability of kf and kr, the posterior distribu-

tions of log10(kr) and log10(kf) are uniform across the prior (Figure 2.1E), but their ratio

is constrained (Figure 2.1F). log10(kcat) is an identifiable parameter and has a constrained

distribution centered at −2 (Figure 2.1E). The distributions shown in Figures 2.1E,F were

obtained using PT with 4 chains run for 1,000,000 MCMC steps.

2.3.2 mRNA self-regulation

In this section we compare the efficiency of ABC-SMC, PT and MH for parameter esti-

mation on a simple model of mRNA self-regulation (Figure 2.2A). The ABC-SysBio software

is distributed with example files to estimate the parameters of this model assuming uniform

priors using the ABC-SMC algorithm. The model has 5 parameters, one of which is fixed [20].

The quality of fit is defined as the Euclidean distance between the fitted trajectory and the

data. For the ABC-SMC algorithm we extended the default 18-step tolerance schedule pro-

vided in ABC-SysBio from 50-15 to a 23-step schedule from 50-5 and set the ensemble size

as 100. We ran ABC-SMC 50 times, and found that each run used an average of 6.7 × 104

model integrations. We then ran 50 repeats of 4-chain PT for 16750 MCMC steps, and of

MH for 6.7 × 104 MCMC steps, using a likelihood function with 1% Gaussian error. The
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Figure 2.1: Parameter estimation for the Michaelis-Menten model. (A) Distribution of minimum energy values obtained
via MH and PT. (B) Example of a fitted ensemble (colored lines) obtained for the synthetic data (black lines with error bars)
using PT. (C) Distribution of convergence times for PT vs. MH with an energy threshold of 1. (D) Sampling efficiency for
parameters kr and kf over 100 repeats using MH (light blue) and PT (dark blue). (E) Estimated posterior distributions for
each of the model parameters. The x-axis limits are the uniform prior boundaries. (F) Scatter plots of sampled parameter sets
for each pair of model parameters. Axis limits reflect prior boundaries.
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sampling efficiency of PT and MH was compared using a control parameter as described

above. The quality of fit produced by the MCMC-based algorithms is substantially higher

than what we get from ABC-SMC (Figure 2.2B-D). PT takes fewer steps to reach conver-

gence (Figure 2.2E), and has higher sampling efficiency than MH given the same number of

model integrations (Figure 2.2F).

2.3.3 Model reduction with Lasso

In this section we demonstrate the use of MCMC approaches to perform model reduc-

tion, by coupling parameter estimation with regularization. Lasso regularization penalizes

the L1-norm of the parameter vector while minimizing the cost function during parameter

estimation. This performs variable selection by finding the minimum number of non-zero

parameters required to fit the data [39]. The Lasso penalty is equivalent to assuming a

Laplace prior on the parameters [78], and the width of the prior is inversely related to the

regularization parameter that governs the strength of the penalty. Here, we present an ex-

ample of using the Bayesian Lasso for model reduction, and compare the use of PT and MH

for this problem.

A core model of negative feedback regulation with three processes (blue arrows in Fig-

ure 2.3A) was simulated to get a synthetic trajectory for species A using a value of 10 for

all three rate constants (Figure 2.3C). Three extraneous process were added to the model

(red arrows in Figure 2.3A), so that only a subset of the reactions in the reaction scheme are

required to fit the data. We constructed a likelihood function assuming 2% Gaussian error,

and assumed Laplace priors of width b on each of the 6 model parameters, where b is the

regularization parameter that needs to be tuned. High values of b, i.e., wide priors, will not

impact the log likelihood but will not achieve much variable selection. Conversely for low

values of b most of the parameters will go to 0 at the cost of degrading the log likelihood.

Here, we tested a range of b values. For each we ran PT with 500,000 MCMC steps 50

times to obtain a distribution of negative log-likelihood values (Figure 2.3B). Figure 2.3C

shows examples of fitted ensembles obtained with different regularization strengths. We chose

the smallest value of b, 0.5, that does not significantly increase the negative log likelihood
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Figure 2.2: Parameter estimation for the model of mRNA self regulation. (A) Reaction network diagram of the mRNA self
regulation model from [20] (B) Quality of fit of the final ensemble obtained from ABC-SysBio, PT and MH. The box plots show
the distribution of the Euclidean distances of the 100 members of each of 50 fitted ensembles from the synthetic data. Example
of a typical fitted ensemble obtained from (C) PT and (D) ABC-SysBio. Black lines show the synthetic data, and the colored
lines show the fitted trajectories. [mRNA] refers to the number of mRNA molecules. (E) Distribution of convergence times for
PT vs. MH with an energy threshold of 20. PT takes on average ∼ 2-fold fewer steps to reach convergence. (F) Comparison of
sampling efficiency of MH vs. PT.
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Figure 2.3: Model reduction with Lasso. (A) Reaction network diagram of a toy negative feedback model. The core
model used to obtain the synthetic data for the fit is in blue, and extraneous elements are in red (B) Tuning the regularization
parameter, i.e. the width of the Laplace prior, w.r.t the negative log likelihood of the fitted ensembles (C) Examples of fitted
ensembles corresponding to different regularization strengths. Error bars show synthetic data. Solid lines show the simulated
fits. (D) Posterior distributions with lasso (top row) for parameters show extraneous parameters peaking at 0. Red lines indicate
true parameter values, and the blue lines show the Laplace prior (b = 0.5). The bottom row shows the posterior distributions
obtained without Lasso. Red boxes indicate extraneous parameters. (E) Distribution of convergence times for PT vs. MH with
an energy threshold of 65. (F) Distributions of of sampling efficiency for PT and MH across 50 repeats.
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(Figure 2.3B), and used this for further analysis.

The posterior distributions for the model parameters obtained with regularization show

the extraneous parameters peaking at 0, while the essential parameters have well defined

distributions that peak close to their true values (Figure 2.3D, top row). Without regular-

ization the extraneous parameters p1, p2 and p5 (red boxes in Figure 2.3D) take on non-zero

values and make the other parameters unidentifiable (Figure 2.3D, bottom row). PT con-

verges faster than MH (Figure 2.3E), but the sampling efficiencies calculated over 200,000

MCMC steps are comparable (Figure 2.3F).

2.3.4 Calcium signaling

The models considered so far have a relatively small number of parameters and both MH

and PT achieve convergence readily. For models with more parameters and more complex

dynamics, convergence becomes difficult to achieve. As an example, we consider a four-

species model of calcium oscillations that has 12 free parameters [87]. The model describes

the dynamics of Gα subunits of the G-protein, active PLC, free cytosolic calcium, and cal-

cium in the endoplasmic reticulum. We generated synthetic data for free cytosolic calcium

(Figure 2.4A), and constructed a likelihood function assuming 20% Gaussian error. The 12

free parameters were sampled in log-space with uniform priors, 6 units wide and centered

at the true values. We generated 100 random initial parameter sets, and from each starting

point sampled using MH, PT with 4 chains (PT-4) and PT with 6 chains (PT-6). Only a

fraction of the chains converged to the global minimum in 500,000 MCMC steps. Figure 2.4A

shows an example of an MH chain that has converged to a local minimum with high energy,

and another of a PT chain that has converged to the global minimum. The distributions

of minimum energy for chains obtained from each algorithm (Figure 2.4B) show that PT-

6 found better fits than PT-4, which in turn did better than MH, which returned highly

variable results and frequently did not reach the global minimum.
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2.3.5 Negative feedback oscillator

We also considered the three species negative feedback oscillator from Tyson et al. [88], to

evaluate the more difficult case of fitting a model to complex dynamics of multiple species.

We generated synthetic data for all three model species under conditions where all three

species undergo sustained oscillations. 11 model parameters are sampled in log-space, with

uniform priors that are 10 units wide and centered at the true values. The likelihood function

is a t-distribution with 10% error. We generated 15 random initial parameter sets, and from

each starting set ran MH, PT with 4 chains (PT-4) and PT with 6 chains (PT-6) for 500,000

MCMC steps.

Figure 2.5A shows examples of chains converging to different minima. The top row shows

an example of convergence to a high energy. As in the case of calcium signaling, PT with

6 chains outperforms PT with 4 chains, which in turn outperforms the MH algorithm in

finding the global minimum (Figure 2.5B). Interestingly, the data that we generated did

not sufficiently constrain the frequency of oscillations exhibited by the model, and we find

parameter sets corresponding to different frequencies that all fit the data. Figure 2.5C shows

the posterior distributions of the 11 model parameters corresponding to the fit shown in the

middle panel of Figure 2.5A, obtained using PT with 6 chains. The first parameter shows

3 clear peaks, one of which is centered at the true value. Separating the parameter sets

corresponding to these peaks shows that they correspond to specific differences in oscillation

frequencies that are all part of the fitted ensemble (Figure 2.5D), reinforcing the need to use

Bayesian methods with such problems.
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A& B&

Figure 2.4: Parameter estimation for the model of calcium signaling. (A) Examples of convergence to a local minimum
(top) and to the global minimum (bottom). Error bars show synthetic data. Solid lines show the simulated fits. The right
column shows the energy chains corresponding to the fits on the left. (B) Distributions of the minimum energy from MH, PT-4
and PT-6 over 100 repeats.
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Figure 2.5: Parameter estimation for the negative feedback oscillator. (A) Examples of convergence to different minima.
Error bars show synthetic data. Solid lines show the simulated fits. The three colors correspond to the three different model
species. The right column shows energy chains corresponding to the fits shown on the left. (B) Distributions of the minimum
energy by MH, PT-4 and PT-6 over 15 repeats. (C) Posterior distributions corresponding to the middle panel in (A). (D)
Simulated fits corresponding to each of the three peaks in the posterior distribution of the first parameter shown in (C).
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2.3.6 Growth factor signaling model

Finally we apply MH and PT to a substantially larger model that has 24 parameters

— a rule-based model of Shp2 regulation in growth factor signaling [89] that generates 149

species and 1032 reactions. We generated synthetic data for the micromolar concentration

of phosphorylated receptors (pYR), an observable that combines the time courses of 136

model species, and constructed a likelihood function assuming 2% Gaussian error. The

parameters were sampled in log-space with a uniform prior on the interval [−6, 6]. We

generated 25 random initial parameter sets, and from each starting point we obtain Markov

chains with 200,000 MCMC steps using MH and PT with four chains. Figure 2.6A shows

chain convergence to different minima, and Figure 2.6B shows that PT more consistently

finds good fits than MH.

B&A&

Figure 2.6: Parameter estimation for the growth factor signaling model. (A) Examples of convergence to different minima.
Error bars show synthetic data. Solid lines show the simulated fits. The right column shows energy chains corresponding to
the fits shown on the left. (B) Distributions of the minimum energy obtained via by MH and PT with 4 chains over 25 repeats.
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2.4 Discussion

In this study we have shown that even with relatively simple biochemical models, there

are significant benefits to using PT over MH in terms of convergence speed and sampling

efficiency. With more complex models we found that given a fixed budget of MCMC steps

MH often fails to find the global minimum, whereas PT consistently succeeds. We also

showed an example in which Bayesian parameter estimation can effectively perform model

reduction through the introduction of a regularizing prior. While ABC methods constitute

a popular class of alternative methods for Bayesian parameter estimation in cases where

likelihood models are expensive or not available (such as for stochastic models), we found

that PT outperformed ABC for parameter sampling on a relatively simple ODE model. Our

direct performance comparison supports the previous observation [20] that likelihood-based

methods are preferable to likelihood-free methods when likelihood models are feasible to

compute, such as with ODE models.

One limitation of our evaluation procedure is that we have not attempted to compare wall

clock times for the different algorithms. Instead, as a performance metric we have used the

number of MCMC steps or the number of model integrations required, which are independent

of the implementation. In practice, the fits reported in Sec. 2.3 can all be performed on a

typical workstation computer in times ranging from a few minutes for the smallest model

(Michaelis-Menten) to a few hours for the largest model (growth factor signaling). However,

we found that despite requiring the same number of model integrations per processor per

step, the single-chain MH sampling ran significantly faster per step (20–30%) in terms of wall

clock time than PT with four or six chains. Preliminary tests showed that these differences

likely arise from the requirement in our current implementation for each chain to complete

a fixed number of steps before a swap is attempted. Parallel efficiency decreases when

trajectories on different processors take different amounts of time to complete. We found

that the difference in wall clock time decreased when the PT chains are all run at the

same temperature, but so do the algorithmic benefits. When chains are run at different

temperatures, the high temperature chains tend to sample parameter space more broadly,

which results in greater variability in the model integration time [90] and causes slow down
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due to the synchronization requirement. We plan to investigate asynchronous swapping

between chains in order to alleviate this problem.

Another limitation of the current work is that the comparisons were made using specific

choices for the hyper-parameters that control the PT algorithm, such as those that control

step sizes for the moves and temperatures. Adjustment of these may result in further im-

provements to sampling efficiency and convergence rates. We would also like to investigate

the effect of using different proposal functions, such as Hessian-guided MCMC [31], as well

as different likelihood models.

While we have restricted our MCMC comparisons to MH, there has been considerable

work toward improving the efficiency of MCMC methods, such as Differential Evolution

Adaptive Metropolis (DREAM) [91] and Delayed Rejection Adaptive Metropolis (DRAM)

[92]. It would be interesting to investigate whether parallel tempering could be fruitfully

combined with these approaches.

Finally, PT, as it has been presented and used to this point both here and in the molecular

simulation literature, is only a moderately parallel algorithm because it uses just a handful

of chains. It remains to be seen whether using a much larger number of chains would retain

the advantages of sampling simultaneously at multiple temperatures and result in further

acceleration.
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3.0 Parallel Tempering with Lasso for Model Reduction in Systems Biology

This chapter is taken from Gupta S, Lee REC, Faeder JR, Parallel tempering with Lasso

for model reduction in systems biology, PLOS. Computational Biology, 2020 [12].

3.1 Introduction

Cells use complex networks of proteins and other biomolecules to translate environmental

cues into various cell fate decisions. Mathematical and computational models are increasingly

used to analyze the nonlinear dynamics of these complex biochemical signaling systems

[15, 16, 20, 93]. As our knowledge of the biochemical processes in a cell increases, reaction

network models of cell signaling have been growing more detailed [16, 17, 72]. Detailed

models are a useful summary of knowledge about a system but they suffer from several

drawbacks. First, the complexity may obscure simpler motifs that govern emergent cellular

functions [33, 34, 88]. Second, the large number of parameters creates a high-dimensional

search problem for parameter values where the model fits the data. To mitigate these

problems, it is useful to reduce the number of reactions in a model, provided that the reduced

model is still able to reproduce a given set of experimental observations. In this work we

pose model reduction as a constrained Bayesian parameter estimation (BPE) problem to

simultaneously calibrate and reduce models. Given a prior reaction network model, our

method finds minimal subsets of non-zero parameters that fit the data.

A number of previous studies have addressed model reduction for biochemical systems,

as reviewed in [94]. Some examples include reduction by topological modifications to resolve

non-identifiability in models [95, 96] and reduction by timescale partitioning [97–99]. Non-

identifiability arises when multiple unique parameterizations of a model give the same model

output. Quaiser et al. [95] and Maiwald et al. [96] developed methods to find non-identifiable

parameters and used this analysis to resolve non-identifiability by model simplifications such

as lumping or removal of reactions. The simplification step, however, is not automated
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and requires a skilled modeler. Timescale partitioning methods use timescale separations

in the reaction kinetics to apply model reduction based on quasi-steady-state and related

approximations [94,98]. Both of these methods generate reduced models but do not carry out

parameter estimation to fit experimental data. Gabel et al. [100] recently developed FaMoS

(Flexible and dynamic Algorithm for Model Selection), a method that uses heuristic search

algorithms to search the space of submodel topologies within a larger model. However, each

proposed submodel has to be individually refit to experimental data, and the heuristic search

algorithms used are not guaranteed to return all possible submodel topologies that fit the

data. Maurya et al. [101] used mixed-integer nonlinear optimization to combine parameter

estimation with model reduction by reaction elimination, a technique common in the field

of chemical engineering [102, 103]. This approach requires an additional binary parameter

for every reaction in the model, and the genetic algorithms used for the optimization only

provide point estimates of the parameters.

Here, we develop reaction elimination in a Bayesian framework that combines parame-

ter estimation and model reduction without requiring additional parameters. BPE can be

used to characterize high-dimensional, rugged, multimodal parameter landscapes common

to systems biology models [20, 22,29,31,32] but suffers from the drawback that the Markov

Chain Monte Carlo (MCMC) methods commonly used to sample model parameter space

are often slow to converge and do not scale well with the number of model parameters.

We recently showed that Parallel Tempering (PT), a physics-based method for accelerating

MCMC [30], outperforms conventional MCMC for systems biology models with up to dozens

of parameters [32]. Here, we apply Lasso (also known as L1 regularization), a penalty on

the absolute values of the parameters being optimized, to carry out model reduction. In the

fields of statistics and machine learning, Lasso is widely used for variable selection to identify

a parsimonious model – a minimal subset of variables required to explain the data [39]. In

the context of biology, Lasso has been widely applied to gene expression and genomic data,

typically in combination with standard regression techniques [104–108] and less commonly

in Bayesian frameworks [109, 110]. In the mechanistic modeling context, Lasso regression

has been used to predict cell type specific parameters in ODE reaction network models [111],

but to our knowledge it has not been implemented to reduce such models.
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Our method, PTLasso, combines PT with Lasso regularization to simultaneously cali-

brate and reduce models. The core idea is that every reaction in the model is governed by a

rate constant parameter that, when estimated as zero, removes the reaction from the model

simulation. Since the approach is Bayesian, PTLasso can extract multiple minimal subsets

of reactions if present, which provides alternate mechanisms to explain the data. We use

synthetic data to demonstrate that PTLasso is an effective approach for model reduction.

We also use PT with Lasso on groups of parameters (grouped Lasso) with real biological

data in a larger model of NF-κB signaling to select over reaction-network modules instead

of individual reactions. Grouped Lasso can test mechanistic hypotheses about the necessity

of signaling modules, such as feedback loops, to explain data from particular experimental

conditions. Overall, our results demonstrate that BPE combined with regularization is a

powerful approach to dissect complex systems biology models and identify core reactions

that govern cell behavior.

The remainder of this chapter is organized as follows. In Methods we provide an overview

of the PTLasso approach with in-depth descriptions of PT, regularization with Lasso and

grouped Lasso, and the setup of computational experiments. In Results we demonstrate

PTLasso on synthetic examples of increasing complexity followed by an application of the

grouped Lasso approach to address mechanistic questions in NF-κB signaling. Finally, in

Discussion we highlight advances as well as limitations of the method and present the im-

plications of this study for the broader context of biological modeling and analysis.

3.2 Methods

In this work we use Bayesian parameter estimation (BPE) for model reduction. Here,

we present an overview of BPE using the MH and PT algorithms for MCMC sampling.

Our presentation of these algorithms is modified from Gupta et al. [32]. Following this, we

describe the application of regularization in the context of MCMC sampling using either

Lasso or grouped Lasso. Finally, we describe the basic steps of the computational experi-

ments, including generation of the synthetic data for fitting, choosing the starting parameter
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configurations for the MCMC chains, convergence testing and selection of hyperparameters.

Following [32], BPE methods aim to estimate the probability distribution for the model

parameters conditioned on the data. The probability of observing the parameter vector, ~θ,

given the data, Y , is given by Bayes’ rule

p(~θ|Y ) ∝ p(Y |~θ)p(~θ). (3.1)

Here, p(Y |~θ) is the conditional probability of Y given ~θ, and is described by a likelihood

model. For the ODE models in this study, we assumed Gaussian experimental measurement

error, in which case the likelihood of a parameter vector, ~θ, is given by

L(~θ) = e−ΣSΣT (Ysim(~θ)−Yexpt)2/2σ2

, (3.2)

where S is a list of the observed species, T is a list of the time points at which observations are

made, σ is the standard deviation of the likelihood model and can be different for different

species and time points, Ysim(~θ) is the model output for parameter vector ~θ, and Yexpt is

the corresponding experimental data. p(Y |~θ) is equal to the normalized L(~θ). p(~θ) is the

independent probability of ~θ, often referred to as the prior distribution, which represents our

prior beliefs about the model parameters. It can be used to restrict parameters to a range

of values or even to limit the number of nonzero parameters, as discussed further below.

3.2.1 MCMC sampling

MCMC methods sample from the posterior distribution, p(θ|Y ), by constructing a Markov

chain with p(θ|Y ) as its stationary distribution. Following the notation of Metropolis et al.

[80], we define the energy of a parameter vector ~θ as

E(~θ) = − logL(~θ)− log p(~θ), (3.3)

where L and p are the likelihood and prior distribution functions defined above. In this

section we will briefly describe the Metropolis-Hastings and Parallel Tempering algorithms

for MCMC sampling.
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3.2.1.1 Metropolis-Hastings algorithm The Metropolis-Hastings (MH) algorithm is

a commonly-used MCMC algorithm for BPE [81]. At each step, n, the method uses a

proposal function to generate a new parameter vector, ~θnew, given the current parameter

vector, ~θn. A common choice of proposal function is a normal distribution centered at ~θn:

f(~θnew, ~θn) ∝ e−α|
~θnew−~θn|2 . (3.4)

For any f that is symmetric with respect to ~θnew and ~θn, the move ~θn+1 = ~θnew is accepted

with probability min(1, e−∆E), where ∆E = E(~θn+1) − E(~θn). If the move is not accepted

~θn+1 is set to ~θn.

3.2.1.2 Parallel Tempering In PT (also referred to as replica exchange Monte Carlo

[30]), several Markov chains are constructed in parallel, each with a different temperature

parameter, β, which scales the acceptance probability from the MH algorithm, which is now

given by min(1, e−β∆E). A Markov chain with β = 1 samples the true energy landscape as

in MH. Higher temperature chains have β < 1 and accept unfavorable moves with a higher

probability, sampling parameter space more broadly. Tempering refers to periodic attempts

to swap parameter configurations between high and low temperature chains. These moves

allow the low temperature chain to escape from local minima and improve both convergence

and sampling efficiency [30,32]. Following [32], the PT algorithm is as follows:

1. For each of N swap attempts (called “swaps” for short)

a. For each of Nc chains (these can be run in parallel)

i. Run NMCMC MH steps

ii. Record the values of the parameters and energy on the final step.

b. For each consecutive pair in the set of chains in decreasing order of temperature,

accept swaps with probability min(1, e∆β∆E), where ∆E and ∆β are the differences

in the energy and β of the chains, respectively.

Note that in the Results we often refer to a parameter vector obtained from the lowest

temperature chain at a particular swap as a sample. Ensemble fits are shown by subsampling

parameter vectors from the lowest temperature chain.
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Adapting the step size and the temperature parameter can further increase the efficiency

of sampling [30], but varying parameters during the construction of the chain violates the

assumption of a symmetric proposal function (also referred to as “detailed balance”). It is

therefore advisable to do this during a “burn-in” phase prior to sampling. Another way to

increase efficiency of sampling for parameters that may be on different scales is to sample in

log-space as we have done for all of the examples in this manuscript.

3.2.2 Regularization with Lasso

Lasso regularization penalizes the L1-norm (sum of absolute values) of the parameter

vector, which biases all model parameters towards a value of zero [39]. In a Bayesian frame-

work, the Lasso penalty is equivalent to assuming a Laplace prior on each parameter θi given

by

p(θi) =
1

2b
exp (−|θi − µ|

b
), (3.5)

where b is the width and µ is the mean, which is set to zero for variable selection in linear

parameter space. The energy function is then

E(~θ) = − logL(~θ) +

npar∑
i=1

|θi − µ|
b

, (3.6)

where npar is the number of model parameters, and we have dropped the constant term

arising from the normalization constant 1
2b

in Eq. 3.5. From Eq. 3.6 it can be seen that the

regularization strength is inversely proportional to b. For efficiency we perform parameter

estimation in log parameter space, so instead of regularizing by setting µ to zero, we set it to

a large negative value, such that the parameter value is small enough that it does not affect

the dynamics of the model variables on the timescale of the simulation.

3.2.3 Regularization with grouped Lasso

To account for modularity in complex signaling networks [112], we use grouped Lasso, to

perform selection at the level of reaction modules instead of individual reactions (Note that

this differs from the standard Group Lasso penalty [113] that is typically used for regression
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problems). All reactions in a module share a common penalty parameter that is multiplied

with a reaction-specific parameter to get the full reaction rate constant.

For every reaction i in module m, the reaction rate constant is given by

θi = kiλm, (3.7)

where λm is the penalty parameter for module m and ki is a reaction-specific parameter.

Defining θ′i = log(θi), k
′
i = log(ki), and λ′m = log(λm), we have

θ′i = k′i + λ′m. (3.8)

The energy function is then

E(~θ′) = − logL(~θ′) +

nmod∑
m=1

|λ′m − µ|
b

+

npar∑
i=1

f(k′i), (3.9)

where

f(k′i) =

0, if k′i ∈ (LBi, UBi)

∞, otherwise.

(3.10)

Here, nmod is the number of modules and LBi and UBi are parameters that restrict the

reaction-specific parameters. UBi is chosen such that when λ′m is within the Laplace prior

boundaries, i.e., λ′m ≈ µ, the maximum value of θ′i, ≈ UBi + µ, is small enough that it does

not affect the dynamics of the model variables on the timescale of the simulation. For the

application to NF-κB signaling we chose µ = −25, LBi = −5 and UBi = 10 for all i.

3.2.4 Synthetic data sets used in model calibration

For the two examples presented in Results that used synthetic data, we generated the sets

labeled “true data” by simulating the model with a single set of parameter values (labeled

as “true parameter values”) and sampling with a fine time resolution. We then generated

10 noisy replicates of this data at a coarser set of time points by adding Gaussian noise with

mean of zero and variance of either 10% or 30% of the true value at each point. The mean

and variance of the replicates then defined the “observed data” used for fitting.
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3.2.5 Constraining the model

We use two kinds of constraints in fitting, soft constraints and hard constraints. Soft

constraints can be violated, but are associated with a finite penalty [114]. For example,

the energy function penalizes parameter vectors for producing model outputs that deviate

from the data. Hard constraints, on the other hand, cannot be violated because they are

associated with an infinite penalty. We used hard constraints in the NF-κB signaling model

to enforce certain known properties of the NF-κB system, such as that the exit rate of NF-

κB-IκB complex from the nucleus is greater than that of free NF-κB [56]. A full list of

constraints applied to the NF-κB signaling model is listed in Table A1.

3.2.6 MCMC chain initialization

All MCMC chains must be initialized with a starting parameter vector. For simple

examples, such as the pulse-generator motif and linear dose-response models, chains were

initialized by randomly sampling from the prior until a parameter vector with energy below

a threshold is found. For more complex examples, to avoid long burn-in periods when

starting from unfavorable start points, parameter vectors obtained from PT (or PTLasso)

chains that were previously run with similar data or hyperparameter configurations were

used to initialize the current PT (or PTLasso) chains. For example, parameter vectors

obtained for one NF-κB trajectory could be used as a start point for fitting a different

NF-κB trajectory, or a PTLasso chain with a small value of b (more constrained) could

be initialized from a parameter set obtained from PTLasso with a large value of b (less

constrained). The exact procedures used to generate the starting configurations used in

all computational experiments are provided in the Supplemental Code available at https:

//github.com/RuleWorld/SupplementalMaterials/tree/master/Gupta2019.

3.2.7 Convergence testing

To check for convergence, PT (or PTLasso) was run twice for each computational exper-

iment, and the two parameter chains were used to calculate the Potential Scale Reduction
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Factor (PSRF) for each model parameter (Table A2). The PSRF compares intra-chain and

inter-chain variances for model parameter distributions and serves as a measure of conver-

gence [115]. In keeping with the literature, we consider a PSRF less than 1.2 [29, 31, 115]

as consistent with convergence. We also calculated the stricter Multivariate PSRF (MP-

SRF), which extends PSRF by checking for convergence of parameter covariation (Table A3).

Third-party MATLAB libraries used for the PSRF and MPSRF calculations are available at

https://research.cs.aalto.fi/pml/software/mcmcdiag/.

For models with a large number of parameters, such as the 26-parameter NF-κB signaling

model, the number of PT (or PTLasso) swaps needed for convergence was large and time

consuming to obtain in a single run. Instead of running two long PT (or PTLasso) chains

each of length N , we picked two favorable initial conditions and from each ran a set of M

PT (or PTLasso) chains of length N/M in parallel to reduce wall clock time. We calculated

the univariate PSRF of the M energy chains within each group, and if PSRF was less than

1.2, we assumed that the chains were sampling the same energy basin and combined them

(Table A4, A5). This gave us two groups of N PT (or PTLasso) samples that we used to

test convergence of parameter distributions.

PSRF and MPSRF values for each computational experiment are shown in Tables A2

and A3 respectively. We also show in Table A6 that the step acceptance rates for most

chains are close to the optimal value of 0.234 [116]. Table A7 shows the swap acceptance

rates of the two lowest temperature chains for each computational experiment.

3.2.8 Hyperparameter selection

The hyperparameters associated with PTLasso are µ and b, the mean and width of the

Laplace prior on each parameter that is being regularized. For simplicity, we keep these the

same for all model parameters, although they could in principle vary, which would lead to

a more difficult inference problem. To select the hyperparameters, we varied b and used the

“elbow” in the negative log likelihood vs. b plot to find the smallest value of b (maximum

regularization strength) that does not substantially increase the negative log likelihood of

the fit [32, 117]. We also checked that the results were insensitive to small variations in µ
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(Figs. A1B, A2B, A4B,C).

For more computationally expensive models, we used hyperparameter estimates close to

those obtained from the smaller synthetic models and compared the average log likelihoods

of the fits from PT and PTLasso. For all of the examples shown, we found that the fit with

PTLasso is at least as good as the fit with PT (Figs. 3.4E, A1C, A2C, A4D,E).

3.2.9 Software

All results reported in this work were obtained using ptempest [32], which is a MAT-

LAB package for parameter estimation that implements PT with support for regularization.

ptempest uses MATLAB’s Mex interface to support the efficient integration of ODEs in C

using the CVODE library and is directly compatible with the popular rule-based model-

ing software BioNetGen [71] which enables use with models built in both Systems Biology

Markup Language (SBML) [118] and the BioNetGen Language (BNGL). The source code is

available at http://github.com/RuleWorld/ptempest.

3.3 Results

3.3.1 Reduced motifs can be inferred from dense reaction-networks in the ab-

sence of a prior architecture

To demonstrate that PTLasso can recover a minimal model architecture without prior

knowledge of the reaction network, we used synthetic time-course data to infer a pulse-

generator motif from a fully connected 3-node network of unimolecular reactions (Table A8).

The motif A→B→C (Fig. 3.1A, left), modeled as a system of ODE’s, was used to generate

a time course for species B after initializing the system with 100 molecules of species A at

time t = 0 (red curves in Fig. 3.1B labeled “true data”). As described in Methods, Gaussian

noise (mean = 0, standard deviation = 30% of the true data value) was added to generate

ten noisy trajectories that were sampled at eight time points (Fig. A1A) to simulate the

effects of experimental noise and cell-to-cell variability. The mean and standard deviation

36

http://github.com/RuleWorld/ptempest


of these synthetic trajectories formed the “observed data” (black points and error bars in

Fig. 3.1B) used for subsequent parameter estimation and model reduction.

PT and PTLasso were then used to fit this data using the fully-connected 3-node network

comprised of six reactions (Fig. 3.1A, right). Time courses from PT and PTLasso (Fig. 3.1B)

both fit the observed data (Fig. A1C), but the PTLasso fits are more similar to the true data

at times before the first observed data point. PT finds parameter probability distributions

(Fig. 3.1C, top row) that exhibit sharp peaks near the true values of the two nonzero pa-

rameters that were used to generate the data, kAB and kBC , but finds significant probability

for other values of these parameters and non-zero values for the other rate constants in the

complete network that should have zero value (labeled “extraneous”). By contrast, PTLasso

(Fig. 3.1C, bottom row) recovers tight distributions near the true values of the two nonzero

parameters that lie well outside the Laplace prior, while the probability distributions for

the extraneous parameters all conform tightly to the prior distribution, indicating that the

corresponding reactions can be removed from the network. Taken together, these results

demonstrate that PTLasso can recover network architecture and parameter values that are

not inferred by PT alone.

To determine if the method scales to larger networks, we applied PT and PTLasso to

a fully connected 5-node network (Table A9, Fig. 3.2A, Fig. A2A). As with the 3-node

example, PTLasso fits for a complete 5-node network are more similar to the true data than

fits with PT alone (Fig. 3.2B). Similarly, rate constant parameter distributions with PT are

all broad (Fig. 3.2C), whereas the extraneous parameters for the PTLasso fits were within

the Laplace prior (Fig. 3.2D). In addition to a tight distribution near the true value for

kAB, PTLasso recovered bimodal distributions for kBC , kBD, and kBE, suggesting that the

essentiality of each of the reactions B→C, B→D and B→E depends on which of the other two

are included. This is because the model A→B→C is indistinguishable from A→B→D and

A→B→E without more information about the system. Even though the marginal posterior

distributions show all three parameters playing a role, parameter covariation (Fig. A2D)

reveals that only one of the reactions B→C, B→D, B→E is simultaneously active and rate

constant distributions for the other two are centered at 10−10 (proxy for 0 when sampling

in log-scale). The same covariation plot obtained without Lasso does not show similar
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clustering (Fig. A2E). Taken together, these results show that PTLasso correctly identifies

network parameters and suggests that A→B→C, A→B→D, and A→B→E are alternate

reduced models for the data.

The primary noise model that we have chosen for all the synthetic experiments in this

chapter is Gaussian noise added to the data. However, one might ask how the results

of PTLasso are affected when noise is added to the true parameter values instead, which

is perhaps a more accurate representation of cell-to-cell variability in biological signaling

systems. To test this, we perturbed the true parameters (log kAB = −1, log kBC = 0) 10

times with Gaussian noise (mean = 0, standard deviation = 0.05) (Fig. A3A). The mean

and standard deviation of the resulting 10 noisy model outputs formed the observed data

for fitting (Fig. A3B).The results of PTLasso were qualitatively the same when fitting fully

connected three-node and five-node networks to this data (Fig. A3C–F).

Overall, these results show that PTLasso is a global approach that can extract correct

parameter estimates and architectures of alternate reduced models that fit the data from

fully connected networks of varying sizes. This is especially useful in the context of complex

cell signaling systems that often have redundant elements, in which case the method can be

used to identify alternate signaling mechanisms that fit the data.
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Figure 3.1: Model reduction using PTLasso with a fully connected 3-node graph. A) Motif used to generate the observed
data (left) and reaction network diagram of the fully connected 3-node network used as the starting point for PTLasso (right).
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3.3.2 Motifs with specific dose-response relationships can be inferred from a

prior network

In the previous section we assumed no prior knowledge of a reaction-network and fitted a

simple model output. To demonstrate the extraction of motifs with more complex behaviors
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in the more likely scenario where there is some prior network of hypothesized molecular

interactions, we used PTLasso to extract subnetworks required to produce specific dose-

response relationships.

Tyson et al. [88] previously described two simple biochemical models that individually

produce linear or perfectly adapting dose-response relationships. We constructed a prior

network of a signal, S, response, R, and intermediate, X, by combining the linear and

adaptive dose-response models into a single six-parameter model (Table A10, Fig. 3.3A).

We show that PTLasso correctly identifies the linear and adaptive submodels when the

combined model is fit to different simulated data. The linear dose-response submodel was

used to generate synthetic time courses for R in response to increasing levels of S (Fig. 3.3B,

top row). As earlier, Gaussian noise (mean = 0, standard deviation = 10% of the true data

value) was added to each trajectory to simulate experimental noise and cell-to-cell variability,

and the mean and standard deviation for each time course was calculated at four distinct

time points (including t = 0), creating 16 data points that constitute the observed data. As

in the previous example of fully connected networks, PTLasso fits of the prior network to the

observed data are more similar to the true data than fits from PT alone (Fig. 3.3B, top row).

PTLasso recovers tight distributions for ks−rs and kr−0, which are the only model parameter

values that lie outside the Laplace prior, providing a reduced two-parameter model that is

sufficient to produce the synthetic data (Fig. 3.3C,D).

When the perfectly adaptive dose-response submodel was similarly used to generate

observed data in response to two successive increasing values of S, PTLasso reduced the

prior network to a four-parameter model (Fig. 3.3E,F) that fits the data (Fig. 3.3B, bottom

row). In this case, parameters ks−xs and kxr−x in the reduced model have broad distributions

and are unidentifiable (Fig. 3.3E, bottom row), but PTLasso captures their linear correlation

(Fig. A4A), which may provide further avenues for model reduction [96]. While signaling

systems are complex and can involve large numbers of reactions, not every reaction is relevant

for every function. Taken together our results demonstrate that distinct elements of a large

reaction-network may be responsible for different complex behaviors and can be successfully

isolated using PTLasso.
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Figure 3.3: Motif inference from a prior network constrained with dose-response data. A) Reaction network diagram of
the prior network. The value of the signal S is known, response R (red) is observed at multiple time points, but intermediate
X (blue) is not observed. Solid lines show species conversions and dashed lines show influences, where a species affects the
rate of the corresponding reaction without being consumed. B) Fit of the model to the linear dose-response data (top row,
linear scale y-axis) and perfectly adapting dose-response data (bottom row, log scale y-axis) with PT (left) and PTLasso
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2,000 time points for perfectly adapting dose response), and the black error bars show the mean ± standard deviation of the
observed data. The four increasing linear dose-response values correspond to S values of 1, 2, 3 and 4, and the two successive
perfectly adapting dose response responses corresponding to S values of 1 and 2. C) Frequency histograms showing probability
distributions of the parameters for linear dose response fits (from 400,000 parameter samples) with PT (top) and PTLasso
(bottom). D) Reduced model corresponding to linear dose-response highlighted in prior network. Faded nodes and arrows are
extraneous and are removed from the model. E) Frequency histograms showing probability distributions of the parameters for
perfectly adapting dose-response fits (from 800,000 parameter samples) with PT (top) and PTLasso (bottom). For panels C and
E, the range of log parameter values on each x-axis is −12 to 6, which covers the full range over which parameters were allowed
to vary. The y-axis of each panel is scaled to the maximum value of the corresponding distribution to emphasize differences in
shape. The pink lines show the boundaries of the Laplace prior with µ = −10, b = 0.5 for the linear dose-response model, and
µ = −10, b = 1 for the perfectly adapting dose-response model, and the dashed red lines show the true parameter values. A
parameter distribution confined within the Laplace prior boundaries indicates that the parameter is extraneous (panels with
red border). F) Reduced model corresponding to perfectly adapting dose-response highlighted in prior network. Faded nodes
and arrows are extraneous and are removed from the model.
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3.3.3 A reduced model of NF-κB signaling without A20 feedback explains

single-cell NF-κB responses to a short TNF pulse

Complex biological signaling networks are frequently modular [119, 120] with distinct

motifs such as feedback loops that operate on separate time scales [112]. To account for the

modular structure of signaling we extended our Lasso approach to grouped Lasso, a technique

that applies a module-specific Lasso penalty to all reactions within a particular module (see

Methods). PT combined with grouped Lasso finds minimal sets of reaction modules that

explain experimental data. We used this method to test the requirement of A20 feedback to

explain previously published single-cell NF-κB responses to a short TNF pulse [46]. A prior

model of NF-κB signaling was created by combining simplified elements of models from [56]

and [15] (Table A11). The network was divided into three biologically motivated network

modules (Fig. 3.4A). The IκB and A20 modules describe negative feedback mediated by the

inhibitor IκB and negative regulator A20, respectively. The activation module includes all

remaining reactions that describe the path from TNF binding to its cognate TNF-receptor

(TNFR) to the eventual translocation of NF-κB into the nucleus. The reaction rate constants

within a module are constrained by a common Lasso penalty parameter (see Methods). If the

penalty parameter for a module is estimated as 0, (here, 10−25 is used as a proxy for 0 when

sampling in log scale), the entire module is removed from the simulation. To test which of

the three modules is necessary to explain NF-κB responses to a single TNF pulse, PTLasso

was used to fit the model to three previously published, experimentally obtained, single-cell

NF-κB responses (Fig. 3.4B) [46]. In addition to the NF-κB data, other constraints were

applied to make the system behave consistently with known biology. These constraints are

listed in Table A1, and Fig. A5 demonstrates that PTLasso correctly followed the imposed

parameter covariation.

The probability distributions for the module penalty parameters (Fig. 3.4C) show that

the A20 parameter is confined within the prior boundaries while the others have deviated,

suggesting that to fit these particular single-cell NF-κB trajectories, the A20 module is

dispensable, whereas the IκB and activation modules are not. The A20 module might

still be essential for other biology of the system, but the model does not require the A20
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module to produce these single-cell NF-κB responses under the given experimental condition

and network constraints. The fits with PTLasso were as good as the fits with PT alone

(Fig. 3.4B,D), as is demonstrated by comparing the average log-likelihoods (Fig. 3.4E),

though the fits with PT produced broader distributions for the A20 parameters (Fig. 3.4F,

Fig. A6). The posterior distributions estimated for many of the reaction rate constants

showed overlap with values previously reported in the literature [15, 56,121] (Fig. A6).

To test the requirement of A20 feedback under different experimental conditions and

network constraints, we also fit the model to a published single-cell NF-κB response to

continuous TNF stimulation [46] (Fig. 3.4G). A soft constraint that IKK responses are

transient was added for consistency with published observations [41,122]. For responses to a

TNF pulse, IKK activity naturally adapts back to its baseline abundance without additional

negative regulation (Fig. A7). In this case, all three module penalty parameters deviate

from the prior (Fig. 3.4H), indicating that the A20 mediated negative regulation of IKK

is essential for responses to continuous TNF stimulation. Taken together, the results for

the NF-κB signaling model provide an example where PTLasso isolates reaction modules

sufficient for responses to specific experimental conditions and time scales.
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Figure 3.4: Model reduction using grouped Lasso with a model of NF-κB signaling. A) Reaction network diagram of a
simplified model of TNF-NF-κB signaling. The colors indicate the different modules. Suffix “a” or “i” refer to active and
inactive versions of the species respectively. Prefix “n” and “c” distinguish between nuclear and cytoplasmic versions of the
species respectively. Solid lines indicate transformations and dashed lines indicate influences, where a species affects the rate of
the corresponding reaction without being consumed. B) PTLasso fits of the model to three distinct single-cell NF-κB responses
to pulsatile TNF stimulation. C) Frequency histograms showing probability distributions of the penalty parameters (from
5,640,000 parameter samples) from model fits of single-cell NF-κB responses (from panel B) to pulsatile TNF stimulation with
PTLasso. D) PT fits of the model to the single-cell NF-κB response from the first row of panel B to pulsatile TNF stimulation.
E) Box plots comparing the log likelihood of the fits for NF-κB responses to pulsatile TNF stimulation (from 5,640 parameter
samples) with PT and PTLasso. Trajectories 1–3 correspond to the three trajectories in rows 1–3 of panel B. Boxes show data
in the 25th–75th percentile and the circles show the mean. F) Frequency histograms showing probability distributions of the
penalty parameters (from 5,640,000 parameter samples) from model fits of the single-cell NF-κB response in panel D to pulsatile
TNF stimulation with PT. G) PTLasso fits of the model to a single-cell NF-κB response to continuous TNF stimulation. H)
Frequency histograms showing probability distributions of the penalty parameters (from 3,200,000 parameter samples) from
model fits of the single-cell NF-κB response to continuous TNF stimulation with PTLasso. For panels B, D and G, transparent
blue lines show ensemble fits (from 288 parameter samples for the fits with pulsatile TNF and 168 parameter samples for the
fits with continuous TNF stimulation) of the model to single-cell NF-κB responses. An NF-κB response is calculated as the fold
change of the sum of the abundances of bound and free NF-κB in the nucleus. Red lines show the experimental data. Error bars
show the 10% standard deviation assumed for the likelihood function during fitting and represent measurement error. Pulsatile
TNF stimulation is 5 ng/ml for 5 minutes. Continuous TNF stimulation is 0.1 ng/ml. For panels C, F and H, the range of
log parameter values on each x-axis covers the full range over which parameters were allowed to vary (−35 to 6 for pulsatile
TNF stimulation and −30 to 6 for continuous TNF stimulation). The y-axis of each panel is scaled to the maximum value of
the corresponding distribution to emphasize differences in shape. The pink lines show the boundaries of the Laplace prior with
µ = −25, b = 2. When fitting with PT, the penalty parameter distributions have uniform priors.
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3.4 Discussion

In this work we have demonstrated that PT combined with Lasso is an effective approach

to learn reduced models from a prior model with a larger number of reactions. Even when

starting from a complete graph without prior knowledge of the underlying signaling net-

work, PTLasso correctly identified reduced model architectures and reaction rate constants.

PTLasso also correctly isolated subnetworks that are necessary for distinct dose-response re-

lationships. In a model of NF-κB signaling, PT with grouped Lasso found that in the absence

of other network constraints, A20 feedback was not required to explain single-cell responses

to a short TNF pulse, but is required when TNF treatment was continuous. Model reduction

using PTLasso can therefore highlight aspects of the reaction network that are important

for specific experimental conditions and timescales and not others.

Energy landscapes for systems biology models are often multimodal [123], which raises

the possibility that multiple minimal models will fit the data. The fully connected five-node

network example demonstrates that PTLasso can identify multiple minima when present,

but we also note that the posterior distributions for the parameters kBC, kBD, kBE were not

identical as would be expected from symmetry (Fig 3.2D). These differences show that even

when the PSRF and MPSRF values are below the standard thresholds, MCMC sampling

methods may not obtain the correct probabilities for each possible solution. In a worst case,

an apparently converged sample might miss a plausible mechanism.

Here, we have only used PTLasso to reduce ODE models of biochemical kinetics, but

the method is in principle agnostic to the modeling formalism used. The grouped Lasso

approach to select over reaction modules can even be adapted to select over abstract rep-

resentations of signaling mechanisms, for example, coarse-grained nonlinear input-output

functions, when detailed molecular reaction networks are not known. This may be useful to

highlight pathways sufficient for certain experimental data in large multi-pathway models,

such as whole-cell models [124] or models of signaling crosstalk [125], where it may not be

possible or desirable to accurately represent each biochemical pathway in full mechanistic

detail.

Another potential application of model reduction arises in fitting a model to data from
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different cell types. Differences in responses to the same experimental condition might be

explained by differences in parameter values [111], but comparing cell-type specific parameter

distributions in high dimensional space may be difficult when the models are non-identifiable.

Reducing the number of model parameters lowers the dimensionality of the space and makes

this problem easier.

A limitation of PTLasso is the large number of swaps required to reach convergence,

which can lead to long execution times. For the simplest examples presented here, conver-

gence happens on the order of hours on a standard workstation computer, but for the more

complex signaling systems, convergence can take several days. Most of the execution time

is dedicated to converging the joint parameter distribution. Currently PT and PTLasso are

both run for fixed chain lengths followed by convergence testing at the end, often generating

more samples than were required to pass convergence tests. Testing convergence on-the-fly

and terminating the chains when convergence is reached would prevent unnecessary sam-

pling and reduce the overall execution time. Approaches such as APT-MCMC [126] and

Hessian-guided MCMC [31] that account for the shape of the parameter landscape during

sampling could also reduce the number of samples required for convergence.

Along with working to reduce the amount of sampling, we are also investigating algo-

rithmic modifications to reduce the execution time of individual PT swaps. Synchronous

swapping in our current implementation of PT requires each chain to complete a fixed num-

ber of steps before attempting a swap. Because high temperature chains sample parameter

space broadly and encounter regions where stiffness leads to long integration times, lower

temperature chains often have to wait for the higher temperature chains to complete before

swaps can be attempted. Asynchronous swapping [32] may therefore reduce execution times.

Overall, there are still many opportunities for future PTLasso implementations to increase

efficiency and applicability to larger systems biology models.

In this study we have presented a Bayesian framework that systematically dissects mech-

anistic ODE models of biochemical systems to identify minimal subsets of model reactions

that are sufficient to explain experimental data. Technology now enables the building and

simulating of highly detailed models that accurately reflect existing knowledge of a biochem-

ical system. But detailed models may obscure our ability to identify underlying mechanisms.
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PTLasso serves as a bridge between these detailed models and simpler mechanistic explana-

tions that are sufficient to account for system behavior under specific conditions.
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4.0 NF-κB Dynamics Discriminate between TNF Doses in Single Cells

This chapter is taken from Zhang Q*, Gupta S*, Schipper DL, Kowalczyk GJ, Mancini

AE, Faeder JR, Lee REC, NF-κB dynamics discriminate between TNF doses in single cells,

Cell Systems, 2017, *co-first authors [46]. Details of the author contributions can be found

in Section 4.5

4.1 Introduction

To mediate cell fate decisions, cytokines such as tumor necrosis factor (TNF) initiate dy-

namic alterations in the abundance and activity of signaling proteins in each cell [127,128].

IkB kinases (IKKs) are recruited to ubiquitin structures near the plasma membrane and

activated through induced proximity with other signaling proteins [122, 129]. Nuclear Fac-

tor κB (NF-κB) inhibitor proteins (IkB) are phosphorylated by active IKKs and rapidly

degraded, leading to nuclear accumulation of NF-κB transcription factors and expression of

anti-apoptotic and pro-inflammatory regulators [130–132]. In addition to canonical roles,

NF-κB responses are context sensitive and, in certain settings, also drive transcription of

pro-apoptotic and anti-inflammatory cytokines [133–135]. Since deregulation of NF-κB con-

tributes to disease [136–138], responses to cytokines must be robust to sources of biochemical

noise [139,140] that limit the accuracy of information transmission in each cell [54, 55].

Temporal properties of activated NF-κB in the nucleus control diverse transcriptional

programs that can be clustered based on the timing of their expression [56,141–144]. Early-

response genes encode secreted cytokines and negative regulators of the NF-κB pathway

such as A20 and IκBα that peak after 1 hour, whereas expression of mid- and late-response

genes does not peak until hours later [142, 145]. When measured in a cell population, the

duration and concentration of cytokine stimulation differentially regulates the expression of

gene clusters [143,145–147] giving the impression of a tunable signaling system where graded

responses regulate different physiological functions.
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When viewed in single cells, the abundance and timing of nuclear NF-κB localization

show substantial cell-to-cell variability [45,56,145,146]. Models parameterized to single cells

exposed to limiting concentrations of TNF or other NF-κB agonists suggest that pathway

activation may be switch-like, in which the strength of an inducing signal changes the prob-

ability of a stochastic all-or-nothing response in each cell [45, 146, 148, 149]. Switch-like

mechanisms for pathway activation reduce sensitivity to noise by filtering low-level environ-

mental fluctuations and preventing spurious inflammatory responses [146, 149]. However,

at the single-cell level, a switch cannot transmit dosage information and restricts the range

of responses in each cell to either ‘on’ or ‘off’ when exposed to time-varying stimuli. It is

difficult to reconcile how cytokines control diverse cell fate decisions using a mechanism that

transmits little information in each cell.

Here, we use models to show how mechanisms of cytokine responses can be discerned

from single-cell data. We measure time courses of nuclear NF-κB in 1000s of single cells

exposed to TNF over a range of concentrations and durations, and use an information the-

ory formalism to quantify the channel capacity of the system. Although we find evidence

of a threshold for pathway activation that varies between cells, we also find that single-cell

dynamics encode sufficient information for multiple states of responses to cytokine condi-

tions. Despite significant heterogeneity when comparing between single cells in the same

condition, repeat stimulation experiments reveal dose-dependence when different conditions

are compared in the same cell. Our results reveal that single cells can discriminate and grade

multiple levels of responses to cytokine doses across orders of magnitude in concentration.

4.2 Results

4.2.1 Single-cell data are necessary to discriminate between models for switch-

like and graded signal transduction

To determine how switch-like and graded mechanisms for cytokine responses differ when

viewed at the levels of single cells and cell populations, we developed a set of heuristic models
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to simulate a heterogeneous population of cells exposed to a range of cytokine doses. Each

model represents one of three distinct mechanisms for pathway activation (Figure 4.1A).

For all models we simulated 100 single cells, each initialized with a distinct ‘cell state’

(integers between 1 and 100), which determines how strongly it will respond to stimulus,

and a random threshold for activation (See Figures 4.1B and B1). All models included terms

for basal and inducible noise to better approximate biological systems (Figure B1). Each

model describes a plausible yet distinct scenario, with differences apparent at the single-

cell level (Figure 4.1B). For Model 1 (M1), pathway activation is switch-like, and a cell

exposed to any dose greater than its activation threshold will respond fully as determined

by its cell state. Response distributions overlap between doses in M1 for responsive and

non-responsive (NR) cells respectively. For M2, there are no non-responder cells at any

non-zero dose (Figure 4.1B, right column), and single-cell responses are graded with ‘dose’

and cell state. M3 combines M1 and M2, where cell responses increase with dose and cell

state, but only for doses greater than the cell’s activation threshold. For M3, NR cells

exist with overlapping distributions for all non-saturating doses. When each cell’s response

is normalized to its cellular state in M2 and M3, the response strength to a single input

dose is nearly invariant across activated cells (Figure 4.1B, middle column). In contrast for

M1, there is no dosage information transmitted beyond sub- or supra-threshold cytokine

concentration. Remarkably, when viewed as population-level averages, for example as may

be observed for western blots, these models are indistinguishable (Figure 4.1C).
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Figure 4.1: Population-Level Data Cannot Distinguish between Switch-like and Graded Response Mechanisms (A)
Schematic for (M1) a switch-like mechanism for activation where a cytokine dose increases the probability of an all-or-nothing
response in each cell; (M2) a graded mechanism for single-cell activation in which each cell’s response is graded in proportion
with increasing cytokine dose; and (M3) a combined threshold with graded mechanism where single-cell responses are graded
in proportion with cytokine dose only if the dose is greater than the cell’s threshold for activation. (B) Simulated responses of
single cells modeled with extrinsic noise (described in Figure B1). Each cell is initialized in a unique “cell state” that approxi-
mates its responsiveness to cytokine. Responses to four doses are compared in each model plotted as a raw response (left), or a
normalized response that divides each cell’s response by its cell state (middle). The fraction of non-responder cells is quantified
for each dose (right). (C) Three mechanistically distinct models are indiscernible when using the average of single-cell responses
to approximate a population-level measurement.

4.2.2 Cell lines show differing sensitivity and responsiveness to cytokine stim-

ulation

To investigate mechanisms of dose discrimination, we set out to identify a cell line that

responds strongly to TNF. We used fixed-cell immunofluorescence to characterize subcellular

NF-κB localization in a panel of human cancer cell lines. Because the duration of exposure

to cytokines can distinctly coordinate downstream signal transduction pathways [44,141,146,

147], cells were exposed to a range of TNF concentrations as a single pulse or continuously.

The average nuclear abundance of the RelA subunit of NF-κB was measured from fixed-cell

images (Figure 4.2A, thick lines) to compare cell lines and rank their relative sensitivities.

The intensity of nuclear RelA varied among single cells of the same type when exposed to
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TNF (Figure B2A. To quantify pathway activation for each cell line, time courses of nuclear

RelA averages were decomposed into a series of descriptors (Figure 4.2B; [56, 150, 151])

and plotted as heat maps (Figure 4.2C). Using the area under the curve (AUC) and the

maximum fold change (Fmax/Fi), KYM1 and A549 cells showed the strongest responses to

TNF. Although both cell lines had comparable rates of nuclear change (Ratein and Rateout)

and deviations from adaptation (Figures 4.2C and B2B), KYM1 cells were selected for further

study because they are sensitive to the broadest range of TNF concentrations (0.1 ng/mL;

Figure B2C).

Temporal properties of molecules within single cells can be quantified over multiple time

points using live-cell experiments [55,56,141,145,152]. To further characterize TNF-induced

dynamics of RelA, KYM1 cells that stably express fluorescent protein-RelA (FP-RelA) fu-

sions (Figure B2D-F) were imaged by time-lapse in growth medium with trace amounts

of a live-cell dye to assist with nuclear segmentation [147]. Compared between single cells,

FP-RelA showed transient and variable translocation into the nucleus (Figures 4.2D,E). Con-

sistent with previous results in HeLa [56], coefficient of variation (CV) for descriptors for

nuclear RelA that approximate response dynamics (such as fold change Fmax/ Fi, or adap-

tation Ff/ Fi) showed significantly less variability than others (Figure B2G; non-overlapping

95% confidence interval).

If response dynamics are less variable between cells and also encode condition-specific

signals [153], then they may more accurately convey information about the environment.

Indeed, calculations for the information transmission using multivariate vectors to describe

dynamic responses of single cells, such as RelA dynamics in cells exposed to lipopolysaccha-

rides, yield significantly greater values than those calculated from single time points [55].

Although TNF-induced pathway activation was previously characterized as a <1-bit system

using measurements of nuclear RelA at a single time point [54], more information may be

encoded by dynamics.
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Figure 4.2: Heterogeneity of Responses to TNF between Cell Lines and Single Cells. (A) Time courses for average nuclear
RelA from fixed cells are shown for a panel of human cell lines exposed to indicated concentrations of TNF continuously or
as a single 1-min pulse (solid orange curve). On average, 11,374 single cells were measured across the time points for each
cytokine condition. Light colored lines indicate the SD of approximately 1,274 cells measured at each time point. Time points
for fixation included 0, 10, 30, 60, 90, 120, 180, 240, and 360 min following exposure to TNF. (B) Descriptors used to quantify
the response of cells to a cytokine. Fi, Fmax, and Ff, respectively, describe the initial, maximal, and final amount of nuclear
RelA fluorescence. AUC, the area under the curve for the cytokine response. ∆Adapt quantifies the deviation from a perfect
adaptive response. Ratein and Rateout quantify the maximal rate of nuclear entry and exit, respectively, for average of fixed-cell
data. (C) Heatmaps for each descriptor quantified in a panel of cell lines exposed to indicated cytokine conditions. Formulae
used to calculate ∆Adapt and fold change (Fold) are shown. See also Figure B2. (D) Time-lapse images of FP-RelA stably
expressed in KYM1 cells exposed to a single 1-min pulse of 1 ng/mL TNF. Scale bar, 10 µm. (E) Time courses of nuclear
FP-RelA density measured in single cells treated with a 1-min pulse of 1 ng/mL TNF.

4.2.3 Dynamics of TNF-responses carry more information but are confounded

by populations of NR cells

To determine if NF-κB dynamics contain more information about TNF dose, we mea-

sured single-cell responses to a broad range of TNF concentrations. Cells were also exposed
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to a single pulse of TNF with a 30-s, 1-min, or 5-min duration using the same range of

concentrations (Figure 4.3A, in addition to an untreated control in Figure B3A) to reflect

conditions that cells may encounter in vivo [44, 146]. Time courses for each cell’s nuclear

FP-RelA were described by a vector, and a k-nearest neighbors approach was used to cal-

culate the information transmission capacity [55]. Because experimental data are subject

to measurement noise, the resulting channel capacity estimates a lower bound for mutual

information between single-cell responses and TNF conditions or, alternatively, the number

of distinguishable dose-response pairs [53]. Using a subset of 26 conditions (Figure 4.3A,

where the number of responsive cells is labeled in red in addition to untreated control; see

Section 4.4), the information transmission capacity converged to 1.2 or 1.4 bits when rep-

resenting single-cell time courses in a.u. (“Raw”) or as fold change (“Fold”), respectively

(Figures 4.3B, B3A, B3B, and B3E).

NF-κB was previously characterized as a system with digital properties, having fewer

cells that respond to low strength stimulus [44, 45, 146, 149]. Since the channel capacity

estimates the number of distinct response distributions a system can achieve, we asked

whether calculations are affected by distributions of NR cells that are likely to exist and

overlap in all conditions. We developed a statistical model of an eight-state system (S0–S7)

with a channel capacity of 3 bits (Figures B3C and B3D; see Section 4.4). Simulations

compared scenarios where each of the excited states (S1–S7) contained a predefined fraction

of non-responders sampled from the ground state distribution (S0). Even though the channel

capacity of the excitable subpopulation remained constant, simulations showed that bit

depths for the whole system drop in proportion with the non-responder fraction (Figure B3C)

suggesting that information transmitted accurately by responders may be concealed by cells

that do not respond to stimulation.

We set out to determine whether NR cells in our dataset impact the channel capacity of

TNF-induced signals. Previously, we demonstrated that cells exposed to TNF with less than

1.2-fold change in nuclear FP-RelA are unlikely to activate transcription [44], so we applied

the same threshold to categorize cells as TNF responsive and NR (listed in Figure 4.3A)

in each condition. The fraction of NR varies widely between TNF conditions, with fewer

cells responding to low-concentration or short-duration TNF exposure. By removing these
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trajectories from our data, we created a dataset with non-responder cells removed (NRR).

Although channel capacity of the Raw-NRR showed a marginal yet significant increase in bit

depths over unfiltered data (p < 0.05; Figure 4.3B), the Fold-NRR had significantly greater

channel capacity (1.7 bits) than the Fold dataset (p < 10-12) in addition to a subset from

the Fold-NRR with only continuous treatment conditions (1.3 bits; p < 10-16; bottom row

of Figure 4.3A), which shows that cells transmit information about pulse treatment that is

distinct from continuous conditions.

Since descriptors can summarize dynamic properties of a cell’s response, we asked whether

certain descriptors transmit more information about TNF. Single-cell responses in the Fold-

NRR were fit to two sigmoid functions (Figure B3F; [154]), used to compute descriptors

described above (Figure 4.2B), in addition to two temporal descriptors for the time of max-

imal rates for nuclear entry or exit (tin and tout, respectively). We calculated the channel

capacity for each descriptor (Figure 4.3C) and found that the AUC, a summary statistic

that approximates the whole time course of a cell’s response, carries the most information

(1.4 bits), followed closely by the maximum fold change.

Our results show that a subpopulation of cells can accurately resolve at least 1.7 bits of

information about TNF-exposure conditions. Although the channel capacity using vectors

of single-cell dynamics are higher than scalars by definition [155], we also find the system

transmits approximately 1.4 bits of information using scalar descriptors. These results sug-

gest that single cells are capable of more than on or off responses to TNF, but do not ensure

that single cells can achieve multiple distinct levels of response that grade with cytokine

dose.
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4.2.4 Single cells can grade multiple levels of responses with TNF dose

We used repeat TNF stimulation to determine whether graded responses can be observed

in the same cell. From our matrix of live-cell responses (Figure 4.3A), we reasoned that

a 1-min pulse of 0.2 ng/mL TNF should induce a detectable yet weak response in most

cells, leading to minimal perturbation. Following exposure to a pulse of TNF, we measured

expression for A20 and IκBα and observed that the abundance for mediators of negative

feedback return to nearly baseline after 3 hr (Figures B4A and B4B; compare 0.2 and 10

ng/mL). Subsequently we refer to a 1-min pulse of 0.2 ng/mL as a “reference,” used as a

common condition to compare same-cell responses to other TNF conditions. AUC1 and

AUC2 (Figure 4.4B, inset) were measured from a manually curated dataset of single cells

exposed to a reference, followed by a 3-hr recovery period and then a 1-min “test pulse”

of indicated concentration (Figures 4.4A–C). Only cells that were responsive to reference

stimulation were included in the dataset. Results from control experiments comparing a

6-hr recovery period were similar, but there were clear indicators of tolerance when using a

high concentration reference (Figures B4C–E).

Comparing test pulse only, histograms for AUC2 showed overlap, with a significantly

smaller bit depth than values calculated above for response dynamics (p < 10-10; Fig-

ures B4F and B4G). By contrast, when AUC2 was normalized by AUC1 for the same cell

(AUC2/AUC1), and plotted against AUC1, we saw clearer separation between conditions

in proportion with TNF concentration (Figure 4.4D; p < 10-84 one-way ANOVA; pairwise

comparisons in Table B2) analogous to normalized response patterns of M2 and M3 in Fig-

ure 4.1B. To compare cells with similar responsiveness to TNF, data were binned by AUC1,

and within each bin sigmoid fits were calculated for AUC2 plotted against dose (Figure 4.4E).

Although there was a trend that cells with large AUC1 in response to the reference also have

proportionately larger AUC2 for the same test pulse condition, all datasets were well-fit

by sigmoid functions with comparable Hill coefficients much smaller than 1 (Figure 4.4E,

inset). These results demonstrate that the dose-response curve of single cells is not switch-

like [156]. Similarly, even though responses to reference are independent of the test pulse,

channel capacity values calculated for [AUC1 and AUC2] are significantly larger (p < 10-11)
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and comparable with the channel capacity calculated from the matrix of live-cell responses

(Figure B4G), suggesting that the accuracy of responses increase when conditioned on the

cell state. Together, our results demonstrate that single cells are capable of multiple levels

of responses that grade in proportion with TNF concentration.
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the reference dose (1 ng/mL TNF). Same cells are marked. Scale bar, 10 µm. (B) Representative single-cell time courses for the
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(AUC2) TNF pulse. (C) Density plots of single-cell FP-RelA time courses for cells exposed to a reference TNF pulse followed
by a range of increasing test doses. Median of single-cell responses is shown in blue and inset numbers indicate the number of
single-cell time courses collected in each condition. (D) Scatterplots showing AUC2/AUC1 stratified along AUC1 across the
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ng/mL TNF) for each bin in (D); inset describes Hill coefficients and goodness of fit for logistic regression.
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4.3 Discussion

A key question is how coarse-grained is a single cell’s ability to detect and respond to

inflammatory cytokines in its environment: do activating signals increase the probability of

a stochastic all-or-nothing response, or do cells precisely grade their responses to a range of

stimulus levels? In this work, channel capacity calculations and repeat stimulation exper-

iments show that some cells can accurately grade multiple levels of responses to cytokine

conditions. Although these observations contradict a purely switch-like model for pathway

activation proposed by M1 (Figure 4.1), we also observed in all conditions a subpopulation

of cells with a non-responder phenotype. The fractional abundance of non-responder cells

varies widely depending on the intensity of cytokine conditions (Figure 4.3A), which con-

tradicts the purely graded model of pathway activation described by M2 (Figure 4.1B, right

column). Taken together, our results support M3, in which low-level cytokine fluctuations

are filtered by a threshold for pathway activation that varies between cells, and responses to

supra-threshold conditions are graded with dose.

Several factors that were not considered in previous studies were critical to observe

greater than 1.5 bits of information in the Fold-NRR (Figure 4.3B): (1) by analyzing the

subpopulation of responder cells in isolation from non-responders the channel capacity was

increased by∼0.3 bits (cf. Fold and Fold-NRR); (2) by representing single-cell time courses as

fold change, the channel capacity was increased by ∼0.5 bits (cf. Raw-NRR and Fold-NRR).

This is consistent with incoherent feedforward network motifs in many signaling systems that

more robustly encode and detect fold-change dynamics [56, 151, 157]; and, finally, (3) ∼0.5

bits of information was gained by exposing cells to TNF as a pulse in addition to continuous

treatment conditions across a range of concentrations (cf. “Continuous-Fold-NRR” and Fold-

NRR). Although each factor contributes to the channel capacity, their combined effects are

non-linear and synergistic. Above all, repeat stimulation experiments that compare responses

to a reference in the same cell were essential to demonstrate the capabilities of single cells.

Cellular information processing can be divided into categories of “cell autonomous,”

such as the channel capacity of a single cell studied here, and “cell population” in which

cells share ligands through paracrine feedbacks to coordinate decisions over longer timescales
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[158]. Underlying both is the impression that signal transduction networks have an intrinsic

capacity to transmit information that is the same in every cell, yet our results suggest that

this may not be the case. Although non-responder cells share a similar “response-phenotype,”

their abundance varies between TNF conditions, which suggests they are a heterogeneous

subpopulation that cannot be defined by a unique network state. For example, cells that do

not express a critical component of the TNF-receptor complex may be completely refractory

to any TNF stimulus yet biochemically distinct from other NR cells. Whereas stochastic

fluctuation in the abundance of regulatory proteins in a cell may broaden or restrict the

range of stimulus conditions to which it can respond. It is therefore conceivable that cell

subpopulations have distinct information transmission capacities that are conditioned by

their biochemical state, and that mixtures of these subpopulations lead to underestimates

of the network’s capacity to transmit information.

Sources of noise make biological systems appear unpredictable, but that does not mean

they are unreliable. Through accounting for heterogeneity in cell states, the information

transmission capacity of single cells is better approximated, and it is found that cells can

grade multiple levels of responses to cytokines over a range of doses. Although it remains

to be determined whether grading is biologically important for cell fate decisions, either cell

autonomous or through cell-cell communication, grading provides additional control points

for cells to fine-tune and diversify responses to stimuli.

4.4 Methods

See full-text online for key resources table:

https://doi.org/10.1016/j.cels.2017.10.011

4.4.1 Experimental model and subject details

4.4.1.1 Cell Culture Parental KYM1 (female), HeLa (female), U2OS (female), HCT116

(male), and A549 (male) cell lines (ATCC) were cultured in RPMI, DMEM, McCoy’s 5A,
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McCoy’s 5A, and F12K media respectively at 37°C and 5% CO2. Parental KYM1 and

KYM1 cells infected with a retroviral construct to express mVenus-RelA under control of

the CMV were kindly provided as a gift from Suzanne Gaudet. From these cells, a clonal cell

line was selected based on FP-RelA expression, localization, and responsiveness to TNF. All

media was supplemented with 10% Corning Regular FBS, 100 U/mL penicillin, 100 µg/mL

streptomycin and 0.2 mM L-glutamine (Invitrogen).

4.4.2 Method Details

4.4.2.1 Fixed-cell immunofluorescence For fixed-cell experiments, cells were seeded

into plastic bottom 96-well imaging plates (Fisher) at the following densities: KYM1 12000

cell/well 24 hours prior to treatment, HeLa 7000 cell/well 24 hours prior to treatment,

U2OS 6000 cell/well 24 hours prior to treatment, HCT116 20000 cell/well 24 hours prior to

treatment, and A549 5000 cell/well 48 hours prior to treatment or 6000 cell/well 24 hours

prior to treatment for low cytokine concentration test. On the day of the experiment, media

containing cytokine (TNF) was prepared at 15X the desired concentration for each well.

Timing of cytokine treatment was planned so that fixation for all time points (0, 10, 30, 60,

90, 120, 180, 240, and 360 minutes) occurred simultaneously at time zero. For continuous

treatments, 12.3µL of pre-warmed 15X cytokine mixture was spiked into wells and mixed.

For pulse treatments, 12.3µL of 15X cytokine was mixed into wells and after 1 minute all

the media was removed, cells were washed in PBS, and 185µL of fresh media was added to

each well. Between treatments the cells remained in environmentally controlled conditions

(37°C and 5% CO2) and 15X cytokine solutions were kept at 4°C to prevent degradation.

At time zero, media was removed from the wells, 185 µL of PBS was used to wash the

wells, and wells were incubated at room temp in 120 µL of 4% paraformaldehyde (PFA)

in 1X PBS for 10 minutes. Wells were washed 3X three minutes with 185 µL 1X PBS

and then incubated in 120 µL 100% methanol for 10 min at room temp. Next, wells were

washed 3X three minutes in PBS-T (1XPBS 0.1% Tween 20) followed by 120 µL of primary

antibody solution (3% BSA in PBS-T) with a primary antibody (selected from: 1 µg/mL

α-RelA [sc-8008; Santa Cruz]; 5 µg/mL α-A20 [ab13597; Abcam]; or, 1:400 α-IκBα [#4818;
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CST]). Plates were wrapped in para-film and left to incubate at 4°C overnight. The following

morning, wells were washed 3X five minutes in 185 µL PBS-T followed by incubation for 1

hour in 120 µL of the secondary antibody solution (3% BSA PBS-T, 4 µg/mL Goat anti-

Mouse IgG Alexa Fluor 647 (Thermo Fisher)). 185 µL PBS-T was used to wash the wells for

5 minutes and they were put into 120ul Hoechst solution (PBS-T, 200ng/mL Hoechst) for

20 min. Finally wells were washed five minutes with PBS-T and then 185 µL PBS was used

to fill the wells and keep the cells hydrated during imaging. Cells were imaged using Delta

Vision Elite imaging system at 20x magnification with a LUCPLFLN objective (0.45NA;

Olympus).

4.4.2.2 Live-cell imaging Live cells were imaged in an environmentally controlled cham-

ber (37°C, 5% CO2) on a DeltaVision Elite microscope equipped with a pco.edge sCMOS

camera and an Insight solid-state illumination module (GE). KYM1 cells expressing FP-RelA

were seeded at a density of 25000 cells/well 24 hours prior to live-cell imaging experiments

on no. 1.5 glass bottom 96 well imaging plates (Matriplate). 2 hours before imaging, live-

cells were pre-stained with 300ng/mL Hoechst 33342 for 1 hour. Following this all growth

medium contained trace concentrations of Hoechst (60 ng/mL) to maintain the nuclear stain

and assist with segmentation in downstream applications. Consistent with previous stud-

ies [147] cells continued to grow and divide normally for at least 10 hours while imaged in

these conditions. Wide-field epifluorescence and DIC images of KYM1 cells were collected

using a 20x LUCPLFLN objective (0.45NA; Olympus). For all treatments, cytokine mix-

tures were prepared and pre-warmed so that addition of 120µL added to wells results in a

final concentration as indicated. For wash-out experiments, cytokine-containing media was

aspirated, wells were washed with pre-warmed media, and fresh media was added to each

well. FP-RelA, time-lapse images were collected over at least 4 fields per condition with a

temporal resolution of 5 minutes per frame before and after exposure to TNF. Cells were

imaged for at least 30 minutes prior to addition of TNF.

4.4.2.3 Western blots and analysis Kym1 cells stably expressing FP-RelA were cul-

tured for 24 hours in complete growth medium. After treatments, cells were lysed in SDS-
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based lysis buffer consisting of 112 mM Tris-Cl, pH 6.8, 4% SDS supplemented with protease

and phosphatase inhibitors at 4°C for 30 min. Protein extracts were clarified by centrifuga-

tion at 4°C at 12,000 × g for 10 min. Nuclear extracts were isolated using NE-PER™ Nuclear

and Cytoplasmic Extraction Reagents (Pierce). Lysate protein levels were quantified by BCA

assay (Pierce). Samples were separated by SDS-PAGE, 25 µg total protein per lane, then

transferred to PVDF membranes. Blocking was done in 5% milk in TBS for 1 hour. Primary

antibodies directed at RelA, A20, IκBα, β-actin, Lamin A/C(#4764, #5630, #4814, #3700,

and #4777 respectively; Cell Signaling Technology), GAPDH (sc25778; Santa Cruz) were

diluted in 5% milk in TBS-T and incubated overnight at 4°C. Alexa 680/800-conjugated sec-

ondary antibodies (LI-COR) were used in combination with an Odyssey (LI-COR) scanner

for detection and quantification of band intensities.

4.4.2.4 Gaussian model An 8-input system (S0 through S7) was modeled by sampling

200 points from each of eight 2 dimensional Gaussians with unit variance and means sepa-

rated by a scalar in one dimension and 0 in the other dimension. Here, S0 can be thought

of as a ground state and each additional state is excited by a scalar multiple to model a

dose-response system with a theoretical maximum channel capacity of 3 bits. Models with 6

units (no overlap) and 2 units (partial overlap) of separation were compared (Figure B3C).

To simulate the effects of a non-responsive fraction f, 200f points were sampled from the first

Gaussian distribution (ground state S0), and 200(1- f) points sampled from the Gaussian

for each of the excited states (S1 through S7). Channel capacity calculations were carried

out for 7 values of f, ranging from 0 to 0.6 to match the range of experimentally observed

fractions of non-responders.

In a complementary set of experiments, we simulated the effects of sub-sampling on

channel capacity calculations (Figure B3D). Here, we started with a mixed population that

contains 50% non-responders and 50% cells capable of dose discrimination (i.e. f = 0.5).

Selecting for removal the fraction of cells as indicated on the x-axis either randomly (red) or

by targeting non-responders (blue), mutual information was calculated. We see that random

subsampling does not increase the channel capacity, whereas targeting non-responders does.
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4.4.3 Quantification and statistical analysis

4.4.3.1 Fixed-cell image analysis Cell Profiler [159] was used to segment the nuclear

compartment cells using the Hoechst channel, and quantify median nuclear intensity values

from each cell in fixed-cell images. Data were compiled and statistical analysis performed

using MATLAB. Cell numbers used to calculate mean and standard deviations for fixed-cell

experiments are summarized in Table B1.

4.4.3.2 Live-cell analysis Custom scripts in MATLAB were used to flat-field correct,

background correct, and register movies of FP-RelA. Nuclear regions were segmented using

the Hoechst channel and single-cell trajectories of nuclear FP-RelA were tracked using Cell

Profiler [159]. For each cell at each time point, median nuclear intensity of FP-RelA was

reported by Cell Profiler and represented as three-frame running averages to reduce the

influence of high-frequency noise. The fold-change transform was carried out by dividing

each single-cell time course by its average nuclear fluorescence from four imaging frames

before the time point at which TNF was added (Figure B3A). Cells that were observed to

die, divide or leave the field of view within the experimental timeframe were excluded from

analysis. Trajectories for each condition were shown as a density plot in MATLAB [160,161].

Cell numbers collected in each live-cell experiment are listed in their respective figure panels.

4.4.3.3 Channel capacity calculations All channel capacity calculations were per-

formed using updated MATLAB scripts (2017-08-15) provided by Roy Wollman and used as

described previously [55]. Briefly the algorithm uses a k-nearest neighbor density estimation

to compute the conditional probability density of each single-cell response. These are used

to compute the entropy of the response, and the entropy of the response conditioned on the

signal. The difference in these two terms gives the mutual information, which is maximized

over all possible probability distributions of the signal, using the MATLAB optimization

function fmincon. The method is described in more detail in [55].

A k value of 5 was used for all the k-nearest neighbor probability density estimation

steps. The values reported are the mean and standard deviation of 10 jackknife iterations.
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At each iteration, the channel capacity was estimated by subsampling from the data set 20

different sample size (SS) fractions ranging from 0.6 to 0.95. To reduce sample size bias and

estimate channel capacity variance, linear regression was used to extrapolate the channel

capacity value at a sample size of infinity, i.e. 1/SS = 0 (See red dots in Figure B3B). The

flatness of the resulting slopes are consistent with observations from Selimkhanov et al. [55],

suggesting that the size of our data set is sufficient to accurately estimate channel capacity

values, i.e. values calculated for the finite sample size are similar to the extrapolated values.

Time courses of nuclear RelA were collected for thousands of single cells across conditions

and the information transmission capacity was calculated for the dynamics of TNF-driven

signaling. We next described single cell responses using vectors of increasing dimension to

compare channel capacities (Figure B3E). For these calculations, each single-cell time course

was sub-sampled into a multivariate vector of dimension ‘d’ using a uniform grid centered

on the middle time point as described previously [55]. We used jackknife resampling to

correct for sample size bias and determine the variance of calculated bit depths as described

by Selimkhanov et al [55]. (Figure B3B). Using a subset of 26 of the tested conditions,

discussed below in further detail (Figure 4.3A; conditions where the number of responsive

cells is labeled in red), calculations for channel capacity converged to a maximum value of 1.2

bits in fewer than 5 dimensions (Figure B3E, orange line for the ‘Raw’ data set). Jackknifing

to estimate sample size bias confirmed that we had sufficient data to accurately estimate

the channel capacity at a vector dimension of 5 (Figure B3B). We therefore use d = 5 to

compare channel capacity estimates in subsequent experiments.

To maintain adequate sample sizes for channel capacity calculations and ensure that equal

numbers of conditions are compared between data sets, we filtered conditions with fewer

than 100 trajectories in the NRR data set for all channel capacity calculations (Figure 4.3A;

conditions with pink numbers). All data sets therefore include a total of 26 conditions:

25 TNF-response conditions with at least 100 trajectories in the NRR, in addition to the

untreated control sample that was not filtered for non-responder cells. The channel capacity

was calculated for each data set using uniformly sampled vectors with an increasing number of

dimensions. As previously shown [55], we see that that increasing the number of dimensions

increases the estimate of the channel capacity at first, but after a certain point convergence is
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achieved upon which adding more vector dimensions does not increase the estimated channel

capacity.

For the “NRR” datasets, all single-cell trajectories with a maximum fold change of less

than 1.2 were removed from the analysis [44]. We found that channel capacity calculations

were robust to slight variations in this threshold. To show that the increase in the estimated

channel capacity on removing non-responder cells is not a trivial effect of subsampling the

data set, we generated two control data sets, “Fold RS” and “Fold RR”. To get “Fold RS”

we calculate the total number of non-responding cells in our “fold” data set and remove

an equivalent number of trajectories randomly distributed throughout the data set. To get

“Fold RR”, we remove an equivalent number of ‘responder’ trajectories randomly distributed

among responding cells in the data set. The channel capacity estimated from both of these

is similar to that obtained using the “fold” dataset. The randomized controls were generated

20 times, and for each we performed 10 jackknife replicates. The values reported are the

mean and variance of the channel capacity obtained from each of the 20 randomized data

sets.

4.4.3.4 Sigmoid fits to estimate tin and tout To estimate the times of maximum rate

of FP-RelA nuclear entry and exit, the following two-sigmoid model was used:

y(t) =
1

p1 + p2e−p3t+p4
+ p5, t ≤ tmax (4.1)

y(t) =
1

p6 + p7e−p8t+p9
+ p10, t > tmax (4.2)

Where tmax is the time of max fold change of nuclear NF-κB . The sigmoid is fit to

the data using the genetic algorithm function (ga) in MATLAB to minimize the objective

function:

Σt(
y(t)− ytrue(t)

ytrue(t)
)2. (4.3)
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4.4.3.5 Sigmoid fits to calculate hill coefficients The bin boundaries for AUC1 were

specified as follows: [0.25 2.8 5.5 9.4 50]. This was done to maintain roughly equal numbers

of cells per bin. For cells that fall within a certain bin, i.e. they have similar values of AUC1,

a 4 parameter logistic equation (L4P) was fit to describe the relationship between AUC2 and

dose, i.e.

AUC2 = D +
A−D

1 + (dose
C

)B
(4.4)

The hill coefficient, i.e. B obtained for each of these fits was less than 1.

4.4.3.6 Extracting descriptors from NF-κB dynamics

• Max fold change,
Fmax

F i

: the maximum value calculated from the fold-change transformed

FP-RelA time course. The fold-change transform is carried out by dividing the time

course by the average of the first four imaging frames leading to the time point at which

TNF was added (Fi).

• ∗Time of max, tmax: the time at which the nuclear FP-RelA fluorescence is maximum. If

tmax is more than 170 minutes after stimulation, the descriptor could not be determined

and the time course was discarded from analysis for this descriptor.

• ∗The time of max rate in, tin: the time at which the rate of FP-RelA entry into the

nucleus is maximum as determined from the slope of the first sigmoid fit. If tin could not

be determined within 155 minutes of TNF stimulation, then the time course is discarded

from analysis for this descriptor.

• ∗Maximal rate of nuclear entry, Ratein: was calculated from the data as the slope of the

straight line fit to three points on the single-cell time course centered at tin.

• ∗The time of max rate out,tout: the time at which the rate of nuclear FP-RelA exit from

the nucleus is maximum as determined from the slope of the second sigmoid fit.

• ∗Maximal rate of nuclear exit, Rateout: was calculated from the experimental data as the

slope of the straight line fit to three points on the single-cell time course centered at tout.
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• Adaptation, ∆Adapt: is the ratio of the absolute difference in the final and initial nuclear

FP-RelA to the initial amount of nuclear FP-RelA.

∆Adapt =
|Ffinal − Finitial|

Finitial
(4.5)

• Ffinal is calculated by averaging the last 4 frames of the nuclear FP-RelA time course, and

Finitial is calculated by averaging 4 frames of the nuclear FP-RelA time course preceding

TNF stimulation.

• Area under the curve, AUC: is the area bounded by the nuclear FP-RelA time course

and the baseline amount of nuclear FP-RelA, i.e. for fold change where initial nuclear

FP-RelA value of 1, i.e. Σi=end point of response
i=time of stimulus (max(1, X(i)) − 1) . The end point of a

response is marked as the frame at which the second sigmoid becomes flat after tout, i.e.

∆fold

∆t
< 0.0002, or the last frame, whichever occurs first.

∗Note that temporal and rate features (tin,tout, Ratein, Rateout ) are not defined for the

untreated control conditions. The control condition was not included in calculating the

channel capacity of these features.
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5.0 Modeling Heterogeneity in TNF-NF-κB Signaling

5.1 Introduction

Cells use biochemical signaling networks to detect environmental cues and translate them

into responses and cell fate decisions [3]. Heterogeneity is increasingly being recognized as

a common property in cell signaling systems [49, 50, 162], even in genetically identical cells

[50,51]. Since dysregulation of signaling is often associated with disease [3,4], it is surprising

to observe considerable spread in responses to the same stimulus, with response-distributions

often overlapping between treated and untreated conditions [54, 64]. Understanding the

molecular mechanisms for this spread will improve our understanding of single-cell signaling

processes, enable rational design of perturbations to manipulate single-cell behavior, and

have consequences in pharmacology and disease treatment [163], for instance in addressing

therapeutic problems such as fractional killing [164–166] and cancer treatment failures that

can arise from non-genetic cell heterogeneity [167]. In this work, we specifically address the

heterogeneity that is observed in the TNF-NF-κB signaling pathway [46], a central mediator

of inflammation and innate immunity [40,52].

Computational models, calibrated to experimental data, play a key role in studying

complex signaling mechanisms [16, 56, 168]. Population-level experimental techniques, such

as western blots, have been useful in calibrating computational models to the population-

average behavior of signaling variables [16]. However, since the average response may not

represent any cell in the population [49,169,170], for example a population average measure-

ment may obscure out-of-phase single-cell oscillations [171], and rarer cell responses at the

tails of the response distribution may be biologically important [49], there has been a rise in

single-cell signaling experiments, e.g. flow cytometry based assays and live-cell imaging [172],

and an increased need for computational models that can explain single-cell signaling data.

Snapshot techniques, like flow cytometry, enable single-cell measurements of several in-

tracellular signaling variables [172–174], making it possible to observe the distribution of

multiple signaling proteins across a large population of cells and identify subpopulations
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where present [60]. While computational methods have been developed to calibrate models

to snapshot data [175], the data has the fundamental limitation that a single-cell response

cannot be tracked over time. We know from previous studies, that temporal dynamics play

a crucial role in cell signaling [46,55]. Live-cell microscopy, while more limited in the number

of signaling variables that can be labeled and observed, presents the distinct advantage of

being able to track single-cell responses over time [172, 174]. The first challenge that we

address in this work, is calibrating a computational model of NF-κB signaling to previously

published heterogeneous single-cell data from live-cell microscopy [46].

Heterogeneity in signaling systems can be modeled as intrinsic noise, arising from stochas-

tic fluctuations in gene regulation, or extrinsic noise, arising from differences in the biochem-

ical states of cells [176]. Repeat stimulation experiments have shown that heterogeneous

NF-κB responses are more predictable when conditioned on a cell’s biochemical state, ap-

proximated by its response to a minimally invasive short pulse of TNF [46], suggesting that

variability in NF-κB responses is dominated by extrinsic noise. A common way to math-

ematically express extrinsic noise is through differences in the parameters of an ordinary

differential equation (ODE) model [57,58,171,177].

A range of techniques have been developed to model extrinsic variability in signaling

responses based on differences in model parameters [178]. Yao et al. modeled heterogeneity

in calcium signaling by independently fitting all model parameters to each single-cell tra-

jectory [57]. However, this approach requires as many fitting operations as there are cells,

which many not always be desirable with complex models and large imaging experiments

since model fitting may be computationally expensive. Cheng et al. modeled heterogeneity

in LPS-NF-κB signaling by starting with a population-level parameterization of the model,

assuming log-normal distributions on key model parameters, and identifying standard de-

viations of the parameter distributions for which simulated response distributions would

match the experimental data [171]. Dharmarajan et al. describe more general mixed-effects

modeling approaches where individual parameters for each cell are constrained by an over-

all population distribution, and both the cell parameters and overall population distribution

parameters are determined through iterative optimization [58]. This approach requires math-

ematical assumptions on the relationship between individual cell parameters and the overall

72



population distribution. Kalita et al. developed a flexible approach to model heterogeneity

in TNF-NF-κB signaling, by using Bayesian parameter estimation with Markov Chain Monte

Carlo (MCMC) to jointly fit individual parameters, that are unique to each cell, and shared

parameters, that are common to all cells, to multiple single-cell responses (dataset size is 20

cells) measured with live-cell microscopy [59]. Note that there are several other examples in

the literature of jointly fitting individual and shared parameters to explain heterogeneity in

responses, e.g. [177,179].

Here, we follow the approach from Kalita et al. [59], and jointly fit a small number of

NF-κB responses to pulsatile TNF, under the hypothesis that the variation can be captured

by differences in abundances of key signaling proteins. We extend the approach to include

an additional downstream sampling step (similar to Cheng et al. [171], see Section 5.2 for

details) to capture all the responses in our dataset (dataset size is ∼ 200 cells, data is from

Chapter 4, published in [46]), as simultaneously fitting to a large number of trajectories with

Bayesian parameter estimation alone would lead to a very high dimensional parameter search

problem, and calculating the objective function, which involves an ODE integration for each

cell trajectory, would be computationally expensive. Our preliminary results show that while

it is possible to capture the full experimental dataset of NF-κB responses using variation

in two protein parameters, the resulting model does not predict well for other biochemical

species. We discuss possible causes for this issue and avenues for future investigation in

Section 5.3.1.1.

We further extend the analysis by demonstrating examples of use cases of the com-

putational model of variability in examining single-cell dose response properties and the

relationship between protein abundances and information transmission capacities of single

cells. While an increase in extrinsic noise has been shown to decrease the dose discerni-

bility and information transmission capacity of the TNF-NF-κB signaling pathway at a

population-level [180], here we use simulation to examine whether single-cell NF-κB signal-

ing capabilities can vary with protein abundances. Overall, we show that computational

models of signaling variability enable simulation based analyses that may in the future guide

experimental manipulation of single-cell signaling.
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5.2 Methods

5.2.1 Data and models

For calibration, we use previously published single-cell NF-κB responses to a 5-minute

pulse of 5 ng/ml TNF (Figure 5.1A, [46]). The dataset has 199 time courses. Each time

course lasts 220 minutes after stimulation and comprises measurements taken at 5 minute

intervals.

To fit the data, we use a simplified 19-parameter model of NF-κB signaling [12] (Fig-

ure 5.1B), that uses coarse-grained reactions to describe the TNF mediated activation of its

cognate receptor TNFR, leading to the translocation of NF-κB into the nucleus mediated by

a central kinase, IKK, and negative feedback mediated by NF-κB driven transcription of its

inhibitor, IκB, which binds to NF-κB and shuttles it out from the nucleus. For simplicity,

the model omits the longer timescale negative regulation via A20, that in previous work

was found to be non-essential for fitting the model to single-cell responses to short pulses of

TNF [12]. The fitted observable is the fold change of total nuclear NF-κB, that is, sum of

the free nuclear NF-κB and the bound complex NF-κB-IκB.

Following Kalita et al. [59], we fit the model to multiple cell responses simultaneously.

Total protein abundances for NF-κB and IKK are unique to each response, while the other

17 parameters (including receptor numbers and rate constant parameters) are shared. The

full model to be fitted can be expressed as

Yi = f(NF-κBi, IKKi, v), i = 1, . . . , N, (5.1)

where N is the number of cells to be fitted, Yi is the model output corresponding to the

ith cell, uniquely parameterized by protein abundance parameters NF-κBi and IKKi. v is a

vector of shared parameters that includes the receptor abundance and kinetic rate constants.

f is the set of ODEs that describe the evolution of each biochemical species in the model

over time.

The parameter vector to be fitted is given by

[NF-κBi, IKKi, v], i = 1, . . . , N, (5.2)
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Therefore, the total number of parameters to be fitted is 2N+17, where 17 is the length

of v.

5.2.1.1 Constraining shared parameters with PT For details of the parameter es-

timation algorithm, PT, see Section 3.2.1.2. Fitting to all 199 trajectories simultaneously

is challenging for two reasons: (1) The parameter search problem would be very high di-

mensional (the dimensionality of the space would be 2*199+17 = 415), and (2) calculation

of the objective function at every step of the PT algorithm would require 199 numerical

integrations of the ODE model (one for every cell trajectory).

For these reasons, we use a 2-step heuristic approach of (1) fitting a small subset of our

data (4 trajectories), and (2) checking to see if jointly fitting to 4 trajectories sufficiently

constrains the shared parameters, enabling a fit to the rest of the dataset simply by uniformly

sampling a range of values for total IKK and NF-κB .

For the first step, we manually pick 4 trajectories that visually encompass the range

of possible behaviors (see Figure 5.1C). We define Fmax,t<80 as the maximum fold change

in nuclear NF-κB within the first 80 minutes after stimulation. The 80-minute cut-off was

a heuristic choice that was made to exclude a handful of trajectories that had spuriously

high fold changes at later time points, most likely due to technical artifacts. We pick three

trajectories that have the maximum, median and lower quartile value of Fmax,t<80 to cover

the range of magnitudes of response. To ensure that we have representation of different

response shapes, we filter the data for adaptive responses, and include a representative

adaptive response as the fourth trajectory. Our heuristic test for adaptation is that the fold

change of NF-κB in the nucleus at 105 minutes after stimulation is between 0.9 and 1.1. The

resulting representative data set for fitting is labeled dataset1. As a first test for sensitivity

to the trajectories chosen, we create an alternate dataset, dataset2, by selecting a different

adaptive response. Note that for this preliminary analysis, dataset1 and dataset2 are very

similar, and only differ slightly in one trajectory (Figure C2A).

We fit the model in Eq 5.1 and parameter vector in Eq 5.2 to dataset1 (Figure 5.1C), using

PT. The fit includes certain hard constraints on known parameter covariation (Figure C1C),

the fraction of NF-κB in the nucleus at equilibrium, and a check to make sure that the
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model has reached equilibrium before simulating the TNF pulse (see Table C1 for full list of

constraints). We use a Gaussian likelihood function for fitting, with a standard deviation,

representing measurement error, that is 5% of the data value. We use the Potential Scale

Reduction Factor (PSRF) of the energy chain as our convergence diagnostic [115]. A PSRF

value less than 1.2 is taken to be consistent with convergence [29].

5.2.1.2 Simulating response distributions by sampling protein abundance pa-

rameters The steps described above in Section 5.2.1.1, describe an approach to get an

ensemble of shared parameters with the property that varying IKK and NF-κB abun-

dances is sufficient to capture 4 representative trajectories. Extending this further, for

any shared parameter set in the ensemble, we uniformly draw a large number of Latin

Hypercube (LH) samples, Nlhs, of IKK and NF-κB abundances. For any given shared

parameter set we can therefore create a simulated response distribution by varying IKK

and NF-κB abundances (Figure 5.3A). Note that drawing Nlhs parameter samples does not

guarantee Nlhs simulated NF-κB responses, as parameter samples may be rejected due to

integration errors and failure to meet constraints on the equilibrium fraction of NF-κB in

the nucleus. However, we check that the number of samples we have drawn is sufficient

for the problem by making sure that the results are similar when the number of samples

is doubled (Figure C4A,B). Latin Hypercube Sampling is performed using the MATLAB

file exchange function lhsu, available here: https://www.mathworks.com/matlabcentral/

fileexchange/4352-latin-hypercube-sampling

To test whether the resulting response distribution adequately explains the experimental

data, for each experimental response, we calculate the Euclidean distance to its nearest

neighbor in the simulated response dataset [171], which is the error associated with that

particular response (Figure 5.3B). For a given error threshold, we calculate the number of

experimental trajectories that have an error below the threshold to determine how well the

experimental dataset is captured in the simulated data (Figure 5.3C). Empirically, we use

error thresholds of 1 (for a good fit) and 2 (for an acceptable fit) (Figure C4C).

Extracting the nearest simulated neighbors for each experimental response is used to

create a 1-NN (one nearest neighbor) dataset for downstream analysis. Note that while
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the experimental dataset has 199 trajectories, the 1-NN dataset may have less, as multiple

experimental trajectories may have the same nearest neighbor.

5.2.2 Analyzing the simulated response distributions

5.2.2.1 Clustering We bin the simulated trajectories by response magnitude, defined as

the maximum fold change of nuclear NF-κB , into three equally spaced bins (small, medium

and large responses) ranging from 1.2-fold (the threshold of response that has previously

been determined to be required for transcription [44]) and ∼4.7-fold (the upper limit of the

experimental data). Within each bin, we scale the trajectories from 0 to 1 to emphasize

differences in shape and degrees of adaptation, and perform k-means clustering (k=3).

5.2.2.2 Simulating dose-response behavior The simulated data was obtained by cal-

ibrating the model to an experimental condition of 5 ng/ml 5 minute TNF pulse. To test

the dose-response behavior of the model, we simulate the behavior of the 1-NN datasets for

a range of TNF concentrations. We have experimental data for a subset of these concentra-

tions, and we validate the model by comparing the mean of the experimental dataset and

the mean of the simulated dataset. As before, we use a Euclidean distance measure of error.

We use a scalar statistic of maximum fold change of nuclear NF-κB, to summarize a

cell’s response to a particular dose. To investigate the relationship between parameters and

dose-response behavior, we compute the following scalar dose-response properties:

• EC50 is the TNF concentration at which the NF-κB response is half maximal

• EC90 is the TNF concentration at which the NF-κB response is 90% maximal

• EC10 is the TNF concentration at which the NF-κB response is 10% maximal

• Bandwidth is calculated as the difference between the log10 EC90 and log10 EC10 values

and reflects the range of responsiveness of a cell to TNF

• Channel Capacity, measured in bits, is an information theoretic metric that summarizes

the dose discrimination ability of a signaling pathway [47,48]. We use code from [48] to

calculate the channel capacity.
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We simulate responses for the following array of 52 doses: [10i,2.5×10i,5×10i,7.5×10i],

where i is an integer that ranges from -6 to 6. To numerically calculate the ECX, that is

the TNF concentration at which the NF-κB response is X% maximal, we first use a 1D

interpolation to get response values on a dose grid at a higher resolution than what we

simulate. The ECX response is calculated as minresponse+
X

100
(maxresponse−minresponse). We

then find the dose in the high resolution dose grid that has an interpolated response value

closest to the ECX response, and return that dose as ECX. maxresponse is the maximum fold

change of NF-κB at the highest administered dose, which is a saturating dose. We also refer

to maxresponse as the saturating response. minresponse is the maximum fold change of NF-κB

at the lowest administered dose, and is typically close to 1.

5.2.3 Software and code availability

The model is written in BioNetGen using the rule-based modeling language, BNGL.

MEX code for the coupled differential equations is exported from BioNetGen, allowing

the model to be simulated in MATLAB, using the CVODE library [82] for efficient nu-

merical integration of ODEs in C. Third party MATLAB libraries were used to calcu-

late PSRFs (https://research.cs.aalto.fi/pml/software/mcmcdiag/), perform LHS

(https://www.mathworks.com/matlabcentral/fileexchange/4352-latin-hypercube-sampling,

[181]), and for plotting [182,183]. Supplementary code for this chapter, including model and

data files, is available at

https://pitt.box.com/s/lx9useuiuxq4r0vjhfgk2cknjiqiwd0d

5.3 Results

5.3.1 Variation in protein abundance parameters is sufficient to fit a model to

heterogeneous single-cell NF-κB responses

Our model of variability parameterizes each single-cell with unique values for total NF-

κB abundance and total IKK abundance, while all other model parameters are shared across
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all the cells (see Section 5.2.1, [59]). All the parameters are assumed to be unknown and are

simultaneously fit to data (Equations 5.1 and 5.2, [59]). On fitting the model (Figure 5.1B,

Equation 5.1) to dataset1 (Figure 5.1C), we find shared parameter sets for which varying just

the total abundance of NF-κB and IKK is sufficient for the fit (Figure 5.2C, Column 1). 40

shared parameters sets (Figure C4D) are drawn from the fitted ensemble, at regular intervals

in the PT chain, and coupled with the Latin hypercube sampling (LHS) step described

in Section 5.2.1.2, to get a simulated response distribution (Figure 5.3A) for each shared

parameter set. Using the error metric described in Section 5.2.1.2 (see Figures 5.3B,C),

we find that the 40 tested simulated response distributions, generated using the 40 shared

parameter sets, are able to capture 59-71% of the data within an error of 1 Euclidean distance

unit, and 93-96% of the data within an error of 2 Euclidean distance units (Figure 5.3D,G).

We note that the experimental dataset contains a handful of noisy trajectories that may

reflect technical artifacts in the imaging and image analysis (see last two rows in Figure C4C),

and it is not surprising that some of these are not captured by the current model architecture.

The procedure was repeated for dataset2 (Figure C2) with a comparable result. 40 tested

simulated response distributions, created using shared parameter sets obtained from the fit

to dataset2, are able to capture 65-74% of the data within an error of 1 Euclidean distance

unit, and 90-95% of the data within an error of 2 Euclidean distance units (Figure 5.3E,H).

Instead of the full dataset1, if only a single trajectory is fit using PT, the shared pa-

rameters in the resulting ensemble do not all have the property that varying NF-κB and

IKK is sufficient to capture the data (Figure 5.3F,I). One might ask if this issue could be

rectified by increasing the range of variation for the protein parameters (previously set to

(3–7 log10 molecules/cell). We increased the range to 1–8 log10 molecules/cell, and regener-

ated simulated response distributions corresponding to five different shared parameter sets

(Figure C3A,B). Note that even though the sampling range is 1–8 log10 molecules/cell, not

all regions of this space may be valid given our model constraints (Table C1), and parameter

sets will be rejected if, for instance, the equilibrium fraction of NF-κB in the nucleus is

outside the set range (see Section 5.2.1.2). For two of the five shared parameter sets, in-

creasing the protein variation range enables capturing much more of the experimental data

(Figure C3C, shared parameter set index 1,2), for another two the fraction of data captured

79



after the increase is still modest (Figure C3C, shared parameter set index 3,5) and for one

there is minimal change (Figure C3C, shared parameter set index 4). Overall, even after

increasing the protein variation range beyond reasonable biophysical limits, fitting to just

one trajectory did not produce shared parameter sets that can consistently capture the ex-

perimental data by varying NF-κB and IKK expression. Thus fitting jointly, to even a small

fraction of the dataset, is a viable approach to systematically obtain an ensemble of shared

parameter sets with the property that a desired degree of variation in protein abundance

will capture the larger experimental dataset.

5.3.1.1 Summary of limitations and avenues for future investigation While our

variability model is able to jointly fit the NF-κB data well, there are some caveats that merit

future investigation.

• First, the number of active IKK molecules/cell and active Receptor molecules/cell are

very small (Figure 5.2C Columns 8,9), and outside of reasonable biophysical limits, even

though the total number of IKK and Receptors are reasonable (Figure C1A,B). A related

technical observation is that values sampled for the parameter kt1a, the IKK mediated

degradation rate of free cytoplasmic IκB, are very large, and the distribution pushes

up against the prior boundary. There are several factors that could be controlling this

behavior. Here, we discuss three:

– Limitations of parameter sampling – While the PSRF for the energy chain was less

than 1.2 (Figure 5.2A), the PSRF for some parameters was still greater than 1.2

(Figure C1B), indicating that while we have converged in terms of quality of fit, we

may not have sufficiently sampled parameter space to find equally likely parameters

that also give biophysical predictions.

– High-temporal correlations in the data could lead to over-fitting – Our data for nu-

clear NF-κB is measured at a very high temporal resolution (5 minute intervals).

Requiring the model to fit data for one variable closely (the standard deviation of

the error model is 5% of the data value, see Section 5.2.1.1), without constraints on

others, could lead to over-fitting. Preliminary results suggest that there may be a

trade-off between goodness of fit for the NF-κB trajectories and biophysical behavior
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for other model species, that can be leveraged to identify parameter sets that fit the

data reasonably well while adhering to biophysics. This can be achieved in one of

two ways, either by acquiring more experimental data (for instance jointly fitting

both NF-κB and IKK in the same cell), or by introducing qualitative constraints in

the model on the behavior of other species.

– Limitations in the variability model structure – Ultimately, it is also possible that

fitting jointly to multiple NF-κB responses reveals limitations in the model structure

that may not be apparent when fitting to individual trajectories alone. It is pos-

sible that additional regulation at the level of receptors and IKK, or more detailed

molecular mechanisms (instead of our coarse-grained reduced representations), or

even variation in more parameters are needed to correct the model behavior.

• Second, there is much room for improvement in strategies for picking the representative

trajectories. While here we selected the trajectories manually, a potential unbiased ap-

proach is to cluster or bin the trajectories and pick the median of each cluster. A more

thorough investigation of sensitivity of any model predictions to the initial representative

trajectories chosen is another key step in establishing meaningful biological results using

the variability model.

• Third, as future work it would be valuable to check for sensitivity to (1) the number of

representative trajectories used in the fit, and (2) the choice of error metric. While fits

to both dataset1 and dataset2 were successful in obtaining ensembles of shared parame-

ter sets for which simulated NF-κB distributions, obtained by LHS sampling on protein

expression, can capture the data, there are other properties of the distributions that

differ between the two. For example, using shared parameters from the fit to dataset1,

we performed a clustering analysis (see Section 5.2.2.1) on one of the simulated LHS

datasets, which revealed clusters in the response distribution that correspond to distinct

clusters in protein expression space (Figure C5A,B). However, on repeating the same

clustering analysis on one of the simulated LHS datasets from the fit to dataset2, we

found that the relationship between protein expression and response space was not con-

served (Figure C5C,D). It is not possible to completely rule out pseudoconvergence as

a reason for the two fits converging to parameter distributions with different properties.
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However, by fitting to a larger number of representative trajectories, and choosing an

error metric that is more stringent than Euclidean distance thresholds of 1 and 2, it may

be possible to identify more constrained shared parameter distributions, for different sets

of representative trajectories, that have conserved properties and predictions.
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Figure 5.1: NF-κB signaling model and single-cell data. A) Experimental data. Colored lines show time courses for
single-cell NF-κB responses to a 5 ng/ml 5 minute pulse TNF stimulation. Data is from [46]. B) Reaction network diagram
of a simplified model of TNF-NF-κB signaling [12]. Following [12], suffix “a” and “i” refer to active and inactive versions of
the species respectively. Prefix “n” and “c” refer to nuclear and cytoplasmic versions of the species respectively. Solid lines
represent transformations and dashed lines represent influences, where a species affects the rate of the corresponding reaction
but is not consumed. C) Representative NF-κB responses used for fitting with PT (dataset1).
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5.3.2 Simulating single-cell dose-response behavior using the calibrated model

of variability

Here, we demonstrate an application of computational models of variability in study-

ing single-cell dose-response behavior. By extracting the nearest neighbors for every ex-

perimental trajectory from within a simulated NF-κB dataset of LH samples, we create a

1-NN dataset of simulated cells that resembles our experimental dataset (Figure 5.4B, Sec-

tion 5.2.1.2). Using the 1-NN dataset (Figure 5.4B), generated with one of the shared param-

eter sets from the ensemble fit to dataset1, we simulate the single-cell model parameters with

a range of TNF concentrations to study the dose-response behavior (Figure 5.4A). We assess

the model’s predictive capabilities by measuring the error, as the Euclidean distance between

the experimental mean and simulated mean, for doses where experimental data is available

(Figure 5.4E). As expected, the error is lowest at the calibration dose (Experimental dose

index=6, TNF concentration = 5 ng/ml). There are some systematic differences between the

experimental data and corresponding simulated predictions, especially at higher doses (note

that at lower doses both the experimental and simulated responses become small, and so the

Euclidean distance error declines). However, the error for all the tested TNF concentrations

was below 2 Euclidean distance units (our previous heuristic for an acceptable fit). Consider-

ing a scalar response of maximum fold change of nuclear NF-κB , we obtain single-cell dose

response curves (Figure 5.4C). We calculate scalar properties of the dose-response curves

including the EC10, EC50, EC90 and bandwidth values (see Section 5.2.2.2, Figure 5.4F),

that play a role in describing a cell’s capabilities in responding to environmental cues, and

we observe the extent to which these properties vary between single cells (Figure 5.4G).

In testing the sensitivity of the dose-response predictions across 20 shared parameter sets,

we find that while the error in the mean responses at the experimentally tested doses is fairly

consistent across shared parameters (Figure C6A, though note that now the average error at

dose index 8, that is 50 ng/ml, crosses the Euclidean distance threshold of 2), the full dose

response behavior varies considerably (Figure C6B, Figure C7). For example, across shared

parameters, there are considerable differences in the fraction of cells that have an EC90 dose

within the experimental saturating dose of 50 ng/ml, as well as differences in the distributions
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of saturating nuclear NF-κB responses (Figure C7), with some distributions containing cells

that have a saturating nuclear NF-κB response of greater than 10-fold, which is considerably

larger than responses observed experimentally (for example, Figure C7 row 4, column 2).

Overall, while fitting to 4 representative NF-κB responses was sufficient to constrain the

result of varying NF-κB and IKK at the calibration dose (Figure 5.3D,E,G,H, Figure 5.4D),

the resulting shared parameter sets are not constrained in their dose-response predictions

and we find a variety of dose-response models that are consistent with our calibration data

(Figure C7). More model constraints are required to know which dose-response models are an

accurate reflection of the biological system. While some have more constrained distributions

for bandwidth, others have bandwidths that vary across orders of magnitude, suggesting that

it may be possible for isogenic cells to have considerably different ranges of responsiveness.

5.3.2.1 Summary of limitations and avenues for future investigation Here, we

have demonstrated an important use-case for a variability model in performing single-cell

simulations of dose-response behavior, data that is currently not accessible experimentally

due to the technical difficulties associated with stimulating the same cell repeatedly while

observing long time-scale signaling events. However, there are still some caveats and avenues

for future investigation that will further facilitate drawing biological conclusions about our

system.

• First, we see considerable parameter sensitivity in dose-response behavior.

• Second, while we expect that the dose-response range measured experimentally will not

be exactly true for each single cell, it is also unlikely for an EC90 dose to be orders

of magnitude above an experimentally measured saturating dose, or for the saturating

NF-κB response to be two to five fold higher than the maximum observed experimentally.

A potential approach to address both of these related concerns is to introduce some dose-

response constraints, such as hard thresholds on the EC10, EC90 and saturating response,

in the initial PT fitting to further constrain the estimated distributions of shared parameter

sets.
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Figure 5.4: Single-cell dose-response simulations. A) Colored lines show simulated single-cell trajectories (parameters taken
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5.3.3 A computational model of NF-κB signaling variability supports variable

single-cell channel capacities

Finally, we use the simulated single-cell dose response curves in Figure 5.4C, to show

an example of calculating single-cell channel capacities. Traditionally, the channel capac-

ity of signaling systems, used to assess the ability of a system to accurately discriminate

environmental cues, has been calculated at the population level [46–48]. Recently, in G-

protein coupled receptor (GPCR) signaling, the channel capacity has been shown to be

highly variable between single cells [184]. However, to experimentally probe single-cell chan-

nel capacities, Keshelava et al. [184] had to repeatedly stimulate the same cell with increasing

concentrations of calcium, measuring dose-response relationships in the same cell. While this

was possible for calcium mediated GPCR signaling, for which the response is measured on

the time scale of seconds, this is not possible for NF-κB signaling where the response occurs

on the time-scale of hours. Because of the presence of various feedback loops that alter the

biochemical state of the cell on the time-scale of the response, and difficulties in imaging a

cell for several hours because of photobleaching, phototoxicity and encountering cell division

events, in TNF-NF-κB signaling it is a very difficult experiment to even stimulate the same

cell twice (see Section 4.2.4), let alone with a range of increasing doses of TNF covering

the full range of responsiveness. For this reason this system is an excellent candidate for

simulation-based calculations of single-cell channel capacity.

To calculate the channel capacity for a cell, since we are assuming that the cell does not

have a perfect one-to-one relationship between dose and response in which case the channel

capacity for any responding cell would be infinite, we need to assume a noise model. Since

we do not know the correct biological noise model, we test four alternatives:

1. Model 1: Gaussian noise centered on the data with standard deviation = 1% of the data

value.

2. Model 2: Gaussian noise centered on the data with standard deviation = 10% of the

data value.

3. Model 3: Gaussian noise centered on the data with standard deviation = 0.01

4. Model 4: Gaussian noise centered on the data with standard deviation = 0.1
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We combine the dose response curves in Figure 5.4C, generated from the 1-NN dataset

in Figure 5.4B, with each of the four noise models described above and calculate the channel

capacity for each cell under each noise model. For each noise model, we find variation in

the channel capacity calculated across single cells (Figure 5.5A), suggesting that cells can

have different capabilities of transmitting TNF dosage information. On relating the protein

abundances in each cell to the channel capacity calculated with the second noise model, we

find that given this model and shared parameter set, cells with a greater abundance of total

NF-κB have higher capacities to transmit TNF dosage information (Figure 5.5B). Focusing

on the dose response behavior of the three cells with the maximum, minimum, and median

channel capacity (Figure 5.5C–F), we see that the cell with a higher saturating response has

a higher capacity. Overall, while there may be many factors and mechanisms that govern a

cell’s capacity to transmit information about its environment, here we find that one possible

mechanism in our model, that is consistent with our calibration data, is for a cell to have a

higher total abundance of NF-κB and a higher saturating response to TNF.

5.3.3.1 Summary of limitations and avenues for future investigation Here, we

have demonstrated an example of single cell channel capacity analyses using simulated data.

The following are avenues that merit future investigation:

• First, the channel capacity calculation has several hyperparameters, including the choice

of ‘K’ in the K-nearest neighbor density estimation used to estimate conditional prob-

abilities of each response (we use K=20), the sample size, that is the number of points

sampled for each simulated cell assuming a noise model (we use a sample size of 500), and

the number of simulated doses tested (we tested 52 doses). Future work will investigate

the impact of hyperparameter variation.

• Second, we have demonstrated an example of channel capacity analysis using a simulated

dataset corresponding to one shared parameter set from the fit to dataset1. In order to

better draw biological conclusions, future work will also investigate the sensitivity of

the results to (1) the shared parameters (2) the initial set of representative trajectories,

for instance dataset1 versus dataset2, and (3) changes to model calibration procedures

(see Sections 5.3.1.1 and 5.3.2.1) to ensure more biophysical predictions and reduced
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sensitivity to the initial representative trajectories.
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Figure 5.5: Single-cell channel capacities calculated from simulated data A) Single-cell channel capacity distributions with
four different error models – Model 1, Gaussian noise centered on the data with standard deviation = 1% of the data value
(blue), Model 2, Gaussian noise centered on the data with standard deviation = 10% of the data value (orange), Model 3,
Gaussian noise centered on the data with standard deviation = 0.01 (yellow), Model 4, Gaussian noise centered on the data
with standard deviation = 0.1 (purple). B) Scatter plot showing NF-κB and IKK protein abundances for the simulated single
cells in Figure 5.4B. The color bar indicates the channel capacity of each cell, calculated using Model 2 as the noise model.
C) Dose-response distributions for the simulated cell with the highest channel capacity, D) median channel capacity, and E)
smallest channel capacity, while assuming Model 2 as the noise model. For panels C, D and E, the different colored distributions
correspond to different doses, and each distribution has 500 points obtained by adding 10% Gaussian noise to the single-cell
response at any given dose. F) Dose response curves for the cells with the highest (orange), smallest (blue) and median channel
capacity (yellow). Plots show the mean and standard deviation of the corresponding responses in panels C, D and E.
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5.4 Discussion

In this work, building on previous approaches [59], we have fit a mechanistic ODE model

of NF-κB signaling to a large dataset of single-cell NF-κB responses to pulsatile TNF. By

assuming that most parameters are shared between cells and that heterogeneity is driven

by abundances of key signaling proteins NF-κB and IKK, we were able to use sampling

approaches like PT and LHS to calibrate the model. Mechanistic models in systems biology

often have many free parameters that are calibrated to a limited amount of data, resulting in

non-identifiability, where many parameter sets fit the data equally well. By using Bayesian

parameter estimation, we were able to find ensembles of shared parameter sets that can

fit a representative subset of the data, all of which possess the property that varying NF-

κB and IκB abundances produces simulated NF-κB response datasets that are in good

agreement with the data. A caveat currently, however, is that the model predictions for

other biochemical species are not within a biophysically feasible realm. Potential strategies

to correct this in the future include (1) incorporating more experimental data into the fit,

for instance fitting measurements from multiple biochemical species in the same cell, or

(2) incorporating qualitative constraints on non-fitted species, based on prior knowledge, to

ensure their biophysical behavior [12,185].

While our hypothesis-driven approach of allowing NF-κB and IKK to vary between cells

was informed by the literature, where there are several reported cases of protein variability

being a dominant source of heterogeneity in cell signaling systems [50, 60–62], and we were

successful in fitting the data, it is possible that variation in other small subsets of parameters

is equally likely in fitting the data, and perhaps there is even one key parameter that is

sufficient. Steiert et al. [111], used Lasso regularization with maximum likelihood estimation

approaches to determine the minimal number of parameters needed to explain the differences

in responses between cell types. Similarly, in the future, we would like to incorporate Lasso

regularization with parallel tempering, to find alternate minimal subsets of parameters for

which variation is sufficient to fit a large number of signaling responses that differ between

genetically identical cells.

In addition to fitting the calibration data, our model of heterogeneity had reasonably
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good predictions for the average response at other experimentally tested doses. However

single-cell dose-response predictions were not constrained across shared parameter sets, and

depending on the parameter set, several single-cell dose response models were consistent

with the data. Since experimentally we do not have data for a single-cell tracked over several

doses, the ability of the model to predict single-cell dose response behavior remains to be

evaluated. Finally, by assuming various single-cell noise models, we presented an example

of a simulation-based analysis of single-cell channel capacity. For the model simulated with

a particular set of shared parameters, we found that it was possible for the capacity to

transmit TNF dosage information to be variable across cells. Given our model assumptions,

we found a potential determining factor to be the total abundance of nuclear NF-κB and the

saturating NF-κB response, with cells that had a higher saturating response, possessing a

greater ability to discriminate between TNF doses. Note that here, the saturating response

is defined as the maximum fold change of nuclear NF-κB at the saturating dose.

While our models are certainly simplified, and need more investigation to ensure fully

biophysical behavior, our work demonstrates several use-cases for computational models of

heterogeneity, and supports the idea that genetically identical single cells can have varying

dose response properties and information transmission capacities that should be accounted

for while designing experiments to rationally manipulate single-cell behavior.
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6.0 Conclusion

Mathematical and computational models have become an invaluable complement to ex-

periments for understanding properties of cell signaling systems [186]. It is increasingly being

recognized that reductionist approaches to biology, that characterize individual system com-

ponents, such as genes, proteins or other biomolecules, statically and in isolation, while useful

are not sufficient [187–190]. Instead, a comprehensive understanding of biological systems

and diseases also require systems biology approaches, that aim to understand how dynamic

interactions between system components drive emergent behavior [187–190]. Mathemati-

cal and computational modeling present a natural framework to understand how complex

nonlinear interactions between system components can give rise to, sometimes non-intuitive,

emergent behavior [15,16,20,93,186].

In Chapter 2 we addressed a crucial technical challenge in connecting models with ex-

perimental data, namely parameter estimation. Parameter estimation encompasses compu-

tational methods to determine numerical values of model parameters, which cannot always

be measured experimentally [168], for which the model output matches the experimental

data [32]. We systematically evaluated Parallel Tempering, an MCMC method that has

previously gained widespread success in the field of molecular dynamics simulations [30],

for its performance in estimating parameters of ODE models of signaling. We showed that

on a series of six signaling models of increasing complexity, PT consistently outperformed

the Metropolis-Hastings algorithm, a commonly used parameter estimation algorithm, on a

variety of performance metrics, such as convergence time, sampling efficiency, and goodness

of fit given a fixed computational resource budget. Overall, PT was found to be a reliable

method for estimation of parameters and parameter uncertainty in models of cell signaling

with up to dozens of parameters.

Models in the field of systems biology exhibit a wide range in complexity [191]. Advances

in biochemical modeling and simulation techniques, such as the development of rule-based

modeling languages, simulators, and analysis platforms [71, 192–194], have enabled a push

towards detailed models that capture many known molecular interactions of biochemical sys-
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tems [16, 38]. Detailed models provide more accurate representations of biological systems

and enable quantitative predictions that are directly comparable to experimental observ-

ables [16,191,195]. At the same time it is also recognized that simpler coarse grained models,

that capture essential behaviors of the system under specific conditions, have several advan-

tages. Some of these advantages include having fewer parameters, being easier to read and

interpret, and enabling identification of key mechanisms that drive emergent behavior [191],

for example, incoherent feedforward loops that enable fold change detection [33], or negative

feedback loops that drive oscillations [191].

Towards the goal of bridging the gap between detailed and simple models, in Chapter 3 we

developed a Bayesian model reduction framework that identifies minimal subsets of reactions,

within complex biochemical models, that are sufficient for particular datasets. By combining

the PT algorithm that we evaluated in Chapter 2, with Lasso regularization [39], we were

able to simultaneously estimate numerical values for model parameters, as well as determine

reduced sets of parameters, and by extension reduced sets of reactions, that were sufficient for

the data. We demonstrated the approach on synthetic data, and developed an extension of

the approach that finds minimal subsets of reaction modules, instead of individual reactions,

which we demonstrated on the NF-κB signaling pathway by assessing differences in the

requirement of key feedback elements for cell responses to either short time-scale pulses of

TNF or longer time-scale continuous TNF stimulation. Overall, the question of whether

the guiding principle of Occam’s razor, favoring simple model mechanisms, is relevant while

studying complex biological systems, is an ongoing philosophical debate [196–198]. However,

having tools to extract simple explanatory mechanisms from detailed models may provide

useful starting points for target mechanisms for perturbations and enable us to easily tailor

our desired model complexity to the question of interest and the resolution of the available

data.

In Chapter 4, we evaluated the capabilities of the NF-κB signaling pathway to grade its

response to TNF dose, and discriminate between doses in the presence of biochemical noise.

With statistical tools from information theory, we used single-cell response data from hun-

dreds of cells exposed to different concentrations and durations of TNF, and calculated the

channel capacity of the pathway to be ∼1.7 bits after filtering for non-responding cells. The
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channel capacity value of greater than 1 bit supports the hypothesis that cells can discrim-

inate multiple doses. Repeat stimulation experiments that use a short, minimally invasive,

TNF pulse to measure the cell’s responsiveness to TNF, effectively a proxy for the biochem-

ical state of a cell, followed by a test pulse, show that knowing the cell’s responsiveness to

TNF increases our ability to predict its response to the test pulse. Two interesting conclu-

sions that follow from this set of analyses are that (1) genetically identical subpopulations of

cells can have different information transmission capacities (in our case the non-responders

do not change their response with TNF dose, and would have an information transmission

capacity close to 0, while the responding subpopulation can grade its response to dose and

has a higher information transmission capacity); and (2) variability in TNF-NF-κB signaling

is dominated by extrinsic noise, that is variation in the biochemical state of a cell, instead

of intrinsic noise, that is stochastic fluctuations in transcriptional processes. This is why

knowledge of the cell-state, measured by response to a short pulse of TNF improved the

predictability of the NF-κB response.

In Chapter 5, to complement our statistical analysis of noisy TNF-NF-κB signaling data,

we followed a mechanistic approach to understand heterogeneity in TNF-NF-κB signaling.

Building on previous approaches [59], we calibrated a mechanistic ODE model of NF-κB

signaling to heterogeneous data from live-cell imaging, by considering variation in the abun-

dances of NF-κB and IKK. Using the calibrated model, we showed examples of simulations

probing dose-response capabilities at a single-cell level. It is now widely accepted, and ac-

counted for while designing experiments and drug studies, that dose-response properties,

such as the range of responsiveness, can vary widely across cell-lines [46]. However, given

the heterogeneity that we observe within a genetically identical population of cells, is it pos-

sible that these properties also vary considerably within a cell line? This is a key question

in shifting from designing population-level experiments to single-cell experiments that effec-

tively probe single-cell signaling mechanisms and manipulate single-cell behavior. However,

experimental studies of single-cell dose response behavior, where the same cell is in turn

exposed to a range of increasing stimulus doses [184], are currently not possible in signaling

systems with long time-scale responses like the TNF-NF-κB signaling pathway, where the

response is on the order of hours. The presence of several long time-scale feedback elements
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means that once stimulated, it is difficult to return the cell to its original biochemical state

for a repeat stimulation. Additional technical limitations include phototoxicity effects with

longer imaging durations, and biological limitations include the increased probability that

the observed cell will divide in a time scale shorter than what is needed to repeatedly observe

the response to a range of stimuli. A well-calibrated computational model of NF-κB signal-

ing heterogeneity gives us unique opportunities to probe single-cell dose response properties

in silico. Using our mechanistic model, we presented an example of this kind of analysis,

and demonstrated how variation in protein abundances, in a model of NF-κB signaling, can

lead to considerable differences in saturating NF-κB responses to TNF, and differences in

the capacities of simulated single cells to transmit information about TNF dose.

Biological systems are complex, and often we need a plethora of complementary ap-

proaches, both experimental and computational, to investigate different aspects of the same

system, ultimately increasing our understanding of the system as a whole. Overall, in this

thesis we have employed a variety of complementary computational approaches and have

addressed several challenges related to modeling cell signaling systems. Using the NF-κB

signaling pathway as a model system, we demonstrated how Bayesian methods for problems

like parameter estimation and regularization can be useful for improving our understanding

of key regulatory mechanisms in single cells. We showed how information theoretic and sta-

tistical modeling tools, combined with data from cutting edge experimental techniques, can

address questions regarding the capabilities of noisy signaling pathways in detecting environ-

mental cues. Finally, we complemented our statistical analysis of noisy signaling data, with

mechanistic approaches to model heterogeneity in NF-κB signaling, and demonstrated the

use of simulation-based analyses to investigate information transmission capacities of single

cells.
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Appendix A

Supplementary material for Chapter 3: Parallel Tempering with Lasso for

model reduction in systems biology

Figure A1: Hyperparameter tuning for PTLasso with a fully connected 3-node graph. A) Data generated for fitting. Red
dashed lines show the model simulation at 8 time points with the true parameter values. Each colored line represents a noisy
trajectory obtained by adding Gaussian noise (mean = 0, standard deviation = 30% of the true data value) to the true data.
The black error bars show the mean and standard deviation of the 10 repeats, and is the observed data used for fitting. B)
Hyperparameter tuning plot showing variation in the negative log likelihood distribution (from 4,000 parameter samples) with
µ and b, (red points show the mean, and black lines show mean ± standard deviation). The hyperparameters selected (µ = −10,
b = 1) provide the most regularization while not substantially increasing the negative log likelihood. C) Comparison of the
log likelihood distributions (from 4,000 parameter samples) of the fits with PT and PTLasso (µ = −10, b = 1). Box plots
are obtained using a third party MATLAB library, aboxplot*, with outliers not shown. Boxes show data in the 25th–75th

percentile and the circles show the mean. D) Example of PTLasso fits (from 4,000 parameter samples) where b is too small
(µ = −10, b = 0.1) and the negative log likelihood of the fit is increased, and E) the corresponding parameter distributions
(from 400,000 parameter samples). Since the regularization strength was too high, none of the parameters deviated from the
prior. *http://alex.bikfalvi.com/research/advanced_matlab_boxplot/
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Figure A2: Hyperparameter tuning for PTLasso with a fully connected 5-node graph. A) Data generated for fitting.
Red dashed lines show the model simulation at 8 time points with the true parameter values. Each colored line represents
a noisy trajectory obtained by adding Gaussian noise (mean = 0, standard deviation = 30% of the true data value) to the
true data. The black error bars show the mean and standard deviation of the 10 repeats, and is the observed data used
for fitting. B) Hyperparameter tuning plot showing variation in the negative log likelihood distribution with µ and b (from
7,000 parameter samples, red points show the mean, and black lines show mean ± standard deviation). The hyperparameters
selected (µ = −10, b = 1) provide the most regularization while not substantially increasing the negative log likelihood. C)
Box plots comparing the log likelihood distribution (from 7,000 parameter samples) obtained with PT and PTLasso for the
chosen values of hyperparameters. Box plots are obtained using a third party MATLAB library, aboxplot*, with outliers not
shown. Boxes show data in the 25th–75th percentile and the circles show the mean. D). Parameter covariation of the three
selected parameters with PTLasso and E) with PT shown as a 3D scatter plot with transparent points (from 700,000 parameter
samples). *http://alex.bikfalvi.com/research/advanced_matlab_boxplot/

98

http://alex.bikfalvi.com/research/advanced_matlab_boxplot/


Figure A3: Model reduction using PTLasso with fully connected 3-node and 5-node graphs when the observed data
is generated from noisy parameters. A) Noisy parameter values (black) used to generate the observed data. The log true
parameters (red) of the known model were perturbed 10 times with Gaussian noise (mean = 0, standard deviation = 0.05). B)
Colored lines show model outputs for each of the 10 noisy parameter sets. The black error bars shows the mean and standard
deviation of the colored lines and is the observed data for fitting. Red dashed line shows the model simulation at 8 time points
with the true parameter values. C) Frequency histograms showing probability distributions of the parameters (from 800,000
parameter samples) for PTLasso fits of a fully connected three node graph and D) fully connected five node graph. The range
of log parameter values on each x-axis is −12 to 3, which covers the full range over which parameters were allowed to vary.
The y-axis of each panel is scaled to the maximum value of the corresponding distribution to emphasize differences in shape.
The pink lines show the boundaries of the Laplace prior with µ = −10, b = 1, and the dashed red lines in panels for kAB

and kBC show the true parameter values. A parameter distribution confined within the Laplace prior boundaries indicates
that the parameter is extraneous. E) PTLasso fits to the data for a fully connected three node graph and F) five node graph.
Transparent blue lines show ensemble fits (from 8,000 parameter samples, 100 time points per trajectory), red line shows the
true data (100 time points), and the black error bars show the mean ± standard deviation of the observed data (8 time points).
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Figure A4: Hyperparameter tuning for PTLasso with dose-response motifs inferred from a prior network. A). Linear
correlation of non identifiable parameters in the reduced perfectly adapting model shown as a scatter plot (axes show log
parameter values). B) Hyperparameter tuning plot for the linear dose response model and C) the perfectly adapting dose
response model. The hyperparameter tuning plot shows variation in the negative log likelihood distribution with µ and b
(from 400 parameter samples for the linear dose response model and from 800 parameter samples for the perfectly adapting
dose response model. Red points show the mean, and black lines show mean ± standard deviation). The hyperparameters
selected (µ = −10, b = 0.5 for linear dose-response and µ = −10, b = 1 for perfectly adapting dose-response) provide the
most regularization while not substantially increasing the negative log likelihood. D) Box plots comparing the log likelihood
distribution obtained with PT and PTLasso for the chosen values of hyperparameters for the linear dose response model
(from 400 parameter samples) and E) the perfectly adapting dose response model (from 800 parameter samples). Box plots are
obtained using a third party MATLAB library, aboxplot*, with outliers not shown. Boxes show data in the 25th–75th percentile
and the circles show the mean. *http://alex.bikfalvi.com/research/advanced_matlab_boxplot/
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Figure A5: Hard constraints on parameter covariation in NF-κB signaling. Binned scatter plots (MATLAB function
binscatter with 940,000 parameter samples from a PTLasso fit for an NF-κB response to pulsatile TNF stimulation) show the
joint distributions for the pairs of parameters for which covariance was constrained during fitting.
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Figure A6: Posterior probability distributions of model parameters shown with the corresponding published values for a
representative NF-κB response to pulsatile TNF stimulation A) with PTLasso and B) with PT. Distributions of total protein
abundance parameters and rate constant parameters (from 5,640,000 parameter samples) from the A20 module (blue), Activation
module (yellow) and IκB module (orange). All parameters are in logscale. Total protein abundance parameters have uniform
priors, and the x-axis range indicates the sampling range. Rate constant parameters are sums of the module penalty parameters
and reaction-specific parameters. The pink line corresponds to a best-fit parameter set. The dashed lines correspond to published
values of parameters – Pekalski et al. [15] (red), Lee et al. [56] (black), and Kearns et al. [121] (blue). A published parameter
value for a model is only included if the corresponding reaction maintained the same structure in both the published and
current models. For unit conversions we used the values mentioned in Lee et al. [56], 1µM of NF-κB = 50,000 molecules/cell
and applied this to other species in the models. In the parameter labels “import” refers to translocation from the cytoplasm
into the nucleus and “export” is the reverse. “Complex” refers to the NF-κB-IκB complex. The y-axis for each panel is scaled
from 0 to the maximum value of the distribution to emphasize differences in the shapes of the distributions.
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Figure A7: NF-κB signaling model predictions. Model predictions for non-fitted variables for a representative NF-κB
response to pulsatile TNF stimulation (from 500 parameter samples from one of the PTLasso repeats). Suffix “a” and “i” refer
to active and inactive versions of a species respectively. Prefix “c” and “n” refer to cytoplasmic and nuclear versions of a species
respectively. “Complex” refers to the NF-κB-IκB complex. Time courses are shown for 4 hours after the initial 5ng/ml TNF
stimulation. The TNF concentration is set to 0 at the 5 minute time point.
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Table A1: Hard constraints in the NF-κB signaling fits.

Index Constraint description Constraint

1 Exit rate of NF-κB-IκB from the nu-

cleus is greater than free NF-κB

ke2a > ke1

2 Exit rate of NF-κB-IκB from the nu-

cleus is greater than free IκB

ke2a > ke2

3 IKK mediated degradation of free cy-

tosolic IκB is greater than the basal

rate

kt1a > c4a

4 IKK mediated degradation of NF-κB

bound cytosolic IκB is greater than the

basal rate

kt2a > c5a

5 At equilibrium there is some NF-κB in

the nucleus

nNFκBeq + nNFκB− IκBeq

TotalNFκB
∈

[0.05,0.5]

6 At least 1 TNFR molecule/cell is acti-

vated

min(TNFRa) > 1

7 At least 1 IKK molecule/cell is acti-

vated

min(IKKa) > 1

8 Equilibrium check before TNF stimula-

tion

Rate of change for each model

species < 1e-4 molecules/5e5

seconds
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Table A2: Maximum PSRF across all model parameters for each example shown up to

4 significant digits. Parameter distributions are constructed from the lowest temperature

chain.

Model name, PTLasso PT

No. of swaps

3-node graph, 400,000 1.000 1.002

5-node graph, 700,000 1.025 1.003

Linear Dose-Response, 400,000 1.001 1.000

Perfectly adapting Dose-Response, 800,000 1.015 1.004

NF-κB signaling (pulse stimulus):

Trajectory 1, 5,640,000 1.025 1.024

Trajectory 2, 5,640,000 1.027 1.057

Trajectory 3, 5,640,000 1.027 1.006

NF-κB signaling (continuous stimulus)

3,200,000 1.05 N/A
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Table A3: MPSRF values for parameter distributions from each example shown up to 4 sig-

nificant digits. Parameter distributions are constructed from the lowest temperature chain.

Model name, PTLasso PT

No. of swaps

3-node graph, 400,000 1.001 1.002

5-node graph, 700,000 1.011 1.007

Linear Dose-Response, 400,000 1.000 1.001

Perfectly adapting Dose-Response, 800,000 1.012 1.006

NF-κB signaling (pulse stimulus)

Trajectory 1, 5,640,000 1.074 1.094

Trajectory 2, 5,640,000 1.118 1.200

Trajectory 3, 5,640,000 1.129 1.014

NF-κB signaling (continuous stimulus),

3,200,000 1.069 N/A
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Table A4: PSRF to show convergence of energy distributions when combining PT or PTLasso

chains for the NF-κB signaling fit with pulsatile TNF stimulation. M is the number of

independent chains that are combined for each group and N is the total number of swaps.

The length of each chain is N/M. Energy distributions are constructed from the lowest

temperature chain.

Trajectory

index

PTLasso

group

1, M=6,

N=5,640,000

PTLasso

group

2, M=6,

N=5,640,000

PT group 1,

M=6,

N=5,640,000

PT group 2,

M=6,

N=5,640,000

1 1.041 1.016 1.049 1.021

2 1.139 1.134 1.011 1.003

3 1.028 1.009 1.001 1.003

Table A5: PSRF to show convergence of energy distributions when combining PTLasso

chains for the NF-κB signaling fit with continuous TNF stimulation. M is the number of

independent chains that are combined for each group and N is the total number of swaps.

The length of each chain is N/M. Energy distributions are constructed from the lowest

temperature chain.

PTLasso group 1, M=8, N=3,200,000 PTLasso group 2, M=8, N=3,200,000

1.113 1.063
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Table A6: Step acceptance rates for the lowest temperature chain for each example.

Model name, PTLasso PT

No. of swaps (repeat 1, 2) (repeat 1, 2)

3-node graph, 400,000 0.24, 0.25 0.24, 0.25

5-node graph, 700,000 0.24, 0.23 0.24, 0.26

Linear Dose-Response, 400,000 0.24, 0.22 0.24, 0.24

Perfectly adapting Dose-Response, 800,000 0.24, 0.24 0.25, 0.25

NF-κB signaling (pulse stimulus), 5,640,000

Trajectory 1 0.26, 0.26 0.23, 0.22

Trajectory 2 0.26, 0.25 0.45, 0.26

Trajectory 3 0.24, 0.25 0.26, 0.22

NF-κB signaling (continuous stimulus), 3,200,000

0.28, 0.27 N/A

Table A7: Swap acceptance rates for the two lowest temperature chains for each example.

Model name, PTLasso PT

No. of swaps (repeat 1, 2) (repeat 1, 2)

3-node graph, 400,000 0.24, 0.33 0.25, 0.35

5-node graph, 700,000 0.33, 0.47 0.32, 0.26

Linear Dose-Response, 400,000 0.26, 0.97 0.24, 0.24

Perfectly adapting Dose-Response, 800,000 0.17, 0.37 0.25, 0.26

NF-κB signaling (pulse), 5,640,000

Trajectory 1 0.28, 0.25 0.19, 0.25

Trajectory 2 0.17, 0.17 0.29, 0.32

Trajectory 3 0.16, 0.16 0.26, 0.28

NF-κB signaling (continuous), 3,200,000 0.22, 0.22 N/A
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Table A8: Reactions in fully connected three node network. The “parameters” column

specifies the forward and reverse rate constant pair. True parameters are shown in red. All

the reactions follow mass action kinetics. First order reaction rate constants are in units of

s−1. Second order reaction rate constants are in units of molecule−1s−1.

Reaction Parameters

A ←→ B kAB, kBA

B ←→ C kBC , kCB

C ←→ A kCA, kAC

Table A9: Reactions in fully connected five node network. The “parameters” column specifies

the forward and reverse rate constant pair. True parameters are shown in red, and parameters

of the inferred alternate reduced models are shown in blue. All the reactions follow mass

action kinetics. First order reaction rate constants are in units of s−1. Second order reaction

rate constants are in units of molecule−1s−1.

Reaction Parameters Reaction Parameters

A ←→ B kAB, kBA C ←→D kCD, kDC

A ←→ C kAC , kCA A ←→ E kAE, kEA

A ←→ D kAD, kDA B ←→ E kBE, kEB

B ←→ C kBC , kCB C ←→ E kCE, kEC

B ←→ D kBD, kDB D ←→ E kDE, kED

109



Table A10: Prior network comprising linear dose-response model reactions and adaptive

dose-response model reactions. The “parameters” column specifies the forward and reverse

rate constant pair. All the reactions follow mass action kinetics. First order reaction rate con-

stants are in units of s−1. Second order reaction rate constants are in units of molecule−1s−1.

Reaction Parameter(s)

S −→ S + R kS−RS

X + R −→ X kXR−X

S −→ S + X kS−XS

X −→ 0 kX−0

R ←→ 0 kR−0, k0−R
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Table A11: Reactions in NF-κB signaling model. The “parameters” column specifies the

forward and reverse rate constant pair. All the reactions follow mass action kinetics. First

order reaction rate constants are in units of s−1. Second order reaction rate constants are

in units of molecule−1s−1 except kb which is in units of (ng/ml)−1s−1. ∗ 3.3 is a volume

correction factor [56, 145].

Reaction Parameter(s) Module
TNFR activation
TNFR(inactive) + TNF −→ TNFR(active) + TNF kb Activation
TNFR inactivation
TNFR(active) −→ TNFR(inactive) kf Activation
IKK activation
IKK(inactive) + TNFR(active) −→ IKK(active) + TNFR(active) ka Activation
IKK inactivation
IKK(active) −→ IKK(inactive) k4 Activation
Reversible cytoplasmic NF-κB-IκB complex formation
NF-κB (cytoplamic) + IκB (cytoplasmic) ←→ NF-κB-IκB (cytoplasmic) ka1a, kd1a IκB
Reversible nuclear NF-κB-IκB complex formation
NF-κB (nuclear) + IκB (nuclear) ←→ NF-κB-IκB (nuclear) 3.3∗ × ka1a, kd1a IκB
IKK mediated cytoplasmic free IκB degradation
IKK(active) + IκB (cytoplasmic) −→ IKK(active) kt1a Activation
IKK mediated cytoplasmic bound IκB degradation
IKK(active) + NF-κB-IκB (cytoplasmic) −→ IKK(active) + NF-κB (cytoplasmic) kt2a Activation
Basal cytoplasmic free IκB degradation
IκB (cytoplasmic) −→ 0 c4a IκB
Basal cytoplasmic bound IκB degradation
NF-κB-IκB (cytoplasmic) −→ NF-κB (cytoplasmic) c5a IκB
NF-κB shuttling
NF-κB (cytoplasmic) ←→ NF-κB (nuclear) ki1,ke1 Activation
IκB shuttling
IκB (cytoplasmic) ←→ IκB (nuclear) ki2,ke2 IκB
Linear production of IκB
NF-κB (nuclear) −→ NF-κB (nuclear) + IκB (cytoplasmic) c1a IκB
Export of NF-κB-IκB complex from the nucleus
NF-κB-IκB (nucleus) −→ NF-κB-IκB (cytoplasmic) ke2a IκB
Linear production of A20
NF-κB (nuclear) −→ NF-κB (nuclear) + A20 c1 A20
A20 mediated inactivation of IKK
A20 + IKK(active) −→ A20 + IKK(inactive) ka20-ikk-inact A20
A20 mediated inactivation of TNFR
A20 + TNFR(active) −→ A20 + TNFR(inactive) ka20-tnfr-inact A20
A20 degradation
A20 −→ 0 c3 A20

111



Appendix B

Supplementary material for Chapter 4: NF-κB Dynamics Discriminate

between TNF Doses in Single Cells

Table B1: Related to main Figure 4.2. Summary of cell numbers for fixed cell experiments.

For each condition cells were exposed continuously or to a pulse of cytokine, and fixed after

0, 10, 30, 60, 90, 120, 180, 240, or 360 minutes. ‘Total’ is the aggregate number of cells

measured across all time points, ‘Avg #’ quantifies the average number of cells measured

in each time point, and ‘StDev’ quantifies the standard deviation across time points for

indicated condition.

1 ng/ml 10 ng/ml 100 ng/ml 1 ng/ml 10 ng/ml 100 ng/ml
Pulse Pulse Pulse Continuous Continuous Continuous

Total #
KYM1 TNF 8848 5390 8894 8981 8034 7376
HeLa TNF 4356 4312 3818 5371 4865 5077
U2OS TNF 8550 8280 8864 10706 10031 8856

HCT116 TNF 29243 23119 27174 33410 32012 29683
A549 TNF 3512 2882 9066 6354 5689 8490

Avg #
KYM1 TNF 983.11 598.89 988.22 997.89 892.67 819.56
HeLa TNF 484 479.11 424.22 596.78 540.56 564.11
U2OS TNF 950 920 984.89 1189.56 1114.56 984

HCT116 TNF 3249.2 2568.78 3019.33 3712.22 3556.89 3298.11
A549 TNF 390.22 320.22 1007.33 706 632.11 943.33

StDev
KYM1 TNF 120.48 103.66 167.87 230.21 321.18 370.25
HeLa TNF 22.51 19.73 52.29 30.35 39.4 46.64
U2OS TNF 295.58 152 241.88 333.66 343.66 172.45

HCT116 TNF 415.67 305.31 404.14 402.29 290.18 456.39
A549 TNF 67.44 42.29 129.58 133.76 84.9 177.26
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Table B2: Related to main Figure 4.4. Summary of pairwise p-values for AUC2/AUC1

compared between test pulse conditions. For each pair of test pulse conditions in Figure 4.4D,

p-values are lower than listed. Concentrations listed are relative to a test pulse concentration

of 0.2 ng/ml TNF.

Test pulse 0x 1x 5x 50x 500x

0x - 10-17 10-36 10-27 10-22

1x 10-17 - 10-27 10-24 10-21

5x 10-36 10-27 - 10-11 10-16

50x 10-27 10-24 10-11 - 10-6

500x 10-22 10-21 10-16 10-6 -
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Model 1: Switch-like response

Model 2: Graded response

Model 3: Graded response with threshold

A

B
Parameter Value Description 
ηbasal 0-5 Adds a random value to cellular responses to simulate basal 

noise and cell-to-cell heterogeneity 
ηinduced ±0-15% Random fluctuations were incorporated into the dose-

dependent response of each cell to simulate biological noise 
dose [0, 1, 2, 3 ] Each model was simulated with 4 integer doses, with ‘0’ 

representing the untreated condition 
SF1 6 Scaling factor for Model 1 to normalize responses between 

models 
SF2 1.5 Scaling factor for Model 2 
SF3 2 Scaling factor for Model 3 
CellState [1,2,…,100] Each cell was initialized with a unique integer value to 

describe its state 
thresh 0-4 Each cell was initialized with a random value to describe its 

threshold for activation (used with H(dose) in models 1 and 3) 
 

Figure S1

Figure B1: Description for 3 models of single cell dose responses. (A) Formulae for (M1) Switch-like, (M2) Graded, and
(M3) Graded with threshold (top, middle and bottom respectively) models of single cell responses. M1 and M3 differ from M2
because they incorporate a heavyside function to model a switch-like behavior. For all models 100 cells were simulated, each
initialized with a unique integer value between 1 and 100 to approximate heterogeneity in the cellular state. During initialization
each cell was also assigned a threshold for activation (thresh) used in models M1 and M3 to determine whether a cell responds
to a given dose. In all models, the strength of response to a dose of cytokine scales linearly with the cell’s state, whereby a cell
with state 100 and a cell with state 0 will have the strongest and weakest responses respectively. (B) Parameter values used for
simulations described in (A) as well as Figure 4.1 of the main text. Basal noise (ηbasal) was used as a cut-off to quantify the
non-responsive fraction in the right column of Figure 4.1B. That is, non-responders are defined as: Response ≤ (ηbasal)MAX
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Figure B2: Subcellular localization of endogenous RelA in human cancer cells. (A) Fixed-cell RelA immunofluorescence
images of KYM1, HeLa, U2OS, HCT116, and A549 cells. Cells were treated with a 1 minute pulse of 100 ng/mL of TNF
and fixed at the indicated time after cytokine exposure; scale bar 10 µm. (B) Heatmap for Rateout descriptor does not show
a significant trend. (C) KYM1 cells show greater sensitivity to low concentrations of TNF when compared with A549 cells,
the second most responsive cell line to TNF. (D) Western blot of RelA in lysates from parental KYM1 cells (P) and KYM1
cells that express mVenus-RelA (FP-RelA). Biological replicates are shown. (E) Quantification of bands from (D) show that
FP-RelA is overexpressed 2.9-fold when compared with P KYM1 cells. For FP-RelA, endogenous and FP-RelA bands were
summed; ±SEM. (F) Western blot of nuclear lysates (top) from FP-RelA cells collected at indicated times after exposure to
a 1 minute pulse of 10 ng/mL TNF. Quantification of endogenous and FP-RelA bands (bottom) show qualitatively similar
dynamics to each other. (G) Bar graphs of the coefficients for variation for descriptors (described in Figure 4.2B) of nuclear
FP-RelA density in cells exposed to TNF conditions as indicated. Error bars represent 95% confidence interval of the coefficient
of variation.
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Figure B3: Details of control analysis, models, and features used in channel capacity calculations. (A) Density plots for
nuclear FP-RelA in KYM1 cells exposed to a 5 minute TNF pulse of indicated concentration. Raw trajectories (top) and
fold-transformed trajectories (bottom) are shown with the untreated control sample in the left-most column. (B) Plots showing
jackknife analysis for channel capacity calculations. To correct for sample size bias and determine the variance of channel
capacity values, the data set was jackknifed at sequentially increasing fractions, SS (points shown in blue) followed by linear
regression to extrapolate the channel capacity at a sample size of infinity (i.e. 1/SS = 0; points shown in red). The lines obtained
via linear regression are relatively flat, indicating that the size of our dataset is large enough to accurately estimate the channel
capacity. (C) Plots showing the degradation in channel capacity of a system of eight 2-D Gaussians, when subpopulations of
non-responders are considered. Fully separated Gaussians show the theoretical maximum channel capacity of 3 bits for this
system (middle top). Overlap in the Gaussians (middle bottom), or the presence of bimodal distributions with an overlapping
basal population (right) significantly reduces the values of channel capacity calculations (left); k = 10; ± standard deviation. (D)
The effects of subsampling were simulated for the Gaussian system described in (C), except starting with 50% of the population
sampled from the basal distribution for fully separated Gaussians (top) or overlapping Gaussians (bottom). In contrast with
randomly targeted removal (red), channel capacity values after selectively removing a defined fraction of non-responders (blue)
increases the channel capacity up to the defined limit revealing the true channel capacity of the responsive subpopulation;
± standard deviation. (E) Channel capacity values calculated for each data set over a range of vector dimensions (d = 5 is
reported in the manuscript): Single-cell trajectories for ‘Raw’ data sets are in arbitrary fluorescence units; for ‘Fold’ data sets,
each single-cell time course is represented as fold change (A); for ‘NRR’ data sets, single-cell trajectories with < 1.2-fold change
in nuclear FP-RelA are removed; the continuous data set only includes conditions with continuous exposure to TNF (bottom
row of Figure 4.3A). Green stars compare Fold-NRR and Raw-NRR (p < 10-6, t test). (F) Representative sigmoid fits of five
single cell time courses. The red lines show representative experimental trajectories for a single cell’s nuclear FP-RelA time
course. Black lines show two sigmoid fits used to approximate phases of nuclear entry and exit for FP-RelA and to calculate
tin and tout. Ratein and Rateout were calculated from the slopes of adjacent time points from the experimental trajectory (teal
line segments). The region used to calculate the AUC is indicated by the shaded area.
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Figure B4: Negative feedback and dampened responses in cells exposed to a high concentration reference pulse of TNF.
(A) Western blots (top) for regulators of negative feedback A20 and IκBα in KYM1 cells 3 hours after exposure to a 1 minute
reference pulse of TNF at indicated concentration. GAPDH-normalized band intensities quantified in bar graphs (bottom) show
that negative regulators are perturbed greater in response to a high concentration reference pulse (10 ng/mL) in comparison
with a low concentration reference (0.2 ng/mL); ±SEM of biological duplicate. (B) Results from (A) are confirmed by time
courses for average cellular A20 and IκBα from fixed-cell immunofluorescence KYM1 exposed to indicated TNF conditions.
Light colored lines indicate the standard deviation. (C) Scatter plots showing AUC2/AUC1 stratified along AUC1 across the
range of test conditions in cells after a 6 hour recovery period. (D) Density plots of single-cell FP-RelA time courses for
cells exposed to a high concentration (10 ng/mL) reference pulse of TNF followed by a TNF pulse with a 10× increase in
concentration 3 hours (left) or 6 hours (right) later. (E) Jitter plots comparing AUC2/AUC1 responses in single cells exposed
to a low concentration reference pulse (0.2 ng/mL) or a high concentration reference pulse (10 ng/mL) of TNF with either a
3 hour or 6 hour intervening recovery window. Responses to test pulses are significantly dampened when cells are exposed to
a high concentration reference pulse regardless of the duration of the recovery window. (F) Frequency distributions of AUC2
across the range of test conditions. (G) Channel capacity values calculated using AUC2 are compared with a vector that
includes reference information about each cell ([AUC1, AUC2]). Red line indicates the channel capacity calculated from the
full matrix of conditions (Figure 4.3); ± standard deviation; p < 10-11.
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Appendix C

Supplementary material for Chapter 5: Modeling heterogeneity in TNF-NF-κB

signaling
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Figure C1: Parameter distributions obtained from PT by fitting the model to multiple single-cell NF-κB trajectories A)
Posterior distributions of the shared parameters. B) Posterior distributions of the NF-κB (top row) and IKK (bottom row)
abundance parameters that vary between cells. Each column corresponds to the parameters for a particular single-cell NF-κB
response. The PSRF for model parameters is calculated from a single PT chain (the code splits the chain into two halves),
using third party code available here: https://research.cs.aalto.fi/pml/software/mcmcdiag/ C) Parameter distributions
correctly follow hard constraints imposed on key parameter covariation during fitting.
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fitting to dataset2. Chains 1–4 are in increasing order of temperature. C) Histograms of the energy values, from panel B,
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Figure C3: Evaluating the effect of increasing the range of sampled protein abundances for the 1-trajectory fit. A)
Simulated NF-κB time courses obtained by fixing a shared parameter set and sampling NF-κB and IKK abundances in the
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κB time courses obtained by fixing a shared parameter set and sampling NF-κB and IKK abundances in the log10 molecules/cell
range of 1–8. Each panel shows results for the shared parameter set used in corresponding panel (directly above) from (A).
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Figure C7: Evaluating the sensitivity of dose-response predictions with respect to shared parameter sets. Each panel
shows dose-response curves for a 1-NN dataset derived from NF-κB and IKK variation using a particular shared parameter set.
Overall the figure shows results for 20 shared parameter sets. The dashed red line shows the calibration dose of 5 ng/ml. The
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as the range of NFkB responsiveness in the experiments. For all panels, the y-axis limits are [0 20], and the x-axis limits are
[10-6,7.5x106]
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Table C1: Hard constraints when jointly fitting the NF-κB signaling model to single-cell

responses.

Index Constraint description Constraint

1 Exit rate of NF-κB-IκB from the nu-

cleus is greater than free NF-κB

ke2a > ke1

2 Exit rate of NF-κB-IκB from the nu-

cleus is greater than free IκB

ke2a > ke2

3 IKK mediated degradation of free cy-

tosolic IκB is greater than the basal

rate

kt1a > c4a

4 IKK mediated degradation of NF-κB

bound cytosolic IκB is greater than the

basal rate

kt2a > c5a

5 At equilibrium there is some NF-κB in

the nucleus

nNFκBeq + nNFκB− IκBeq

TotalNFκB
∈

[0.05,0.5]

6 Equilibrium check before TNF stimula-

tion

Rate of change for each model

species < 1e-3 molecules/5e5

seconds
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regression. Journal of the Royal Statistical Society. Series B: Statistical Methodology,
70(1):53–71, 2008.

[114] Henry Kautz, Bart Selman, and Yueyen Jiang. A general stochastic approach to
solving problems with hard and soft constraints. In The Satisfiability Problem: Theory
and Applications, pages 573–586. American Mathematical Society, 1996.

[115] Stephen P. Brooks and Andrew Gelman. General methods for monitoring convergence
of iterative simulations. Journal of Computational and Graphical Statistics, 7(4):434–
455, 1998.

[116] G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal scaling
of random walk Metropolis algorithms. Annals of Applied Probability, 7(1):110–120,
1997.

[117] Mathieu Rosenbaum and Alexandre B. Tsybakov. Sparse recovery under matrix un-
certainty. Annals of Statistics, 38(5):2620–2651, 2010.

[118] A. Finney and M. Hucka. Systems biology markup language: Level 2 and beyond.
Biochemical Society Transactions, 31(6):1472–1473, 2003.

[119] D. A. Lauffenburger. Cell signaling pathways as control modules: Complexity for
simplicity? Proceedings of the National Academy of Sciences, 97(10):5031–5033, 2002.

[120] Leland H. Hartwell, John J. Hopfield, Stanislas Leibler, and Andrew W. Murray. From
molecular to modular cell biology. Nature, 402:C47–C52, 1999.

138



[121] Jeffrey D. Kearns, Soumen Basak, Shannon L. Werner, Christine S. Huang, and
Alexander Hoffmann. IκBε provides negative feedback to control NF-κB oscilla-
tions, signaling dynamics, and inflammatory gene expression. Journal of Cell Biology,
173(5):659–664, 2006.

[122] Nadine Tarantino, Jean Yves Tinevez, Elizabeth Faris Crowell, Bertrand Boisson,
Ricardo Henriques, Musa Mhlanga, Fabrice Agou, Alain Israël, and Emmanuel La-
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Tay. Digital signaling decouples activation probability and population heterogeneity.
eLife, 4, 2015.

[147] Samuel Zambrano, Ilario de Toma, Arianna Piffer, Marco E. Bianchi, and Alessan-
dra Agresti. NF-κB oscillations translate into functionally related patterns of gene
expression. eLife, 5, 2016.

[148] Tomasz Lipniacki, Krzysztof Puszynski, Pawel Paszek, Allan R Brasier, and Marek
Kimmel. Single TNFalpha trimers mediating NF-kappaB activation: stochastic ro-
bustness of NF-kappaB signaling. BMC Bioinformatics, 8:376, 2007.

[149] David A. Turner, Pawel Paszek, Dan J. Woodcock, David E. Nelson, Caroline A.
Horton, Yunjiao Wang, David G. Spiller, David A. Rand, Michael R.H. White, and
Claire V. Harper. Physiological levels of TNFα stimulation induce stochastic dynamics
of NF-κB responses in single living cells. Journal of Cell Science, 123(16):2834–2843,
2010.

[150] Marcelo Behar, Derren Barken, Shannon L. Werner, and Alexander Hoffmann. The
dynamics of signaling as a pharmacological target. Cell, 155(2):448, 2013.

141



[151] Cellina Cohen-Saidon, Ariel A. Cohen, Alex Sigal, Yuvalal Liron, and Uri Alon. Dy-
namics and Variability of ERK2 Response to EGF in Individual Living Cells. Molec-
ular Cell, 36(5):885–893, 2009.

[152] Jeremy E. Purvis, Kyle W. Karhohs, Caroline Mock, Eric Batchelor, Alexander
Loewer, and Galit Lahav. p53 dynamics control cell fate. Science, 336(6087):1440–
1444, 2012.

[153] Jeremy E. Purvis and Galit Lahav. Encoding and decoding cellular information
through signaling dynamics. Cell, 152(5):945–956, 2013.

[154] Gal Chechik and Daphne Koller. Timing of gene expression responses to environmental
changes. Journal of Computational Biology, 16(2):279–290, 2009.

[155] Garrett D. Potter, Tommy A. Byrd, Andrew Mugler, and Bo Sun. Dynamic Sampling
and Information Encoding in Biochemical Networks. Biophysical Journal, 112(4):795–
804, 2017.

[156] James E. Ferrell and Sang Hoon Ha. Ultrasensitivity part I: Michaelian responses and
zero-order ultrasensitivity. Trends in Biochemical Sciences, 39(10):496–503, 2014.

[157] Lea Goentoro and Marc W. Kirschner. Evidence that Fold-Change, and Not Absolute
Level, of β-Catenin Dictates Wnt Signaling. Molecular Cell, 36(5):872–884, 2009.

[158] Ryan Suderman, John A. Bachman, Adam Smith, Peter K. Sorger, and Eric J. Deeds.
Fundamental trade-offs between information flow in single cells and cellular popula-
tions. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 114(22):5755–5760, 2017.

[159] Anne E. Carpenter, Thouis R. Jones, Michael R. Lamprecht, Colin Clarke, In Han
Kang, Ola Friman, David A. Guertin, Joo Han Chang, Robert A. Lindquist, Jason
Moffat, Polina Golland, and David M. Sabatini. CellProfiler: Image analysis software
for identifying and quantifying cell phenotypes. Genome Biology, 7(10), 2006.

[160] Steve Simon. SCATTERCLOUD. https://www.mathworks.com/matlabcentral/

fileexchange/6037-scattercloud,MATLABCentralFileExchange.

[161] Paul H.C. Eilers and Jelle J. Goeman. Enhancing scatterplots with smoothed densi-
ties. Bioinformatics, 20(5):623–628, 2004.

142

https://www.mathworks.com/matlabcentral/fileexchange/6037-scattercloud, MATLAB Central File Exchange.
https://www.mathworks.com/matlabcentral/fileexchange/6037-scattercloud, MATLAB Central File Exchange.


[162] Sarah Filippi, Chris P. Barnes, Paul D.W. Kirk, Takamasa Kudo, Katsuyuki Ku-
nida, Siobhan S. McMahon, Takaho Tsuchiya, Takumi Wada, Shinya Kuroda, and
Michael P.H. Stumpf. Robustness of MEK-ERK Dynamics and Origins of Cell-to-
Cell Variability in MAPK Signaling. Cell Reports, 15:2524–2535, jun 2016.

[163] Mario Niepel, Sabrina L Spencer, and Peter K Sorger. Non-genetic cell-to-cell vari-
ability and the consequences for pharmacology. Current Opinion in Chemical Biology,
13:556–561, 2009.

[164] Jérémie Roux, Marc Hafner, Samuel Bandara, Joshua J Sims, Hannah Hudson, Diana
Chai, and Peter K Sorger. Fractional killing arises from cell-to-cell variability in
overcoming a caspase activity threshold. Molecular Systems Biology, 11:803, may
2015.

[165] Deborah A. Flusberg, Jérémie Roux, Sabrina L. Spencer, and Peter K. Sorger. Cells
surviving fractional killing by TRAIL exhibit transient but sustainable resistance and
inflammatory phenotypes. Molecular Biology of the Cell, 24:2186–2200, jul 2013.

[166] Deborah A. Flusberg and Peter K. Sorger. Surviving apoptosis: Life-death signaling
in single cells. Trends in Cell Biology, 25(8):446–458, aug 2015.

[167] Zintis Inde and Scott J Dixon. The Impact of Non-Genetic Heterogeneity on Cancer
Cell Death. Critical Reviews in Biochemistry and Molecular Biology, 53(1):99–114,
2018.

[168] Kyoung Ae Kim, Sabrina L. Spencer, John G. Albeck, John M. Burke, Peter K.
Sorger, Suzanne Gaudet, and Do Hyun Kim. Systematic calibration of a cell signaling
network model. BMC Bioinformatics, 11:202, 2010.

[169] Jeremy E. Purvis and Galit Lahav. Encoding and decoding cellular information
through signaling dynamics. Cell, 152:945–956, 2013.

[170] X. Xia, M. S. Owen, R. E.C. Lee, and S. Gaudet. Cell-to-cell variability in cell death:
Can systems biology help us make sense of it all? Cell Death and Disease, 5:e1261,
2014.

[171] Zhang Cheng, Brooks Taylor, Diana R. Ourthiague, and Alexander Hoffmann. Dis-
tinct single-cell signaling characteristics are conferred by the MyD88 and TRIF path-
ways during TLR4 activation. Science Signaling, 8(385):ra69, 2015.

143



[172] L Naomi Handly, Jason Yao, and Roy Wollman. Signal transduction at the single-cell
level: Approaches to study the dynamic nature of signaling networks. Journal of
Molecular Biology, 428(19):3669–3682, 2016.

[173] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan.
Causal protein-signaling networks derived from multiparameter single-cell data. Sci-
ence, 308(5721):523–529, 2005.

[174] Steffen Waldherr. Estimation methods for heterogeneous cell population models in
systems biology. J. R. Soc. Interface, 15:20180530, 2018.

[175] Jan Hasenauer, Steffen Waldherr, Malgorzata Doszczak, Nicole Radde, Peter
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