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Abstract

The revolutionary development of neuroimage technology allows for the generation of

large-scale neuroimage data in modern medical studies. For example, structural magnetic

resonance imaging (sMRI) is widely used in segmenting neurodegenerative regions in the

brain and positron-emission tomography (PET) is commonly used by clinicians and re-

searchers to quantify the severity of Alzheimer’s disease.

In the first part of this dissertation, we build “OASIS-AD”, which is a supervised learning

model based on a well-validated automated segmentation tool “OASIS” in multiple sclerosis

(MS). OASIS-AD considers the specific challenges raised by WMH in Alzheimer’s Disease

(AD) to reduce false discoveries. We show that OASIS-AD performs better than several

existing automated white matter hyperintensity segmentation approaches.

In the second part of this dissertation, we develop an interpretable penalized multivari-

ate high-dimensional method for image-on-scalar regression that can be used for association

studies between high-dimensional PET images and patients’ scalar measures. This method

overcomes the lack of interpretability in regularized regression after reduced-rank decom-

position through a novel encoder-decoder based penalty to regularize interpretable image

characteristics. Empirical properties of the proposed approach are examined and compared

to existing methods in simulation studies and in the analysis of PET images from subjects

in a study of Alzheimer’s Disease.

In the third part of this dissertation, we developed ACU-Net, an efficient convolutional

network for medical image segmentation. The proposed deep learning network overcomes

the small sample size problem of training a deep neural network when used for medical

image segmentation. It also decreases computation cost by increasing the effective degrees
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of freedom through data augmentation and the novel use of convolutional layers blocks to

compress the model. We show that ACU-Net can achieve competitive performance while

dramatically decreases the computation cost compared with modern CNNs.

Public health significance: This dissertation proposes new statistical and machine learn-

ing methods for two aging-related problems: (1) automatically segmenting white matter

hyperintensity (WMH), a biomarker of neurodegenerative pathology, and (2) estimating the

association between neurodegeneration pathology and vascular measures, which are impor-

tant to aging population living quality and can be studied by clinical neuroimage data.
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1.0 Introduction

The recent explosion in the number of studies that collect neuroimage data has led

to an increased need in statistical models and methods for their analysis. Among these

studies, two main directions are (1) segmentation between normal and abnormal regions

based on different modalities of neuroimage data (Caligiuri et al., 2015), and (2) association

studies and predictive modeling between medical image data and other types of data, such

as demographic and genetic data (Bigos and Weinberger, 2010).

The first project of this dissertation focuses on segmentation between white matter hy-

perintensities (WMHs) and normal brain tissue based on a normal aging cohort (Nadkarni

et al., 2019). WMHs are areas in the white matter of the brain that appear hyperintense on a

T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) scan and appear hypointense

on a T1-weighted scan as compared to normal appearing white matter. Existence of WMHs

can be very challenging when using traditional automatic MRI processing techniques for

brain images of older adults. For example, segmentation of brain imaging data into gray

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) is a crucial processing step

in brain imaging studies. Existing automatic segmentation approaches were developed for

the brain images of healthy young adults, which generally do not contain WMHs. When

WMHs are present, automatic segmentation tools that use T1-weighted images may incor-

rectly classify WMHs as GM since both appear hypointense. Therefore, large WMH areas

could artificially increase the estimated GM volumes in cross-sectional studies and could lead

to severe underestimation of GM loss in longitudinal studies. This can be a major problem

in studies that use GM volume as a general marker of brain atrophy. Moreover, WMHs are

more prevalent in older adults and women (Van Den Heuvel et al., 2004), which may lead

to differential tissue classification performance in specific subgroups.

WMHs appear in a variety of studies, both in individuals who are clinically symptomatic

or asymptomatic. In particular, WMHs are pervasive in studies of aging, Alzheimer’s Disease

(AD), bipolar disorder (Pillai et al., 2002), and stroke (Wong et al., 2002). WMH segmenta-

tion is crucial for correcting tissue classification as well as for estimating the WMH volume
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directly, as this is often used as a marker of cerebrovascular diseases. In this dissertation we

focus on WMH segmentation in the aging brain in general and aging brain affected by AD

in particular.

Thus, we propose OASIS-AD, an automatic supervised approach based on logistic re-

gression and careful consideration of brain spatial information. OASIS-AD is an approach

evolved from OASIS (Sweeney et al., 2013)(Automated Statistical Inference for Segmenta-

tion), which was developed for automatic lesion segmentation in multiple sclerosis (MS).

OASIS-AD is a major refinement of OASIS that takes into account the specific challenges

raised by WMH, in particular, in AD. A common problem in WMHs segmentation tool

is false-positives. In the original OASIS, voxels are selected naively in prepocessing steps

through the top 15% FLAIR intensities, which might be appropriate in MS, but not in AD.

OASIS-AD changes the image preprocessing steps and adds three novel processing steps to

reduce false-positives.

The second project introduces a novel interpretable regularized image-on-scalar regres-

sion within a reduced-rank regression framework, which can be used in both association stud-

ies and predictive modeling between high-dimensional neuroimaging data and scalar data.

Compared to scalar-on-image regression, image-on-scalar regression uses scalar data to pre-

dict image data. As images are often more difficult to obtain than scalar values, it provides a

means of conducting inference on phenomena that are usually quantified through costly image

data with more readability available data. For example, our motivating study of Alzheimer’s

Disease (Cohen et al., 2013) is concerned with understanding connections between positron-

emission tomography (PET) images, which are used by clinicians and researchers to quantify

anatomical symptoms of Alzheimer’s disease, with easily obtainable correlates of dementia,

such as psychosocial measures and blood pressure. Image-on-scalar regression is particularly

challenging since it uses low-dimensional data to predict high-dimensional data, and since

associations are often sparse with weak signals at a set of particular voxels.

In this project, we propose interpretable reduced-rank regression (IRRR) as a method

for image-on-scalar regression. The method uses a fused sparse group lasso penalty after

dimension reduction, which reduces the size of the high-dimensional model while regularizing

based on spatial smoothness, structural and functional grouping, and sparsity. The penalty

2



includes an encoder-decoder to enable it to be formulated on the reduced-rank space, but

maintain biological interpretation and regularize on the image space.

The third project introduces a compact deep neural network architecture. Deep learning

architectures have recently achieved great success on problems in nature language processing

and computer vision. Among these, convolutional neural network (CNN), which are generally

built with convolutional layers, pooling layers and fully-connected layers (O’Shea and Nash,

2015), are widely used in image classification and segmentation. However, as described in

Miotto et al. (2017), medical data such as imaging, genetics, and electronic health records

are complex, heterogeneous, poorly annotated and generally unstructured. This commonly

leads to complicated data with lack of sufficient domain knowledge when directly applying

end-to-end deep learning models. The goal of this project is to mitigate these issues when

applying modern deep learning architectures to biomedical image segmentation, such as

WMH segmentation, by overcoming two common challenges. The first obstacle is the high

resolutions but low sample sizes faced with general image classification or segmentation

problems (Deng et al., 2009). The second is heavy computation cost for a well-trained deep

neural network. Our goal is to build a scalable state-of-the-art deep learning model for

medical image studies.

In this project, we develop a novel compressed convolutional neural network architec-

ture based on U-Net (Ronneberger et al., 2015). U-Net is a well-validated biomedical image

segmentation network which utilizes a symmetric auto-encoder architecture and data aug-

mentation to increase efficiency with small samples. As a well-known property, successful

training of deep networks requires thousands of well-labeled training samples, which are usu-

ally unavailable in medical image areas, especially for sMRI. The data augmentation used

in U-Net partially lowers the number of required image samples to train a reliable network.

In addition, inspired by our second project, we incorporated multiple modern techniques

related to dimension reduction and decomposition to build an asymmetric auto-encoder to

decrease computation cost while remain the competitive accuracy compared with original

neural network architectures.

3



2.0 White Matter Hyperintensity Detection in Alzheimer’s Disease

2.1 Introduction

As discussed in the previous chapter, WMH segmentation is essential in the analysis of

neuroimage data of elderly subjects. A review of existing WMH segmentation methods is

provided in Caligiuri et al. (2015). The methods can be divided into three categories: (1)

supervised learning algorithms using manually-labeled tracings of WMHs, (2) unsupervised

learning algorithms using unlabeled manual tracings, and (3) semi-automated algorithms

with various degrees of user intervention. Supervised classification algorithms include: k-

nearest neighbors (kNN), non-parametric classification using the k closest training samples

in the feature space (Anbeek et al., 2004), support vector machines (SVM) (Lao et al.,

2008), Bayesian methods that combine multivariate signal intensity and spatial informa-

tion (Herskovits et al., 2008), artificial neural networks (ANN) using multi-sequence images

(Dyrby et al., 2008), Gaussian mixture models (Simões et al., 2013), logistic regression of

multi-sequence images (Sweeney et al., 2013), adaptive intensity threshold search (Yoo et al.,

2014), and deep convolutional neural networks (Ghafoorian et al., 2017). Unsupervised clas-

sification algorithms include: a two-level fuzzy inference system based on proton density (PD)

and T2-FLAIR images (Admiraal-Behloul et al., 2005), a fuzzy connected algorithm com-

bined with image registration (Wu et al., 2006), and a geostatistical fuzzy c-means clustering

algorithm (Anitha et al., 2012). Semi-automated algorithms include: region growing using

adaptive thresholding (Itti et al., 2001), bispectral fuzzy class means (Sheline et al., 2008),

and semi-automatic peak identification on the 2D histogram of T1 and T2 intensities (She-

line et al., 2008). Caligiuri et al. (2015) concluded that a good WMH segmentation method

should include a comprehensive image preprocessing pipeline based on multi-sequence data

that takes into account spatial information about lesions and corrects for false positives.

In real application, T2-FLAIR images are produced by using very long TE and TR times,

where repetition time (TR) is the amount of time between successive pulse sequences applied

to the same slice and time to echo (TE) is the time between the delivery of the RF pulse
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and the receipt of the echo signal. This sequence is very sensitive to pathology and makes

the differentiation between CSF and an abnormality much easier. Since WMHs are bright

on T2-FLAIR, researchers use this modality to do manually segmentation for more accurate

segmentation and better visualization purposes.

Our proposed method “OASIS-AD”, an automatic supervised approach evolved from

OASIS (Sweeney et al., 2013), is developed by incorporating three novelties on both data

processing step and modeling steps to increase classification accuracy of WMHs and to

reduce false-positives. First, it uses an eroding procedure on the skull stripped mask, which

can remove small spurious bright spots (salt noise) in images. Second, it incorporates an

nearest neighbor feature construction approach, which utilizes the spacious information of a

3D brain image to refine segmentation probability map to reduce false positives. Lastly, it

uses a Gaussian filter to smooth segmentation probability map to reduce false positives. We

show that OASIS-AD performs better than existing WMH segmentation approaches when

compared to manually segmentation by our experienced radiologists, the generally accepted

gold standard.

2.2 Materials and Methods

In this section, we introduce the steps of OASIS-AD with details. OASIS-AD has three

main components: (1) development of a binary brain tissue mask, (2) normalization of MRI

intensities and creation of smoothed volumes, and (3) two-step modeling. The first step

of modeling consists of training a richly parameterized logistic regression model using the

data preprocessed in the (1) and (2) components of OASIS-AD. The second step consists of

refining the voxel-level probability map generated in the first step to shrink WMH regions

and smooth the probability map to reduce the false-positive rate. A flowchart of OASIS-AD

is presented in Figure 2.2.1. In the next sections, we describe the OASIS-AD steps in greater

detail.
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Figure 2.2.1: OASIS-AD procedure

2.2.1 Study participants

We have randomly selected a sample of 20 older individuals from our ongoing Normal

Aging study previously described in (Karim et al., 2019), (Nadkarni et al., 2019). The

selected sample included 20 cognitively normal study participants at the time of scanning.

The average age in our sample is 81.2 (SD=7.15), with an average education equal to 14.2

years (SD=2.44), 70% of the sample are females, 85% white and 15% african american. In

the next sections we describe the OASIS-AD steps in greater detail.
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2.2.2 Image preprocessing

The image preprocessing used fslr (Muschelli et al., 2015) package in Neuroconductor

(Muschelli et al., 2018), a comprehensive R environment for imaging processing tools. The

fslr package wraps the FMRIB Software Library (FSL 5.0)

(https://fsl.fmrib.ox.ac.uk/fsl) into the R language. The pre-processing steps were applied

in the following order:

1. Within-subject coregistration of the T1-weighted image to the T2-FLAIR image.

2. Apply N4-bias-correction (Tustison et al., 2010) to the registered T1-weighted image.

3. Conduct skull stripping using FSL BET (Brain Extraction Tool) (Smith, 2002) on the

registered and N4 corrected T1-weighted image.

4. Erode the brain mask with a default 5× 5× 5 kernel box.

Eroding a binary mask, A, with a kernel, B, centered at C consists of moving B by sliding

its center C over all voxels in A. If all voxels in B are contained in A then the location of

the center C is labeled as 1; otherwise, it is labeled 0 (erosion) (Haralick et al., 1987). The

fslerode package in fslr (Muschelli et al., 2015) was used for the erosion procedure.

2.2.3 Intensity normalization

Using a method similar to the one used by Shinohara et al. (2012), images intensities for

both T1-weighted and T2-FLAIR images were normalized as follows:

fNi (v) =
fi(v)− µi,M

σi,M
,

where µi,M and σi,M are the mean and standard deviation of the preprocessed image inten-

sities for subject i from modality M. Note that Shinohara et al. (2012) used the normally

appearing white matter (NAWM) as the reference set for normalization, which would require

at least partial segmentation of NAWM. Here we avoid this problem by using the entire brain

as reference.
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2.2.4 Smoothed volumes

Similarly to the original OASIS approach, we used smoothed volumes by applying Gaus-

sian kernel smoothers both to the T1-weighted and T2-FLAIR images. Two 3D Gaussian

filters with window sizes of 10 and 20 mm, respectively were used to captures local inhomo-

geneity patterns that were not accounted for the N4 correction. We denote by GMN
i (v, k)

the smoothed volume for subject i, image modality M , and kernel size k at voxel v. We fit

models that include these smoothed volumes as well as models that do not (labeled reduced

models), as the aggressive smoothing might actually remove subtle differences specific to the

WM/GM boundary, which could further induce classification bias.

2.2.5 Logistic regression model

The OASIS-AD model includes coefficients for intensities from the FLAIR and T1 as

well as smoothed intensities from those images and interaction terms between those terms.

It should be noted that OASIS-AD is flexible and able to handle more image modalities,

depending on the specific application and study data. To account for the interaction among

different modalities, two logistic regression models were used here: M1, a full model based

on OASIS and all the image modalities and M2, a reduced model. The M1 model for the

probability that a voxel v for study participant i is in WMH is:

M1 : logit
(
P{Wi(v) = 1}

)
= β0 + β1 ∗ FLAIRN

i (v) + β2 ∗GFLAIRN
i (v, 10)

+ β3 ∗GFLAIRN
i (v, 20) + β4 ∗ T1Ni (v) + β5 ∗GT1Ni (v, 10)

+ β6 ∗GT1Ni (v, 20) + β7 ∗ FLAIRN
i (v) ∗GFLAIRN

i (v, 10)

+ β8 ∗ FLAIRN
i (v) ∗GFLAIRN

i (v, 20)

+ β9 ∗ T1Ni (v) ∗GT1Ni (v, 10) + β9 ∗ T1Ni (v) ∗GT1Ni (v, 20).

Model M2 with the reduced predictors set is:

M2 : logit (P{Wi(v) = 1}) = β0 + β1 ∗ FLAIRN
i (v) + β2 ∗ T1Ni (v),

where FLAIRN
i (v) is the normalized ith voxel’s FLAIR value, while GFLAIRN

i (v, 10) and

GFLAIRN
i (v, 20) are smoothed normalized ith voxel FLAIR values with Gaussian kernels
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of size 10mm and 20mm, respectively. Notation for the other modalities follows the same

convention.

2.2.6 Probability map refinement

The logistic regression models introduced in Section 2.2.5 are used to produce an initial

probability map for WMH at the voxel level. This probability map is then refined to reduce

the false positive detection rate using two additional techniques: Nearest Neighbor Refine-

ment and Gaussian filter Refinement to remove false positives. We describe these in the

next two sections.

2.2.6.1 Nearest Neighbor Refinement The Nearest Neighbor Refinement (NNR)

consists of first, applying the FAST (Zhang et al., 2001) algorithm, a popular brain tis-

sue segmentation based on T1-weighted images. The FAST algorithm provides an estimated

probability that the voxel v is in white matter, pvwm, gray matter, pvgm, CSF, pvcsf , respectively.

The sum of pvwm, pvgm and pvcsf is equal to 1 for every voxel v. From these estimated tissue

probability maps we estimate the tissue type of voxel v, denoted by Tv, as the tissue with

the highest probability at voxel v. Using the logistic models in Section 2.2.5 we generate

a probability that each voxel v is in WMH and denote it by P v
wmh. We denote by Nv the

6 nearest neighbors (6NN) of voxel v. The idea is to use information from the neighboring

voxels to reduce “speckling”, the phenomenon where a few isolated voxels are identified as

WMH when they should not be. Below we provide the detailed algorithm.

The algorithm starts with voxels whose estimated probability by FAST of being in white

matter is 1, pvwm = 1, and whose 6NN are all estimated to be in white matter by FAST,

T 6NN
v = wm. Here, the last equality indicates that all entries of the six-dimensional vector

T 6NN
v are estimated to be white matter by FAST. For these voxels the estimated probability of

the voxel being in WMH is exponentially reduced by simply raising the estimated probability

of the voxel being in WMH using the logistic models to the power 10, P rv
wmh = (P v

wmh)
10.

The net effect is to substantially reduce the estimated probability of this type of voxel to be

in WMH. The second option is when the voxel is estimated by FAST to be in white matter,
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Algorithm 1 Nearest Neighbor Refinement (NNR)

Input: Tv, tissue type for voxel v estimated by FAST

T 6NN
v , tissue type set for the 6NN of voxel v estimated by FAST

pvwm, probability of voxel v being in white matter estimated by FAST

p6NN
wm , probability set for the 6NN of voxel v estimated by FAST

P v
wmh, probability of voxel v being WMH estimated by logistic models

Output: P rv
wmh, probability of voxel being WMH estimated using NNR

1: procedure NNR(v)

2: if pvwm = 1 and T 6NN
v = wm, then

3: P rv
wmh = (P v

wmh)
10

4: else if Tv = wm and T 6NN
v 6= wm, then

5: P rv
wmh = (P v

wmh)
average(p6NNwm )

6: else

7: P rv
wmh = P v

wmh

8: return P rv
wmh

Tv = wm, but not all its 6NN are estimated to be in white matter, T 6NN
v 6= wm. The

last inequality indicates that at least one of the 6NN of the voxel v is not estimated to

be in white matter by FAST. In this case, the estimated probability for the voxel to be in

WMH is increased by raising it to the power average(p6NN
wm ), which is the average of the

estimated probabilities for the voxel to be in white matter by FAST. The average of these

probabilities is a number less than one, indicating that the probability will be increased.

The probability is increased more when there are more neighbors that are not estimated

to be in white matter and when the estimated probabilities of these neighbors are further

from 1, indicating increased probability that the voxels are not actually in the white matter.

Both of these choices of powers were found empirically to work well and were validated

using training/test data. If neither of these conditions are satisfied than the probability map

obtained from the logistic models remains unchanged, P rv
wmh = P v

wmh.
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2.2.6.2 Gaussian Filter Refinement Once the NNR procedure is applied we apply

a 3D Gaussian filter on the generated probability maps using the following sequence of

operations: (1) create an eroded brain mask, (2) fill in the voxels in the eroded brain mask

with the WMH probabilities estimated in Section 2.2.6.1, and (3) apply a 3D Gaussian filter

of size 5× 5× 5 mm to the probability map on the eroded brain.

2.2.7 Binary segmentation and evaluation metrics

After creating the probability maps, a threshold value needs to be identified to classify

voxels into classes. We use an approach proposed by Valcarcel et al. (2018), who proposed

to use multiple threshold candidates and selected the optimal threshold based on the per-

formance on the training set. We used the Dice Similarity Coefficient(DSC) (Dice (1945))

as the evaluation metric for selecting the optimal threshold.

Results were compared with manual segmentation performed by an experienced neurora-

diologist, which provided the gold standard. The manual tracings of WMH were performed

on 5 contiguous slices on the T2-FLAIR scans, the same for each subject. Models were com-

pared in terms of the following metrics: (1) number of true positive voxels (TP), (2) number

of false-positive voxels (FP), (3) number of true negative voxels (FN), and (4) number of

false negative voxels (FN). We computed four additional combined metrics commonly used

for prediction performance evaluation (Goutte and Gaussier, 2005): (1) accuracy, defined

as ACC = (TP+TN)/ (TP+FP+FN+TN), (2) positive predictive value, defined as PPV

= TP/(TP+FP); (3) true positive rate, defined as TPR = TP/(TP+FN), (4) false positive

rate, defined as FPR = FP/(FP+TN), and (5) dice similarity coefficient, defined as DSC =

2TP/(2TP+FP+FN) as well as 95% confidence interval (CI) computed using bootstrap. We

also included the receiver operating characteristic curve (ROC curve), the precision-recall

curve (PRC), and the area under these two curves (AUC) (Davis and Goadrich, 2006).

2.2.8 Comparison with other methods

We compared OASIS-AD with four other methods: OASIS (developed for MS lesion seg-

mentation), MIMOSA (Valcarcel et al., 2018), the lesion segmentation tool (LST) (Schmidt,
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2017), and the fuzzy connected algorithm of Wu et al. (2006) and labeled as fuzzy-c. our

study participants sample described in Section 2.2.1.

2.3 Results

Data including 20 subjects were randomly split into training (15 study participants) and

testing (5 study participants) sets; models were trained on training data set and compared

in terms of their performance on the testing data set. The proposed methods was fit using a

R package “OASISAD”, which was created for this dissertation. All analyses were conducted

in R(Team et al., 2013).

2.3.1 OASIS-AD models comparison

We start by first evaluating the various types of the OASIS-AD model. Table 2.3.1 pro-

vides results for all model combinations considered, where the first column provides the label,

while the second column provides the type of analysis conducted. For example, M2-NG is

the OASIS-AD model using the logistic model M2 introduced in Section 2.2.5 combined with

the NNR algorithm introduced in Section 2.2.6.1 followed by GFR algorithm introduced in

Section 2.2.6.2. The acronym for this model could be OASIS-AD-M2-NG, but this is way

too complex and we will use the M2-NG shortcut for presentation purposes while under-

standing that all these models have the OASIS concept at the core with various refinements

added to the resulting probability masks. The third column in Table 2.3.1 provides the

optimal threshold obtained during training, while the fourth and fifth columns display the

corresponding DSC and FPR on the test data.

Results indicate that the M1 model series (i.e., full models) outperforms the correspond-

ing M2 series models (higher DSC and better FPR), but the differences are not very large.

Taking into account that the M2 series models do not use smooth volumes, which can be time

intensive on large datasets, we consider that the M2 series models provide an excellent first

line approach for WMH segmentation. The M1-G model achieves the highest DSC (0.78),
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Table 2.3.1: OASIS-AD models information

OASIS-AD Techniques Optimal Threshold DSC FPR

M1 M1 0.17 0.72 0.017

M1-G M1 + GFR 0.20 0.79 0.011

M1-NG M1 + NNR + GFR 0.17 0.74 0.011

M1-GN M1 + GFR + NNR 0.21 0.76 0.008

M2 M2 0.13 0.70 0.024

M2-G M2 + GFR 0.14 0.77 0.017

M2-NG M2 + NNR + GFR 0.13 0.72 0.016

M2-GN M2 + GFR + NNR 0.16 0.74 0.013

though it has a slightly higher FPR than the M1-NG model (0.009 compared to 0.007).

2.3.2 Comparisons with other models

Table 2.3.2 compares results for the best OASIS-AD model (M1-G) with the four other

methods: OASIS, MiMOSA, LST and fuzzy-c, and Table A.1.1 in Appendix compares results

for all the OASIS-AD models with other methods. For the fuzzy-c method proposed by

Wu’s (Wu et al. (2006)) we only have the binary brain masks and not the probability map.

Therefore, it is not possible to compute the AUCs for fuzzy-c. The OASIS-AD (M1-G) model

has the highest DSC at 0.78, with a 95% CI equal with (0.77, 0.79), Both MIMOSA and

LST being close in second place (DSC=0.71, 95% CI: (0.70, 0.77) and DSC=0.76, 95% CI:

(0.75, 0.80) respectively). The ROC-AUC (0.97) and ROC-PRC (0.86) for the M1-G model

are substantially better than for MIMOSA (0.87 and 0.77, respectively) and LST (0.87 and

0.77, respectively.)

Figure 2.3.1 displays the ROC and PRC for the four models OASIS-AD (M1-G), OASIS,

MIMOSA, and LST, and Figure A.2.1 in Appendix displays the ROC and PRC for all the

models except fuzzy-c. The ROC curves are indistinguishable in the area of high specificity
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Table 2.3.2: Performance evaluation metrics (reduced)

ACC PPV TPR FPR DSC ROC PRC

M1-G 0.97(0.01) 0.85(0.03) 0.70(0.03) 0.009(0.001) 0.78(0.03) 0.97 0.86

(0.96,0.98) (0.83,0.88) (0.69,0.72) (0.008,0.01) (0.77,0.79)

OASIS 0.95(0.01) 0.75(0.04) 0.58(0.04) 0.014(0.002) 0.65(0.04) 0.92 0.74

(0.94,0.96) (0.75,0.8) (0.58,0.62) (0.012,0.015) (0.64,0.69)

MIMOSA 0.96(0.01) 0.94(0.02) 0.58(0.04) 0.002(0.001) 0.71(0.04) 0.87 0.77

(0.96,0.97) (0.93,0.97) (0.56,0.64) (0.001,0.003) (0.70,0.77)

LST 0.97(0.01) 0.83(0.05) 0.72(0.04) 0.012(0.005) 0.76(0.03) 0.87 0.77

(0.96,0.97) (0.83,0.86) (0.71,0.76) (0.010,0.013) (0.75,0.8)

fuzzy-c 0.95(0.002) 0.88(0.13) 0.51(0.13) 0.018(0.015) 0.62(0.11) NA NA

(0.94,0.96) (0.85,0.89) (0.50,0.52) (0.017,0.019) (0.61,0.63)

Data is presented as mean (standard deviation) and 95% CI

(specificity> 0.99), with the M1-G model performing slightly better. However, as specificity

is allowed to be smaller (moving right on the 1-Specificity x-axis) the ROC of the OASIS-AD

model is substantially better than for the other models. This indicates that small changes

in specificity can lead to much larger improvements in sensitivity for the OASIS-AD model

compared to the competing models. Both MIMOSA and LST seem to be tuned specifically

for high specificity, whereas OASIS has higher sensitivity for specificity areas that are not of

practical interest. A similar result can be noted for the PRC in the left panel of Figure 2.3.1.

2.3.3 One slice comparison among models: case study

Figure 3.6.2 showing true positives, false positives and false negatives color coded, com-

pares the WMH segmentation results using two OASIS-AD methods (M1-G shown in panel

C and M1-GN shown in panel D) with OASIS (panel E), MIMOSA (panel F), and LST

(panel G), and fuzzy-c (panel H). Results are shown on one slice of a random subject from
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Figure 2.3.1: ROC and PRC of models(reduced)

the training data. The corresponding FLAIR slice is shown in Panel A, while the man-

ual segmentation of WMH is shown in Panel B. This slice contains both large and small

contiguous WMHs regions and results indicate the good performance of both OASIS-AD

approaches. The MIMOSA mask also looks very good, with slightly more speckling. The

LST and OASIS estimators seem to contain many more spatially distributed false positive

voxels, which may indicate a substantially different trade-off of false positives. Indeed, while

the FPR was comparable between OASIS-AD and OASIS and LST, it seems that the false

positives for OASIS-AD tend to cluster close to the true positives, whereas for the other two

methods they are spread in areas that do not contain WMH. The fuzzy-c mask seems to
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be slightly conservative, misses important WMH clusters, and falsely identifies some WMH

close to the cortical surface.

Figure 2.3.2: Case study: A: FLAIR slice, B: manual, C: M1-G, D: M1-GN, E: OASIS, F:

MIMOSA, G: LST, H: fuzzy-c.

2.4 Conclusions

We introduced OASIS-AD, a class of models designed to refine OASIS (Sweeney et al.,

2013), an MS lesion segmentation approach for WMH in older adults with AD. OASIS-AD

performed well in comparison with existing methods. OASIS-AD provides an interpretable

solution based on logistic regression combined with two map refinement techniques designed

to reduce the false-positive rate. OASIS-AD is a significant improvement over OASIS both

in terms of modeling techniques, which are adapted for the specific problems raised by WMH

segmentation and in terms of segmentation performance. OASIS-AD has three major ad-

vantages that are worth emphasizing. First, the logistic-based approach is highly flexible
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and it allows the use of any combination of multi-modal inputs, easy expansion of the pre-

dictor space, non-linearity, and potential interaction effects. Moreover, traditional methods

for quantifying the relative importance of existing or new predictors can provide powerful in-

sights into what and how new modalities and features are actually contributing to improved

segmentation. Second, OASIS-AD can be trained with small, moderate, and large sample

sizes, making it a very useful first-line segmentation approach that can be easily deployed in

new environments or sub-disease types. Third, and probably most importantly, OASIS-AD

is easy to generalize and interpret because it is based on a logistic regression model that

accounts for the intensity of voxels in various disease tissues across image modalities.
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3.0 Multivariate Image-on-scalar Regression via Interpretable Regularized

Reduced Rank Regression

3.1 Introduction

In this project, we used the cohort in Cohen et al. (2013), which included both PET

and sMRI images of patients in an Alzheimer’s Disease study, and patients’ demograph-

ics, psychosocial and cardiovascular measures. We developed a multivariate image-on-scalar

regression that used PET as outcomes and patients’ scalar measures as predictors. To over-

come the high-dimension of images, we restricted our multivariate regression via a low-rank

factorization of the parameter matrix. Low-rank factorization is a straightforward dimension

reduction technique that can be used with high-dimensional data to introduce parsimony,

resulting in theoretical and computational benefits. Reduced-rank regression (Reinsel and

Velu, 1998) is a popular tool for conducting regression analyses with multivariate outcomes

that utilize potentially low-rank structures of coefficient matrices to account for relationships

among response variables. Several regularized reduced-rank regression procedures have been

proposed that combine reduced rank-regression with regularizing penalties to facilitate pa-

rameter estimation and model selection with high-dimensional data (Chen and Huang, 2012;

Chen et al., 2012, 2013; She and Chen, 2017). However, there are two major limitations

in the use of existing regularized reduced-rank regression methods for the analysis of image

response data. First, to the best of our knowledge, no existing method simultaneously ac-

counts for the spatial smoothness, functional and structural grouping, and sparsity inherent

with image response data. Second, regularization in existing methods is built on a subspace

after dimension reduction. This leads to a lack of interpretability since either the rank fac-

torization is not unique or the subspace lacks the same structure as the original data. For

example, in our motivating application, voxels that are in close proximity or in a common

structural group in the brain (i.e. image response variable space) are not necessarily the

same distance apart or in the same group in the reduced-rank subspace.

To overcome these limitations, in this Chapter we propose interpretable reduced-rank re-
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gression (IRRR) as a method for image-on-scalar regression. The method uses a fused sparse

group lasso penalty after dimension reduction, which reduces the size of the high-dimensional

model while regularizing based on spatial smoothness, structural and functional grouping,

and sparsity. Many different group structures can be used based on known biological infor-

mation or information that can be used to increase interpretablity of results. For example,

by specifying group structures based on regions of interest (ROI), the procedure can conduct

a voxel-wise analysis that fully utilizes all image information while producing results that

can be interpreted as an ROI-wise analysis. The penalty includes an encoder-decoder to

enable it to be formulated on the reduced-rank space, but maintain biological interpretation

and regularize on the image space.

3.2 Method

3.2.1 Model

Let <n×m be the space of n×m real-valued matrices. We observe images with m response

variables (i.e. voxels) from n independent subjects that have been vectorized to obtain the

matrix image data Y ∈ <n×m. Further, we assume that we observe p scalar predictors for

each subject, and let X ∈ <n×p represent the matrix of scalar predictors. We assume the

image-on-scalar regression model

Y = XA+ E, (3.1)

where A ∈ <p×m is a matrix of coefficients whose ijth element represents the ith scalar

predictor’s effect on the jth image response variable, and the elements of E ∈ <n×m are

independent mean-zero Gaussian random variables with variance σ2. It is assumed that

data have been centered so that no intercept appears in the model.

Ordinary least squares estimation of this model is undesirable for two reasons. First, it

provides estimators that ignore the existence of any relationship among response variables,

resulting in an estimator that is equivalent to conducting univariate regressions on each

outcome variable individually. In practice, especially for image data, outcome variables are
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highly related. Second, with high-dimensional data, some sort of dimension reduction is

essential for obtaining stable and tractable estimates. To overcome these issues, we assume

that the model is of reduced rank such that r = rank(A) < min(p,m). Let A = BV T be

a rank factorization of A where B ∈ <p×r and V ∈ <m×r represent left and right singular

subspace, respectively, such that

Y = XBV T + E. (3.2)

The row space of B represents the structure of X, or the scalar predictors, and the row

space of V represents the structure of Y , or the image response variables. Our goal is to

understand associations between the predictors and image responses by estimating A via B

and V . It should be noted that the rank factorization is not unique since, for any orthogonal

Q ∈ <r×r, A = BV T = BQQTV T . The proposed estimator circumvents this obstacle

through a two-step procedure that provides a consistent estimator of A without additional

constraints.

3.2.2 IRRR: Interpretable regularized reduced-rank regression

Similar to some existing regularized reduced-rank regression procedures, we will take a

two-step approach to estimation that first estimates B, then V . This approach has two

favorable characteristics. First, estimating V conditional on an estimate of B mitigates

potential identifiability issues without needing to introduce geometric constraints. Second,

separating the estimation of B and V provides a divide-and-conquer type of approach that

reduces the size and complexity of any individual optimization. The innovative question

considered in this article is in analyses with image response variables while accounting for

the complex structure inherent with image data. The two-stage procedure enables us to

isolate this complexity to the estimation of V . It also allows us to utilize existing methods

for reduced-rank regression with potentially high-dimensional predictors to estimate B. For

example, a consistent estimate of B can be obtained using methods such as that considered

by Ma and Sun (2014). In this subsection, we discuss the proposed novel estimator of V

given an estimate B̂ of B. The full proposed estimation procedure, including the estimation

of B and inherent selection of r, is presented in Section 3.3.
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There are three aspects of image data that we want to exploit in obtaining regularized

estimators. Penalties will be formulated using the L1 and L2 matrix norms, defined for

a matrix M as |M |1 =
∑
j

∑
k

|mjk| and ||M ||2 = (
∑
j

∑
k

|mjk|2)1/2, respectfully. First, we

desired a fused penalty that regularizes based on the smoothness of adjacent image response

variables. Let D ∈ <NF×m be the generalized lasso representation of the fused lasso such

that
∣∣ADT

∣∣
1

is the sum of differences of adjacent image response variables (Tibshirani, 2011),

illustrations of which are provided in the Appendix. Spatial smoothness will be accounted for

by penalizing the roughness
∣∣ADT

∣∣
1

=
∑p

i=1

∑m−1
j=1

∑
k∈Nj |Aij − Aik| where Nj is the set of

image response variables one unit larger than the jth in any dimension. In addition to spatial

smoothness, often with imaging data, either based on prior findings or on a desire to obtain

more interpretable results, image response variables can be placed into group or clusters

based on functional or structural networks. An interpretable solution would allow one to

regularize by selecting entire groups of voxel effects. Given a set G of non-overlapping subsets

of the m image response variables, for a g ∈ G with mg elements, we define Gg ∈ <mg×m as

the matrix such that AGT
g ∈ <n×mg is the submatrix of A with columns corresponding to

the elements of g. Group structure will be accounted for by incorporating the group lasso

penalty
∑

g∈Gm
1/2
g

∣∣∣∣AGT
g

∣∣∣∣
2

=
∑p

i=1

∑
g∈Gm

1/2
g (
∑

j∈g A
2
ij)

1/2 (Yuan and Lin, 2006) . Lastly,

we will allow for sparsity among voxels within groups, as well as sparsity among voxels not

included in a group, through the lasso penalty |A|1 =
∑p

i=1

∑m
j=1 |Aij| (Tibshirani, 1996).

Given an estimate B̂ of B, we formulate an estimator of V that uses the linear operator

B̂ as an encoder decoder. Let XB̂ = XB̂, so that Equation (3.2) be written at Y = XB̂V +E.

The regression coefficient subspace of <n×m of rank r matrices with left singular subspace

B̂ can be represented as B̂V T , V ∈ <m×p. Rather than formulating penalties on A, we

formulate them on this subspace and replace A with its projection B̂V T . Formally, given

tuning parameters λ1, λ2, λ3 > 0, which control the degree of regularization through the

lasso, fused lasso and group lasso penalties, respectively, the IRRR estimator is defined as

Â = B̂V̂ T where

V̂ = arg min
V ∈<m×r

1

2
‖XB̂V − Y ‖

2
2 + λ1|B̂V T |1 + λ2|B̂V TDT |1 + λ3

∑
g∈G

m1/2
g ||B̂V TGT

g ||2. (3.3)
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This formulation allows us to estimate within the tractable reduced-rank subspace while

regularizing based on penalties that are interpretable on the high-dimensional image response

space.

3.3 Estimation Procedure

3.3.1 Two step estimation algorithm

We propose a two-step estimation procedure, which is formally defined in Algorithm 2.

The first step involves the estimation of B and is a modification of the procedure considered

by Ma and Sun (2014). As opposed to Ma and Sun (2014), who considers high dimensional p

under sparsity, we are concerned with moderate p of potentially highly correlated predictors

that are selected for their biological relevance; subsequently all are expected to be associated

with some image response variables. We replace their lasso penalty with a ridge penalty

(Hoerl and Kennard, 1970), which can be efficiently solved using the algorithm of Friedman

et al. (2010). It should be noted that Algorithm 2 can be easily adjusted to include the case

of high-dimensional sparse predictors; a discussion of this extension is provided in Section

3.7. The key step in the algorithm is solving Equation (3.3) an outline of an algorithm for

which is given in the following subsection, with technical details provided in the Appendix.

In Algorithm 2, the function ρB(B;λ) = λ||B||22 is the ridge penalty, the function ρV (V ;λ)

is the fused sparse group penalty found in Equation (3.3) and, to simplify presentation, we

adopt a slight abuse of notation and let λ represent general tuning parameters.

The algorithm depends on several parameters. The ridge and sparse fused group lasso re-

gressions depend on tuning parameters, which can be selected through 5-fold cross-validation.

We estimate the rank r = rank(A) using the method of (Bunea et al., 2011) and the standard

deviation of the errors as σ̂ = median {σ(Y )} /
√

max(n,m) (Ma and Sun, 2014).
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Algorithm 2 Two step estimation algorithm of A

Input:Vectorized image data Y , scalar data X, estimated rank r, noise level σ,

ridge regularization on B̂: ρB(·;λ), fused sparse group lasso on V̂ : ρV (·;λ)

Output: Â

1: Compute P = X(XTX)−XT , where (XTX)− is Moore-Penrose pseudo-inverse

2: Compute right singular subspace of PY by singular value decomposition with first r

singular vectors, denoted as V0

3: Ridge regression:

B1 = arg min
B∈<p×r

||Y V0 −XB||22 + ρB(B;λ)

4: Compute the left singular vectors of XB1, denoted as U1

5: Compute the right singular vectors of U1U
T
1 Y , denoted as V1.

6: Ridge regression:

B2 = arg min
B∈<p×r

||Y V1 −XB||22 + ρB(B;λ)

7: Fused sparse group penalized regression:

V2 = arg min
V ∈<m×r

||Y −XB2V
T ||22 + ρV (V ;λ)

8: Compute estimation of A: Â = B2V
T

2

3.3.2 Alternating direction method of multipliers (ADMM) solution

To solve Equation (3.3), we first represent it in a more computationally amenable form.

Then, we use alternating direction method of multipliers (ADMM) (Boyd et al., 2011) to

obtain a numeric solution. The ADMM has the ability to handle complicated penalty struc-

tures, such as the one encountered in Equation (3.3), that cannot be separated into a sum

of functions of the elements of V . Such penalties structures are not amenable to many other

common approaches, such as coordinate descent and accelerated gradient.

We begin by noting that Equation (3.2) can be expressed as Y v = Xv
BV

v+Ev where Y v =

vec(Y ), Xv
B = [Im⊗ (XB̂)], V v = vec(V ), and Ev = vec(E). Next, we represent the penalty

term as the sum of L2-norms. This can be done by recognizing that the trivial relationship
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|v| =
√
v2 enables the penalty function to be written as the sum of N = NL + NF + NG

L2-norms (Beer et al., 2019): NL = pm from the lasso penalty, NF from the fused penalty

where, for a 3-dimensional image of dimension m1 × m2 × m3 such that m = m1m2m3,

NF = p(3m−m1m2 −m1m3 −m2m3), and NG = p|G| from the group penalty where |G| is

the number of groups. Thus, Equation (3.3) can be represented

V̂ v = arg min
V v∈<(mr)

1

n
‖Xv

BV
v − Y v‖2

2 +
N∑
`=1

λ`||K`V
v||2, (3.4)

where for ` = 1, . . . , NL, K` is the `th row of Im⊗B̂ and λ` = λ1, for ` = NL+1, . . . , NL+NF ,

K` is the (`−NL)th row of D⊗ B̂ and λ` = λ2, and for ` = NL +NF + 1, . . . , N , K`+NL+NF

is the matrix Gg` ⊗ B̂ and λ` = λ3m
1/2
g` where g` is some ordering of the NG groups in G.

Lastly, letting K = (KT
1 | · · · | KT

N)T ∈ <N×mr be the concatenation of the matrices K` and

introducing auxiliary variables µ`, θ` = K`V
v, and µ, θ, after initialization, the algorithm

iterative updates are:

V v(t+1) =
(
XvTXv + ρKTK

)−1 [
XvT +KT (µ(t) + ρθ(t))

]
,

θ
(t+1)
` =

[
1− λ`/(ρ||η(t)

` ||2)
]

+
η

(t)
` ,

µ
(t+1)
` = µ

(t)
` + ρ

(
θ

(t+1)
` −K`V

v(t+1)
)
,

where ρ is pre-specified step size parameter (Boyd et al., 2011), [·]+ = max(0, ·) and η
(t)
` =

K`V
v(t) − µ(t)

` /ρ. The stopping criteria of this numeric algorithm is provided in Appendix.

3.4 Theoretical Properties

In this section, we establish the consistency of V̂ if the true B was known, then establish

the consistency of Â from the proposed two-step algorithm. We consider the setting where

both the number of imaging variables m and the number of subjects n grow, but where the

number of predictors p is fixed. The results depend on several assumptions. First, it depends

on the regularity size of the design matrix. We assume XTX/n converges to a non-singular

p × p matrix with maximal diagonal element dX . Second, it depends on the sparsity and
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smoothness of the parameter matrix A. We assume a fixed parameter S, which is formally

defined in the Appendix. The parameter is a standard inverse measure of sparsity that is

a positive function of the proportion of non-zero imaging response variables, the proportion

of unequal adjacent response variables, and the proportion of non-zero groups of response

variables.

Theorem 1. Let A∗ = B∗V ∗T be a rank factorization of the true coefficient matrix A∗ and

V̂ be the minimizer of (3.3) given B∗. If max(λi) = 2CdXσ
√

log(pm) for some C >
√

2,

with probability 1− (pm)1−C2/2 and as m,n→∞, then

||V̂ − V ∗||22 = Op

[
log(m)

n

]
,

1

n
||XB∗(V̂ − V ∗)||22 = Op

[
log(m)

n

]
.

The results of Theorem 1, which could be of interest in their own right, can be used

to establish the consistency of Â from the two-stage procedure defined in Algorithm 2. We

assume that an appropriate
√
n-consistent estimator of B has been used in the first step of

the algorithm. It should be noted that, in our setting, this includes both ridge regression

and least squares.

Theorem 2. Let A∗ = B∗V ∗T be a rank factorization of the true coefficient matrix and Â

be the estimator obtained from the two-stage procedure introduced in Section 3.3. If λi ∼√
log(m) as m,n→∞, then

||Â− A∗||22 = Op

[
log(m)

n

]
,

1

n
||X(Â− A∗)||22 = Op

[
log(m)

n

]
.

The consistency in Theorem 2 was established for the fixed p, large m and n setting. A

discussion about adjustments for the large but sparse p setting is provided in Section 3.7.
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3.5 Simulation Study

In this section, we report results from simulation studies to evaluate the empirical prop-

erties of the proposed IRRR procedure and to compare it to existing reduced-rank regression

methods that do not account for structure inherent with image data. The setting is chosen

to reflect the scenario where there is sparsity and where this sparsity can be dependent on

combinations of predictors and image responses. To generate a coefficient matrix A ∈ <p×m

for a given level of sparsity s ∈ (0, 1), which reflects the percent of image responses with

non-zero associations with any of the predictors, we begin by simulating values for its first

m × s columns from a standard normal distribution and setting the remaining columns to

zero. Next, the top left [p/2]× [(m× s)/2] sub-matrix of A, which we refer to as A0, is set to

zero. Figure 3.5.1 displays a realization of A to illustrate this structure. The predictor matrix

X ∈ <n×p is simulated from multivariate distribution N (0,Σx) and Σx has diagonal elements

1 and off-diagonal elements ρX . The elements of E ∈ <n×m are generated from independent

standard Gaussian random variables, and outcomes are generated as Y = XA + E. Data

are generated for m = 200 image response variables, n = 100 subjects, and varying levels of

p, s and ρX .

Figure 3.5.1: Illustration of a simulated coefficient matrix A

In addition to the proposed IRRR procedure, each simulated data set was also fit using
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ordinary least squares (OLS) reduced-rank regression (Reinsel and Velu, 1998) and using

4 existing regularized reduced-rank regression procedures: (1) R4 - robust reduced rank

regression for joint modeling and outlier detection proposed in She and Chen (2017), (2)

RSSVD - the iterative procedure with sparse singular value decomposition on the regression

coefficient matrix and estimated singular subspace and singular values of Chen et al. (2012),

(3) RRR - the method with adaptive nuclear norm penalization of Chen et al. (2013), and

(4) SRRR - the method with row-wise penalization after dimension reduction proposed in

Chen and Huang (2012). These 5 existing approaches were fit using the R package “rrpack”.

The proposed method was fit using the provided R package “irrr”, which utilizes a parallel

framework and “Rcpp” (Eddelbuettel and François, 2011) to enable efficient and practi-

cal computation. Estimator performance, which is provided in Table 3.5.1, was evaluated

through the average and standard deviation of mean squared error over 100 random samples

per setting of 3 quantities: (1) estimation error through MSE(Â), (2) mean prediction error

through MSE(XÂ), and (3) error in estimation of the structural zero submatrix through

MSE(Â0). As it is known that OLS reduced-rank regression performs poorly when the di-

mension is larger than the sample size, it is not surprising that OLS displayed higher error

compared to the 5 regularized procedures in nearly all settings. The one exception is RSSVD

for highly correlated predictors, which is unable to accurately induce sparsity when there

is little distinction among predictors. The proposed IRRR procedure has lowest MSE for

all settings. This can be attributed to the fact that all other regularized procedures regu-

larize on the reduced rank space, while IRRR regularizes on the image response space to

maintain interpretability. The simulation settings reflect the plausible scenario where the

sparsity structure of the image response and reduced rank spaces are different. Existing

methods, which regularize on row-wise and column-wise reduced-rank subspaces separately,

will inaccurately regularize arbitrary sparse structure within some non-sparse structure.
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3.6 Analysis of PET Data

For decades, researchers have observed links between cardiovascular and Alzheimer’s dis-

eases. However, the exact nature of these connections, in particular how vascular measures

are associated with anatomical symptoms of Alzheimer’s disease, are unknown (Tublin et al.,

2019). Clinicians and researchers utilize PET to quantify the severity of Alzheimer’s disease

by measuring the accumulation of the β-amyloid peptide (Aβ) in different location of the

brain. The goal our the analysis considered in this section is to better understand the as-

sociation between Aβ accumulation in the brain, as quantified in PET scans, with vascular

measures that are easily an commonly recorded by clinicians, which are predictive of pre-

clinical cardiovascular disease. We consider data from a study of older adults (Cohen et al.,

2013) that consist of PET images in n = 55 older adults along with 5 vascular measures:

resting pulse rate, diastolic blood pressure, systolic blood pressure, body mass index(BMI)

and wait hip circumference ratio(WHR). The mean participant age was 79.32 years with a

standard deviation of 6.41 years.

In this study, our analysis considers data from 5 regions of interest (ROIs): 11856 voxels

comprising the anterior cingulate (ACG), 17401 voxels comprising the insula (INS), 28288

voxels comprising the orbito frontal (OBF), 13539 comprising the posterior cingulate (POC),

and 21743 voxels comprising precuneus (PRE) (Cohen et al., 2013). The group penalty was

formulated from these G = 5 groups. The top row of Figure 3.6.2 displays the location of

the regions of interest in the brain. Since measurements among scalar predictors are quite

different, we center each predictor and scale them by their standard deviation. For image

response variables, we center them without scaling as they have already been preprocessd.

Results of exploratory univariate analyses can be found in the Appendix. The estimated

coefficient matrix Â from the proposed IRRR procedure is displayed in Figure 3.6.1, while

the second to the fifth rows of Figure 3.6.2 display the estimated coefficients mapped onto

locations of the brain. We found that associations are not present in INS, there are weak

signals in OBF and relatively stronger signals in ACG, POC and PRE. Increased image in-

tensity is a measure of increased Aβ accumulation within the brain, which is a physiological

underpinning Alzheimer’s behavioral manifestations. Past studies have found associations
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between BMI and Aβ accumulation (Hsu et al., 2016), while our study found no association.

It should be noted that we conducted a multivariate analysis so that the effect of BMI on

Aβ accumulation is conditional on other variables. In particular, it is conditional on WHR,

which is positively correlated with BMI. Our findings, where WHR is positively associated

with Aβ accumulation in the ACG, POC and PRE conditional on BMI provides biological

evidence that supports previous findings in which increased abdominal fat was found to be

associated with increased risk for dementia (West and Haan, 2009). Hypertension is asso-

ciated with Alzheimer’s disease and one would initially expect a positive association with

Aβ accumulation (Tublin et al., 2019). However, it is interesting to note that, in our anal-

ysis, systolic and diastolic blood pressure were found to be negatively associated with Aβ

accumulation in some voxels, and not associated with others. This is most probably due

to a selection bias. In order to be in our study, participants were required to be demen-

tia free and healthy enough to participate in the imaging study. This inherently excludes

individuals with both high blood pressure and Aβ accumulation, who would be either be de-

mented, deceased or too ill to participate in our study. The proposed estimation procedure’s

ability to incorporate regularity within the brain space, which is not restricted to row- and

column-sparsity on the reduced space, makes it uniquely able to identify that the conditional

relationship between blood pressure and Aβ accumulation is not uniform within regions of

interest.

3.7 Conclusions

The proposed IRRR represents a novel approach to image-on-scalar regression after di-

mension reduction with possibly hundreds of thousands of response variables that regularize

based on interpretable characteristics of image data. The estimator is formulated for the

setting that is common in practice, including our motivating application, where p is fixed to

reflect the use of a set of predictors selected for scientific interest and where m can grow at

an exponential rate compared to n to reflect the large number of image response variables

relative to the number of subjects. Theoretically, under the large p setting, the consistency
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results established in Theorem 2 would need to be adjusted and would be rate limited by

the growth of p relative to n. Numerically, IRRR utilizes ADMM to solve estimation in

a complicated regularization setting. Further discussions and future researches have been

described in Chapter 5.
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Table 3.5.1: Simulation Results - MSE of Â, XÂ, and Â0 (multiplied by 100)

Parameters IRRR R4 RSSVD RRR SRRR OLS

p s ρX MSE(Â)

10 0.1 0.1 0.10(0.01) 0.27(0.09) 0.65(0.44) 0.21(0.03) 0.27(0.09) 1.17(0.07)

10 0.1 0.9 0.39(0.12) 2.23(4.92) 10.18(8.67) 1.17(0.22) 2.18(4.92) 10.01(0.64)

10 0.9 0.1 0.21(0.03) 0.29(0.12) 0.40(0.13) 0.22(0.03) 0.28(0.11) 1.18(0.08)

10 0.9 0.9 1.06(0.20) 1.79(1.25) 12.89(8.02) 1.20(0.19) 1.73(1.20) 10.10(0.73)

30 0.1 0.1 0.05(0.01) 0.12(0.07) 0.40(0.26) 0.08(0.01) 0.11(0.06) 1.56(0.07)

30 0.1 0.9 0.24(0.06) 0.83(0.54) 19.09(14.30) 0.52(0.10) 0.78(0.47) 13.91(0.62)

30 0.9 0.1 0.08(0.01) 0.12(0.06) 0.20(0.07) 0.08(0.01) 0.12(0.06) 1.57(0.07)

30 0.9 0.9 0.49(0.09) 0.81(0.50) 22.02(13.81) 0.54(0.09) 0.76(0.43) 14.00(0.63)

p s ρX MSE(XÂ)

10 0.1 0.1 0.97(0.14) 2.63(0.92) 6.23(4.21) 2.07(0.31) 2.58(0.94) 11.03(0.79)

10 0.1 0.9 1.11(0.23) 3.21(4.76) 13.53(10.43) 2.13(0.31) 3.15(4.78) 11.03(0.79)

10 0.9 0.1 2.06(0.31) 2.82(1.11) 3.86(1.24) 2.15(0.33) 2.76(1.08) 11.15(0.86)

10 0.9 0.9 1.97(0.31) 2.75(1.26) 17.33(9.60) 2.12(0.31) 2.67(1.23) 11.15(0.86)

30 0.1 0.1 1.29(0.18) 3.39(2.00) 11.63(7.77) 2.43(0.35) 3.30(1.90) 43.07(2.41)

30 0.1 0.9 1.36(0.31) 3.41(1.72) 64.92(44.02) 2.44(0.35) 3.25(1.51) 43.07(2.41)

30 0.9 0.1 2.33(0.30) 3.38(1.55) 5.79(2.07) 2.41(0.31) 3.32(1.53) 43.25(2.24)

30 0.9 0.9 2.33(0.34) 3.34(1.55) 74.13(47.92) 2.50(0.35) 3.18(1.33) 43.25(2.24)

p s ρX MSE(Â0)

10 0.1 0.1 0.15(0.07) 0.36(0.18) 4.77(6.27) 0.30(0.12) 0.35(0.17) 1.16(0.23)

10 0.1 0.9 1.29(0.71) 13.92(99.47) 58.45(91.06) 1.91(0.92) 13.80(99.49) 9.90(1.80)

10 0.9 0.1 0.18(0.04) 0.29(0.13) 0.44(0.21) 0.22(0.05) 0.28(0.12) 1.17(0.12)

10 0.9 0.9 0.81(0.36) 1.82(1.54) 8.21(8.26) 1.21(0.63) 1.72(1.49) 10.16(1.06)

30 0.1 0.1 0.17(0.06) 0.25(0.09) 2.13(2.05) 0.22(0.07) 0.24(0.09) 1.55(0.21)

30 0.1 0.9 1.55(0.62) 2.02(0.76) 105.28(88.60) 1.74(0.62) 1.86(0.71) 13.75(1.86)

30 0.9 0.1 0.07(0.01) 0.12(0.06) 0.24(0.10) 0.09(0.01) 0.12(0.06) 1.56(0.10)

30 0.9 0.9 0.40(0.16) 0.80(0.54) 14.58(10.35) 0.53(0.25) 0.72(0.43) 14.08(0.91)
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Figure 3.6.1: Estimated coefficient matrix Â from the PET study.
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Figure 3.6.2: Location of regions of interest within the brain (1st row) and IRRR estimated

regression coefficients mapped onto the brain (2nd - 6th rows) from axial (1st column),

sagittal (2nd column) and coronal (3rd column) views.
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4.0 ACU-Net: An Efficient Convolutional Network for Biomedical Image

Segmentation

4.1 Introduction

In 1998, “Lenet-5”, one of the earliest convolutional neural networks, was proposed in

LeCun et al. (1998) and achieved great success for the classification of handwritten numbers

on MNIST set. However, due to hardware limitations, deep neural networks (DNN) did

not attract widespread attention until 2012 when AlexNet (Krizhevsky et al., 2012) won

the ImageNet competition by an 11% margin. After that, both academic and IT industrial

researchers developed multiple well-validated deep networks of computer vision such as Vi-

sual Geometry Group (VGG) in Simonyan and Zisserman (2014), GoogLeNet in Szegedy

et al. (2015), and ResNet in He et al. (2016). Building upon these established deep network

architectures, researchers developed more and more networks for specific areas or tasks. U-

Net was developed in Ronneberger et al. (2015) and provides a practical deep network on

training data with relative small sample size (i.e. 30 medical images and 512× 512 pixels).

Recently, researchers have focused on building compact deep neural networks not limited

to CNN. Wen et al. (2016) proposed a Structured Sparsity Learning (SSL) method to regular-

ize the structures of DNNs by introducing sparse group lasso regularization, both filter-wise

and shape-wise. Yu et al. (2017) assumed weight filters to be both low-rank and sparse,

and split the weight matrix into the sum of a low-rank matrix and a sparse matrix, then

applied several of thefamous networks listed above. Lee et al. (2019) proposed DeepTwist,

a technique to compress CNNs by low-rank approximation to injected noise into weights.

Kossaifi et al. (2019) proposed T-Net, a parametrizing fully convolutional network with a

single high-order tensor that is different from previous layer-by-layer tensorization. Com-

pared with the popular dropout technique in Srivastava et al. (2014), which shrunk DNNs

by randomly dropping units (along with their connections) from the neural network during

training, low-rank approximation and sparsity regularization provide a more interpretable

approach for dimension reduction and feature selection.
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In state-of-the-art biomedical image segmentation deep neural models, U-Net (Ron-

neberger et al., 2015) is the most famous and well-validated structure. Recent deep neural

networks for biomedical image segmentation frequently use U-Net as basic structure or for

comparison. Our work is also inspired by U-Net. In addition, among most recent researches

on compression of deep neural networks, depth-wise separable convolutions (Howard et al.,

2017), inverted residual block (Sandler et al., 2018) and squeeze-and-excitation networks (Hu

et al., 2018) are proved to be very useful and popular. Thus, we proposed ACU-NET, an

asymmetric compact U-Net by applying the depth-wise separable convolutions in an inverted

residual block with squeeze-and-excitation to convolutional layers.

This Chapter describes the ACU-Net model in order to deliver the next generation of

high accuracy efficient networks to improve biomedical imaging segmentation tasks by re-

ducing computation cost while maintaining predictive performance. This could enable the

segmentation tasks to even be performed on mobile devices in the future.

The goal of this Chapter is to optimize the trade off between accuracy and model size.

To realize this we have introduced: (1) an efficient convolutional layer block design and (2)

a new network architecture. We presented experiments on the normal aging cohort used in

Chapter 2 of this dissertation to demonstrate the breakthrough efficacy of ACU-Net.

4.2 Method

First, we introduce U-Net architecture, which is illustrated in Fig 4.2.1. It is mainly

established with:

• Convolutional layers with ReLU (Rectified Linear Unit) i.e. f(x) = X+ =

max(0, x). Convolutional operation is sliding a convolutional filter over an input feature

map. The output feature map is built by the dot products between the filters and input

feature map.

• Max-pooling layers are operating independently on every depth slice of the input

feature map and resizes it spatially, using the max function. These layers are often used

to decrease the size of the input feature map.
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• Up-convolutional layers are doubling the input feature map size.

• Sigmoid activation function i.e. f(x) = 1/(1+e−x) is used in the last fully connected

layer to create an output probability map.

Second, U-Net has symmetric architecture, in each convolutional layers block, the last convo-

lutional layer is cropped and copied to corresponding up-convolutional layer block in decoder.

U-Net has following properties: (1) In each convolutional layer block, it includes two convolu-

tional layers followed by a max-pooling layer to halve the input feature maps dimension and

then, double the number of channels. For example, the last feature map of first convolutional

layer block is 568×568×64 which is corresponding to H(height)×W (width)×C(channel),

then after a max-pooling layer, the feature map becomes 284 × 284 × 64. Next, a convolu-

tional step makes this feature map become 284×284×128. (2) In the decoder part of U-Net,

which is the right part of the U-Net architecture, it is symmetric to its corresponding encoder

part. Thus it costs similar even higher computation cost compared with its corresponding

encoder part as it concatenates the encoder part at the beginning of each decoder block.

4.2.1 ACU-Net convolutional layer block

Although U-Net is effective in biomedical imaging segmentation, it is “overweight” com-

pared with modern compact models. To compress U-Net while maintaining its capacity, we

have developed ACU-Net. Before we demonstrate ACU-Net architecture, we first introduce

several techniques we have used to build ACU-Net convolutional layers block.

Depthwise separable convolution Depthwise separable convolution was proposed in

Howard et al. (2017) and described in Fig 4.2.2. The classic convolutional filters, for example,

with filter size DK ×DK , input channel number as M , output channel number as N in Fig

4.2.2.(a) has been decomposed into two parts: depthwise convolutional filters in (b) and

pointwise convolutional filters in (c). It is called “depthwise” because this technique first

looks at each channel as shown in (b), which is similar as decomposing a length M channel

tensor into M length 1 tensor. Thus, this step generates a temporary output feature map

with dimension DG ×DG ×M where DG is the spatial width and height of a square output

feature map (for simplicity of illustration, we use square feature map here). Next, in order
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Figure 4.2.1: U-Net architecture. Adapted from ‘U-Net: Convolutional Networks for

Biomedical Image Segmentation,’ by O.Ronneberger, P.Fischer and T.Brox, 2015, Interna-

tional Conference on Medical image computing and computer-assisted intervention, p.234–

241.

to transform the channel number from M to desired N , pointwise convolutional filters in (c)

are used as 1 × 1 convolutional filters to transform channel numbers to desirable ones. As

described in Howard et al. (2017), depthwise separable convolution can get a reduction in

computation of 1
N

+ 1
D2
k
. Using 3× 3 convolutional layer in U-Net as example, this technique

leads to around 1
8

computation cost compared with the classic convolutional filters.

Inverted residual with linear bottleneck Inverted residual with linear bottleneck

was proposed in Sandler et al. (2018) and described in Fig 4.2.3. In deep neural network

research, there is a notorious degradation problem: with more stacked layers to a deep

model, the acuracy becomes saturated and then degrades rapidly. To solve this problem and
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Figure 4.2.2: The classic convolution filters in (a) have been decomposed to depthwise con-

volution in (b) and pointwise convolution in (c).

create deeper models with promising accuracy, He et al. (2016) proposed ResNet. ResNet

includes residual learning blocks to learn residual of desired underlying feature mapping

instead of the feature mapping itself, then adds the input feature map to the end of the block.

This residual block dramatically relieves the degradation problem that leads to deeper and

deeper networks such as ResNet152, which included 152 layers. Inverted residual builds a

similar residual block with bottleneck compared with ResNet. The difference is that residual

blocks in ResNet are connecting two layers with higher number of channels while inverted

residual blocks are connecting two bottleneck layers with low number of channels. Thus,

residual blocks have an hourglass-shape while inverted residual blocks are spindle-shaped.
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The intuition of inverted residual block is: non-linear function such as ReLU does not work

well in low-dimensional space compared with linear functions (Sandler et al., 2018). Instead

of connecting two high-dimensional layers, inverted residual blocks are connecting two low-

dimensional linear bottleneck layers while the intermediate high-dimensional expansion layers

are more efficient to use non-linear activation functions for information retrieval. With this

inverted residual block, deep neural networks can be deeper without explosion on number of

parameters and relieve the degradation problem.

Figure 4.2.3: The inverted residual block inserts a bottle neck layer (diagonally batched

layers) between pointwise convolutional layers and output feature map. Then, a inverted

residual block is considered as components between two bottleneck layers shown with last 4

layers.

Squeeze-and-Excitation(SE) Squeeze-and-Excitation(SE) was proposed in Hu et al.

(2018) and is described in Fig 4.2.4. SE is a powerful tool to build a unit to recalibrate any

feature maps. The goal of SE is to selectively emphasize informative features and suppress

less useful ones. In Fig 4.2.4, an input feature map X with dimension H ×W ×C is passed

to a transformation operation Ftr and generates an output feature map U with dimension

H
′ ×W ′ × C ′ . Then, a unit built by SE is described in the following steps:

1. U has been squeezed channel-wise by Fsq, i.e. calculate the mean of each H
′×W ′

feature

map which resulted in a 1× 1× C ′ tensor;

2. the squeezed feature map is passed to a self-gating function Fex i.e. a sigmoid activation

s = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)), where δ refers to the ReLU function,
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W1 ∈ <
C′
r
×C′ and W2 ∈ C ′×<

C′
r . C

′
is the number of channel of U and r is a prespecified

reduction ratio used to build the self-gating mechanism with detailed discussion in Hu

et al. (2018);

3. The final output of the block is obtained by rescaling U with the operation Fscale i.e.

Ũ = Fscale(uc, sc) = scuc, where Fscale refers to channel-wise multiplication between the

scalar sc from excitation operation and each channel-wise 2d feature map in U .

Figure 4.2.4: A Squeeze-and-Excitation block: an output feature map U is first squeezed

by a function Fsq and followed by an excitation operation with a self-gating function Fex.

Output weights from excitation will used to recalibrate U and generate final output feature

map Ũ with operation Fscale.

ACU-Net convolutional layer block is then built based on above techniques and de-

scribed in Fig 4.2.5. Fig 4.2.5.(a) shows ACU-Net convolutional layer block without Squeeze-

and-Excitation which is the same block built in Sandler et al. (2018). Fig 4.2.5.(b) shows

ACU-Net convolutional layer block with Squeeze-and-Excitation which is the same block

built in Howard et al. (2019).

4.2.2 ACU-Net architecture

ACU-Net architecture is established based on following two ideas to relieve heavy param-

eterization problem of U-Net to avoid overfitting. The first idea is Light-Coder-and-Heavy-

Bottleneck and the second is Asymmetric-Auto-Encoder.
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Figure 4.2.5: ACU-Net convolutional layer block without Squeeze-and-Excitation in (a) and

with Squeeze-and-Excitation in (b).

Light-Coder-and-Heavy-Bottleneck In original U-Net described in Fig 4.2.1, num-

ber of channels of encoders (left part of U-Net) and decoders (right part of U-Net) are doubled

in next level layer block. This is a heavy design where the trade off between computation

cost and accuracy might not be well-optimized. Ignited by MobileNetV2 in Sandler et al.

(2018), low-dimensional bottleneck layer can well preserve the information. Thus, ACU-Net

demonstrated in Fig 4.2.6 uses a light encoder and decoder design with much fewer channels

compared with U-Net while still keep channel concatenation at the beginning of each decoder

block.

Asymmetric-Auto-Encoder In U-Net, each decoder block has the same operation

compared with its corresponding encoder block i.e. two convolutional layers operation. Al-

though U-Net has a U-shape symmetric architecture, it is still in sequential order. The

double convolutional layer operations in encoder block might be helpful for information re-

trieval while the corresponding decoder blocks with the same operation might not be able
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to keep the same efficacy compared with their encoder counterpart. Thus, decoder parts

in ACU-Net in Fig 4.2.6 with green color have fewer operations compared with their corre-

sponding encoder parts with blue color.

Figure 4.2.6: ACU-Net architecture.

Before introducing the details of components of ACU-Net, we first introduce several

definitions that are used in ACU-Net. Batch Normalization was proposed in Ioffe and

Szegedy (2015), which was used to relieve internal covariate shift i.e. different inputs of

each layers slowed down the training by requiring lower learning rates and careful param-

eter initialization. Batch Normalization (BN) normalizes a part of the model architecture

and performing the normalization for each training mini-batch. BN is used in ACU-Net

inverted block after each convolutional operation. Hard swish activation function is defined

as: h-swish(x) = xReLU6(x+3)
6

where ReLU6(x) = min(max(x, 0), 6) is the clipped version

of ReLU. This activation function is well validated in Howard et al. (2019) to avoid gradi-

ent vanishing/exploration problem while reduce the number of memory accesses by used in

deeper layers of the model. In Table 4.2.1, we list the details of layers in ACU-Net.
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Table 4.2.1: Details for ACU-Net

Input Operator exp size #out channel SE NL s

Encoder

2562 × 3 conv2d - 16 - HS 2

1282 × 16 InvRes-B, 3× 3 16 16 - RE 1

1282 × 16 InvRes-B, 3× 3 64 24 - RE 2

642 × 24 InvRes-B, 3× 3 72 24 - RE 1

642 × 24 InvRes-B, 5× 5 96 40
√

HS 2

322 × 40 InvRes-B, 5× 5 240 40
√

HS 1

322 × 40 InvRes-B, 5× 5 240 40
√

HS 1

322 × 40 InvRes-B, 5× 5 240 240
√

HS 2

Decoder

162 × 240 Upconv2d - 40 - - 2

322 × 40 Up-InvRes-B, 5× 5 240 40
√

HS 1

322 × 40 Upconv2d - 24 - - 2

642 × 24 Up-InvRes-B, 5× 5 72 24
√

HS 1

642 × 24 Upconv2d - 16 - - 2

1282 × 24 Up-InvRes-B, 3× 3 16 16
√

HS 1

1282 × 16 Upconv2d - 16 - - 2

2562 × 16 conv2d - 1 - Sig 1

exp size is expansion layer channel size in ACU-Net convolutional layer block. InvRes-B, 3× 3
refers to ACU-Net convolutional layer block with 3× 3 filter size. Upconv2d is up-convolutional
layer as same as in U-Net to double the height and width of input feature map while change the
number of channels in decoder part. Up-InvRes-B is operation which first concatenates encoder
part to decoder then followed by InvRes-B operation. SE refers to whether uses
Squeeze-and-Excitation in a speicific block. NL refers to non-linear activation function. HS
refers use hard-swish acitivation function, RE refers to ReLU and Sig refers to Sigmoid. s refers
to stride.

43



4.3 Experiments

In this section, we present our experimental results to show the effectiveness of ACU-Net.

We report segmentation results on the ongoing normal aging study previously described in

first project.

Our models are trained with data augmentation. As described in Shorten and Khosh-

goftaar (2019), data augmentation techniques have been widely used and validated in the

application to medical image analysis to avoid over-fitting problem of heavy models. For an

image object, data augmentation techniques includes: flipping, rotation, shearing, cropping

and etc. In Fig 4.3.1, we show an example of data augmentation application to our medical

image data. In addition, we use online data augmentation in training models. Compared

with offline data augmentation which generates a fixed size of augmented dataset, online

data augmentation generates an augmented training dataset in each training iteration step

based on different augmentation settings. Thus, online data augmentation can generate

infinite training samples if the training iteration number grows. In practice, we include ro-

tation, random horizontal flipping and scaling in our online data augmentation step which

can generate augmented data with less heterogeneity.

4.3.1 Normal aging dataset

We use the same data split scheme described in the first project which split the 20

subjects into 15 training subjects and 5 testing subjects. Each subject includes 5 manually

tracing slices.

In this dataset, the input FLAIR images have dimensions around 256. Thus, instead of

building U-Net, we have built U-Net small, which just halve the dimensions of initial input

images and resulted in halving dimensions of all following feature maps step by step.

Training setup We trained our models on a 8GB GTX 1080 GPU. We use the standard

Adam optimizer (Kingma and Ba, 2014) with initial learning rate of 0.01. The mini-batch

size is set to 15. We use dropout (Srivastava et al., 2014) with rate as 0.5 to last output

layer.
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Measurement setup Since we only have 25 testing slices in this dataset, we have

created an augmented testing dataset includes 500 augmented images from the original 25

testing slices. The performance metrics we use are same as metrics used in the first project.

In addition, we use number of parameters and FLOPs to measure the efficiency of models.

FLOPs is the floating point operations which measures the complexity of the model.

Results The performance comparison is described in Table 4.3.1. We can find ACU-Net

only loses 2% DSC on original testing dataset and 1% DSC augmented testing dataste while

achieves around 1/20 model size and 1/40 complexity compared with U-Net-small.

4.4 Conclusions

The proposed ACU-Net represents a novel compact convolutional neural network based

on a well-validated architecture U-Net. The goal of ACU-Net is to build an efficient compact

convolutional neural network for biomedical image segmentation. Thus, ACU-Net builds an

inverted residual block with linear bottleneck and squeeze-and-excitation for convolutional

layers block. In addition, ACU-Net builds a new asymmetric auto-encoder architecture with

more weights on encoders part. This architecture decreases computation cost on decoders

part while preserves the model performance. Compared with U-Net, ACU-Net focuses more

on the information passing to bottleneck layer in the full architecture, thus, ACU-Net de-

creases the number of channels used in encoders and decoders part while keeps the high

channel numbers in the bottom bottleneck layer. ACU-Net achieves competitive model

performance compared with U-Net on a normal aging cohort WMH segmentation problem

while decreases the model size and model complexity to 1/20 and 1/40 of U-Net respectively.

This efficient structure of ACU-Net is favorable since modern CNNs require more and more

computation resources while in many research environments, the computation resources are

limiting. ACU-Net’s compact model size enables researchers to train the model from scratch

with their own data instead of using pre-trained models due to limited computation resources.

It is even possible to move ACU-Net to mobile devices in the future since its convolutional

layers block are based on blocks built in MobileNets which are designed for mobile devices.
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Figure 4.3.1: Data augmentation case study example

Table 4.3.1: Performance comparison

ACC PPV TPR FPR DSC AUC Params(M) FLOPs(G)

Original testing dataset (25 slices)

U-Net-small 0.985(0.003) 0.876(0.037) 0.767(0.068) 0.005(0.001) 0.817(0.049) 0.881(0.034) 7.76 13.72

ACU-Net 0.985(0.002) 0.866(0.055) 0.753(0.092) 0.005(0.002) 0.801(0.06) 0.874(0.045) 0.37 0.39

Augmented testing dataset (500 augmented slices)

U-Net-small 0.984(0.007) 0.856(0.062) 0.773(0.08) 0.006(0.002) 0.809(0.059) 0.953(0.023)

ACU-Net 0.983(0.007) 0.861(0.066) 0.758(0.097) 0.006(0.002) 0.801(0.063) 0.884(0.056)
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5.0 Discussions

Segmentation of WMHs is an important task with biological meanings. Accurate au-

tomatic segmentation of WMHs not only help physicians save time on manual tracing of

neuroimages of patients, but also ensure the accuracy of automatic tissue segmentation of

the brain by filling out WMHs with normal white matter tissues such that those WMH

regions will not be wrongly classified as grey matter tissues. Thus, in our first project,

we propose an improved automatic voxel-wise WMH segmentation tool OASIS-AD based

on logistic regression that can handle a small sample size of neuroimages, which is a very

common scenario in medical studies. OASIS-AD uses two refined method, NNR and GFR,

in combination to reduce the false positive rate of WMHs segmentation, especially due to

speckling. In particular, NNR uses neighborhood information combined with information

from the FAST segmentation algorithm to increase or decrease the estimated probability that

a voxel should be identified as WMH. A potential disadvantage of NNR and GFR is that

in certain situations they may lead to results that are too conservative when probabilities

are shrunk too aggressively towards zero. There are several potential solutions that could

be considered to help address these problems. For example, in the first step of the NNR(v)

algorithm described in Section 1 we used the transformation P rv
wmh = (P v

wmh)
10 for voxels

that were estimated by FAST to have probability 1 of being in white matter and all 6NN

to be in white matter. One could use alternative transformations and one could better use

FAST, or other segmentation algorithms, to inform the likelihood that the voxel is in WMH.

One solution could be to use FAST and OASIS-AD iteratively: first use FAST to segment

white matter, gray matter, and CSF and then use OASIS-AD to estimate the WMH. Once

this is done the WMH region estimated via OASIS-AD can be filled in with normally ap-

pearing white matter and the process could be iterated until no differences are observed. In

our study we only have two image modalities, T1 and FLAIR, though OASIS-AD can be

easily extended to incorporate additional image modalities, while standard variable selection

techniques, as well as interaction terms, could easily be embedded in the model structure.

In our second project, we develop a high-dimensional image-on-scalar regression model
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IRRR to reveal the association between neuro-degenerative level and patients’ cardiovascular

predictors. As described in Section 3.7, this method is not exhaustive and suggests several

future research directions, including methodological, theoretical and numerical extensions.

Methodologically, future research will investigate the potential extension to nonlinear dimen-

sion reduction. The estimators in IRRR procedure can be modified to the setting where one

does not have a selected group of predictors but desires to use a large number of predictors,

only a subset of which can be associated with the image response variables. This can be

done by combining the lasso-based estimator of B proposed by Ma and Sun (2014) with

the proposed estimator of V in Equation 3.3 in a two-step algorithm. Theoretically, besides

the future extension on the consistency results described in Section 3.7, the noise setting

is also a potential extension directions. Although we assume Gaussian noise, we conjecture

that the statistical properties could hold for more general, non-Gaussian distributions. In

addition, consistency proofs were established, but not oracle properties for model selection.

We hypothesize that the incorporation of adaptive weights (Beer et al., 2019) could lead to

consistent model selection. Numerically, although ADMM is a convenient optimization tool

for complicated regularization structures, and we constructed an efficient package for im-

plementing the proposed method, there exist other sophisticated optimization methods that

could potentially be used. Future research could include the investigation of other numerical

methods and a formal analysis of their computational costs relative to the proposed ADMM.

As an extension of first two projects, our third project developed a deep neural network

that inspired by the decomposition techniques used in second project to solve the WMHs seg-

mentation problem with a relatively small sample size of images. Deep learning approaches

can provide an alternative to OASIS-AD and we continue to investigate the added benefit of

these techniques, including convolutional neural networks. So far, we have seen encouraging

results, though much remains to be done in terms of increasing the sample size of the train-

ing data (not easy to achieve in low resource environments), performance (we have not yet

matched OASIS-AD), interpretability (we would like to better understand what features of

the data are actually contributing to improved prediction performance), and choices of the

many tuning parameters (e.g., neighborhood size and filter types). Thus, it is still very chal-

lenging to adopt modern DNNs to medical image segmentation studies. Among those DNNs,
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U-Net might be the most doable DNN segmentation tool that can work with a small sample

size of images. Based on U-Net, we built ACU-Net with modern compression techniques.

ACU-Net can dramatically decrease the number of parameters and model complexity com-

pared with U-Net while keep the similar model performance on WMH segmentation tasks.

In original U-Net, 3× 3 filters are used in convolutional layers, however, with decomposition

of filters, we can use larger filters with even less parameters. Besides the benefits of ACU-

Net discussed in Section 4.4, a potential extension of ACU-Net is to follow ResNet152 to

stack layers in the networks. Although more layers are added to the model which cost more

computation cost, the compact design of convolutional layers block can efficiently to improve

the model performance while still keep lower computation cost compared with classic CNN

architecture.

In conclusion, in the future time, I will work on: (1) publish the work in the second

and third projects. (2) apply ACU-Net to more open source data challenges to test its

performance (3) release the R-packages for the second project to the public and release the

Python library of the third project to the public.
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Appendix A

Supplementary materials for Chapter 2

A.1 Extra Table

Table A.1.1: Performance evaluation metrics(full)

ACC PPV TPR FPR DSC ROC PRC

OASIS-AD(M1) 0.96(0.01) 0.84(0.11) 0.58(0.07) 0.008(0.005) 0.69(0.07) 0.95 0.80

OASIS-AD(M1-N) 0.96(0.01) 0.86(0.11) 0.5(0.1) 0.006(0.004) 0.63(0.1) 0.83 0.70

OASIS-AD(M1-G) 0.97(0.01) 0.85(0.08) 0.69(0.07) 0.009(0.003) 0.79(0.06) 0.97 0.86

OASIS-AD(M1-NG) 0.96(0.01) 0.86(0.09) 0.63(0.11) 0.007(0.004) 0.72(0.09) 0.95 0.82

OASIS-AD(M1-GN) 0.96(0.01) 0.85(0.09) 0.58(0.13) 0.007(0.003) 0.68(0.12) 0.82 0.73

OASIS-AD(M2) 0.95(0.01) 0.8(0.15) 0.52(0.08) 0.009(0.006) 0.63(0.1) 0.94 0.76

OASIS-AD(M2-N) 0.95(0.01) 0.79(0.17) 0.47(0.13) 0.008(0.006) 0.58(0.15) 0.81 0.65

OASIS-AD(M2-G) 0.97(0.01) 0.85(0.11) 0.65(0.1) 0.009(0.007) 0.73(0.08) 0.97 0.86

OASIS-AD(M2-NG) 0.96(0.01) 0.85(0.12) 0.57(0.15) 0.007(0.007) 0.67(0.14) 0.94 0.81

OASIS-AD(M2-GN) 0.96(0.01) 0.84(0.12) 0.54(0.16) 0.007(0.006) 0.65(0.16) 0.82 0.72

OASIS 0.95(0.02) 0.76(0.11) 0.59(0.11) 0.014(0.004) 0.66(0.11) 0.92 0.74

MIMOSA 0.97(0.01) 0.94(0.06) 0.58(0.11) 0.002(0.001) 0.72(0.1) 0.87 0.77

LST 0.97(0.01) 0.84(0.13) 0.72(0.12) 0.012(0.012) 0.76(0.07) 0.87 0.77

fuzzy-c 0.95(0.01) 0.90(0.12) 0.49(0.13) 0.019(0.014) 0.63(0.11) NA NA
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A.2 Extra Figure

Figure A.2.1: ROC and PRC of models(full)
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Appendix B

Supplementary materials for Chapter 3

B.1 Extra Figures

Figure B.1.1: Correlation plot of predictors
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Figure B.1.2: Univariate correlation analysis between predictors and voxels
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B.2 Technical Details and Illustrations

B.2.1 Fused lasso generalized coefficient matrix D

For a 2D image of dimension m1 × m2, so that m = m1m2, the fused lasso for each

predictor is the sum of mF = 2m −m1 −m2 absolute differences between adjacent pixels.

For example, for a 2× 2 image, there are mF = 4 terms and the matrix D ∈ <mF×m = <4×4

for the generalized lasso representation can be expressed as

D =


−1 1 0 0

0 0 −1 1

−1 0 1 0

0 −1 0 1

 .
For a 3D image of dimension m1 × m2 × m3, so that m = m1m2m3, the fused lasso

for each predictor is the sum of mF = (3m −m1m2 −m1m3 −m2m3) absolute differences

between adjacent voxels. For example, for a 2 × 2 × 2 image, there are mF = 12 absolute

differences and the matrix D ∈ <mF×m = <12×8 for the generalized lasso representation can

be expressed as

D =



−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1
−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1


.

B.2.2 Notations and assumptions

We first introduce the notations of sparsity condition of penalty terms with a given

matrix B∗ defined in Theorem 1. Let J1 = {ij : |B∗i V T
j | 6= 0}, 1 ≤ i ≤ p, 1 ≤ j ≤ m be the

index set of nonzero elements in sparse lasso penalty terms, where B∗i is ith row vector of

B∗ and Vj is jth row vector of V ; let J2 = {ij : |B∗i (DV )Tj | 6= 0}, 1 ≤ i ≤ p, 1 ≤ j ≤ mF be

the index set of nonzero elements in fused penalty terms, where D is fused lasso generalized
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coefficient matrix defined in last section and let (DV )j is jth row vector of DV ; J3 = {g ∈

G : ||B∗(GV )Tg ||2 6= 0} be the index set of nonzero elements in group penalty terms, where

G is a set introduced in Section 3.2. In addition, let J c1 , J c2 and J c3 be the complementary

index set of J1, J2 and J3 respectively. Let s1 = |J1|, s2 = |J2| and s3 = |J3| be the number

of elements in each index set, where s1, s2 and s3 are finite numbers.

Next, we introduce notations of projection: for any nontrivial matrix ∆ ∈ <m×r, let

B∗∆T
J1

represent the projection of B∗∆T on J1 i.e. B∗∆T
J1

is sub-matrix of B∗∆T whose

columns are in set J1 columns of B∗∆T ; B∗∆TDT
J2

represent the projection of B∗∆TDT on

J2; B∗∆TGT
J3

represent the projection of B∗∆TGT on J3, and apply the same notations rules

for all complementary sets and elements in any sets.

Lastly, we introduce measure of sparsity S used in Theorem 1. Let λg = λ3m
1/2
g . we

define

S =
s

1/2
1

k1n1/2
+
s

1/2
2 (λ2/λ1)σD+

k2n1/2
+

[∑
g∈J3(λg/λ1)2

]1/2

k3n1/2
,

where σD+ is the largest singular value of D, which is proved to be finite in the following

Lemma 2, and k1, k2, k3 are defined in Assumption 1.

Assumption 1. Let J1 ⊆ {ij : 1 ≤ i ≤ p, 1 ≤ j ≤ m}, J2 ⊆ {ij : 1 ≤ i ≤ p, 1 ≤ j ≤ mF}

and J3 ⊆ {1, . . . , |G|} be any index sets s.t. J1 ≤ s1, J2 ≤ s2 and J3 ≤ s3. Let β be a

positive number and ζ = {ζg : g ∈ G} be a set of positive numbers. D is the generalized fused

lasso coefficient matrix in a 3-dimensional space. For a given matrix B∗ ∈ <p×r, and any

nontrivial matrix ∆ ∈ <m×r that satisfies

|B∗∆T
Jc1
|1 + 2β|B∗∆TDT

Jc2
|1 + 2

∑
g∈Jc3

ζg||B∗∆TGT
g ||2

≤ 3|B∗∆T
J1
|1 + 2β|B∗∆TDT

J2
|1 + 2

∑
g∈J3

ζg||B∗∆TGT
g ||2,

the following minimums exist and are positive:

k1 = min
J1,J2,J3,∆ 6=0

||XB∗∆T ||2
n1/2||B∗∆T

J1
||2
,

k2 = min
J1,J2,J3,∆ 6=0

||XB∗∆TDT ||2
n1/2||B∗∆TDT

J2
||2
,

k3 = min
J1,J2,J3,∆ 6=0

||XB∗∆T ||2
n1/2||B∗∆TGT

J3
||2
.
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Assumption 1 restricts non-signal terms by signal terms of any nontrivial matrix. In

addition, it assumes existence of positive minimums of singular values of projection matrix

of sparse lasso, fused lasso and group lasso penalty matrix.

Assumption 2. For the coefficient matrix A in (3.1), A belongs to the following parameter

space:

Θ(r, d, τ) = {A ∈ <p×m : rank(A) = r, τd ≥ σ1(A) ≥ ... ≥ σr(A) > d > 0}.

In addition, after rank factorization of A i.e. A = BV T , with out loss of generality, we

assume ||V ||2 = 1.

Assumption 3. Let B̂ be an estimator of B∗, which is true left singular space of A∗ s.t.

A∗ = B∗V ∗T . We assume

B̂ = B∗ +O(1/
√
n).

Assumption 2 restricts A to a space with finite rank and finite singular values. Assump-

tion 3 restricts B̂ to be a
√
n-consistent estimator. These two assumptions are established

for the fixed p large m and n setting as described in Section ??.

B.2.3 Additional lemmas

Lemma 1. Let XB∗ = XB∗, λ1 = 2CdXσ
√
log(pm), where C is a constant s.t. C >

√
2.

Let B∗i be column vectors of B∗ where i = 1, . . . , p. Let V̂ be the minimizer of (3.3). With

probability at least 1− (pm)1−C2/2, we have

1

2
||XB∗(V

∗ − V̂ )T ||22 + λ1|B∗(V̂ − V )T |1 + 2λ2|B∗(V̂ − V )TDT |1 + 2
∑
g∈G

λg||B∗(V̂ − V )TGTg ||2

≤ 1

2
||XB∗(V

∗ − V )T ||22 + 4λ1

∑
ij∈J1

|B∗i (V̂ − V )Tj |

+ 4λ2

∑
ij∈J2

|B∗i (V̂ − V )TDT
j |+ 4

∑
g∈J3

λg||B∗(V̂ − V )TGTg ||2. (B.1)

Lemma 2. Let D be a generalized lasso coefficient matrix of fused lasso structure in 3-

dimensional space. Let σ+
D be the largest singular values of D, we have

σ+
D ≤ 2

√
3
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B.2.4 Proof of Lemma 1

Proof. Since V̂ is minimizer of (3.3), thus, for any V ∈ <m×r, we have

1

2
||Y −XB∗ V̂

T ||22+2λ1|B∗V̂ T |1 + 2λ2|B∗V̂ TDT |1 + 2
∑
g∈G

λg||B∗V̂ TGTg ||2

≤ 1

2
||Y −XB∗V ||22 + 2λ1|B∗V T |1 + 2λ2|B∗V TDT |1 + 2

∑
g∈G

λg||B∗V TGTg ||2.

Plugging Y = XB∗V
∗T + E into above inequality, we have

1

2
||XB∗(V

∗ − V̂ )T ||22 ≤
1

2
||XB∗(V

∗ − V )T ||22 +
n∑
k=1

m∑
j=1

[XB∗(V̂ − V )T ]kjekj

+ 2λ1(|B∗V T |1 − |B∗V̂ T |1)

+ 2λ2(|B∗V TDT |1 − |B∗V̂ TDT |1)

+ 2
∑
g∈G

λg(||B∗V TGT
g ||2 − ||B∗V̂ TGT

g ||2).

where [XB∗(V̂ −V )T ]kj is the (kj)th elements of matrix XB∗(V̂ −V )T and ekj is (kj)th element

of matrix E, 1 ≤ k ≤ n, 1 ≤ j ≤ m. For these error related terms, we have

n∑
k=1

m∑
j=1

[XB∗(V̂ − V )T ]kjekj =
n∑
k=1

{
m∑
j=1

[
p∑
i=1

Xki(B
∗
i V̂

T
j −B∗i V T

j )

]
ekj

}

≤ max
1≤i≤p,1≤j≤m

∣∣∣∣∣
n∑
k=1

Xkiekj

∣∣∣∣∣
p∑
i=1

m∑
j=1

|B∗i V̂ T
j −B∗i V T

j | = |XTE|∞|B∗V̂ T −B∗V T |1,

where |XTE|∞ is infinity norm of XTE.

Now, let ωij = XT
i ej, 1 ≤ i ≤ p, 1 ≤ j ≤ m. Let di be the ith diagonal element of XTX/n.

Since ej ∼ N(0, σIn), it is trivial var(ωij) = XT
i cov(ej)Xi = nd2

iσ
2. Thus, (nd2

iσ
2)−1/2ωij are

standard normal random variables. Consider following random event of ωij

C =

{
|XTE|∞ ≤ λ1

}
,

and its complementary event is

Cc =

{
at least one |ωij| > λ1, 1 ≤ i ≤ p, 1 ≤ j ≤ m

}
.
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Let U

(
0, λ1

)
be a 1-dimensional space centered at 0 with radius λ1, then we have

Pr{Cc} ≤
p∑
i=1

m∑
j=1

Pr

{
ωij /∈ U

(
0, λ1

)}
=

p∑
i=1

m∑
j=1

Pr

{
(nd2

iσ
2)−1/2ωij /∈ U

(
0,

λ1

2diσn1/2

)}

≤
p∑
i=1

m∑
j=1

Pr

{
|Z| ≥ λ1

2diσn1/2

}
≤

p∑
i=1

m∑
j=1

exp

(
−λ2

1

8nd2
iσ

2

)
≤ pm exp

(
−λ2

1

8nd2
Xσ

2

)
= (pm)1−C2/2,

where Z represents standard normal random variable and dX is the maximum diagonal
element of XTX/n described in Section 3.4. Last inequality is obtained by using trivial tail
bound property of Z which is Pr{|Z| > α} ≤ exp(−α2/2), where α is any real number here.
Then, on event C, we have

1

2
||XB∗(V

∗ − V̂ )T ||22 + λ1|B∗(V̂ − V )T |1 + 2λ2|B∗(V̂ − V )TDT |1 + 2
∑
g∈G

λg||B∗(V̂ − V )TGTg ||2

≤ 1

2
||XB∗(V

∗ − V )T ||22 +
n∑
k=1

m∑
j=1

[XB∗(V̂ − V )T ]kjekj + λ1|B∗(V̂ − V )T |1

+ 2λ1(|B∗V T |1 − |B∗V̂ T |1) + 2λ2(|B∗(V̂ − V )TDT |1 + |B∗V TDT |1 − |B∗V̂ TDT |1)

+ 2
∑
g∈G

(λg||B∗(V̂ − V )TGTg ||2 + ||B∗V TGTg ||2 − ||B∗V̂ TGTg ||2)

≤ 1

2
||XB∗(V

∗ − V )T ||22 + 2λ1(|B∗(V̂ − V )T |1 + |B∗V T |1 − |B∗V̂ T |1)

+ 2λ2(|B∗(V̂ − V )TDT |1 + |B∗V TDT |1 − |B∗V̂ TDT |1)

+ 2
∑
g∈G

λg(||B∗(V̂ − V )TGTg ||2 + ||B∗V TGTg ||2 − ||B∗V̂ TGTg ||2)

≤ 1

2
||XB∗(V

∗ − V )T ||22 + 4λ1

∑
ij∈J1

|B∗i (V̂j − Vj)T |

+ 4λ2

∑
ij∈J2

|B∗i (V̂ − V )TDT
j |+ 4

∑
g∈J3

λg||B∗(V̂ − V )TGTg ||2.

Last inequality is obtained in following way, using |B∗(V̂ − V )TDT |1 + |B∗V TDT |1 −

|B∗V̂ TDT |1 as example. |B∗(V̂ −V )TDT |1 can be split into signal and non-signal parts, where

non-signal parts with index set J c1 are B∗V = 0. Thus, |B∗(V̂ − V )TDT |1 + |B∗V TDT |1 −

|B∗V̂ TDT |1 on J c1 is |B∗V̂ TDT |1 − |B∗V̂ TDT |1 = 0. Then, for the signal part, we have(
|B∗(V̂ − V )TDT |1 + |B∗V TDT |1 − |B∗V̂ TDT |1

)
J1
≤ 2

(
|B∗(V̂ − V )TDT |1

)
J1
.

The same calculation is applied on fused lasso and group lasso penalty terms, which leads

to last inequality. This completes the proof of the lemma.
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B.2.5 Proof of Lemma 2

Proof. Nonzero elements in matrix D are defined by pair of adjacent neighbors. In a 3-

dimensional space, for each coordinate, it has up to 6 adjacent neighbors, thus ||D||∞ = 6.

Since each row of D3d is always with two non-zero elements which are 1 and -1 respectively,

and others are 0, thus ||D3d||1 = 2. From Horn and Johnson (1991), we have

σ+
D ≤

(
||D3d||1||D3d||∞

)1/2

= 2
√

3.

This completes proof of the lemma.

Lemma 1 shows with probability at least 1 − (pm)1−C2/2, error bound of V̂ can be

restricted by signal’s error bound. Lemma 2 shows D’s singular values are always bounded

by a constant which is not related to dimensions of D. These two lemmas are used in

following proof of Theorem 1.

B.2.6 Proof of Theorem 1

Proof. By setting V = V ∗ in (B.1) in Lemma 1, on event C, we have

1

2
||XB∗(V̂ − V ∗)T ||22 (B.2)

≤ 4λ1

∑
ij∈J1

|B∗i (V̂j − V ∗j )T |1 + 4λ2

∑
ij∈J2

|B∗i (V̂ − V ∗)TDT
j |1 + 4

∑
g∈J3

λg||B∗(V̂ − V ∗)TGTj ||2

≤ 4λ1s
1/2
1 ||B

∗
i (V̂j − V ∗j )TJ1 ||2 + 4λ2s

1/2
2 ||B

∗(V̂ − V ∗)TDT
J2 ||2 + 4

(∑
g∈J3

λ2
g

)1/2

||B∗(V̂ − V ∗)TGTJ3 ||2.

Last inequality is obtained by Cauchy-Schwarz inequality.

Also by setting V = V ∗ in inequality (B.1), on event C, we have

λ1|B∗(V̂ − V ∗)T |1 + 2λ2|B∗(V̂ − V ∗)TDT |1 + 2
∑
g∈G

λg||B∗(V̂ − V ∗)TGT
g ||2

≤ 4λ1

∑
ij∈J1

|B∗i (V̂j − V ∗j )T |1 + 4λ2

∑
ij∈J2

|B∗(V̂ − V ∗)TDT |1 + 4
∑
g∈J3

λg||B∗(V̂ − V ∗)TGT
g ||2.

By splitting left part of last inequality into signal and non-signal part, we have

λ1

∑
ij∈Jc1

|B∗i (V̂j − V ∗j )T |1 + 2λ2

∑
ij∈Jc2

|B∗i (V̂ − V ∗)TDT
j |1 + 2

∑
g∈Jc3

λg||B∗(V̂ − V ∗)TGT
g ||2
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≤ 3λ1

∑
ij∈J1

|B∗i (V̂j − V ∗j )T |1 + 2λ2

∑
ij∈J2

|B∗i (V̂f − V ∗f )T |1 + 2
∑
g∈J3

λg||B∗(V̂ − V ∗)TGT
g ||2.

Thus, when the condition in Assumption 1 holds, let ∆ = V̂ −V ∗, β = λ2/λ1 and ζg = λg/λ1,

we have

||B∗(V̂ − V ∗)TJ1||2 ≤
||XB∗(V̂ − V ∗)T ||2

k1n1/2

||B∗(V̂ − V ∗)TDT
J2
||2 ≤

||XB∗(V̂ − V ∗)TDT ||2
k2n1/2

≤ σD+||XB∗(V̂ − V ∗)T ||2
k2n1/2

||B∗(V̂ − V ∗)TGT
J3
||2 ≤

||XB∗(V̂ − V ∗)T ||2
k3n1/2

,

where σD+ is defined in Lemma 2. Then, plug the above three inequalities into (B.2), we

have

1

2
||XB∗(V̂ − V ∗)T ||22

≤

(
4λ1s

1/2
1

k1n1/2
+

4λ2s
1/2
2 σD+

k2n1/2
+

4
(∑

g∈J3 λ
2
g

)1/2

k3n1/2

)
||XB∗(V̂ − V ∗)T ||2.

Thus, we have

||XB∗(V̂ − V ∗)T ||22 ≤ 8λ1

 s
1/2
1

k1n1/2
+
s

1/2
2 (λ2/λ1)σD+

k2n1/2
+

[∑
g∈J3(λg/λ1)2

]1/2

k3n1/2

 ||XB∗(V̂ − V ∗)T ||2.

Plugging λ1 = 2CdXσ
√
log(pm) into above inequality and taking square on both sides, we

have

1

n
||XB∗(V̂ − V ∗)T ||22 ≤

64λ2
1

n

 s
1/2
1

k1n1/2
+
s

1/2
2 (λ2/λ1)σD+

k2n1/2
+

[∑
g∈J3(λg/λ1)2

]1/2

k3n1/2


≤ 256C2S2d2

Xσ
2

[
log(pm)

n

]
.

Thus, we have

||V̂ − V ∗||22 ≤
1

nσ2
X−B

||XB∗(V̂ − V ∗)T ||22

≤ 256C2S2d2
Xσ

2

σ2
X−B

[
log(pm)

n

]
.

This completes proof of the theorem.
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B.2.7 Proof of Theorem 2

Proof. When conditions in Assumption 2 and Assumption 3 hold, we have

||Â− A∗||2 = ||B̂V̂ T −B∗V ∗T ||2

= ||B̂V̂ T − B̂V ∗T + B̂V ∗T −B∗V ∗T ||2

≤ ||B̂(V̂ − V ∗)T ||2 + ||(B̂ −B∗)V ∗T ||2

≤ ||B̂||2||(V̂ − V ∗)T ||2 + ||(B̂ −B∗)||2||V ∗T ||2

≤
(
||B∗||2 + ||(B̂ −B∗)||2

)
||(V̂ − V ∗)T ||2 + ||(B̂ −B∗)||2||V ∗T ||2

Since we assume ||V ∗||2 = 1, then ||B∗||2 = ||B∗V ∗TV ∗||2 = ||A∗V ∗||2 ≤ σ1(A) ≤ γd. With

fixed p and error bound of V̂ obtained in Theorem 1, we have

||Â− A∗||2 ≤
(
||B∗||2 + ||(B̂ −B∗)||2

)
||(V̂ − V ∗)T ||2 + ||(B̂ −B∗)||2||V ∗T ||2

≤ rd||(V̂ − V ∗)T ||2 + ||(B̂ −B∗)||2||(V̂ − V ∗)T ||2 + ||(B̂ −B∗)||2

= ||(V̂ − V ∗)||2 +O(1/
√
n)

= Op

[(
log(m)

n

)1/2
]

Thus,

||Â− A∗||22 = Op

[
log(m)

n

]
Next, we have

1

n
||X(Â− A∗)||22 ≤ ||X||22||(Â− A∗)||22

= Op

[(
log(m)

n

)]
This completes proof of the theorem.

Although we assume ||V ||2 = 1 in Assumption 2, this is not limiting, as ||B∗||2 and ||V ∗||2
are both bounded by ||A∗||2, which is restricted to be with finite singular values in a finite

rank space defined in Assumption 2.
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B.2.8 Derivation of ADMM solution

B.2.8.1 Update step In Section 3.3.2, we introduced definitions of K`, λ`, θ`, µ` and

K. Let θ = (θ1, ..., θN)T be the concatenation of auxiliary variables θ` = K`V
v and let

µ = (µ1, ..., µN)T be the concatenation of auxiliary variables µ`. We can write the augmented

Lagrangian equation of (3.4) as:

Lρ(V v, θ, µ) =
1

2
‖Xv

BV
v − Y v‖2

2 +
N∑
l=1

λ`||θ`||2 +
N∑
l=1

[
µT` (θ` −K`V

v) + (ρ/2)||θ` −K`V
v||22
]

Then, the iterative updates of V v, θ` and µ` are

V v(t+1) = arg min
V v∈<(mr)

Lρ(V v, θ(t), µ(t)),

θ
(t+1)
` = arg min

V v∈<(w`)

Lρ(V v(t+1), θ, µ(t)),

µ
(t+1)
` = µ

(t)
` + ρ(θ

(t+1)
` −K`V

v(t+1)).

Thus, by solving differential equations ∂Lρ(V v ,θ(t),µ(t))

∂V v
= 0 and ∂Lρ(V v(t+1),θ,µ(t))

∂θ
= 0,

V v(t+1) =
(
XvTXv + ρKTK

)−1 [
XvT +KT (µ(t) + ρθ(t))

]
,

θ
(t+1)
` =

[
1− λ`/(ρ||η(t)

` ||2)
]

+
η

(t)
` ,

µ
(t+1)
` = µ

(t)
` + ρ

(
θ

(t+1)
` −K`V

v(t+1)
)
,

and updates of µ` depend on updates of V v and θ`.
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B.2.8.2 Stopping criteria In this algorithm, we use the stopping criteria described

in Boyd et al. (2011). The algorithm will terminate when the primal and dual residuals

converges to small values which achieve a linear combination of pre-specified levels of absolute

(εabs) and relative (εrel) tolerance. Appropriate values for (εabs) and (εrel) depend on the

specific application and scale of the data. Let the primal and dual residuals at iteration time

t be r(t) = θT −KV v(t) and s(t) = ρKT (θ(t) − θ(t−1)), respectively. Let |θ(t)| represents the

number of elements in θ(t). The stopping criteria are ||r(t)||2 ≤ ε
(t)
pri and ||s(t)||2 ≤ ε

(t)
dual, where

ε
(t)
pri and ε

(t)
dual are primal residual dual residual tolerance at iteration time t respectively:

ε
(t)
pri =

√
ρεabs + εrelmax

(
||KV v(t)||2, ||θ(t)||2

)
,

ε
(t)
dual =

√
|θ(t)|εabs + εrel||KTµ(t)||2,
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