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Abstract

Increasingly researchers are finding associations between the microbiome and human

diseases such as obesity, inflammatory bowel diseases, HIV, and so on. Determining what

microbes are significantly different between conditions, known as differential abundance (DA)

analysis, and depicting the dependence structure among them, are two of the most challeng-

ing and critical problems that have received considerable interest. It is well documented in

the literature that the observed microbiome data are relative abundances with excess zeros.

These data are necessarily compositional; hence conventional DA methods are not appro-

priate as they significantly inflate the false discovery rate (FDR), and the standard notion

of correlation often results in spurious correlation. To overcome such difficulties, in this

dissertation, we develop a general statistical framework that can address a broad collection

of problems encountered by researchers.

This dissertation work is organized as follows. In Chapter 1, we conduct a brief re-

view of the literature of a variety of parameters used to characterize microbial composition.

Specifically, we shall describe various concepts of diversity and differential taxa abundance.

In Chapter 2, an off-set based regression model, called the Analysis of Composition of

Microbiomes with Bias Correction (ANCOM-BC), is introduced. The ANCOM-BC model

not only successfully controls the FDR at the desired level but also maintains high power.

Simulations and real data analysis were conducted to compare the performance of ANCOM-

BC with other commonly used algorithms.

In Chapter 3, we extend ANCOM-BC for performing DA analysis when there are more

than two ecosystems. We tested the method for a variety of alternative hypotheses. Similar

simulation settings and real data were used to evaluate its performance.

Lastly, in Chapter 4, we introduce a distance correlation based methodology, called
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Distance Correlation for Microbiome (DICOM), to untangle dependence structure among

microbes within an ecosystem or across ecosystems (e.g., gut and oral microbiomes).

PUBLIC HEALTH SIGNIFICANCE: This dissertation proposes a general statistical

framework for studying microbial compositions. The identified differentially abundant taxa

and the constructed dependence network could provide medical experts more knowledge of

changes in patients’ microbiome. This information could contribute to developing precision

medicine for better patient care.
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1.0 Introduction

Humans are estimated to have 45.6 million genes in oral and gut microbiome alone,

which is about 2000-fold more genes than human genes (Tierney et al., 2019), therefore the

microbiome is sometimes referred to as the ”second genome”, or another ”organ” of human

body (O’Hara and Shanahan, 2006; Relman and Falkow, 2001; Hurst, 2017). It is hence not

surprising that numerous diseases such as obesity (Turnbaugh et al., 2009), inflammatory

bowel diseases (Gevers et al., 2014) and HIV (Lozupone et al., 2013a) are associated or even

caused by changes in the microbial ecosystem. For these reasons, understanding changes in

the composition of microbiome under different conditions is important for studying human

diseases. A taxon is said to be differentially abundant between two ecosystems if its mean

absolute abundances in the two are significantly different. Estimation of absolute abundance

of a taxon in a unit volume of an ecosystem based on a random sample of specimen from

the ecosystem is a function of several factors such as the library size (the total number

of sequencing reads for all taxa in a sample), microbial load (total number of absolute

abundances for all taxa in a unit volume of an ecosystem), and the faction of the sample

obtained from the ecosystem.

To reduce the ambiguity, throughout this dissertation, we use absolute abundance to

denote count of a taxon regardless it is in a unit volume of an ecosystem (e.g. a patient’s

intestine) or in a sample (e.g. a patient’s stool sample); while relative abundance is proportion

of the absolute abundance of a taxon relative to the total absolute abundance of all taxa,

thus it is between 0 and 1. For ease of exposition, various terms used in the literature are

summarized in Table 1. The notations described in statistical methods are summarized in

Table 2.

The next generation sequencing (NGS) technologies have made the analysis of high-

dimensional microbiome data increasingly informative and feasible. There are two common

approaches of sequencing performed to study the microbiome: (a) amplification and se-

quencing of targeted genetic elements such as 16S rRNA gene in bacteria, or (b) shotgun

metagenomics. While 16S rRNA sequencing is cost-effective and is very widely used (Amato,
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Table 1: Definitions of key terminologies.

Term Definition

Microbiota Community of microscopic organisms.

Microbiome Genes associated with the microbiota.

Amplicon Product of PCR amplification.

High-throughput Sequencing DNA sequencing approach that produces large

amounts of sequence data rapidly at low cost.

OTU Operational taxonomic unit: Group of DNA se-

quences with 97% similarity.

SV Sequence variant: Individual DNA sequences re-

covered from a high-throughput marker gene analy-

sis following the removal of spurious sequences gen-

erated during PCR amplification and sequencing.

Feature Table A matrix summarizing observed microbial absolute

abundances in the sample. Columns represent sam-

ples and rows stand for OTUs or SVs.

Library Size The total number of (observed) absolute abun-

dances for all taxa in a sample.

Microbial Load The total number of (unobserved) absolute abun-

dances for all taxa in a unit volume of an ecosys-

tem.

2017), its main drawback is that it can only identify bacteria. On the other hand, shotgun

metagenomics surveys cover all given genomic DNAs, including DNAs from bacteria, viruses,

and fungi. Additionally, shotgun metagenomic sequencing has greater taxonomy resolution

(species - strains level of shotgun metagenomics vs. genus - species level of 16S sequencing),

functional profiling, and it is less susceptible to biases that are inherent in targeted gene am-

plification. However, as of today, metagenomic sequencing is substantially more expensive

2



Table 2: Summary of notations.

Notation Description

i Taxon index, i = 1, 2, . . . ,m.

j Sample index, j = 1, 2, . . . , n.

k Index of fixed effects, k = 1, 2, . . . , p.

l Index of Random effects, l = 1, 2, . . . , q.

xjk The kth fixed effect of interest for the jth sample.

zjl The lth random effect of interest for the jth sample.

Aij‡ Unobserved absolute abundance of ith taxon in a unit volume of

ecosystem of jth sample.

A·j‡ Microbial load in a unit volume of ecosystem of jth sample. A·j =∑m
i=1Aij.

γij‡ Unobserved relative abundance of ith taxon in a unit volume of

ecosystem of jth sample.

Oij‡ Observed absolute abundance of ith taxon in a random specimen

taken from a unit volume of ecosystem of jth sample.

O·j‡ Library size of a random specimen taken from a unit volume of

ecosystem of jth sample. O·j =
∑m

i=1Oij.

rij‡ Observed relative abundance of ith taxon in a unit volume of

ecosystem of jth sample.

cj† For the jth sample, cj represents the proportion of its ecosys-

tem (unobserved absolute abundance) in a random specimen (ob-

served absolute abundance), thus cj =
E(Oij |Aij)

Aij
. We shall refer

to this constant as ”sampling fraction”.

yij‡ log(Oij).

dj† log(cj).

† Parameter;

‡ Random variable.

3



than 16S sequencing, and it may not be deep enough to detect the 16S rRNA genes of rare

species in a community (Shah et al., 2011).

Figure 1: The bias introduced by cross-sample variations in sampling fractions.

The microbiome data are intrinsically compositional because the observed 16S rRNA

gene data provides information in the form of relative abundances regardless of the microbial

load of ecosystems(Fernandes et al., 2014; Mandal et al., 2015; Gloor and Reid, 2016; Gloor

et al., 2016, 2017; Morton et al., 2017, 2019). Thus, they are constrained by a simplex

(Aitchison, 1982). It is important to distinguish between absolute and relative abundances

of taxa in a unit volume of an ecosystem. The choice of parameter for statistical analysis

is important and needs to be clearly stated. Often researchers are interested in identifying

taxa that are different in mean absolute abundance per unit volume between two or more

ecosystems (Morton et al., 2019). Second, not all samples have the same sampling fraction.

4



For each taxon i within sample j, the sampling fraction is the ratio of the expected absolute

abundance of taxon i within the jth sample (e.g. a stool sample) to its absolute abundance in

a unit volume of the ecosystem (e.g. gut) where the sample was derived from. The sampling

fraction is constant for all taxa i within the jth sample. Thus the sampling fraction for the

jth sample is given by the following.

Definition 1.0.1 (Sampling fraction).

cj =
E(Oij|Aij)

Aij
, (1.1)

where

(1) Oij is the observed absolute abundance of ith taxon in jth sample,

(2) Aij is the unobserved absolute abundance of ith taxon in the ecosystem of jth sample,

(3) cj is the sample-specific sampling fraction.

The problem underlying the the differential abundance (DA) analysis of microbiome data is

that while Oij is known, Aij is unknown and can vary drastically from sample to sample.

Consequently, the observed absolute abundances are not comparable between samples. The

goal of DA analysis is to identify taxa whose absolute abundances, per unit volume, of the

ecosystem (Aij) are significantly different with changes in the covariate of interest (e.g. the

group effect).

Consider the toy example in Figure 1, suppose the ecosystems (e.g. gut) of subject A,

B and C consist of only two taxa, the blue and red taxa. A false negative may occur when

comparing the ecosystems of A and B. Clearly, the true absolute abundance of each taxon

is 50% more in subject B’s ecosystem as compared to subject A’s. However, they each have

the same library size (4 each) in their respective samples (e.g. stool samples). Without

considering the differential sampling fractions, one would falsely conclude that none of the

taxa are differentially abundant in the two ecosystems. This erroneous conclusion would be

avoided if one recognizes that we have a larger sampling fraction in the sample obtained

from A’s ecosystem than from B’s (1
2

vs. 1
3
). Similarly, we get a false positive result when

comparing ecosystems of A and C. In their ecosystems, blue is more abundant in C than in A

(12 vs. 4), and both have same amounts of red taxa (4 vs. 4). However, given that samples

5



from A and C have same library sizes, one may mistakenly conclude that both blue (2 vs. 3)

and red taxa (2 vs. 1) are differently abundant between A and C. A third characteristic of

feature table is that it is typically sparse, with as many as ∼90% zero entries (Paulson et al.,

2013), which creates a challenge for analyzing rare taxa. A quick and simple strategy to deal

with excess zeros is to add a small positive constant (e.g. 1) called pseudo-count (Mandal

et al., 2015; Xia et al., 2013) to each cell of the feature table. Even though adding a pseudo-

count is simple and also widely used, the choice of the pseudo-count is often ad-hoc. Other

strategies involve modeling zero counts by some probability models (Paulson et al., 2013;

Chen and Li, 2016). However, these methods may not be valid if the underlying parametric

assumption does not hold. Instead of modeling zeros by parametric distributions, ANCOM-

II512017Kaul et al. attempts to provide a general framework to classify and identify zeros into

three different types, which includes outlier zeros caused by some extraneous reasons such

as the wrong data entry, structural zeros because of the nature of the experimental groups,

i.e. some bacteria are not expected to belong to certain environments (e.g. a desert) but

in others (e.g. a rainforest), and sampling zeros owing to insufficient library size. In our

opinion the zero counts problem is still an open problem and requires further investigation.

1.1 Measures of diversity

1.1.1 Alpha diversity

The alpha diversity (α-diversity) is a measure of diversity within a sample (Whittaker,

1960, 1972). One of the simplest and widely used measures to represent diversity is richness

which is the number of taxa present in a sample (Magurran, 2013). Whereas, evenness is a

measure of relative abundance of different taxa that make up the richness in that sample.

Low values of evenness indicates that a small number of taxa dominate the composition,

and high values indicates that relative abundances of different taxa are somewhat evenly

distributed. For example, consider the guts of two 10-day old babies A and B. Suppose the

stool sample from A has 10% Actinobacteria, 15% Bacteroidetes, 5% Proteobacteria and 70%

6



Firmicutes, and suppose the stool sample from B has 1% Actinobacteria, 0% Bacteroidetes,

5% Proteobacteria and 94% Firmicutes. In this example, eye-balling the relative abundances,

we may conclude that baby A has higher evenness than baby B. Such eye-ball comparisons are

not feasible when there are a large number of taxa. A variety of alpha diversity measures are

available to quantify abundance and evenness. They can be broadly classified into two types,

those that take into account the phylogenic relationships and those that do not. Some widely

used non-phylogeny based metrics are Chao1 (Chao, 1984), Shannon’s diversity (Shannon,

1948) and Gini-Simpson’s index (Simpson, 1949). Among these, the latter two are commonly

used in practice. These indices, take into account taxa’s richness, relative abundance and

evenness(Morris et al., 2014).

A popular phylogeny based metric is Faith’s Phylogenetic Diversity (PD)(Faith, 1992)

which is defined as follows.

Definition 1.1.1 (Phylogenetic diversity (PD)). As a quantitative measure of phylogenetic

diversity, “PD” has been defined as the minimum total length of all the phylogenetic branches

required to span a given set of taxa on the phylogenetic tree.

Unlike non-phylogeny based metrics, PD is a measure of biodiversity which incorporates

phylogenetic difference among taxa. Phylogenetic patterns among taxa reflect general pat-

terns of taxa variation at the level of genes or other features (Faith and Baker, 2006). Larger

PD values are expected to correspond to greater feature diversity.

For convenience, the mentioned alpha diversity measures are summarized in Table 3. In

Figure 2, we show different alpha diversity measures using the same data set, which is based

on the two-week diet swap study between western (USA) and traditional (rural Africa) diets

(O’Keefe et al., 2015). Note that since Shannon’s and Gini-Simpson’s diversity indices are

based on similar principles, they are expected to be highly correlated in any given data set.

1.1.2 Beta diversity

Beta diversity (β-diversity) provides a measure of between-sample diversity, or distance

or dissimilarity (Whittaker, 1960). When more than two samples are used, the beta diversity

is calculated for every pair of samples to generate a distance/dissimilarity matrix. Similar

7



Table 3: Formulas for calculating alpha diversities.

Category Metric Formula

Non-phylogeny

Observed species Count of unique taxa in a sample

Chao1 Sj =

m+
f21
2f2

f2 > 0

m+ f1(f1−1)
2

f2 = 0

Shannon’s diversity in-

dex

Hj = −
∑m

i=1 rij log rij

Gini-Simpson’s diver-

sity index

Dj = 1−
∑m

i=1 r
2
ij

Phylogeny Phylogenetic diversity

(PD)

Minimum total branch length of the phy-

logenetic tree that incorporates all taxa in

a sample

Note that:

(1) f1 = number of singletons (taxon appear once) in the sample,

(2) f2 = number of doubletons (taxon appear twice) in the sample.

to alpha diversity, the beta diversity can be categorized into non-phylogeny based metrics,

such as Bray-Curtis dissimilarity (Bray and Curtis, 1957), Jaccard distance (Jaccard, 1901),

and phylogeny based metrics such as Unweighted UniFrac (Lozupone and Knight, 2005) and

Weighted UniFrac (Lozupone et al., 2007). For simplicity of exposition, suppose we have

two samples, i.e. sample A and B, the mentioned beta diversity measures are summarized

in Table 4.

Among non-phylogeny based beta diversities, Bray-Curtis dissimilarity is constructed

using the observed absolute abundance (count data) and it ranges from 0 to 1, with 0

corresponding to the case when A and B have identical observed absolute abundance of all

8



Figure 2: Different alpha diversity measures using the diet swap data at the genus level.

taxa, and 1 corresponds to the case when the two samples have complete different observed

absolute abundances. Thus larger value correspond to more diversity between samples. On

the other hand, Jaccard distance is a dissimilarity measure for presence or absence of taxa

9



Table 4: Formulas for calculating beta diversities.

Category Metric Formula

Non-phylogeny

Bray-Curtis dissimilar-

ity

BCAB =
∑m
i=1 |OiA−OiB |∑m
i=1(OiA+OiB)

Jaccard distance JAB = 1−
∑m
i=1 I(OiA>0)I(OiB>0)∑m
i=1 I(OiA+OiB>0)

Phylogeny

Unweighted UniFrac UUAB =
∑B
b=1 lb|I(Ab>0)−I(Bb>0)|∑B

b=1 lb

Original Weighted

UniFrac

WUAB =
∑B

b=1 lb|
Ab
AT
− Bb

BT
|

Normalized Weighted

UniFrac

WUAB =
∑B

b=1

lb|
Ab
AT
− Bb
BT
|

lb(
Ab
AT

+
Bb
BT

)

Note that:

(1) I(Oij > 0) is the indicator function which equals to 0 or 1 as taxon i is absent

or present in sample j,

(2) B = the total number of branches in the phylogenetic tree,

(3) lb = the length of branch b,

(4) jb = total number of descendants of branch b from sample j,

(5) I(jb > 0) = indicator equal to 0 or 1 as descendants of node b absent or present

in samples j.

without taking into account the abundance information. It ranges from 0 to 1, with 0 implies

that the two samples share exact the same taxa, and 1 implies there is no common taxa.
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The larger value the more diverse the data.

Unweighted UniFrac and Weighted UniFrac are two popular phylogeny based diversity

measures which are calculated using sequence distances in the phylogenetic tree. They are

based on the fraction of branch length that is shared between two samples or unique to one

or the other sample. Unweighted UniFrac is purely based on sequence distances so it does

not include abundance information, while Weighted UniFrac includes both sequence and

abundance information by weighting branch lengths using relative abundances. Unweighted

UniFrac and (Normalized) Weighted UniFrac range from 0 to 1, the larger value corresponds

to larger diversity.

1.1.3 Analysis of Diversity (ANODIV)

While the alpha and beta diversities are well studied in the microbiome literature, Rao’s

Quadratic Entropy (Rao, 1984; Nayak, 1986; Ricotta and Marignani, 2007; Rao, 2010; Chen

et al., 2018) and the resulting Analysis of Diversity (ANODIV) has not been well discussed

in the microbiome literature. The ANODIV resembles the classical ANOVA but is based

on diversity measures. Although a variety of diversity measures may be used in defining

quadratic entropy, for simplicity of exposition, in this paper we shall use Gini-Simpson index

when defining Rao’s quadratic entropy. In practice one may consider more informative mea-

sures depending on the available information and scientific question. Analogous to ANOVA,

the ANODIV provides a general framework for analyzing complex designs including multi-

factorial studies with covariate adjustments (Nayak, 1986), (Rao, 2010). As demonstrated

in (Rao, 2010) the total diversity (SST ) can be partitioned into various components such as

within group (SSW ) and between group (SSB), which can be further decomposed into other

components depending upon the study design. Based on the asymptotic theory developed

in (Nayak, 1986), one can formally test the null hypothesis that the compositions of two or

more ecosystems are same. Thus, the classical machinery of ANOVA or ANCOVA can be

easily imported into ANODIV. Although, mathematically, the asymptotic theory developed

by Nayak (Nayak, 1986) is designed for the case when the sample sizes are larger than the

number of taxa, there is an opportunity to extend those results for high-dimensional mi-
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crobiome data. If the analysis are carried out at higher order of the phylogeny, say at the

phylum or class or perhaps even order level, where the sample sizes might be larger than the

number of taxa (i.e. phylum, class or order) then ANODIV can be applied directly.

Figure 3: Box plot of Rao’s quadratic entropy.

Let P̂g = (P̂g1, P̂g2, . . . , P̂gm)T denote the sample proportions of m taxa in the gth group,

which are estimated using ng observations in the gth group, g = 1, 2, . . . , G. Let P̂. denote

the weighted average of P̂1, P̂2, . . . , P̂G, weights being the sample sizes n1, n2, . . . , nG. For a

vector of proportions P , define H(P ) = P T∆P , where ∆ is a suitably chosen m×m matrix.

For example, in the case of Gini-Simpson index, which is used in this paper, ∆ = J − I, J

is a matrix where all elements are 1 and I is the identity matrix. Then the total diversity

is defined as SST = H(P̂.) and within-sample diversity is SSW =
∑G

g=1
ng
n
H(P̂g) and the

between sample diversity is SSB = SST − SSW = −
∑G

g=1
ng
n

(P̂g − P̂.)T∆(P̂g − P̂.). Note

that since H(P ) defined above is a concave function, therefore SSB, SSW and SST are all
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non-negative. Under the null hypothesis that all populations have same relative abundance

of all taxa, the asymptotic distribution of (g − 1)(n− 1)SSB/SST is central χ2
(g−1)(m−1).

To illustrate ANODIV, we use the global gut microbiota data (Yatsunenko et al., 2012)

and analyze it at the phylum level. Using data on 39 phyla with subjects from Malawi (MA,

n1 = 114), USA (US, n2 = 317), and Venezuela (VEN, n3 = 99), we found the total diversity

(SST) in the three samples to be 0.574, the within sample diversity SSW = 0.567, and the

between sample diversity SSB = 0.007, with a p-value of 4.30 × 10−18, we reject the null

hypothesis that the phyla compositions are same among the three countries. The box plot

in Figure 3 seems to confirm this finding. Although the variation within each box is very

large, which seems to be consistent with very large SSW , and numerically SSB is small,

three box plots appear to be significantly different, and the statistical test is sensitive to find

a statistically significant p-value. Thus the ANODIV is a useful method to test hypotheses

regarding the equality of microbial compositions in two or more groups.

1.2 Differential abundance analysis

1.2.1 Normalization methods

As we described intuitively in the introduction, a main obstacle for performing DA

analysis is the unknown sampling fractions. Therefore, normalization is critical to enable

meaningful comparison of absolute abundances from different experimental conditions by

eliminating artificial biases caused by the variability of sampling fractions. The primary

objective of normalization is to transform the observed absolute abundances in samples

so that expected differences in the mean absolute abundances between two ecosystems is

not confounded by the differences in the sampling fractions. Thus correcting for the bias

induced by differential sampling fractions should be an important objective of a normalization

procedure. Failure to do so will result in a systematic bias that increases the false discovery

rate (FDR) and loss of power.

Rarefaction or subsampling, is a widely used normalization method in the microbiome
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studies. It was first recommended for microbiome data in order to moderate differences in

the presence of rare taxa (Lozupone et al., 2011). Rarefaction curves represent the diversity

as a function of library sizes. If the lines in the plot appear to “level out” (i.e., approach

a slope of zero) at some library size along the x-axis, that suggests that the diversity of

the samples has been fully observed or sequenced. Otherwise, increasing the minimum

library size would be likely to result in the observation of additional features. Originally, the

diversity metrics used in rarefaction curves was alpha diversity (Gotelli and Colwell, 2001;

Brewer and Williamson, 1994). However, recent years have seen studies using beta diversities

(Horner-Devine et al., 2004; Jernvall and Wright, 1998) as well. Although rarefaction has

been criticized for potential loss of statistical power when a relatively large proportion of

data is removed, some studies (Weiss et al., 2017) have demonstrated that it remains to be

a promising technique for ordination/clustering and that control of false positive rate due to

rarefaction outweighs any loss in power.

Scaling the data is another popular method of normalization of microbiome data. The

basic idea is to multiply each element in the feature table by a ”normalization factor” to

eliminate biases resulting from unequal sampling fractions. Some commonly used normal-

ization methods include Cumulative-Sum Scaling (CSS) implemented in metagenomeSeq

(Paulson et al., 2013), Median (MED) in DESeq2 (Love et al., 2014), Upper Quartile (UQ)

(Bullard et al., 2010) and Trimmed Mean of M-values (TMM) (Robinson and Oshlack, 2010)

in edgeR (Robinson et al., 2010), Wrench (Kumar et al., 2018), and Total-Sum Scaling (TSS)

that simply transforms the abundance table (feature table) into relative abundance table,

i.e. scale by each sample’s library size. Note that as stated in the user manual of edgeR

(Chen et al., 2014), the author suggests that to address the ”RNA composition” effect, one

should multiply the normalization factors with the corresponding library size to account for

“effective library size”. Hence, we also considered modified versions of UQ and TMM, de-

noted as ”ELib-UQ” (Effective library size using UQ) and ”ELib-TMM” (Effective library

size using TMM) in this paper. Since the literature is not often very explicit regarding the

mathematical formulas used by various methods, we provide some useful formulas in Table

5.

TSS is known to have bias in differential abundance estimates (Bullard et al., 2010; Dillies
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Table 5: Summary of different normalization methods.

Method Sampling Fraction Estimate

ANCOM-BC log(ĉANCOM-BC
j ) = 1

m

∑m
i=1(yij − xTj β̂i)

CSS ĉCSS
j =

sl̂j+1

N

MED ĉMED
j = median

i:ORi 6=0

Oij
ORi

UQ ĉUQ
j = UQ

i:Oij>0
(
Oij
O·j

)

TMM log2(ĉTMM
j ) =

∑
i∈G∗ wijMij∑
i∈G∗ wij

Elib-UQ ĉElib-UQ
j = O·j ĉ

UQ
j

Elib-TMM ĉElib-TMM
j = O·j ĉ

TMM
j

Wrench ĉWrench
j = 1

m

∑m
i=1 bij

rij
r̄i·

TSS ĉTSS
j = O·j

Where

(1) β̂i is obtained from ANCOM-BC algorithm,

(2) N = an approximately choose normalization constant,

(3) sl̂j =
∑

i:Oij≤ql̂j
Oij,

(4) q l̂j = l̂th quantile of sample k,

(5) OR
i = (

∏n
j=1Oij)

1
n ,

(6) UQ(X) denotes the upper quartile of X,

(7) Mij = log2(
Oij
O·j

)− log2(
Oij′

O·j′
), where j′ is the reference sample,

(8) wij =
O·j−Oij
O·jOij

+
O·j′−Oij′
O·j′Oij′

, where j′ is the reference sample,

(9) G∗ represents a set of taxa that were not considered as extreme data for fold-

change (M values) and average intensity (A values).

(10) bij represents the taxon-specific weight.
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et al., 2013) since a few preferentially sampled measurements (e.g. taxa, genes) will have

an undue influence on the relative abundance data. Change in the abundance of a single

taxon can alter the relative abundances of all taxa. The Cumulative-Sum Scaling (CSS)

(Paulson et al., 2013) in metagenomeSeq modifies Total-Sum Scaling (TSS) in a sample-

specific manner to reduce biases resulting from preferentially sampled taxa. CSS assumes

that read counts of all samples should be roughly independent and identically distributed up

to a specific quantile. The Median normalization (MED) method used in DESeq2 (Love et al.,

2014) assumes that a large proportion of taxa are not differentially abundant. While this may

be a reasonable assumption in gene expression studies where most genes are not differentially

expressed, but in the case of microbiome data it is not a reasonable assumption. Depending

upon the application, a very large proportion of taxa may be differentially abundant between

two conditions. The Upper Quartile normalization (UQ) and the Trimmed Mean of M-values

(TMM) used in edgeR have similar issues as MED in DESeq2. UQ assumes that the upper

quartile can capture the invariant segment of the count distribution, however, choosing the

most effective quantile is nontrivial (Paulson et al., 2013; Robinson et al., 2010; Bullard et al.,

2010; Dillies et al., 2013; Anders and Huber, 2010; Agresti and Hitchcock, 2005). Similarly,

TMM is based on the hypothesis that most taxa are not differentially abundant. The scaling

factor is calculated using a weighted trimmed mean of log absolute abundance ratios by

first trimming (by default) the taxa belong to upper and lower 30% M values (taxon-wise

log-fold-change) or 5% A values (absolute abundance level). Wrench (Kumar et al., 2018)

assumes the observed absolute abundances are from a hurdle Log-Gaussian distribution. A

robust location estimate of the Gaussian distribution leads to the desired scaling factor for

each sample. However, Wrench currently implements strategies for categorical variable only,

and the estimated scaling factor is essentially the average of ratios of relative abundances

across taxa, which implicitly requires that most taxa do not change across conditions, or the

effect sizes of differentially abundant taxa are not too large. One must exercise caution when

using scaling methods as well. Most importantly, a scaling method is likely to overestimate

or underestimate the fractions of zero counts depending on the corresponding library size of

each sample (Friedman and Alm, 2012; Agresti and Hitchcock, 2005). This problem becomes

more obvious for microbiome data since its feature table is typically sparse.
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In this dissertation, we proposed a novel method called Analysis of Compositions of

Microbiome with Bias Correction (ANCOM-BC), which will be discussed in detail in the

next two chapters, it assumes that the observed sample is an unknown fraction of a unit

volume of the ecosystem, and the sampling fraction varies from sample to sample. ANCOM-

BC accounts for sampling fraction by introducing a sample-specific offset term in a linear

regression model that is estimated from the observed data. The offset term serves as the

bias correction.

Finally, Aitchison’s log-ratio transformation (Aitchison, 1982) implemented in in methods

such as ALDEx2 (Fernandes et al., 2014), ANCOM (Mandal et al., 2015), and DR (Morton

et al., 2019), is another alternative normalization method for compositional data. By taking

log-ratios on observed absolute abundances or relative abundances within each sample, one

is eliminating the effect of sampling fraction inherent to a given sample. There are three

obvious choices for the log-ratio transformation, described below:

Definition 1.2.1 (additive log-ratio transformation (alr) (Aitchison, 1982), Sm → Rm−1).

alr(Oj) = [log(
O1j

Oi′j
), . . . , log(

Omj

Oi′j
)], (1.2)

where

(1) Oj is the observed absolute abundances for sample j,

(2) i′ is taken to be the reference taxon.

Since alr projects the observed absolute abundances, which originally reside in a m di-

mensional simplex, into m− 1 dimensional Euclidean space, standard calculus of Euclidean

geometry becomes valid. Note that alr transformation is an isomorphism, but not isometry,

meaning that distances on transformed values will not be equivalent to distances on the orig-

inal compositions in the simplex. One apparent drawback with alr is the choice of reference

taxon (Morton et al., 2019). For different reference taxa, one gets different interpretations

of the data.

The ambiguity of the chosen of reference taxon can be reduced by selecting the center-of-

mass as the reference, allowing a one-to-one transformation of all taxa. This can be achieved

by the so-called centered log-ratio transformation (clr):
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Definition 1.2.2 (centered log-ratio transformation (clr) (Aitchison, 1982), Sm → Um).

clr(Oj) = [log(
O1j

g(Oij)
), . . . , log(

Omj

g(Oij)
], (1.3)

where

(1) Oj is the observed absolute abundances for sample j,

(2) g(x) is the geometric mean of x,

(3) Um = {[u1, . . . , um] : u1 + . . .+ um = 0} is a hyperplane of Rm.

This transformation to a real space again makes the implementation of unconstrained

statistical methods possible. clr transformation is an isometry, but sum of the transformed

values equals to 0, leading to a degenerate distribution.

Neither alr nor clr transformation can be directly linked to an orthogonal coordinate

system in the simplex. The isometric log-ratio transformation (ilr) (Egozcue et al., 2003)

transformation (also known as balance), which is an isometry between Sm and Rm−1, provides

a solution to this problem.

Definition 1.2.3 (isometric log-ratio transformation (ilr), Sm → Rm−1).

ilr(Oj) = clr(Oj)Ψ
T , (1.4)

where

(1) Oj is the observed absolute abundances for sample j,

(2) Ψ is a (m− 1,m)-matrix of basis.

There are multiple ways to construct orthonormal bases. Typically, if a bifurcating tree

is given then we can construct a basis from the internal nodes in the tree, where each element

in the ilr transformed data is of the following form:

bj =

√
|jL||jR|
|jL|+ |jR|

log[
g(jL)

g(jR)
], (1.5)

where

(1) bj is the balance at internal node j,

(2) jL is the set of relative abundances contained in the left subtree at internal node j,
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(3) jR is the set of relative abundances contained in the right subtree at internal node j ,

(4) |jL| is the number of taxa contained in jL,

(5) |jR| is the the number of taxa contained in jR,

(6) g(x) is the geometric mean of x.

One caveat of applying log-ratio transformation is the choice of pseudo count. Because

of the nature of log transformation, the addition of a pseudo count is necessary to handle

sampling zeros. Studies have shown that differential abundance or clustering results could be

sensitive to the choice of pseudo count (Costea et al., 2014; Paulson et al., 2014). Although

different values of pseudo count have also been exhaustively discussed (Egozcue et al., 2003;

Costea et al., 2014; Paulson et al., 2014; Greenacre, 2011), to our best knowledge, there is

no consensus on how to choose the optimal value.

1.2.2 Methods of differential abundance analysis

One of the objectives in this dissertation is to identify taxa that are differentially abun-

dant between two or more groups, and determine the biological functions and processes

associated with such taxa. A number of procedures have been introduced and used in the

literature for identifying differentially abundant taxa.

One common approach is to apply a nonparametric test (e.g. the Mann-Whitney test for

two groups; the Kruskal-Wallis test for multiple groups) after rarefying the feature table. Un-

fortunately, these standard nonparametric tests do not take into account the compositional

structure of microbiome data.

As alternatives to standard nonparametric tests, many parametric models have been

proposed in the literature based on transcriptomics data such as RNA-Seq data for testing

differences across experimental groups. Among them, DESeq2 (Love et al., 2014) and edgeR

(Robinson et al., 2010) are two most popular methods. They both model the count data using

negative binomial distributions to allow for extra variation, and use shrinkage estimation for

dispersions to improve stability and reliability of estimates.
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1.2.2.1 RNA-seq based methods: DESeq2 and edgeR Both DESeq2 and edgeR

model the observed absolute abundances using the negative binomial distribution. While

both methods are in general very reasonable and appropriate for gene expression data, they

seem to perform poorly for microbiome data. This is largely because, as stated earlier, the

normalization methods used by these two methods intrinsically assume that a very small

fraction of taxa are deferentially abundant. This assumption is not valid for microbiome

data. As a consequence, the test statistics used by these methods are biased under the null

hypothesis. As demonstrated in several previous studies (Mandal et al., 2015; Weiss et al.,

2017), the bias in the test statistic results in inflated FDRs for these methods. What is

worse, as the sample size increases, the FDR increases for these methods.

1.2.2.2 MetanegomeSeq Instead of using a negative binomial model, metagenomeSeq

(Paulson et al., 2013) used a zero-inflated Gaussian mixture (ZIG) model, with the zero

mass tackling excess zeros due to insufficient sequencing depth or biological nature, and

the Gaussian distribution modeling the non-zero counts. However, as shown in simulation

studies (Weiss et al., 2017), metagenomeSeq was the only method, among all parametric

models, that increased FDR when using rarefied data. This might due to its zero-inflated

model which requires the raw library size to capture the zero proportion. Even with its own

normalization method (CSS), metagonomeSeq still has a highly inflated FDR, and it gets

worse when sample size or the fold change increases (Mandal et al., 2015; Weiss et al., 2017).

The authors of metagenomeSeq, modified their procedure and recommend using zero-

inflated Log-Gaussian (ZILG) mixture model instead of zero-inflated Gaussian (ZIG) mixture

model for each feature. Although this improves the FDR control, the procedure becomes

extremely conservative, with FDR close to zero and substantial loss in power.

1.2.2.3 ALDEx2 Inherited from the original version of ANOVA-Like Differential Ex-

pression (ALDEx) analysis (Fernandes et al., 2013), ALDEx2 was proposed as a compo-

sitional data analysis tool that is applicable to three different types of data: RNA-Seq,

ChIP-Seq and 16S rRNA sequencing (Fernandes et al., 2014). By acknowledging these

high-throughput sequencing datasets are fundamentally compositional, the methodology of
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ALDEx2 can be summarized as follows:

(1) The observed absolute abundances are converted to relative abundances by Monte Carlo

(MC) sampling from the Dirichlet distribution with the addition of a uniform prior. The

MC sampling is repeated for K times (K = 128 times by default), thus essentially, for

each taxon i in sample j, the observed absolute abundance Oij is represented by a vector

of MC samples of relative abundances (r
(1)
ij , . . . , r

(K)
ij )T ,

(2) Within each sample j and each MC Dirichlet realization k, k = 1, . . . , K, the relative

abundances (r
(k)
1j , . . . , r

(k)
mj)

T is clr transformed giving a vector of transformed values,

(3) Significance test (Welch’s t-test or Wilcoxon test) is performed on each taxon in the

vector of clr transformed values. Since there are a total of K MC Dirichlet samples, each

taxon will result in K p-values.

(4) Each resulting p-value is corrected using the B-H71995Benjamini and Hochberg procedure, and

the expected adjusted p-value for each taxon is reported by taking the empirical mean

of K adjusted p-values.

The ALDEx2 was designed to identify differential abundances of features (genes, taxa,

or genomic segments) between two or more sample groups, relative to the geometric mean

absolute abundance. Thus, the parameter of interest in ALDEx2 is different from the pa-

rameter of interest in DA analysis. Throughout this dissertation, a differentially abundant

taxon is the one whose mean absolute abundance in the ecosystem is significantly different

with regard to the covariate of interest. As a result, ALDEx2 not only generally exceeds

the nominal level of FDR (5%), but also has substantially smaller power as compared to

competing DA methods (Morton et al., 2019).

1.2.2.4 Analysis of composition of microbiomes (ANCOM) is an Aitchison’s log-

ratio based methodology (Aitchison, 1982), which accounts for the compositional structure

of microbiome data. Suppose there are a total of m taxa, ANCOM relies on two mild

assumptions as follows. Under these assumptions, the authors proved that one can test the

null hypotheses regarding absolute abundance in a unit volume using relative abundances.
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Assumption 1.2.1. The mean abundance (in log scale) of at most m− 2 taxa are different.

Thus, some two taxa are assumed to be not differentially abundant.

Assumption 1.2.2. The mean abundance (in log scale) of all m taxa do not differ by the

same amount between the two study groups.

For the ith taxon and jth sample, the ANCOM uses standard ANOVA model formulation:

log
r

(g)
ij

r
(g)
i′j

= αii′ + β
(g)
ii′ +

∑
k

xjkβii′k + ε
(g)
ii′j, (1.6)

where i′ is the reference taxon, i′ 6= i = 1, 2, . . . ,m, g = 1, 2, . . . , G is the number of groups,

αii′ is the overall common mean, β
(g)
ii′ is factor of interest at the gth level, xjk are adjusting

covariates indexed by k. ε
(g)
ii′j ∼ N(0, σ2

ii′).

By virtue of Assumption 1.2.1 and Assumption 1.2.2, to test whether a taxon i is differ-

entially abundant according to a factor of interest with G levels, it is equivalent to test:

H0(ii′) : β
(1)
ii′ = . . . = β

(G)
ii′ = 0,

H1(ii′) : Not all β
(g)
ii′ equals to 0,

for every i 6= i′.

Altogether m(m−1)
2

distinct null hypothesesH0(ii′), i 6= i′ are tested using a multiple testing

correction such as the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995).

For each taxon, the number of rejections, denoted as Wi, is counted, and ANCOM makes use

of the empirical distribution of {W1,W2, . . . ,Wm} to determine the cut-off value of significant

taxon. The rule of thumb is when the value of Wi is larger, it is more likely that taxon i

tends to be differentially abundant. The author recommends using 70 percentile of the W

distribution as the empirical cut-off value.

As shown by simulation studies (Mandal et al., 2015; Weiss et al., 2017), ANCOM suc-

cessfully controls the FDR under the nominal level (5%) while maintaining adequate power.

However, ANCOM can be computationally intensive especially if the number of taxa is

large. In addition, the statistical decision made by ANCOM depends on the quantile of its

test statistic rather than quantitative measures such p-values, which some biologists find it

difficult to interpret.
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1.2.2.5 Differential Ranking (DR) exploits the fact that the ranks of relative differ-

entials are identical to the ranks of absolute differentials. They estimate relative differentials

using a multinomial regression where OTUs/SVs are the explanatory variables in the model.

The regression coefficients corresponding to different taxa are ranked in order to determine

the most important to least important taxa.

The multinomial regression model is formulated using additive log-ratio (ALR) transfor-

mation:

βik ∼ N(0, µβ)

ηj = alr−1(βTi xj)

O·j ∼ Multinomial(ηj),

(1.7)

The model parameters are estimated using a maximum a posteriori priori (MAP) estimation

by stochastic gradient descent. Since the regression parameters are estimated under the

constraint that they sum to 0, this method does not require to pre-specify the reference

taxon and hence is robust to the choice of reference taxon. Secondly, it does take into

account the compositional structure of microbiome data.

Note that, unlike other methods which use a p-value, this method makes decisions solely

on the magnitude of βik and the ranks of taxa derived from there.

1.2.2.6 Gneiss (Morton et al., 2017) is different from all above DA methods in the sense

that it aims to move away from identifying differential abundance properties of individual

taxon; Instead, in its implementations, it explore the concept of balances (Egozcue and

Pawlowsky-Glahn, 2005; Pawlowsky-Glahn and Egozcue, 2011) to infer meaningful proper-

ties of sub-communities. It is important to note that gneiss is not designed to infer changes

of absolute abundance for each individual taxon, but it can limit the number of possible

scenarios with regards to the absolute changes of a group of taxa.
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2.0 Analysis of Compositions of Microbiomes with Bias Correction

(ANCOM-BC)

2.1 Introduction

As introduced in the last chapter, a number of procedures have been proposed and used

in the literature for identifying deferentially abundant taxa between two or more ecosystems.

A detailed survey of some of the existing methods and their performance has been discussed

in (Weiss et al., 2017). As noted in a list of studies (Mandal et al., 2015; Gloor and Reid,

2016; Gloor et al., 2016, 2017; Morton et al., 2019), the observed microbiome data are

relative abundances, hence they are compositional. Standard statistical methods are not

appropriate for analyzing compositional data (Aitchison, 1982). Methods such as ANOVA,

Kruskal-Wallis test do not appropriately take into consideration the compositional feature of

microbiome data when performing differential abundance (DA) analysis. As demonstrated

in literatures (Weiss et al., 2017; Mandal et al., 2015), these methods are subject to inflated

false discovery rates (FDR). Although metagenomeSeq (Paulson et al., 2013) was specifically

developed for microbiome data, it too is subject to inflated FDR under the Gaussian mixture

model (Weiss et al., 2017; Mandal et al., 2015).

Aitchison’s methodology converts relative abundances, which are points in a simplex

(i.e. compositional), into points in a lower dimensional Euclidean space by taking suitable

log-ratios of each taxon with respect to a pre-specified reference taxon or the geometric

means of all taxa. However, there are two caveats to keep in mind when using this class of

methods (Morton et al., 2019). Firstly, the results and interpretation of data depend on the

reference frame. Secondly, some of these methods are appropriate for relative abundance

and not the absolute abundance(Morton et al., 2019). Although ANCOM (Mandal et al.,

2015) uses Aitchison’s framework, it is important to remind that unlike other compositional

methods, in its implementation, the ANCOM algorithm does not fix one single taxon (or the

geometric mean) as a reference, but uses all taxa and pools results from all such analyses

when declaring differential abundance of a particular taxon. Thus, the reference taxon issue
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(Morton et al., 2019) does not apply to ANCOM. By assuming that the mean absolute

abundance of two taxa are not different between two ecosystems, ANCOM (Mandal et al.,

2015) developed a strategy that enables researchers to infer about mean absolute abundances

by testing hypotheses regarding mean relative abundances. Thus, unless the absolute mean

abundance of almost all taxa changed, ANCOM should perform well in terms of FDR and

power. One of the deficiencies of ANCOM is that it does not provide p-value for individual

taxon, nor can it provide standard errors or confidence intervals of differential abundance for

each taxon, and it can be computationally intensive. According to an extensive simulation

study (Weiss et al., 2017), among the available methods for DA analysis, only ANCOM

performs well in controlling FDR at the desired level while maintaining high power, as long

as the sample size is not too small (e.g. n = 5 per group).

The Differential Ranking (DR) methodology (Morton et al., 2019) reformulates the prob-

lem as a multinomial regression problem. By imposing the constraint that sum of the regres-

sion coefficients is zero, the DR methodology accounts for compositionality in the relative

abundance of microbiome data. Thus, unlike ALDEX2 (Gloor, 2015), they do not require the

pre-specification of a reference frame. This makes their method more flexible than ALDEX2.

Also, as demonstrated in their paper (Morton et al., 2019), the ranks of relative differentials

perfectly correlate with ranks of absolute differentials. This result is consistent with the

analytical results obtained by ANCOM, provided 2 taxa are not differentially abundant (in

mean absolute abundance). Similar to ANCOM, the DR procedure does not provide explicit

p-values or confidence intervals to declare statistical significance.

Since not all samples have the same sampling fraction, all DA methodologies require

the counts to be properly normalized to account for differences in sampling fractions across

samples. Sampling fraction is determined by two components, namely, the microbial load in

a unit volume of the ecosystem (e.g. gut) and the library size of the corresponding sample

(e.g. total species abundance sequenced from a subject’s stool sample). Therefore it is not

sufficient to normalize the library size across samples as one needs to take into consideration

the differences in the microbial loads. As shown in Figure 1, if a normalization method is

based only on the library size and ignores the sampling fraction, then the two samples (A

and B) would be considered as normalized, which leads to a false negative conclusion. Thus,
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normalizing data on the basis of sampling fractions gives a better description of the truth

than normalization methods that rely purely on the library sizes.

Ideally, under the null hypothesis, the test statistic for DA analysis should be (at least

approximately) centered at zero (i.e. unbiased). However, for many DA methods, this is

not always true for at least one of the following reasons: (1) The test statistic may not be

designed for testing hypothesis regarding the actual parameter of interest. For example, the

statistic is designed to test hypotheses regarding relative abundance but the null hypothesis is

regarding the absolute abundance; (2) Data are not properly normalized. For example, data

are normalized to correct for differences in library sizes only but not account for differences

in the sampling fractions; (3) Underlying structure, such as compositionality, is ignored;

(4) The methodology imposes strong parametric assumption on the data, which could lead

to a potential model misspecification problem. For instance, although DESeq2(Love et al.,

2014) and edgeR(Robinson et al., 2010) have been widely used for DA analysis, studies

on RNA-Seq data have shown that they could yield high FDR as the negative binomial

model does not fit the data well when there are many zeros (Weiss et al., 2017). Applying

non-parametric tests, such as Wilcoxon rank-sum test, to the OTU table directly, not only

neglects the compositional structure of the absolute abundance data, but also implicitly

assumes equivalent sampling fractions for all samples.

Motivated by the above reasons, in this chapter we propose a novel methodology called

Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) that 1) ex-

plicitly tests for differential absolute abundance, 2) normalizes the OTU table for differences

in sampling fractions among samples, 3) account for the compositional structure of the OTU

table properly, and 4) does not make strong parametric assumptions on the data. As in

ANCOM and DR, ANCOM-BC assumes that the observed sample is an unknown fraction

of a unit volume of the ecosystem, and the sampling fraction varies from sample to sample.

ANCOM-BC accounts for sampling fraction by introducing a sample-specific offset term in

a linear regression model, that is estimated from the observed data. The offset term serves

as the bias correction, and the linear regression framework in log scale is analogous to log-

ratio transformation to deal with the compositionality of microbiome data. The case of zero

counts is also discussed in Methods section. This methodology has some conceptual similar-
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ities with DR, but is fundamentally different. With ANCOM-BC, one can perform standard

statistical tests and construct confidence intervals for differential abundance. Moreover, as

demonstrated in benchmark simulation studies, ANCOM-BC (a) controls the FDR very well

while maintaining adequate power compared to other popular methods, and (b) it is sub-

stantially faster the ANCOM. The CPU time is 0.28 mins vs 63 mins when the number

of taxa is 500. The CPU time for ANCOM increases dramatically as the number of taxa

increases to 1,000. In this case, the CPU times for ANCOM-BC and ANCOM are 0.51 mins

and 211 mins, respectively. In addition to results based on synthetic data, we also illustrate

ANCOM-BC using the well-known global gut microbiota dataset (Yatsunenko et al., 2012).

2.2 Methods

2.2.1 Model assumptions

Assumption 2.2.1.

E(Oij|Aij) = cjAij,

V ar(Oij|Aij) = σ2
w,ij,

(2.1)

where σ2
w,ij = variability between specimens within the jth sample. Therefore, σ2

w,ij char-

acterizes the within-sample variability. Typically, researchers do not obtain more than one

specimen at a given time in most microbiome studies. Consequently, variability between

specimens within sample is usually not estimated. Throughout this paper, we use ”sample”

and ”specimen” exchangeably.

According to Assumption 2.2.1, in expectation the absolute abundance of a taxon in a

random sample is in constant proportion to the absolute abundance in the ecosystem of the

sample. In other words, the expected relative abundance of each taxon in a random sample

is equal to the relative abundance of the taxon in the ecosystem of the sample.

Assumption 2.2.2. For each taxon i, Aij, j = 1, . . . , n, are independently distributed with

E(Aij|bi, xj) = bTi xj,

V ar(Aij|bi, xj) = σ2
b,ij,

(2.2)
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where

(1) xj = (xj1, xj2, . . . , xjp)
T are the covariates of interest for the jth sample,

(2) bi = (bi1, bi2, . . . , bip) are the corresponding coefficients for xj,

(3) σb,ij = between sample variation for the ith taxon.

The Assumption 2.2.2 states that for a given taxon, all samples are independent.

2.2.2 ANCOM-BC for fixed effects models

2.2.2.1 Regression framework From Assumptions 2.2.1 & 2.2.2, we have:

E(Oij|bi, xj) = cjb
T
i xj,

V ar(Oij|bi, xj) = f(σ2
w,ij, σ

2
b,ij) := σ2

t,ij.
(2.3)

Motivated by the above set-up, we introduce the following linear model framework for log-

transformed absolute abundances:

yij = dj + βTi xj + εij, (2.4)

with

E(εij) = 0,

E(yij) = dj + βTi xj,

V ar(yijk) = V ar(εijk) := σ2
ij.

(2.5)

Note that the above log-transformation of data is inspired by the Box-Cox family of trans-

formations (Box and Cox, 1964) which are routinely used in data analysis.

Rewrite the model (2.4) in the vector form, we have

yi = d+Xβi + εi, (2.6)
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with

E(εi) = (0, . . . , 0)T ,

E(yi) = d+Xβi,

Cov(yi) = Cov(εi) =


σ2
i1 0 . . . 0

0 σ2
i2 . . . 0

...
...

. . .
...

0 0 . . . σ2
in

 .
(2.7)

where

(1) yi = (yi1, yi2, . . . , yin)T ,

(2) d = (d1, d2, . . . , dn)T ,

(3) βi = (βi1, βi2, . . . , βip)
T ,

(4) εi = (εi1, εi2, . . . , εin)T ,

(5) X =


x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp

.

It is important to note that within each subject j, for taxa i 6= i′, εij and εi′j are not

independent. Thus the column vectors yi and yi′ are not independent random vectors.

For ease of exposition, define the adjusted log absolute abundance yadji = yi− d, then by

(2.6)

yadji = Xβi + εi. (2.8)

From the above model, the ordinary least squares (OLS) estimators of d and βi can be

obtained by iteratively solving the following system of equations.

Suppose on convergence, d← d∗, yadji ← yadji

∗
, βi ← β∗i , we have

d∗ =
1

m

m∑
i=1

(yi −Xβ∗i ),

yadji

∗
= yi − d∗,

β∗i = (XTX)−1XTyadji

∗
.

(2.9)
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Algorithm 1 Iterative least square regression

1: Initialize:

For i = 1, . . . ,m

d← 0

yadji ← yi − d = yi

βi ← (XTX)−1XTyadji = (XTX)−1XTyi
2: while not converge do

3: d← 1
m

∑m
i=1(yi −Xβi)

4: yadji ← yi − d

5: βi ← (XTX)−1XTyadji

6: end while

Therefore

d∗ =
1

m

m∑
i=1

(yi −Xβ∗i ) =
1

m

m∑
i=1

(yi − Pyadji

∗
)

=
1

m

m∑
i=1

(yi − Pyi + Pd∗) =
1

m

m∑
i=1

(yadji + d− P (yadji + d) + Pd∗)

= (I − P )d+ Pd∗ +
1

m

m∑
i=1

(I − P )yadji

= (I − P )d+ Pd∗ +
1

m

m∑
i=1

ei,

(2.10)

where

(1) P = X(XTX)−1X is the projection matrix,

(2) ei = (I − P )yadji with E(ei) = 0.

By (2.10), it is easy to see that

(I − P )d∗ = (I − P )d+
1

m

m∑
i=1

ei

⇐⇒ (I − P )[E(d∗)− d] = 0.

(2.11)

As P ⊂ C(X), the equation (2.11) holds as long as either of the following is valid:

(1) E(d∗)− d = 0,
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(2) E(d∗)− d ∈ C(X).

Suppose there exists a vector δ ∈ Rp, such that

E(d∗) = d−Xδ. (2.12)

Clearly, a zero vector of δ corresponds to condition (1) stated above; While a nonzero vector

of δ corresponds to condition (2). Therefore, by (2.9),

E(β∗i ) = δ + βi. (2.13)

We shall denote d∗ and β∗i obtained from the above iterative algorithm as preliminary

estimators of d and βi. Without loss of generality, throughout this paper we assume XTX

is a full rank matrix. If it is not a full rank matrix, then we shall use any generalized inverse

of XTX. Since Xβ∗i in (2.10) is invariant of the choice of generalized inverse (XTX)g used

in β∗i = (XTX)gXT zi. Thus the preliminary estimator d∗ provided above is invariant of the

choice of generalized inverse used in deriving β∗i . Furthermore, throughout this paper we

are interested in testing hypothesis regarding the parameter Aβi where we implicitly assume

that C(AT ) ⊂ C(XT ). Consequently, Aβi is estimable and Aβ∗i is invariant of the generalized

inverse used in the calculation of β∗i when XTX is not full rank. If XTX is full rank then

C(AT ) ⊂ C(XT ) is trivially satisfied. Hence throughout this text we shall assume XTX is

full rank.

For each taxon i = 1, 2, . . . ,m, by (2.13), β∗i is a biased estimator if δ 6= (0, . . . , 0)T .

Suppose we wish test the hypothesis

H0 : Aβi = Aβ
(0)
i ,

H1 : Aβi 6= Aβ
(0)
i .

(2.14)

Under the null hypothesis, E(Aβ∗i )−Aβ
(0)
i = Aδ 6= 0 and hence biased. The goal of ANCOM-

BC is to estimate this bias and accordingly modify the estimator Aβ∗i so that the resulting

estimator is asymptotically centered at Aβ
(0)
i under the null hypothesis and hence the test

statistic is asymptotically centered at zero.
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First we make the following observations. Since E(β∗i ) = δ + βi, from Cramér Wold

Theorem, we note that as n→∞

Σ
− 1

2
i (β∗i − (δ + βi))→d Np(0, I), (2.15)

where

Σi = lim
n→∞

(XTX)−1(
n∑
j=1

σ2
ijxjx

T
j )(XTX)−1. (2.16)

Since

E(d∗ +Xβ∗i ) = d−Xδ +X(δ + βi) = d+Xβi, (2.17)

i.e. d∗ + Xβ∗i is an unbiased estimator of d + Xβi, hence we could obtain the empirical

estimator for Σi as

Σ̂i = (XTX)−1(
n∑
j=1

(yij − d∗j − β∗i
Txj)

2xjx
T
j )(XTX)−1. (2.18)

Under some mild regularity conditions(Peddada and Smith, 1997), we have the following

consistency result

n(Σ̂i − Σi)→p 0, as n →∞. (2.19)

Therefore, replacing Σi with Σ̂i in (2.15) and appealing to Slutsky’s theorem, we have:

Σ̂
− 1

2
i (β∗i − (δ + βi))→d Np(0, 1), as n →∞. (2.20)

By (2.16) and (2.19), under some mild regularity conditions(Peddada and Smith, 1997), we

obtain

Σ̂i →p 0, as n →∞. (2.21)

Consequently,

β∗i →p δ + βi, as n →∞. (2.22)

The above observation regarding the convergence of β∗i plays a critical role in the fol-

lowing. Since the sampling fraction is constant for all taxa within a sample, we attempt

to pool information across taxa within each sample when estimating δ. We model each

taxa abundance using the following Gaussian mixture model. For the ith taxon and the

kth covariate (note that for a categorical covariate of s levels, it results in s coefficients,
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e.g. βi1, . . . , βis, and we will fit the Gaussian mixture model for these s coefficients sepa-

rately), let C0 denote the set of taxa that are not differentially abundant with regard to

xik, i.e. C0 = {i ∈ (1, 2, . . . ,m) : βik = 0}, C1 denote the set of taxa whose absolute

abundance decreases as the increase of xik, i.e. C1 = {i ∈ (1, 2, . . . ,m) : βik < 0}, and let

C2 denote the set of taxa whose absolute abundance increases as the increase of xik, i.e.

C2 = {i ∈ (1, 2, . . . ,m) : βik > 0}, Let πr denote the probability that a taxon belongs to set

Cr, r = 0, 1, 2. For simplicity of estimation of parameters, similar to GEE, we shall assume

that βik, i = 1, 2, . . . ,m, are independently distributed. Thus, we ignore the underlying cor-

relation structure when estimating δ. This is similar to what is often done in other omics

studies. Thus, we model the distribution of β∗ik by Gaussian mixture model as follows:

f(β∗ik) = π0φ(
β∗ik − δk
νi0

) + π1φ(
β∗ik − (δk + l1)

νi1
) + π2φ(

β∗ik − (δk + l2)

νi2
), (2.23)

where

(1) φ is the normal density function,

(2) δk, δk+ l1, and δk+ l2 are means for β∗ik|C0, β
∗
ik|C1, and β∗ik|C2, respectively. l1 < 0, l2 > 0,

(3) νi0, νi1, and νi2 are variances of β∗ik|C0, β
∗
ik|C1, and β∗ik|C2, respectively.

Note that instead of fitting a multivariate Gaussian mixture model for all covariates together,

we choose to fit a univariate Gaussian mixture model repeatedly for each single covariate.

This repetition is simply because the sets of of taxa {C0, C1, C2} are not necessarily the same

for different covariates.

For computational simplicity, we assume that νi1 > νi0, νi2 > νi0. Thus, Without loss of

generality for κ1, κ2 > 0, let νi1 = νi0 +κ1 and νi2 = νi0 +κ2. While this assumption is not a

requirement for our method, it is reasonable to assume that variability among differentially

abundant taxa is larger than that among the null taxa. By making this assumption, we

speed-up the computation time.

Assuming samples are independent, we begin by first estimating ν2
i0 = V ar(β∗ik). Note

that ν2
i0 is the function of heteroscedastic variances, the consistent estimator of ν2

i0, which we

refer to as ν̂2
i0, is the kth diagonal element of Σ̂i stated in (2.18). In all future calculations, we

plug in ν̂2
i0 for ν2

i0. This is similar in spirit to many statistical procedures involving nuisance

parameters. The following lemma (McLachlan and Krishnan, 2007) is useful in the sequel.
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Lemma 2.2.1. ∂
∂θ

log f(x) = Ef(z|x)[
∂
∂θ

log f(z) + ∂
∂θ

log f(x|z)].

Let Θ = (δk, π1, π2, π3, l1, l2, κ1, κ2)T denote the set of unknown parameters, then for each

taxon the log-likelihood can be reformulated using Lemma 2.2.1, as follows:

Θ← arg max
Θ

m∑
i=1

2∑
r=0

pr,i[logPr(i ∈ Cr) + log f(βik|i ∈ Cr)]. (2.24)

Then the E-M algorithm is described as follows:

• E-step: Compute conditional probabilities of the latent variable. Define pr,i = Pr(i ∈

Cr|βik) =
πrφ(

βik−(δ+lr)

νir
)∑

r πrφ(
βik−(δ+lr)

νir
)
, r = 0, 1, 2; i = 1, . . . ,m, which are conditional probabilities

representing the probability that an observed value follows each distribution. Note that

l0 = 0.

• M-step: Maximize the likelihood function with respect to the parameters, given the

conditional probabilities.

We shall denote the resulting estimator of δk by δ̂EMk .

Figure 4: EM and WLS estimators of the bias term are highly correlated.

Next we estimate V ar(δ̂EM). Since the likelihood function is not a regular likelihood and

hence it is not feasible to derive the Fisher information. Consequently, we take a simpler and
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a pragmatic approach to derive an approximate estimator of V ar(δ̂EM) using the variance

of weighted least square (WLS) estimator, V ar(δ̂WLS), which is defined below. Extensive

simulation studies suggest that δ̂EM and δ̂WLS are highly correlated (Figure 4) and it appears

to be reasonable to approximate V ar(δ̂EM) by V ar(δ̂WLS).

Define

δ̂WLS =

∑
i∈C0

β∗ik
ν̂2i0

+
∑

i∈C1

β∗ik−l̂1
ν̂2i1

+
∑

i∈C2

β∗ik−l̂2
ν̂2i2∑

i∈C0

1
ν̂2i0

+
∑

i∈C1

1
ν̂2i1

+
∑

i∈C2

1
ν̂2i2

=

∑
i∈C0

β∗ik
ν2i0

+
∑

i∈C1

β∗ik−l1
ν2i1

+
∑

i∈C2

β∗ik−l2
ν2i2∑

i∈C0

1
ν2i0

+
∑

i∈C1

1
ν2i1

+
∑

i∈C2

1
ν2i2

+ op(1).

(2.25)

The above expression is of the form

aT1 x1 + aT2 x2 + aT3 x3

aT1 1 + aT2 1 + aT3 1
≡ αTu

αT1
, (2.26)

where

(1) 1 = (1, . . . , 1)T ,

(2) ar = (ar1, ar2, . . . , armr)
T := ( 1

ν2ir
)T , i ∈ Cr, r = 0, 1, 2,

(3) xr = (xr1, xr2, . . . , xrmr)
T := (β∗ik − li)T , i ∈ Cr, r = 0, 1, 2. Note that l0 = 0,

(4) α = (α1, α2, . . . , αm)T ≡ (aT1 , a
T
2 , a

T
3 )T ,

(5) u = (u1, u2, . . . , um)T ≡ (xT1 , x
T
2 , x

T
3 )T .

For the simplicity of notation we relabel a and x by α and u, respectively. Denote Cov(x) =

Cov(u) by Ω, and let ωii′ denotes the (i, i′) element of Ω. We make the following assumption

Assumption 2.2.3. ∑m
i 6=i′ ωii′

m2
= o(1). (2.27)

Using the above expressions, we compute the variance as follows:

V ar(δ̂WLS) = V ar(
αTu

αT1
)

=

∑m
i=1 α

2
iωii

(
∑m

i=1 αi)
2

+

∑m
i 6=i′ αiαi′ωii′

(
∑m

i=1 αi)
2
.

(2.28)
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Recall that (a) for i ∈ C0, ωii = V ar(β∗ik) = ν2
i0 = O(n−1), (b) for i ∈ C1, ωii = V ar(β∗ik) =

ν2
i1 = ν2

i0 + κ1 = O(1), and (c) for i ∈ C2, ωii = V ar(β∗ik) = ν2
i2 = ν2

i0 + κ2 = O(1). Note that

αi = 1
V ar(β∗ik)

= 1
ωii

, thus we have:

V ar(
αTu

αT1
) =

∑m
i=1 α

2
iωii

(
∑m

i=1 αi)
2

+

∑m
i 6=i′ αiαi′ωii′

(
∑m

i=1 αi)
2

=
1∑m
i=1 αi

+

∑m
i 6=i′ αiαi′ωii′

(
∑m

i=1 αi)
2
.

(2.29)

Since ν2
i0 = O(n−1), ν2

i1 = O(1), and ν2
i2 = O(1), consequently, a1i = O(n), a2i = a3i = O(1),

and
m∑
i=1

αi = 1Ta1 + 1Ta2 + 1Ta3

=
∑
i∈C0

O(n) +
∑
i∈C1

O(1) +
∑
i∈C2

O(1)

= O(m0n) +O(m1) +O(m2)

= O(m0n) if m0n ≥ max{m1,m2}.

(2.30)

Using these facts and Assumption 2.2.3 in (2.29), we get

V ar(
αTu

αT1
) = O(m−1

0 n−1) +

∑m
i 6=i′{n−1m−1αi}{n−1m−1αi′}ωii′

n−2m−2(
∑m

i=1 αi)
2

= O(m−1
0 n−1) +

1

m2

∑m
i 6=i′{n−1αi}{n−1αi′}ωii′
(
∑m

i=1 n
−1m−1αi)2

= O(m−1
0 n−1) +

1

m2

O(1)o(m2)

O(1)

= O(m−1
0 n−1).

(2.31)

Thus, under Assumption 2.2.3 regarding ωii′ , the contribution of the covariance terms in the

above variance expression is negligible as long as m is very large compared to n, which is

usually the case. Hence

V ar(δ̂WLS) = V ar(
αTu

αT1
) = O(m−1

0 n−1). (2.32)
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Furthermore, appealing to Cauchy-Schwartz inequality we get

Cov(µ̂i1 − µ̂i2, δ̂WLS) ≤
√
V ar(µ̂i1 − µ̂i2)V ar(δ̂WLS)

≤ O(n−1/2)O(m
−1/2
0 n−1/2)

= O(n−1m
−1/2
0 ).

(2.33)

Hence, as long as m0 is large, the contribution made by V ar(δ̂WLS) and Cov(µ̂i1− µ̂i2, δ̂WLS)

relative to V ar(µ̂i1 − µ̂i2) is negligible. Otherwise, we replace δ̂EMk with

δ̂WLS
k =

∑
i∈C0

β∗ik
ν̂2i0

+
∑

i∈C1

β∗ik−l̂1
ν̂2i1

+
∑

i∈C2

β∗ik−l̂2
ν̂2i2∑

i∈C0

1
ν̂2i0

+
∑

i∈C1

1
ν̂2i1

+
∑

i∈C2

1
ν̂2i2

, (2.34)

consequently, V ar(β∗ik) and Cov(β∗ik, β
∗
ik′) in Σi are replaced by the upper bound of V ar(β∗ik−

δ̂WLS
k ) and Cov(β∗ik − δ̂WLS

k , β∗ik′ − δ̂WLS
k′ ), respectively.

The above procedure is applied to every βik, k = 1, . . . , p, eventually, we obtain the

estimator of δ as

δ̂EM = (δ̂EM1 , δ̂EM2 , . . . , δ̂EMp )T . (2.35)

Therefore, the final estimator of β is defined as

β̂i = β∗i − δ̂EM , (2.36)

with

β̂i →p βi, as n →∞, (2.37)

given that δ̂EM is a good approximation of δ.

We provide the following algorithm for summarizing the above estimating procedure

For taxon i, we test the following hypothesis

H0 : Aβi = Aβ
(0)
i ,

H1 : Aβi 6= Aβ
(0)
i .
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Algorithm 2 Bias correction
1: Input:

β∗i ,Σi, i = 1, . . . ,m

2: procedure E-M(β∗i ,Σi)

3: return δ̂EMk , k = 1, . . . , p

4: end procedure

5: for k = 1, . . . , p do

6: β̂ik ← β∗ik − δ̂EMk
7: end for

From Slutsky’s theorem, as n → ∞, the following test statistic is approximately central

chi-square distributed under the null hypothesis

Wi = (Aβ̂i − Aβi)T (AΣ̂iA
T )−1(Aβ̂i − Aβi)

= (Aβ∗i − Aδ̂EM − Aβi)T (AΣ̂iA
T )−1(Aβ∗i − Aδ̂EM − Aβi)

→d χ
2
q,

(2.38)

where q = rank(A).

To control the FDR due to multiple comparisons, We recommend applying Holm method

(Holm, 1979) instead of Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg,

1995) in the algorithm to adjust raw p-values, since the Holm method does not require any

dependence structure in the underlying p-values, and research has showed that it is a more

appropriate method to control the FDR when p-values are not accurate (Lim et al., 2013).

2.2.2.2 Sampling fraction estimation After obtaining δ̂EM , the estimator of sampling

fraction d is defined as follows:

d̂ =
1

m

m∑
i=1

(yi −Xβ̂i). (2.39)

Let Σj denote an m×m covariance matrix of εj = (ε1j, ε2j, . . . , εmj)
T , where σii′j is the

(i, i′)th element of Σj and σ2
ij is the ith diagonal element of Σj. Furthermore, suppose
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Assumption 2.2.4.

σ2
ij < σ2

0 <∞,∑m
i 6=i′ σii′j

m2
= o(1).

(2.40)

Denote 1 = (1, 1, . . . , 1)T , based on Assumption 2.2.4, we have

0 ≤ 1TΣ1 =
m∑
i=1

m∑
i′=1

σii′j =
m∑
i=1

σ2
ij +

m∑
i 6=i′

σii′j ≤ mσ2
0 +

m∑
i 6=i′

σii′j. (2.41)

Hence

0 ≤ 1TΣ1

m2
≤ σ2

0

m
+

∑m
i 6=i′ σii′j

m2
= o(1). (2.42)

Thus, for each taxon i = 1, 2, . . . ,m, we have

1

m

m∑
i=1

(yi − (d+Xβi))→p 0, as m→∞. (2.43)

Therefore, according to (2.37) and (2.43), as m,n→∞,

d̂→ d. (2.44)

2.2.3 ANCOM-BC for mixed effects models

Similar to the fixed effects model, for each taxon i, i = 1, . . . ,m, and each subject

j, j = 1, . . . , n, the offset-based mixed effects log-linear model is set up as

yij = dj +Xjβi + Zjαj + εij, (2.45)

where dj is the nj-vector sampling fractions, Xj is the nj × p design matrix for fixed effects,

βi is the p-vector of fixed effects regression coefficients to be estimated, Zj is the nj × q

design matrix for the random effects, αj is the q-vector random effects, εij is the nj-vector

residuals. Note that
∑

j nj = n. The following distributional assumptions are made

αj ∼ N(0, D),

εij ∼ N(0, σ2
j Inj),

εi1, . . . , εin, α1, . . . , αn independent.

(2.46)
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Thus, for each taxon i, i = 1, . . . ,m, and each subject j, j = 1, . . . , n, we have

yij ∼ N(dj +Xjβi, Hj(θ)), (2.47)

where Hj(θ) = ZjDZ
T
j + σ2

j Inj denotes a general covariance matrix parametrized by θ.

To stack up all subject’s data

yi = d+Xβi + Zα + εi, (2.48)

where

yi =


y1

y2

...

yn

 , d =


d1

d2

...

dn

 , X =


X1

X2

...

Xn

 ,

Z =


Z1 0 . . . 0

0 Z2 0 0
...

...
. . .

...

0 0 . . . Zn

 , α =


α1

α2

...

αn

 , εi =


εi1

εi2
...

εin

 .

That is,

yi ∼ N

d+Xβi, H(θ) =


H1(θ) 0 . . . 0

0 H2(θ) 0 0
...

...
. . .

...

0 0 . . . Hn(θ)



 , (2.49)

where H(θ) (or H for short) is a block diagonal matrix.

Similarly, we run the iterative least square algorithm to obtain preliminary estimators

for d and βi. As compared to fixed effects model, the algorithm is modified slightly
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Algorithm 3 Iterative least square regression

1: Initialize:

For i = 1, . . . ,m

d← 0

yadji ← yi − d = yi

βi ← ReML(yadji ) = ReML(yi)
2: while not converge do

3: d← 1
m

∑m
i=1(yi −Xβi)

4: yadji ← yi − d

5: βi ← ReML(yadji )

6: end while

where in the algorithm, we maximize the restricted log-likelihood function (dropping constant

terms) w.r.t. variance components θ to obtain the restricted maximum likelihood (ReML)

(Patterson and Thompson, 1971; Harville, 1974) estimator for the covariance matrix Hi(θ),

and the corresponding estimator for regression coefficients βi,

L(θ|y) = −
n∑
j=1

log |Hj| −
n∑
j=1

log |XT
j H

−1
j Xj|−

n∑
j=1

(yij −Xjβi)
TH−1

j (yij −Xjβi),

(2.50)

where βi ← (XTH−1X)−1XTH−1yi. As close-form solutions of (2.50) do not exist, Newton-

Raphson method is usually employed (Lindstrom and Bates, 1988).

Suppose on convergence, d← d∗, yadji ← yadji

∗
, H ← H∗, βi ← β∗i , we have

d∗ =
1

m

m∑
i=1

(yi −Xβ∗i ),

yadji

∗
= yi − d∗,

β∗i = (XTH∗−1X)−1XTH∗−1yadji

∗
.

(2.51)

It is easy to show that there exists a vector δ ∈ Rp, such that

E(d∗) = d−Xδ,

E(β∗i ) = δ + βi.
(2.52)
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i.e., β̂i is a biased estimator for βi.

Similar to the case of fixed effects model, we fit the Gaussian mixture model to each

βik, k = 1, . . . , p separately, to correct this bias δ, and final estimators for βi and d are given

by

β̂i = β∗i − δ̂EM ,

d̂ =
1

m

m∑
i=1

(yi −Xβ̂i).
(2.53)

Thus, for taxon i, the Wald statistic for the following hypothesis

H0 : Aβi = Aβ
(0)
i ,

H1 : Aβi 6= Aβ
(0)
i ,

is given by

Wi = (Aβ̂i − Aβi)T (AΣ̂iA
T )−1(Aβ̂i − Aβi)

= (Aβ∗i − Aδ̂EM − Aβi)T (AΣ̂iA
T )−1(Aβ∗i − Aδ̂EM − Aβi)

→d χ
2
q,

(2.54)

where

(1) Σ̂i = (XTH∗−1X)−1,

(2) q = rank(A).

2.3 Simulation study

2.3.1 Normalization

Using simulated data, we illustrate how the existing normalization methods fail to elim-

inate the bias introduced by differences in sampling fractions across samples, whereas the

normalization method introduced in ANCOM-BC performs well. Specifically, we compare

our proposed method with Cumulative-Sum Scaling (CSS) implemented in metagenomeSeq

(Paulson et al., 2013), Median (MED) in DESeq2 (Love et al., 2014), Upper Quartile (UQ)

and Trimmed Mean of M-values (TMM), and Total-Sum Scaling (TSS)). Additionally, we
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also considered modified versions of UQ and TMM. These are obtained by multiplying the

normalization factors with the corresponding library size to account for “effective library

size” (Chen et al., 2014) and implemented in edgeR (Robinson et al., 2010). We shall refer

to these methods as ELib-UQ and ELib-TMM (Appendix A).

We considered a simulation study where there are unbalanced microbial loads in two

experimental groups and balanced library sizes for samples. This results in a large variability

in sampling fractions. Thus, we simulated data where sampling fraction in Group 1 is

systematically different from sampling fraction in Group 2. Consequently, observed absolute

abundances in the samples in the two groups were systematically different even though the

actual absolute abundances in the ecosystems are same. To evaluate the performance of

each normalization method, we introduced a residual measure (Appendix B) that estimates

the deviation between the estimated sampling fraction and the true sampling fraction. For

simplicity of exposition, we plotted the centered residuals, by subtracting the group average

of the residuals. If a normalization method is effective then it should eliminate the bias due

to the differences in the sampling fractions so that samples from the two groups (circles and

triangles) should intermix and not cluster by the group labels.

From Figure 5, we notice that the samples normalized by ANCOM-BC are nicely inter-

mixed and do not cluster by the group labels. This is not case with most of the remaining

methods where residuals cluster by group labels, thus indicating that they are unable to

eliminate the underlying differences in sampling fractions between the two groups. Thus,

under the null hypothesis of no difference in the absolute abundance of a taxon in two groups,

their test statistics are not centered at zero. This results in inflated FDR (Appendix A). We

also note from Figure 5, that not only ANCOM-BC does well in estimating the bias due to

differences in sampling fraction, the variability in the estimates of the sampling fractions is

very small as seen from the height of the box plot for ANCOM-BC. This is an important

observation because it suggests that the variability in the estimator of bias due to sampling

fraction is potentially negligible in the test statistic described in Methods section. Clearly,

as seen in Figure 6, the normalization of data has a major effect on the FDR and power of

various methods.
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Figure 5: Box plot of residuals between true sampling fraction and its estimate.

2.3.2 Differential abundance analyses

Simulating data from Poisson-Gamma distributions, we evaluated the performance of

various methods in terms of FDR and power. Since there is no hard threshold available for

DR to declare whether a taxon is differentially abundant or not, it was not included in this

simulation study.

Not surprisingly, standard Wilcoxon rank-sum test applied to relative abundance data

leads to highly inflated FDR (Figure 6) in all simulation scenarios. This is primarily because

such standard tests ignore the compositional structure of the data, and seen from Figure 5,

TSS does not successfully normalize the data. Simply applying non-parametric tests without

any normalization can also be problematic when the sampling fractions are different across

experimental groups (Figure 6a). The two widely used count-based methods in RNA-Seq lit-

erature, edgeR (implemented using ELib-TMM (Chen et al., 2014) by default) and DESeq2,

generally exceed the 5% nominal FDR level when there are differences in sampling fractions
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Figure 6: FDR and power comparisons using synthetic data.

(Figure 6a). For instance, edgeR has FDR as large as 40% (Figure 6a), meaning that 40%

of findings could be potentially false positives. The zero-inflated Gaussian mixture model
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used in metagenomeSeq (ZIG) consistently has the largest FDR when sampling fractions are

not constant (Figure 6a). In some cases, the FDR could be as much as 70%, which perhaps

is partly due to the Gaussian distribution assumption on log abundance data. Although

metagenomeSeq using zero-inflated Log-Gaussian mixture model (ZILG) successfully con-

trols the FDR under 5% in all simulations, it suffers a severe loss of power (Figure 6b). The

power of detecting differentially abundant taxa could be lower than 10%.

Similar to ANCOM, ANCOM-BC not only controls the FDR at the nominal level (5%)

but also maintains adequate power in all simulation settings considered here. An important

observation to be made regarding all methods, other than ANCOM and ANCOM-BC, is

that as the sample size within each group increases, so does the FDR. This is perhaps a

consequence of the fact that the test statistics are not centered at the true null parameter

but are shifted due to differences in the sampling fraction. Hence asymptotically, these tests

fail to control the false positive as well as FDR (Appendix A).

In addition to the above Poisson-Gamma model, we performed simulations using the real

global patterns data (Caporaso et al., 2011), to get a broader perspective on the performance

of the various methods. In this case again, ANCOM and ANCOM-BC controlled the FDR

and competed well in terms of power with all other methods. The estimated FDR of DESeq2

and edgeR increased further in this simulation set-up (Figure 7) compared to the simulation

using Poisson-Gamma distribution. Note that DESeq2 and edgeR were designed for Poisson-

Gamma distribution, and hence it is not surprising that these methods performed poorly in

this new set-up.

2.4 Illustration using gut microbiota data

We illustrate ANCOM-BC by analyzing the US, Malawi and Venezuela gut microbiota

data (Yatsunenko et al., 2012). This dataset consists of 11,905 OTUs obtained from subjects

in the USA (n = 317), Malawi (n = 114), and Venezuela (n = 99). We first assessed the

performance of different normalization methods mentioned above. One heuristic approach to

gain insights on the impact of normalization is to examine how well the normalized samples
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Figure 7: FDR and power comparisons using global pattern data.

separate with each other according to their phenotypes in a non-metric multidimensional

scaling (NMDS) plot. We provide the results for Malawi and Venezuela populations in

47



Figure 8.

Figure 8: Non-metric multidimensional scaling (NMDS) visualizations of normalized data.

As seen from this figure, ANCOM-BC appears to perform very well visually in separating

samples from the two populations and has the largest between-group sum of squares (SSB).

SSB measures how well clusters are separated. Larger the SSB value the better a method is

in clustering objects according to group labels. ELib-TMM, CSS and MED also performed

well. Consistent with the bias correction and FDR/Power simulations reported in Figure 5

and Figure 6, where ELib-UQ, UQ, TMM and TSS perform poorly in correcting biases and

have poor FDR control, they also have poor performances in distinguishing samples based

on their nationalities.

We also report results of pairwise DA analyses at phylum level among the above three

countries using ANCOM-BC. It is well-known that the infant gut microbiota evolve with their

age (Lozupone et al., 2013b) due to changes in the feeding patterns, diet, and other exposures.

Hence, for illustration purposes, we performed a stratified analysis by considering two age

groups, infants below 2 years (labeled as “infants”) and adults between 18 to 40 (labeled as

“adults”). Results of all pairwise comparisons are provided in Figure 9a. Note that ANCOM-
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Figure 9: Analysis of the global gut microbiota data in phylum level.
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BC is the first method in the literature that can not only identify differentially abundant taxa

while controlling the FDR for multiple testing, it also provides 95% simultaneous confidence

intervals for the mean differential abundance of each taxon in two experimental groups.

These confidence intervals are adjusted for multiplicity using Bonferroni method. Thus,

a researcher can evaluate the effect size associated with each taxon when comparing two

experimental groups. This is particularly important in the present climate when researchers

are increasingly skeptical about making decisions based on p-values (alone) (Amrhein et al.,

2019).

Interestingly, it turns out that phyla such as Cyanobacteria, Elusimicrobia, Euryarcheota,

and Spirochaetes, which are known to be associated with rural environment and hygiene

(Codd, 1995; Herlemann et al., 2007; Obregon-Tito et al., 2015; Halperin, 2010), are sig-

nificantly more abundant among Malawi than the US infants and adults. We discover an

interesting trend in the absolute abundance of phylum Verrucomicrobia, whose absolute

abundance is known to increase with antibiotics usage to protect against pathogens and

other opportunistic bacteria (Dubourg et al., 2013). Consistent with the high usage of an-

tibiotics in the western world among infants as well as adults, we discover a significant

increase in the absolute abundance of Verrucomicrobia in US relative to Malawi adults and

infants, and relative to Venezuelan adults (Figure 9a). Similarly, there is a significant in-

crease in its absolute abundance among Venezuelan infants compared to Malawi (Figure

9a).

It is well-documented in the literature that BMI is linked to the ratio of Bacteroidetes

to Firmicutes (Castaner et al., 2018). In our sample, the US infants, as well as adults,

had higher BMI than their counterparts in Malawi; The US infants also had higher BMI

than Venezuela infants (Table 6). Interestingly the ratio of Bacteroidetes to Firmicutes was

larger among Malawi infants than the US infants (Figure 9b, Table 6). Similarly, the ratio

was significantly larger among Venezuela infants than the US infants (Figure 9b, Table 6).

Although the differences of the ratio of Bacteroidetes to Firmicutes between US and non-US

adults were not significant, the effect sizes showed a similar trend as infants indicating that

US adults had smaller ratio of Bacteroidetes to Firmicutes. We did not find any significant

differences between Malawi and Venezuelan infants as well as adults. These results are in
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line with with our findings that there were no differences in the mean absolute abundances of

Firmicutes as well as Bacteroidetes among Malawi and Venezuelan infants as well as adults

(Figure 9a).

2.5 Discussion

Identifying the microbial taxa that differentiate obtained samples is a challenging problem

(Gloor et al., 2017; Morton et al., 2019), in part due to inaccessibility of data necessary

for drawing inferences on differential abundance in two or more ecosystems. An important

unobservable parameter that impacts DA analysis is the sampling fraction of a sample drawn

from a unit volume of ecosystem. As noted in previous studies (Gloor et al., 2017; Morton

et al., 2019), the bias correction due to sampling fraction is a major hurdle. While, ANCOM

as well as DR procedures find ways to get around the problem from different perspectives,

there is room for improvements.

ANCOM-BC enjoys several important unique characteristics. Firstly, it is the only

method available in the literature that estimates the sampling fraction and performs DA

analysis by correcting bias due to differential sampling fractions across samples. It is the

only procedure that provides valid p-values and confidence intervals for each taxon. Secondly,

unlike ANCOM, it simplifies DA analysis by recasting the problem as a linear regression prob-

lem with an off-set. The off-set is due to the sampling fraction. By virtue of linear regression

formulation, ANCOM-BC can be applied to a broad collection of study designs, including

longitudinal data, repeated measurements design, covariance adjusted analysis, and so on.

Using a broad range of simulations studies, we demonstrate that ANCOM-BC, like ANCOM,

controls the FDR very well, while almost all other methods investigated in this paper fail.

The ANCOM-BC methodology may not perform well when the sample sizes are very

small, such as n = 5 per group. The FDR is not controlled by ANCOM-BC in such cases

(Figure 10). However, when the sample size increases to 10, our simulation results indicate

that ANCOM-BC controls FDR with adequate power (Figure 10). We also evaluated the

performance of ANCOM-BC when the number of taxa is small, as when researchers perform
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DA analysis at the phylum or class levels. Even in such instances, ANCOM-BC controls

the FDR very well while maintaining high power (Table 7). ANCOM-BC performs best

in terms of FDR control when the proportion of differentially abundant taxa (denoted by

”Prop. DA”) is not too large (e.g. less than 75%). Otherwise, it may have slightly elevated

FDR (Figure 11). However, none of the other methods control the FDR either, in fact, they

have larger FDRs than ANCOM-BC.

In summary, the proposed ANCOM-BC methodology (1) explicitly tests hypothesis re-

garding differential absolute abundance of individual taxon and provides valid confidence

intervals; (2) provides an approach to correct the bias induced by (unobservable) differen-

tial sampling fractions across samples; (3) takes into account the compositionality of the

OTU table, and (4) does not rely on strong parametric assumptions. With the linear regres-

sion framework adopted in ANCOM-BC, it allows researchers to derive p-value associated

with each taxon as well as confidence interval estimation for differential absolute abundance.

These are unique to ANCOM-BC, to our best knowledge. Last but not the least, because

of the regression framework adopted in ANCOM-BC, it can be extended to more general

settings involving multi-group comparisons, adjusting covariates as well as applying to lon-

gitudinal/repeated measurements data.
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Table 6: Summary of the global gut microbiota data.

Infants (age ≤ 2, n = 133)

MA (n = 56) US (n = 49) VEN (n = 28)

Age

Min 0.033 0.083 0.250

Max 2.0 2.0 2.0

Mean (SD) 0.99 (0.63) 0.55 (0.42) 1.1 (0.58)

BMI

Min 11 14 14

Max 22 24 19

Mean (SD) 16 (1.9) 18 (3.4) 16 (1.4)

Gender (%)

F 26 (46) 26 (53) 10 (36)

M 30 (54) 23 (47) 15 (54)

NA 0 (0) 0 (0) 3 (11)

Adults (18 ≤ age ≤ 40, n = 83)

MA (n = 21) US (n = 41) VEN (n = 21)

Age

Min 20 23 18

Max 38 40 40

Mean (SD) 27 (4.9) 29 (5.3) 29 (7.4)

BMI

Min 20 18 21

Max 26 66 41

Mean (SD) 22 (2.0) 27 (11) 30 (5.2)

Gender (%)

F 21 (100) 39 (95) 20 (95)

M 0 (0) 2 (5) 1 (5)

NA 0 (0) 0 (0) 0 (0)
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Figure 10: FDR and power comparisons with small sample size.
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Table 7: FDR and power of ANCOM-BC when the number of taxa is small.

# Taxa Sample Size Prop. DA (%) FDR FDRSD Power PowerSD

10 20/30 25 0 0 0.96 0.14

10 50/50 25 0.0073 0.07 0.96 0.13

50 20/30 25 0.012 0.037 0.79 0.15

50 50/50 25 0.012 0.047 0.84 0.13
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Figure 11: FDR and power comparisons with large Prop. DA.
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3.0 Multi-group Analysis of Compositions of Microbiomes with Bias

Correction

3.1 Introduction

In some applications, for a given taxon, researchers are interested in drawing inferences

regarding differential abundance in more than two groups. For example, for a given taxon,

researchers may want to test whether there exists at least one experimental group that is

significantly different from others. We shall refer to this type of test as the global test.

However, in some situations, researchers may be interested in testing whether the absolute

abundance of the taxon increased or decreased across two or more pre-specified groups, and

this type of test is known as the directional test. A special case of directional testing would

be then one that tests if the abundance of a taxon in one or more groups is larger or smaller

than its abundance in the control group, which is analogous to the one-sided version of

the alternative hypothesis in Dunnett’s test (Dunnett, 1955; Dunnett and Tamhane, 1991,

1992). In this setting, the researcher is not interested in comparing abundance among the

remaining groups, we shall refer to this kind of test as the test against control. Lastly,

when the experimental groups are ordered naturally, such as doses of exposure or duration

of exposure or stages of a disease etc., for a given taxon, researchers may be interested

in testing whether the abundance of the taxon is changing with the ordered experimental

groups according to some specific pattern. Some examples of patterns include monotonically

increasing, umbrella shaped, loop shape etc (Figure 12).

When performing the directional test or the test against control, two decisions are made

for each taxon under this framework. Firstly, one needs to decide whether the taxon is

differentially abundant between two groups. A statistical test at this stage can potentially

lead to a Type I error. Once the taxon is declared to be differentially abundant, The second

decision will be made to decide whether the abundance is increasing or decreasing in the

second group as compared to the first one. Due to the underlying variability in the data,

one can potentially make a wrong decision regarding the direction. For instance, a taxon
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Figure 12: Graphs for ordered restrictions.

whose abundance is increasing, is falsely declared to have a decreasing direction. Thus, the

total error one may want to control contains both Type I error and the directional error. In

the context of multiple testing, involving thousands of taxa, one may want to control the

false discovery rate together with the total directional error rate. This total error rate is

known as mixed directional FDR (mdFDR), that accounts for all pairwise tests of interest are

performed. Besides the general FDR controlling procedure such as B-H procedure (Benjamini

and Hochberg, 1995), the mdFDR controlling procedure (Grandhi et al., 2016; Guo et al.,

2010) should also be considered.

There are several patterns of common interest when dealing with tests for patterns. A

common pattern is the simple order or monotonic order, which takes the form:

µ1 ≤ µ2 ≤ . . . ≤ µg,

where g denotes the total number of experimental groups. Similarly, if the study aims to

compares some new treatments to the standard treatment, it is straightforward to assume a

tree order, which is defined as,

µ1 ≤ µi, i = 2, . . . , g.

In some cases, researchers may also be interested in identifying taxa that have more compli-

cated patterns such as umbrella order, where, for example, the mean absolute abundance of
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taxa have the pattern such as the following. Typically, the location of the peak is also an

unknown parameter.

µ1 ≤ µ2 ≤ µi−1 ≤ µi ≥ µi+1 ≥ µg−1 ≥ µg.

3.2 Methods

3.2.1 Global test

For simplicity of exposition, we split the covariates X into two parts, where X1 stands

for the assignment of group, and X2 denotes the remaining covariates, i.e., in the log-linear

regression model

yi = d+X1βi +X2γi + εi, (3.1)

where

(1) βi is the vector of group effects of the order g × 1,

(1) X1 is the design matrix of the order n× g consisting of 0s and 1s,

(2) X2 is the known matrix of other covariates of the order n×(p−g) with the corresponding

regression parameter vector γi of the order (p− g)× 1.

The global test intends to test

H0,i : ∩k 6=k′∈{1,...,g}βik = βik′ ,

H1,i : ∪k 6=k′∈{1,...,g}βik 6= βik′ ,

which can be reformulated as

H0,i : Aβi = 0,

H1,i : Aβi 6= 0.

where

A =


1 −1 0 . . . 0

1 0 −1 . . . 0
...

...
. . .

...
...

1 0 . . . 0 −1
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with the test statistic

Wi = (Aβ̂i − Aβi)T (AΣ̂iA
T )−1(Aβ̂i − Aβi)→d χ

2
q. (3.2)

3.2.2 Directional test

If we are interested in knowing whether the absolute abundance increased or decreased

between all pairs of group, this is equal to test

H0,i,k,k′ : βik = βik′

H1,i,k,k′ : {βik < βik′} ∪ {βik > βik′},

where k 6= k′ ∈ {1, . . . , g}.

Denote the test statistic for pairwise comparison as

Wi,kk′ =
β̂ik − β̂ik′√

V̂ ar(β̂ik) + V̂ ar(β̂ik′)

→d N(0, 1), as n→∞, (3.3)

where V̂ ar(β̂ik), V̂ ar(β̂ik′) are the kth and k′th diagonal elements of Σ̂i defined in (2.18),

respectively.

Thus, the raw p-value for comparing group k and group k′ is defined as:

pi,kk′ = 2[1− φ(|Wi,kk′ |)]. (3.4)

Note that the null and alternative hypothesis for global test are denoted as H0,i and

H1,i, a Type I error might occur due to wrongly rejecting H0,i or correctly rejecting H0,i

but wrongly rejecting H0,i,k,k′ for some i = 1, . . . ,m; A directional error might occur due

to correctly rejecting H0,i but wrong assignment of the direction between βik and βik′ while

correctly rejecting H0,i,k,k′ . In this case, we need to control the error rate combining both

Type I and the directional errors in the FDR framework, which is referred to as mixed

directional FDR (mdFDR) (Guo et al., 2010; Grandhi et al., 2016).
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Definition 3.2.1 (mdFDR). Let V (i) denote the indicator function of at least one Type I

error or directional error committed, i.e.

V (i) =

1 if Type I or directional error occurs,

0 otherwise.

(3.5)

Then, mdFDR is defined as the expected proportion of Type I and directional errors among

all discovered taxa.

mdFDR = E(

∑m
i=1 V (i)

max(R, 1)
). (3.6)

To control the mdFDR for all pairwise tests, we adopt the general mdFDR controlling

procedure (Grandhi et al., 2016), and do the following:

(1) Apply global test method stated above to obtain the p-value (pi) for each taxon. Apply

Bonferroni correction (default) or BH procedure to identify taxa that are differentially

abundant in at least one pairwise comparison. Let R denote the number of taxa being

discovered.

(2) For each taxon discovered in step 1, apply the Bonferroni correction to the pairwise

p-values (pi,kk′) at level Rα/m.

(3) For a given taxon discovered in step 1, if a pairwise hypothesis is rejected in step 2, then

we declare βik < βik′ or βik > βik′ according to Wi,kk′ < 0 or > 0.

It has been proved that under assumption of independence of p-values obtained from the

global test, i.e., pi, i = 1, . . . ,m, the mdFDR of the above procedure is strongly controlled

at level α (Grandhi et al., 2016).

3.2.3 Test against a specific group

Often researchers are interested in knowing whether the absolute abundance increased

or decreased in an ecosystem relative a pre-specified group, say the control group. Suppose

group 1 is the control group, it aims to test

H0,i,k : βik = βi1,

H1,i,k : {βik < βi1} ∪ {βik > βi1},
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where k ∈ {2, . . . , g}.

Similarly, the pairwise test statistic is defined as

Wi,k =
β̂ik − β̂i1√

V̂ ar(β̂ik) + V̂ ar(β̂i1)

→d N(0, 1), as n,→∞ (3.7)

where V̂ ar(β̂ik), V̂ ar(β̂i1) are the kth and 1th diagonal elements of Σ̂i defined in (2.18),

respectively.

Thus, the raw p-value for comparing group k and group 1 is defined as:

pi,k = 2[1− φ(|Wi,k|)] (3.8)

Likewise, we apply the mdFDR controlling procedure for all pairwise tests.

3.2.4 Test for patterns

3.2.4.1 Simple order The most common pattern is called simple order or monotonic

order. We intend to test

H0,i : βi1 = βi2 = . . . = βig,

H1,i : βi1 ≤ βi2 ≤ . . . ≤ βig with at least one strict inequality,

or H1,i : βi1 ≥ βi2 ≥ . . . ≥ βig with at least one strict inequality.

WLOG, suppose the alternative hypothesis is H1,i : βi1 ≤ βi2 ≤ . . . ≤ βig with at least one

strict inequality.

Obtaining the estimate for βi under constraint is asymptotically equivalent to the fol-

lowing optimization problem

β̂opti = arg min
βi∈Rg

(β̂i − βi)T (V̂ ar(β̂i))
−1(β̂i − βi),

s.t. βi1 ≤ βi2 ≤ . . . ≤ βig with at least one strict inequality,

(3.9)

where β̂i is the first g elements in (2.36), and V̂ ar(β̂i) is upper left g× g block of Σ̂i defined

in (2.18).

The solution to (3.9) can be numerically obtained through some convex optimization

algorithms, such as CVRX (Fu et al., 2017).
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To test the hypothesis stated above, we use William’s type test statistic

Wi =
|β̂optig − β̂

opt
i1 |√

V̂ ar(β̂ig) + V̂ ar(β̂i1)
. (3.10)

The null distribution of the test statistic is constructed by simulation. Under null, the expec-

tations for β̂ik, k = 1, . . . , g are the same, thus, we can then construct the null distribution

of Wi by doing the following:

(1) Generate β̂ik ∼
√
V̂ ar(β̂ik)N(0, 1), l = 1, . . . , g,

(2) Get constrained regression estimators for β̂
opt,(b)
ik ,

(3) Compute W
(b)
i =

|β̂opt,(b)ig −β̂opt,(b)i1 |√
V̂ ar(β̂ig)+V̂ ar(β̂i1)

,

(4) Repeat the above steps B times, we get the null distribution of Wi by (W
(1)
i , . . . ,W

(B)
i )T .

The raw p-value is calculated as

pi =
1

B

B∑
b=1

I(W
(b)
i > Wi). (3.11)

Then we apply the Holm method or BH procedure on raw p-values to control the FDR.

3.2.4.2 Tree order If the study aims to compares some new treatments to the standard

treatment, it is straightforward to assume a tree order, which aims to test

H0,i : βi1 = βi2 = . . . = βig,

H1,i : βi1 ≤ βil, l = 2, . . . , g with at least one strict inequality.

The testing procedure is similar to the case of simple order:

(1) Obtain constrained regression estimators β̂opti1 and β̂optil ,

(2) Use William’s type of test statistic Wi = maxl=2,...,g
|β̂optil −β̂

opt
i1 |√

V̂ ar(β̂il)+V̂ ar(β̂i1)

(3) Construct the null distribution of test statistic by simulation,

(4) Compute raw p-values,

(5) Apply the Holm method or BH procedure on raw p-values to control the FDR.

63



3.2.4.3 Umbrella order In some cases, researchers may also be interested in identify-

ing taxa that have more complicated patterns such as umbrella order, where the effect of

covariate of interest has the pattern like

H0,i : βil = βi2 = . . . = βig,

H1,i : βi1 ≤ . . . ≤ βi,k−1 ≤ βik ≥ βi,k+1 ≥ . . . ≥ βig, with at least one strict inequality.

The testing procedure is similar to the case of simple order:

(1) Obtain constrained regression estimators β̂opti1 , β̂optik , and β̂optig ,

(2) Use William’s type of test statistic Wi = max(
|β̂optik −β̂

opt
i1 |√

V̂ ar(β̂ik)+V̂ ar(β̂i1)
,

|β̂optik −β̂
opt
ig |√

V̂ ar(β̂ik)+V̂ ar(β̂ig)
)

(3) Construct the null distribution of test statistic by simulation,

(4) Compute raw p-values,

(5) Apply the Holm method or BH procedure on raw p-values to control the FDR.

3.2.5 ANCOM-BC for mixed effects models

Global test and directional test under mixed effects model are similar to those of fixed

effects model, therefore, we skip the derivations here.

To draw statistical inference under inequality constraints in linear mixed effects model,

we use William’s type test statistic as specified in the last section, and adopt Constrainted

Linear Mixed Effects (CLME) framework (Jelsema et al., 2016) into ANCOM-BC. The

procedure is summarized as follows:

(1) Obtain β̂i, the estimate of βi under the null hypothesis,

(2) Compute the observed values of random effects and residuals.

ε̂i = (I −X(XT Ĥ−1X)−1XT Ĥ−1)y∗i , and α̂ = D̂ZT Ĥ−1ε̂i,

(3) Standardize the observed values of random effects and residuals. Define â = SE(α̂)−1α̂,

and ê = SE(ε̂)−1ε̂, where SE(·) denotes the standard error,

(4) Obtain bootstrap samples. Let a∗ and e∗ denote the bootstrap samples of a and e,

respectively. Then define α̂∗ = SE(α̂)a∗ and ε̂∗ = SE(ε̂)e∗. Finally construct the final

bootstrap sample as: y(b) = d̂+Xβ̂i + Zα̂∗ + ε̂∗,

(5) Repeat B times (b = 1, . . . , B), we construct the null distribution for the test statistic.
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(6) Compute raw p-values,

(7) Apply the Holm method (default) or BH procedure on raw p-values to control the FDR.

3.3 Simulation study

We now evaluate the performance of ANCOM-BC using three different simulation stud-

ies: The first study is designed for global test, and the second focuses on pairwise directional

tests, and the last study to detect patterns across different groups. Taxa abundance in the

ecosystem are generated using the Poisson-Gamma model.

Each simulation data consists of 500 taxa and 4 experimental groups. We considered

two patterns of sample sizes. The pattern corresponding to small sample size consists of 15

samples in each group, summing up to a total of 60 samples in the four groups. The pattern

corresponding to large sample size consists of 25 samples within each group, resulting in a

total of 100 samples. The magnitude and the distribution of absolute abundance are the

same as two-group settings. We considered five different patterns of Prop. DA’s, ranging

from 10% to 50%, with a 10% increments. The log fold change for differentially abundant

taxa were either uniformly distributed from 1 to 10, representing increase in abundance

relative to the control group, or uniformly distributed from 0.1 to 1, representing decrease

in abundance relative to the control group. Furthermore, 20% of taxa were structural zeros

in the control group. All simulation experiments were repeated 100 times to estimate the

FDR.

The results of global test are summarized in Figure 13. As seen from this figure, under

all configurations, ANCOM-BC has estimated FDR below the nominal level of 0.05 (in fact

less than 0.02), while enjoying high powers (greater than 0.70). Furthermore, as one would

desire, the power of this test increases with sample size. The FDR trend with respect to

Prop. DA is consistent with the previously described ANCOM-BC methodology. The FDR

decreases with the Prop. DA (from 10% to 40 %), and then increases (at 50%) due to small

samples sizes in the built-in EM algorithm used in ANCOM-BC methodology. Interestingly,

the power decreases with an increase in Prop. DA. This is due to the simulation settings

65



Figure 13: FDR and power comparisons for global test.

in relation to structural zeros. When the Prop. DA is small, ANCOM-BC benefits from

primarily detecting structural zeros and hence has large powers.

Figure 14: FDR and power comparisons for directional test.

In the case of directional test, the FDR and power comparison results are also reported

in Figure 14. Based on results of simulations, ANCOM-BC has estimated FDRs well below

the nominal level (even less than 0.01), and powers around 0.50. As compared to the global

test, one may notice a reduced trend in both FDR and power decreases in the equivalent

setting. This is because the mdFDR controlling procedure is more conservative than general
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FDR controlling procedures, say BH procedure which can inflate the FDR since it does not

account for all possible pairwise comparisons.

We also evaluated the performance of ANCOM-BC for three commonly encountered

patterned alternative hypotheses, namely, simple order, tree order, and umbrella order. To

generate data accordingly, we considered a total of 3 patterns in this simulation study:

Monotonically increasing in absolute abundance from the first to the fourth group, which

corresponds to data with simple order, and the null and the alternative hypotheses are given

by:

H0 : µi1 = µi2 = µi3 = µi4,

H1 : {µi1 ≤ µi2 ≤ µi3 ≤ µi4} ∪ {µi1 ≥ µi2 ≥ µi3 ≥ µi4}.

To generate data with tree order, with the control group having the smallest mean absolute

abundance compared to other groups. Thus, the alternative hypothesis is given by H1 below.

H0 : µi1 = µi2 = µi3 = µi4,

H1 : {µi1 ≤ µik, k 6= 1} ∪ {µi1 ≥ µik, k 6= 1}.

In the case of umbrella order, we generated data so that the mean absolute abundance was

maximum abundance in group 2. More precisely, the mean absolute abundance increases

from group 1 to group 2 and then decreases as in H1 described below. Thus the null and the

alternative hypotheses are given by:

H0 : µi1 = µi2 = µi3 = µi4,

H1 : {µi1 ≤ µi2 ≤ µi3 ≤ µi4} ∪ {µi1 ≤ µi2 ≤ µi3 ≥ µi4}

{µi1 ≤ µi2 ≥ µi3 ≥ µi4} ∪ {µi1 ≥ µi2 ≥ µi3 ≥ µi4}

{µi1 ≥ µi2 ≥ µi3 ≤ µi4} ∪ {µi1 ≥ µi2 ≤ µi3 ≤ µi4}.

We first estimated FDR and power without without paying attention to the pattern i.e.,

a rejection of null hypothesis given there truly exists a pattern regardless which pattern it is

will be treated as true positive; While a false rejection of null hypothesis will be considered as

false positive. Based on Figure 15, as expected, the power of detecting underlying patterns

increases with larger sample size for all simulated patterns, and has good power, usually

greater than 0.70. The FDR is often well controlled under the nominal level except the cases
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Figure 15: FDR and power comparisons for testing patterns (pattern matching ignored).
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of simple order and umbrella order, and Prop. DA reaches 0.5. The decreasing trend of FDR

vs. Prop. DA maintains when the Prop. DA is relatively small (from 10% to 40%), while

one may expect an elevated FDR when Prop. DA is getting larger, as we can see from the

case where Prop. DA is 50%.

Figure 16: FDR and power comparisons for testing pattern (pattern matching considered).

We also estimated the FDR and power in case when the goal is to identify the exact

pattern. FDR and power when the exact pattern matching is taken into account, i.e. a true

positive shall be represented by rejecting the null hypothesis with the correct alternative;

Otherwise, the rejection of the null will be regarded as false positive. As we can see from

Figure 16, whether or not taking the exact pattern matching into account, it barely affects

the FDR and power when testing patterns of simple order or tree order ; However, in the case

of umbrella order, there exist much larger number of alternatives, it is inevitable to assign
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incorrect umbrella pattern. (from generally greater than 0.70 to smaller than 0.70), and an

inflated FDR (greater than 0.30). One caveat is, in this case, a larger Prop. DA would lead

to a even highly inflated FDR (around 0.50).

3.4 Analysis of global human gut microbiome data

We illustrate ANCOM-BC using a publicly available global human gut microbiome data

(Yatsunenko et al., 2012). We subdivide the data into two age categories “≤ 2 years” and

“> 2 years.” This stratification is done since it is well-known that microbial composition of

infants changes drastically when they switch over from breast milk (or formula milk) to solid

food (Lozupone et al., 2013a). The sample sizes in the two strata (≤ 2 years, > 2 years)

for Malawi (MA), US, and Venezuela (VEN) samples were (47, 36), (50, 260) and (27, 70),

respectively. After several pre-processing steps of the raw OTU data we obtain for each age

group and each location, a matrix of observations with m = 11, 905 OTUs and inherent

structural zeros. In agreement with the two-group comparison, we aggregate the OTU table

and perform the DA analysis at phylum level. The total number of phyla is 39.

It is well-known that during early stages of human life gut microbial composition and

diversity changes dramatically due to increased exposure to baby’s environment, such as

parents, siblings, diet and so on. In particular, diet plays an important role in changing the

gut microbiome composition as babies begin to rely less on breast/formula milk and start

eating other foods. Interestingly, our findings reported in the left panel of Figure 17, are

consistent with this. As expected the abundance of the phylum Bacteroidetes significantly

increased with age, while Actinobacteria decreased with age. This is directly related to

change in feeding habits, less dependence on breast/formula milk. However, it is well-

known that after 2 years, at the phylum level, there is very little difference in the microbial

composition of a two year old and the mother. This is because in most cultures, the diet

and environmental exposures of a two-year old is similar to that of the mother. Thus, we

do not expect much temporal change in the gut microbiome composition after 2 years. This

is reflected in our analysis, summarized in the right panel of Figure 17. As expected the
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Figure 17: Age effect on microbial absolute abundance of the global gut microbiota data.

abundance of Actinobacteria decreases with age.

Figure 18: Pairwise differential abundance analyses on locations using ANCOM-BC.

Instead of performing a stratified analysis by different age groups, in this section, we

look into the location effect by performing the DA analysis adjusted for age directly and
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Figure 19: Relative abundance by location in phylum level.

controlling the mdFDR. Based on Figure 18, in line with what we found earlier, phyla such

as Cyanobacteria, Elusimicrobia, and Spirochaetes, are significantly more abundant among

Malawi than the US regardless of the age group. On the other hand, the absolute abundance

of Verrucomicrobia shows a similar trend as we discovered previously that it is more abundant

in US relative to Malawi adults and infants, and relative to Venezuelan adults. The relative

abundance plot (Figure 19) could also be used as a reference to verify the results stated

above.

In addition to pairwise DA analyses, we also apply ANCOM-BC for pattern discovery

and see if there exist any patterns between absolute abundance with regards to the location

effect while adjusting for the age effect. The results are summarized in Figure 20.
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Figure 20: Testing for patterns with respect to location effect.
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4.0 Distance Correlation for Microbiome (DICOM)

4.1 Introduction

In some applications, researchers are interested in elucidating complex inter-relationships

among taxa within an ecosystem or across systems (e.g., gut and oral environments), and

in identifying clusters of taxa, which might be biologically meaningful for certain pathways.

Thus, a common goal of analyzing microbiome data is to identify the dependence between

taxa, and the primary strategy of achieving this goal is to perform the correlation analysis.

Recall that the OTU/SV table is inherently compositional and only provides informa-

tion in the form of relative abundances regardless of different microbial loads and library

sizes. Due to the compositional structure, standard methods for computing either Pearson

correlation or Spearman correlation are invalid and might introduce negative correlations be-

tween taxa regardless of the true underlying correlations (Mosimann, 1962; Aitchison, 2003;

Pawlowsky-Glahn and Buccianti, 2011). SparCC (Friedman and Alm, 2012) was developed

to overcome the limitation of standard methods, which introduce spurious correlations (Mosi-

mann, 1962; Mandal et al., 2015), for estimating the Pearson correlation coefficients. Like

most compositional data analysis techniques, SparCC exploits the log-ratio transformation

of the data, while relying on two mild assumptions: 1) the number of taxa is large; 2) most

taxa are not strongly correlated with each other. Simulations and real data applications

show that SparCC could achieve high accuracy when inferring the Pearson correlations.

However, not all taxa are expected to be linearly related; More importantly, dependence is

generally not equivalent to correlations. Therefore, distance correlation (Székely et al., 2007)

seems to be a better mathematical tool as compared to Pearson or Spearman correlations,

since it is a measure of statistical dependence between two paired random vectors.

Definition 4.1.1 (Distance correlation). Suppose two random vectors, X = (x1, . . . , xn)T

and Y = (y1, . . . , yn)T . The distance covariance and correlation are defined as

(1) dCov2(X, Y ) = 1
π2

∫∫ ‖fX,Y (t,s)−fX(t)fY (s)‖2
t2s2

dtds,
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(2) dV ar2(X) = 1
π2

∫∫ ‖fX,X(t,s)−fX(t)fX(s)‖2
t2s2

dtds,

(3) dCor(X, Y ) = dCov(X,Y )√
dV ar(X)dV ar(Y )

.

where ‖·‖ denotes Euclidean norm.

Define pairwise distances as dij = |xi− xj|, eij = |yi− yj|, and doubly centered distances

as Dij = dij− d̄i·− d̄·j + d̄··, Eij = eij− ēi·− ē·j + ē··, i 6= j, the empirical estimates of distance

covariance and correlation can be obtained by

(1) dCov2
n(X, Y ) = 1

n2

∑n
i=1

∑n
j=1 DijEij,

(2) dV ar2
n(X, Y ) = 1

n2

∑n
i=1

∑n
j=1D

2
ij.

Note that

(1) 0 ≤ dCor(X, Y ) ≤ 1,

(2) dCor(X, Y ) = 0 if and only if X and Y are independent,

(3) dCor(X, Y ) = 1 implies that dimensions of the linear subspaces spanned by X and Y

samples respectively are almost surely equal.

To illustrate the difference between distance correlation and Pearson/Spearman corre-

lations, consider the toy example shown in Figure 21. As expected, when two random

variables are linearly related all three measures (Pearson correlation, Spearman correlation,

and distance correlation) have values equal to 1, indicating that they all detect the linear

dependence between x and y; on the contrary, when the relationship between x and y is

nonlinear, y = (x−5)2 in this case, both Pearson and Spearman correlation lose track of the

nonlinear association. In contrast, the distance correlation is the only one declaring that x

and y are not independent.

To further illustrate the importance of considering distance correlation in analyzing mi-

crobiome data, we generated a synthetic dataset using the Poisson-Gamma model, with the

number of taxa equals to 10 (T1 to T10), and the number of samples equals to 60 (S1 to

S60). The first five taxa are designed to be linearly or nonlinearly associated with each

other, as shown in Figure 22. We calculated pairwise correlations among ten taxa using

different measures and visualized the result using a network graph (Figure 23). As we can

see from the network, while the linear relationship between T1 and T2 is well detected by

all methods, none of the correlation measures, except the distance correlation, successfully
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Figure 21: Pearson correlation vs. Spearman correlation vs. Distance correlation.

captured the nonlinear relationship among T1 to T5. Thus, this toy example illustrates

that even after transforming simplex into Euclidean space, the standard methods, such as

Pearson or Spearman correlations, which are designed for linear associations, fail to detect

important nonlinear relationships that exist among microbial communities. On the other

hand, the distance correlation based method considered in this chapter is very encouraging

for detecting any type of dependence, whether linear or nonlinear. Therefore, in this chapter,

we develop a tool called Distance Correlations for Microbiome (DICOM), based on distance

correlations to describe dependence (linear or nonlinear) among microbes.
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Figure 22: Various kinds of associations between taxon 1 (T1) and Taxa 2 to 5 (T2 to T5).
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Figure 23: Network visualizations for different correlation measures.

4.2 Distance Correlations for Microbiome (DICOM)

4.2.1 The relative abundances in the sample are reasonable estimates of the

relative abundances in the ecosystem

The main hurdle in performing the correlation analysis on microbiome data is the lack

of access to the absolute abundance data in the ecosystem level. Since we do not observe

the entire ecosystem, any concept of correlations among the observed taxa does not trans-
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Figure 24: The relative abundances is the same between the ecosystem and sample.

late easily to correlations among the absolute abundances in the ecosystem. The unknown

sampling fractions play a critical role. The sample level data (OTU/SV table) only contains

information on relative abundances (see Figure 24). As discussed in previous chapters, the

observed absolute abundances are not in the same proportions as in the ecosystems due to

the differential sampling fractions across samples. In the example shown in Figure 24, the

absolute abundances in sample 1 (S1) are half of those in its ecosystem, while sample 2 (S2) is

1
5

of its ecosystem. This makes the correlation analysis at the sample level difficult. However,

the relative abundances in the sample are reasonable estimates of the relative abundances in

the ecosystem. This observation is well-known to classical statisticians working in the area

of survey sampling. This fact becomes useful for us as we develop our DICOM methodology.

4.2.2 Dependence structure is carried by ranks

We first note that dependence in the rank transformed data relates to dependence in the

original data (Kendall, 1938; Sukhatme et al., 1970). We show this using a simple quadratic
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Figure 25: Distance correlations calculated by the original data vs. by ranks.

example (Figure 25), here y = x2. Even though the shape of (X, Y ) is not perfectly kept

using (rank(X), rank(Y )), it turns out that dCor(X, Y ) and dCor(rank(X), rank(Y )) are

close to each other, meaning that the dependence structure is well preserved. Given that

the absolute abundances are usually not observable in microbiome studies, ranks would be

more accessible and robust.

4.2.3 The relationship between absolute ratios and relative ratios

The changes between two ecosystems (j and j′), where j′ is the reference sample, with

respect to absolute abundances of m taxa, Aj = (A1j, . . . , Amj)
T and Aj′ = (A1j′ , . . . , Amj′)

T ,
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can be computed as follows:

Aj
Aj′

= (
A1j

A1j′
, . . . ,

Amj
Amj′

)T . (4.1)

If we are only able to measure relative abundances, the change of relative abundances

are related to the change of absolute abundance in the sense that:

Aj
Aj′

= (
A·j × γ1j

A·j′ × γ1j′
, . . . ,

A·j × γmj
A·j′ × γmj′

)T =
γj
γj′
× A·j
A·j′

:=
γj
γj′
× Λjj′ , (4.2)

which implies the ratio between relative abundances is in proportional to the ratio of absolute

abundance. This proportion Λjj′ , defined as biomass bias, is the ratio of microbial loads
A·j
A·j′

.

Assumption 4.2.1. There exist some taxa that are non-differentially abundant.

If the absolute abundances of taxon i in sample j is more abundant than its correspon-

dence in sample j′, then obviously,
Aij
Aij′

> 1; on the contrary, if taxon i is less abundant

in sample j, then
Aij
Aij′

< 1; lastly, if this is a non-differentially abundant taxon, then one

should expect that
Aij
Aij′

= 1. The Assumption 4.2.1 indicates that not all taxa are differen-

tially abundant; Therefore, it is reasonable to assume the ratio between absolute abundances

(absolute ratio) has the property:

median
Aj
Aj′
≈ 1. (4.3)

Based on equation (4.2), the median of ratios between relative abundances (relative ratios)

will be:

median
γj
γj′
≈ Λ−1

jj′ . (4.4)

Thus, we propose to estimate biomass bias Λjj′ by

Λ̂jj′ = (median
γj
γj′

)−1. (4.5)

With Λ̂jj′ , although the data of absolute ratios is unattainable due to the unobservable

ecosystem level data, one can still make inference on it using the relative ratio data after

adjusting the biomass bias.
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Table 8: Summary of synthetic absolute abundance table.

S1 S2 S3 S1
S3

S2
S3

r(S1
S3

)† r(S2
S3

)

T1 5 10 20 0.25 0.5 1 2

T2 10 10 10 1 1 1 1

T3 10 10 10 1 1 1 1

T4 10 10 10 1 1 1 1

T5 65 10 50 1.3 0.2 2 1

Sum 100 50 100

† r(X) denotes the rank of X.

Table 9: Summary of synthetic relative abundance table (unadjusted).

S1 S2 S3 S1
S3

S2
S3

r(S1
S3

)† r(S2
S3

)

T1 0.05 0.2 0.2 0.25 1 1 2

T2 0.1 0.2 0.1 1 2 1 2

T3 0.1 0.2 0.1 1 2 1 2

T4 0.1 0.2 0.1 1 2 1 2

T5 0.65 0.2 0.5 1.3 0.4 2 1

† r(X) denotes the rank of X.

4.2.4 Retrieve the rank within each taxon

We now show how to retrieve the rank within each taxon by utilizing the ranks of relative

ratios.

To illustrate the procedure, we simulated the absolute abundance table (at the ecosystem

level) using the Poisson-Gamma model. The number of taxa is set to be 5 (T1 to T5),

and the number of samples is 3 (S1, S2, and S3). The absolute abundance table and the

corresponding unadjusted relative abundance table are summarized in Table 8 and Table 9.
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Table 10: Summary of synthetic relative abundance table (adjusted).

S1 S2 S3 S1
S3
× Λ̂1G

S2
S3
× Λ̂2G r(S1

S3
× Λ̂1G)† r( S2

µG
× Λ̂2G)

T1 0.05 0.2 0.2 0.25 0.5 1 2

T2 0.1 0.2 0.1 1 1 1 1

T3 0.1 0.2 0.1 1 1 1 1

T4 0.1 0.2 0.1 1 1 1 1

T5 0.65 0.2 0.5 1.3 0.2 2 1

† r(X) denotes the rank of X.

Let r(X) denotes the rank of X. In Table 8, suppose S3 is chosen as the reference sample.

Then, because S1
S3

= S2
S3

= 1, we therefore have r(S1
S3

) = r(S2
S3

) = 1. Given the absolute ratios

have a common reference (S3) in the denominator, we conclude that r(S1) = r(S2) = 1 for

T2, which is consistent with ranks derived from absolute abundances (A(S1) = A(S2) = 10).

Similarly, we also have r(S1) = r(S3) and r(S2) = r(S3) by setting S2 and S1 as the

reference, respectively.

However, if we calculate ranks within T2, in which S3 is chosen as the reference again,

using the relative abundance table (Table 9), it leads to r(S1) = 1 < r(S2) = 2 since

S1
S3

= 1 < S2
S3

= 2. As the underlying truth is r(S1) = r(S2) = 1 based on the absolute

abundance table, this erroneous conclusion results from the bias due to unequal biomass

bias among relative ratios because Λ13 = 1 and Λ23 = 0.5.

This misleading result based on the raw relative abundance table, which is referred to

as the unadjusted relative abundance table, can be avoided by adjusting relative ratios with

estimates of biomass biases. According to equation (4.5), it is easy to see that Λ̂13 = 1

and Λ̂23 = 2 in this toy example. The adjusted relative ratios are shown in Table 10. As

we can see, with biomass bias taking into account, r(S1
S3
× Λ̂1G) = r(S2

S3
× Λ̂2G) = 1, thus

r(S1) = r(S2) = 1 within T2.
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4.2.5 Implementation of DICOM

The methodology of DICOM can be summarized as follows:

(1) Obtain the estimates of relative abundance table from the observed OTU/SV table.

(2) Calculate the relative ratios for every sample j, j = 1, . . . , n, with respect to a reference

j′, j′ = 1, . . . , n. This results in n matrices of relative ratios.

(3) Adjust the relative ratios using the estimates of biomass bias.

(4) For each taxon i, i = 1, . . . ,m, obtain the ranks across samples using the adjusted relative

ratios obtained from step (3).

(5) Raw distance correlations: Calculate distance correlations between each pair of taxa

using ranks given the reference sample j′.

(6) Permutation: Permute the samples in the relative ratio table in (2), repeat (3) – (4),

and obtain the “background” distance correlations.

(7) Denoise: Any values in (4) less than the corresponding distance correlation in (5) will

be assigned as 0.

(8) Final estimate: Get the final estimate of distance correlation by averaging values across

n matrices (each matrix corresponds to a chosen reference sample j′).

We first show the implementation of DICOM using the synthetic dataset generated from

the Poisson-Gamma model, where the number of taxa is 10, the number of groups equals 2,

and the sample size is 50 per group. Taxon 1 (T1) is designed to be linearly correlated with

taxon 2 (T2) and nonlinearly correlated with taxon 3 (T3). Taxon 5 (T5) is more abundant

in group 1, while Taxon 7 (T7) is more abundant in group 2. Because of the differential

abundances, T5 and T5 are also correlated. We summarized the estimated distance corre-

lations in Figure 26. The x-axis denotes the reference sample, ranging from 1 to 100; the

y-axis represents the estimate of distance correlation. The estimate will be colored in red

if two taxa are genuinely dependent on each other (i.e., T1 vs. T2, T1 vs. T3, T2 vs. T3,

and T5 vs. T7); otherwise, it will be colored in green. As we can see from Figure 26, there

is a clear separation between distances correlations from dependent pairs and those from

independent pairs, as the estimated values by DICOM tend to be larger when two taxa are

indeed dependent.

84



Figure 26: Estimated distance correlations using DICOM.

For ease of comparison, we also visualized the simulation result in Figure 27. It shows

that DICOM (right panel) can infer dependence among taxa (left panel) with high accuracy

in this simulation study. Note that the DICOM network tends to have more purely blue

edges, where distance correlation equals to 0, than the true network. This is due to the

denoising step implemented in the DICOM procedure as it forces the distance correlations

below the threshold to be exactly 0s.

Lastly, to illustrate a potential application of DICOM, we infer a rich ecological network

connecting ten interacting phyla across samples from the global gut data (Yatsunenko et al.,

2012). Figure 28 shows that as compared to more mature subjects (age > 2 years old),

in the gut environments of infants (age ≤ 2 years old), phyla tend to be more strongly
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Figure 27: Network visualization of DICOM using synthetic data.

Figure 28: Implementation of DICOM using global gut microbiota data.

dependent on each other. This is consistent with previous studies that there is a strong

temporal development of the infant gut microbiome.
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5.0 Discussion and Future Work

Increasingly researchers are conducting microbiome studies to ask a wide range of ques-

tions of scientific interest. However, as we know from previous studies (Mandal et al., 2015;

Morton et al., 2017, 2019), the question of “who are all there?” is still an important basic

question before we can answer questions such as “What are they doing?” and “How are they

doing?” etc.

As the observed microbiome data are relative abundances (compositional) with lots of

zeros (Gloor and Reid, 2016; Gloor et al., 2017; Mandal et al., 2015; Morton et al., 2017,

2019), the method of differential abundance (DA) analysis is not necessarily routine. Nu-

merous methods are available in the literature to analyze these data. There have been

misunderstandings and controversies, in part because there is a lack of clarity on what pa-

rameters are to be tested and what hypotheses a given method/statistic is really testing.

The only exception being (Mandal et al., 2015) who clearly described the various parame-

ters associated with microbiome studies and proposed statistically rigorous method called

ANCOM for performing DA analysis. A major hurdle in performing DA analyses is the

bias introduced by differences in the sampling fractions, which is determined by the library

size of each sample and its corresponding microbial load of the ecosystem of interest, across

sample. In this dissertation we propose a novel method called Analysis of Compositions

of Microbiomes with Bias Correction (ANCOM-BC), which estimates the unknown sam-

pling fractions and corrects the bias induced by it. The resulting sample abundance data

are modeled using a linear regression framework. This formulation makes a fundamental

advancement in the field because, unlike any of the existing methods, it (a) provides statis-

tically valid test with appropriate p-values, (b) controls the False Discovery Rate (FDR), (c)

maintains adequate power, (d) provides biologically meaningful results, (e) is computation-

ally simple to implement, and (f) is straightforward to apply to more complex multi-group

comparison scenarios. Besides establishing methodology for DA analysis, in this dissertation,

we also develop a general framework for describing dependence among various taxa. Note

that for a biological system to function effectively, the various taxa must work in harmony.
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This implies that taxa are potentially dependent on each other, where the relationships can

be either linear or nonlinear. Standard correlation based methods seek to explore linear

relationships, which ignores complex nonlinear relationships. In this dissertation we propose

a novel methodology called Distance Correlations for Microbiome (DICOM), which exploits

the concept of distance correlation and properly addresses the compositional structure of the

microbiome data, to elicit dependence among taxa.

This dissertation research opens new models, thoughts and directions for future method-

ological research for analyzing microbiome data. Future work can be done on the top of the

development of this dissertation. For example, ANCOM-BC algorithm can be improved by

combing the sampling zeros into model. Sampling zero arises due to insufficient sequencing

depth, and currently is simply addressed by adding a pseudo-count (e.g. 1) to the observed

absolute abundance table. For future modifications of ANCOM-BC, in addition to the offset-

based log linear model, sampling zeros can be more properly taken care of by implementing

the hurdle model

yij =

0 with prob. πij

dj + βTi xj + εij with prob. (1 - πij)

(5.1)

where πij is the subject-specific and taxon-specific probability, and can be further modeled

by logistic regression, such as

πij =
exp(ηTi xj)

exp(ηTi xj) + 1
(5.2)

Such a formulation might improve the performance of ANCOM-BC when there are (a) very

large number of differentially abundant taxa, or (b) when the sample sizes are small.

The DICOM methodology is not fully developed in this dissertation, for example, a

multinomial logistic regression model can be adopted to come up with better estimates of

relative abundances from the observed OTU/SV table. Let ∆ij = I(yij = 0)

pij = E(rij|∆ij) =
(1−∆ij) exp(αTi xj)∑m−1

i=1 (1−∆ij) exp(αTi xj) + (1−∆ij)
(5.3)

A more efficient algorithm can be developed to prevent false positives. We hope to ex-

plore the area further, especially to describe temporal changes in the dependence among

microbiome. For example, a researcher may be interested in understanding the changes in

absolute abundances as well as changes in the dependence among taxa as the disease of a
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patient progresses. Such investigations will be useful for deriving suitable treatments and

interventions.
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Appendix A

Inflated false positive rates of some standard methods

Two potential reasons why some differential abundance (DA) analysis methods for micro-

biome data result in inflated positive rates, and hence inflated false discovery rates (FDR),

are as follows:

(1) The test statistic may not be designed for testing the hypothesis of interest. For example,

the test statistic may be designed for testing hypothesis regarding relative abundance

but is used for testing absolute abundance.

(2) Data are not properly normalized to account for bias due to variability in sampling

fractions.

In the following we discuss some commonly used methods in the literature, namely, Wilcoxon

rank sum test (with and without TSS)(Mann and Whitney, 1947), DESeq2 (Love et al.,

2014), edgeR (Robinson et al., 2010), metagenomeSeq (Paulson et al., 2013). We begin with

the following simple lemma.

Lemma A.0.1. Suppose, for a taxon i, E(β̂i) = βi + δi, and ŜE(β̂i) is Op(n
−1/2). Further

assume that, under H0, βi = 0, δi 6= 0 and

Tβi =
β̂i − βi
ŜE(β̂i)

→d N(
δi

SE(β̂i)
, 1).

Suppose z1−α/2 is (1−α/2)×100 percentile of standard normal distribution then the probability

of Type I error associated with the critical region:

|Tβi=0| ≥ z1−α/2

increases with sample size. Equivalently, the p-value based on |Tβi=0| stochastically decreases

with n.
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Proof. Note that under the null hypothesis we have Tβi is centered at δi. Since δi 6= 0, and

ŜE(β̂i) grows at the rate of
√
n, therefore |Tβi | stochastically increases with n, and p-value

decreases stochastically. This results in inflated Type I error.

With slight abuse of notation, we use i to denote taxon, j to denote group, and k to denote

sample. In the following sections, suppose taxon i is not differentially abundant between

two groups. For simplicity of exposition, we assume there are only two experimental groups,

and the sample sizes are equal between the two groups.

A.1 Wilcoxon rank-sum test with no normalization

Suppose for k = 1, . . . , n, Oi1k ∼iid Fi1 and Oi2k ∼iid Fi2. Under no normalization, the

Wilcoxon rank-sum test aim to test the following hypotheses

H0 : Fi1 = Fi2

H1 : Fi1 6= Fi2

The test statistic is given by:

U =
1

n2

n∑
k=1

n∑
k′=1

I(Oi1k ≤ Oi2k′). (A.1)

Asymptotically, under the null hypothesis we know that:

U ∼ AN(
1

2
,

1

6n
). (A.2)

The basic assumption made by the above U statistic is that under the null hypothesis Oi1k

is equally likely to be small or large compared to Oi2k. Thus the indicator random variable

I(Oi1k ≤ Oi2k) has the same distribution as I(Oi2k ≤ Oi1k). Note that in the existing

implementation of these tests the samples are not normalized for unequal sampling fractions.

Therefore under the null hypothesis, the U statistic is not centered at 1
2
. Hence the Type I

error is not controlled at α according to Lemma A.0.1.
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A.2 Wilcoxon rank-sum test with TSS

TSS normalization transforms the absolute abundance table into the relative abundance

table. Using these relative abundance data, for k = 1, . . . , n, ri1k ∼iid Gi1 and ri2k ∼iid Gi2,

the Wilcoxon Rank-Sum test is used for testing the following hypotheses:

H0 : Gi1 = Gi2

H1 : Gi1 6= Gi2.

Under the above normalization, even if the expected absolute abundance of a taxon is same

between two ecosystems, its relative abundances may not be same. Thus, testing the null hy-

pothesis of equality of relative abundance of a taxon between two ecosystems is not equivalent

to the null hypothesis that the absolute abundances are equal. Furthermore, the Wilcoxon

rank-sum test applied directly to the relative abundance data ignores the compositional

structure. Consequently, asymptotically the Type I error will not be controlled as indicated

in Lemma A.0.1.

A.3 DESeq2

DESeq2 assumes a negative-binomial model for absolute abundances. Thus, the observed

count data and the corresponding parameters are modeled as follows:

Oijk ∼ NB(sjkqij, φi)

sjk = median
i:ORi 6=0

Oijk

OR
i

log qij = βi0 + βi1I(j = 1), j = 1, 2

β̂i1 = arg max
βi1

(
2∑
j=1

n∑
k=1

log fNB(Oijk; sjkqij, φi) + Λ(β))

(A.3)

where

(1) OR
i = (

∏2
j=1

∏n
k=1 Oijk)

1
2n ,

(2) Λ(β) = −(
β2
i0

2σ2
0

+
β2
i1

2σ2
1
),
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(3) σ2
0, σ

2
1 are prior variances for βi0, βi1, respectively.

DESeq2 first scales the OTU table by the normalization factor sjk, and then tests for

differential abundance, consequently it does not take into account the uncertainty associated

with sjk.

Recall from the regression framework of ANCOM-BC that:

E(Oijk) = cjkθij

E(yijk) = djk + µij

(A.4)

Compared to ( A.3), DESeq2 estimates the sampling fraction cjk by sjk, i.e. ĉMED
jk = sjk and

therefore d̂MED
jk = log sjk. Thus, we have

d̂MED
jk = median

i:ORi 6=0
(logOijk −

1

2n

2∑
j=1

n∑
k=1

logOijk)

= median
i:ORi 6=0

(yijk −
1

2n

2∑
j=1

n∑
k=1

yijk)

= median
i:ORi 6=0

(djk + µij + εijk −
1

2n

2∑
j=1

n∑
k=1

yijk)

= median
i:ORi 6=0

(djk − d̄·· + µij − µ̄i. + εijk − ε̄i··)

= djk − d̄·· + median
i:ORi 6=0

(µij − µ̄i· + εijk − ε̄i··)

:= djk − d̄·· + µajkj − µ̄ajk· + εajkjk − ε̄ajk··.

(A.5)

In the expressions ajk denotes the index that corresponds to the taxon for which median
i:ORi 6=0

(µij−

µ̄i· + εijk − ε̄i··) = µajkj − µ̄ajk· + εajkjk − ε̄ajk··. Averaging over all samples k = 1, 2, . . . , n in

group j, we get

¯̂
dMED
j· = d̄j· − d̄·· + µ̃·(j)j − µ̃·(j)· + ε̃·(j)j· − ε̃·(j)··. (A.6)

Since each subject k in group j, may potentially have a different taxon that yields the median

value µajkj − µ̄ajk· + εajkjk − ε̄ajk··, in the above expression x̃ represents the mean of variable

x taken over the suitable subset of taxa. Secondly, the notation x·(j) represents the mean

taken within group j.
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The test statistic for DESeq2 is of the form:

WDESeq2
i =

µ̂i1 − µ̂i2 − δ̂MED

SE(µ̂i1 − µ̂i2 − δ̂MED)
(A.7)

The MED estimator of the bias term is:

δ̂MED :=
¯̂
dMED

1· − ¯̂
dMED

2·

= d̄1· − d̄2· + {µ̃·(1)1 − µ̃·(1)· + ε̃·(1)1· − ε̃·(1)··} − {µ̃·(2)2 − µ̃·(2)· + ε̃·(2)2· − ε̃·(2)··}

= δ + {µ̃·(1)1 − µ̃·(1)· + ε̃·(1)1· − ε̃·(1)··} − {µ̃·(2)2· − µ̃·(2)· + ε̃·(2)2· − ε̃·(2)··}

(A.8)

Note that E(ε̃·(j)j·− ε̃·(j)··) = 0. However, unless ES(µ̃·(1)1−µ̃·(1)·) = 0 and ES(µ̃·(2)2−µ̃·(2)·) =

0, where the subscript S denotes the collection of all suitable subsets of taxa {1, 2, . . . ,m},

the MED estimator does not estimate the bias term in the null hypothesis unbiasedly, i.e.

E(δ̂MED) 6= δ. (A.9)

Thus, under the null hypothesis

E(µ̂i1 − µ̂i2 − δ̂MED) 6= 0 (A.10)

As seen from the figures presented in Chapter 1, the normalization method used in

DESeq2 fails to eliminate the bias due to variability in the sampling fraction (Figure 5).

Consequently, the test statistic used in DESeq2 intrinsically tests a biased hypothesis and

hence from Lemma A.0.1, it can potentially inflate the false positive rate.

94



A.4 edgeR

Similar to DESeq2, edgeR assumes a negative-binomial distribution for absolute abun-

dance data:

Oijk ∼ NB(O·jksjkpij, φi) = NB(Mjkpij, φi)

log pij = βi0 + βi1I(j = 1), j = 1, 2
(A.11)

where

(1) sjk = normalization factor,

(2) Mjk = effective library size, which is the product of original library size and normalization

factor,

(3) pij is the relative abundance of taxon j in experimental group j.

The upper-quartile (UQ) normalization used in edgeR is described as follows. Let

ĉUQ
jk = sjk = UQ

i:Oijk>0
(
Oijk

O·jk
)

d̂UQ
jk = log ĉUQ

jk ,

(A.12)

where UQ(X) is the upper quartile of X. Then

d̂UQ
jk = UQ

i:Oijk>0
(logOijk − logO·jk)

(Apply Taylor’s expansion)

≈ UQ
i:Oijk>0

(yijk − log cjkθ·j −
1

cjkθ·j
(O·jk − cjkθ·j))

= UQ
i:Oijk>0

(djk + µij + εijk − djk − log θ·j −
O·jk
cjkθ·j

+ 1)

= 1− log θ·j −
O·jk
cjkθ·j

+ UQ
i:Oijk>0

(µij + εijk)

:= 1− log θ·j −
O·jk
cjkθ·j

+ µajkj + εajkjk

(A.13)

Similar to DESeq2, for the kth sample in the jth group, ajk represents the index for the taxon

such that UQ
i:Oijk>0

(µij + εijk) = µajkj + εajkjk.

Averaging over all sample k = 1, 2, . . . n, we get

¯̂
dUQ
j· = 1− log θ·j − x̄j· + µ̃·(j)j + ε̃·(j)j· (A.14)
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As noted earlier, since each subject k in group j, may potentially have a different taxon that

yields the upper quartile value µajkj + εajkjk, in the above expression x̃ represents the mean

of variable x taken over the suitable subset of taxa. Secondly, the notation ·(j) represents

the mean taken within group j. x̄j· is the average of
O·jk
cjkθ·j

over group j.

Thus, the UQ estimator of the bias term in the null hypothesis is

δ̂UQ :=
¯̂
dUQ

1· −
¯̂
dUQ

2·

= (log θ·2 − log θ·1) + (x̄2· − x̄1·) + (µ̃·(1)1 − µ̃·(2)2) + (ε̃·(1)1· − ε̃·(2)2·)
(A.15)

Note that E(ε̃·(1)1·− ε̃·(2)2·) = 0. However, it is clear that the UQ estimator does not estimate

the bias term in the null hypothesis unbiasedly, i.e. E(δ̂UQ) 6= δ = d̄1· − d̄2·.

Thus the UQ normalization method does not eliminate (even asymptotically) the bias

due to variability in the sampling fraction. Consequently, the test statistic intrinsically tests

a biased hypothesis and hence from Lemma A.0.1, it inflates the false positive rate.

Comparing the model used in edgeR ( A.11) with regression framework of ANCOM-BC,

we note that:

E(Oijk) = Mjkpij (A.16)

Therefore, it is more reasonable to define the estimated sampling fraction by the effective

library size. For instance, the effective library size using UQ (ELib-UQ):

ĉELib-UQ
jk = Mjk = O·jksjk

d̂ELib-UQ
jk = log ĉELib-UQ

jk

(A.17)

Hence, we have:

d̂ELib-UQ
jk = UQ

i:Oijk>0
(logOijk)

= UQ
i:Oijk>0

(yijk)

= UQ
i:Oijk>0

(djk + µij + εijk)

= djk + µajkj + εajkjk

(A.18)

As before, for the kth sample in the jth group, ajk represents the index for the taxon such

that UQ
i:Oijk>0

(djk + µij + εijk) = djk + µajkj + εajkjk.
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Averaging over all sample k = 1, 2, . . . n, we get

¯̂
dELib-UQ
j = d̄j· + µ̃·(j)j + ε̃·(j)j· (A.19)

Since each subject k in group j may potentially have a different taxon that yields the upper

quartile µajkj + εajkjk, in the above expression x̃ represents the mean of variable x taken over

the suitable subset of taxa. Secondly, the notation ·(j) represents the mean taken within

group j.

Thus, the ELib-UQ estimator of the bias term in the null hypothesis is:

δ̂ELib-UQ :=
¯̂
dELib-UQ

1· − ¯̂
dELib-UQ

2·

= d̄1· − d̄2· + (µ̃·(1)1 − µ̃·(2)2) + (ε̃·(1)1· − ε̃·(2)2·)

= δ + (µ̃·(1)1 − µ̃·(2)2) + (ε̃·(1)1· − ε̃·(2)2·)

(A.20)

Note that E(ε̃·(1)1·− ε̃·(2)2·) = 0. However, unless the average abundance of all 75th percentile

taxa is same between the two ecosystems, i.e. µ̃·(1)1− µ̃·(2)2 = 0, the ELib-UQ estimator does

not estimate the bias term in the null hypothesis unbiasedly, i.e. E(δ̂ELib-UQ) 6= δ.

Thus the ELib-UQ normalization method used in edgeR does not always eliminate the

bias due to variability in the sampling fraction. Consequently, the test statistic used in

edgeR intrinsically tests a biased hypothesis and hence from Lemma A.0.1, it inflates the

false positive rate.

We skip the proofs for TMM and ELib-TMM since the arguments are similar.

A.5 metagenomeSeq

Suppose the zero-inflated Gaussian (ZIG) mixture model is used in metagenomeSeq. The

framework can be summarized as

yijk = log2(Oijk + 1)

fzig(yijk;O·jk, µij, σ
2
ij) = πjk(O·jk)I{0}(yijk) + (1− πjk(O·jk))φ(yijk;µij, σ

2
ij)

E(yijk|j = 1) = πjk · 0 + (1− πjk) · (βi0 + ηi log2(
sl̂jk + 1

N
) + βi1I(j = 1))

(A.21)

where
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(1) N = an approximately choose normalization constant,

(2) O·jk =
∑m

i=1Oijk is the library size for sample k in group j,

(3) sl̂jk =
∑

i:Oijk≤ql̂jk
Oijk,

(4) q l̂jk = l̂th quantile of sample k in group j.

l̂ is determined by the smallest l that satisfies

∆l+1
q −∆l

q ≥ 0.1∆l
q (A.22)

where

∆l
q = medianjk|qljk − q̄l|

q̄l = medianjkq
l
jk

(A.23)

The null hypothesis under metagenomeSeq is as follows:

H0 : βi1 = 0

H1 : βi1 6= 0

For simplicity of exposition, suppose πjk = 0. Comparing the ZIG model ( A.21) with the

regression framework of ANCOM-BC, we define:

d̂CSS
jk = log(sl̂jk + 1) (A.24)

Hence,

d̂CSS
jk = log(sl̂jk + 1)

≈ log(sl̂jk) (sl̂jk is much larger than 1)

≈ log(E(sl̂jk)) +
1

E(sl̂jk)
(sl̂jk − E(sl̂jk)) (Taylor’s expansion)

= log(
∑

i:Oijk≤ql̂jk

cjkθij) +
sl̂jk

E(sl̂jk)
− 1

= djk + log(
∑

i:Oijk≤ql̂jk

θij) +
sl̂jk

E(sl̂jk)
− 1

:= djk + xajkj + zjk − 1

(A.25)

As before, for the kth sample in the jth group, ajk represents the index such that log(
∑

i:Oijk≤ql̂jk
θij) =

xajkj, and zjk :=
sl̂jk

E(sl̂jk)
.

98



Averaging over all sample k = 1, 2, . . . n, we get

¯̂
dCSS
j· = dj· + x̃·(j)j + z̄j· − 1 (A.26)

Since each subject k in group j, may potentially have a different total mean absolute abun-

dance up to the l̂th percentile, in the above expression x̃ represents the mean of variable x

taken over the suitable subset of taxa. Secondly, the notation ·(j) represents the mean taken

within group j. z̄j· is the average of zjk.

Thus, the CSS estimator of the bias term in the null hypothesis is:

δ̂CSS :=
¯̂
dCSS

1· −
¯̂
dCSS

2·

= d̄1· − d̄2· + (x̃·(1)1 − x̃·(2)2) + (z̄1· − z̄2·)

= δ + (x̃·(1)1 − x̃·(2)2) + (z̄1· − z̄2·)

(A.27)

Note that unless x̃·(1)1 − x̃·(2)2 = 0, which means the sum up to l̂th percentile of the mean

absolute abundance is the same between two groups, the CSS estimator does not estimate

the bias term in the null hypothesis unbiasedly, i.e. E(δ̂CSS) 6= δ.

Therefore, although metagenomeSeq directly tests for differential absolute abundance,

there is a systematic bias in estimating sampling fractions. Again, according to Lemma

A.0.1, it suffers from inflated FDR as well.
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Appendix B

Residual analysis of normalization methods for differential sampling fractions

Although not explicitly stated, each normalization method available in the literature,

such as the Cumulative-Sum Scaling (CSS) implemented in metagenomeSeq (Paulson et al.,

2013), Median (MED) in DESeq2 (Love et al., 2014), Upper Quartile (UQ), Trimmed Mean

of M-values (TMM), Total-Sum Scaling (TSS), as well as the modifications of UQ and TMM,

denoted by ELib-UQ and ELib-TMM used in edgeR (Robinson et al., 2010), that account

for “Effective Library size” (Chen et al., 2014), attempt to normalize the data for variability

in sampling fractions across samples. In this section we describe a simple method to evaluate

the performance of some of these available normalization methods, along with our proposed

method in ANCOM-BC.

Suppose we have two experimental groups with balanced sample size, for each normal-

ization method s, sample k = 1, 2, . . . , n, in the jth group, j = 1, 2, let the (raw) residual be

denoted by

rsjk = d̂sjk − djk. (B.1)

Then r̄sj· =
¯̂
dsj· − d̄j·, therefore, r̄s1· − r̄s2· = (

¯̂
ds1· −

¯̂
ds2·)− (d̄1· − d̄2·). Since residuals generated

by each normalization method will have their own center, to align the box plot of residuals

at the same level, we center the raw residuals by

rs∗jk = rsjk − r̄s·· = d̂sjk − djk −
¯̂
ds·· + d̄··. (B.2)

and make box plots using these (centered) residuals. Thus, if the normalization method is

effective then there should be no systematic pattern among the residuals by the experimental

groups. Otherwise, the normalization method is not successfully eliminating the bias due to

variability in sampling fractions.
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Based on our simulated data (Figure 5), as expected ANCOM-BC seems to successfully

eliminate the bias induced by the differences in the sampling fractions between two exper-

imental groups. For ANCOM-BC, the samples from the two groups (circles and triangles)

are nicely intermixed with small variability of residuals. Consistent with our observations in

the previous section, this is not always the case with other methods. For other methods, the

group labels are not randomly distributed around zero but they are clustered by the group

label (Figure 5). This suggests that the existing normalization methods do not eliminate the

systematic bias introduced by the differences in the sampling fractions.
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Indian Journal of Statistics, Series B, pages 315–330.

Obregon-Tito, A. J., Tito, R. Y., Metcalf, J., Sankaranarayanan, K., Clemente, J. C., Ursell,
L. K., Xu, Z. Z., Van Treuren, W., Knight, R., Gaffney, P. M., et al. (2015). Subsistence
strategies in traditional societies distinguish gut microbiomes. Nature communications,
6:6505.

O’Hara, A. M. and Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO reports,
7(7):688–693.

O’Keefe, S. J., Li, J. V., Lahti, L., Ou, J., Carbonero, F., Mohammed, K., Posma, J. M.,
Kinross, J., Wahl, E., Ruder, E., et al. (2015). Fat, fibre and cancer risk in african
americans and rural africans. Nature communications, 6:6342.

Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block
sizes are unequal. Biometrika, 58(3):545–554.

Paulson, J. N., Bravo, H. C., and Pop, M. (2014). Reply to:” a fair comparison”. Nature
methods, 11(4):359.

Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M. (2013). Differential abundance
analysis for microbial marker-gene surveys. Nature methods, 10(12):1200.

Pawlowsky-Glahn, V. and Buccianti, A. (2011). Compositional data analysis. Wiley Online
Library.

Pawlowsky-Glahn, V. and Egozcue, J. J. (2011). Exploring compositional data with the
coda-dendrogram. Austrian Journal of Statistics, 40(1&2):103–113.

Peddada, S. D. and Smith, T. (1997). Consistency of a class of variance estimators in linear
models under heteroscedasticity. Sankhyā: The Indian Journal of Statistics, Series B,
pages 1–10.

Rao, C. (2010). Quadratic entropy and analysis of diversity. Sankhya A, 72(1):70–80.

Rao, C. R. (1984). Convexity properties of entropy functions and analysis of diversity. Lecture
Notes-Monograph Series, pages 68–77.

Relman, D. A. and Falkow, S. (2001). The meaning and impact of the human genome
sequence for microbiology. Trends in microbiology, 9(5):206–208.

Ricotta, C. and Marignani, M. (2007). Computing β-diversity with rao’s quadratic entropy:
a change of perspective. Diversity and Distributions, 13(2):237–241.

107



Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edger: a bioconductor pack-
age for differential expression analysis of digital gene expression data. Bioinformatics,
26(1):139–140.

Robinson, M. D. and Oshlack, A. (2010). A scaling normalization method for differential
expression analysis of rna-seq data. Genome biology, 11(3):R25.

Shah, N., Tang, H., Doak, T. G., and Ye, Y. (2011). Comparing bacterial communities
inferred from 16s rrna gene sequencing and shotgun metagenomics. In Biocomputing 2011,
pages 165–176. World Scientific.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical
journal, 27(3):379–423.

Simpson, E. H. (1949). Measurement of diversity. nature, 163(4148):688.

Sukhatme, P. V., Sukhatme, B. V., Sukhatme, S., and Asok, C. (1970). Sampling theory of
surveys with applications. ames.
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