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Abstract 

Evaluating Comparative Effectiveness of Simultaneous Liver and Kidney Transplant 

versus Liver Transplant Alone using Instrumental Variables 

 

Mengqi Wang, MS 

 

University of Pittsburgh, 2020 

 

 

 

 

Abstract 

Improving the quality of medical care often requires assessment of comparative 

effectiveness between treatments. Although randomized controlled trials (RCTs) are considered 

as the gold standard for generating evidence, they may not be feasible or ethical to conduct for 

some comparisons. Therefore, observational studies are required to address many research 

questions. However, observational data may lead to a high potential for selection bias because 

subjects or physicians choose their treatments, which may complicate the estimation of causal 

effects. As one approach to overcome these issues, instrumental variables (IVs) can be used to 

potentially estimate unbiased causal effects in the setting of observational comparative 

effectiveness research.  

The goal of this thesis is reducing unmeasured confounding in an observational study to 

compare the effectiveness of simultaneous liver and kidney transplants (SLKT) versus liver-only 

transplants (LTA) in patients who were on the liver transplant wait list with dialysis. We 

hypothesize that SLKT could lower mortality by replacing both organs in the same operation.  

A two-stage least squares (2SLS) was used to estimate causal effects. The first stage was 

regressing treatment on IV and covariates to determine whether IV met the assumption of strongly 

predicting treatment. Then, the second stage least squares analysis was performed by regressing 

outcome on the estimated treatment and covariates. This analysis used several strategies for 
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formulating the IV based on geographic region, with similar results. Although our IV met the 

necessary assumptions, results did not show a significant causal relationship between treatment 

and mortality. 

Findings of this thesis are significant to public health because more than ten thousand 

patients in the US are on the liver transplant waiting list. While performing both a kidney and liver 

transplant in these patients may save lives, we are not aware of any other studies that evaluated 

this problem using IVs or other approaches that potentially account for unmeasured confounding. 

By evaluating the causal effects of the different transplant approaches, physician and patients can 

make more informed decisions. The information may also be important for organ allocation 

strategies nationally.  
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1.0 Introduction 

To improve the quality of medical care, it is important to assess the effectiveness of one 

treatment or intervention compared to an alternative one. More specifically, comparative 

effectiveness research (CER) seeks to compare two or more known-to-be efficacious treatments 

or interventions, in terms of harms and benefits, for populations or subgroups, to generate evidence 

that compares effectiveness of interventions in pragmatic settings (Sox, 2009). CER uses both 

observational studies and randomized controlled trials (RCTs) to generate evidence for decision-

making in medical care.  

RCTs are studies where participants are assigned at random to one of two medical 

treatments (Spieth et al., 2016). For CER, the two groups should be different interventions (rather 

than a treatment versus a placebo, or no intervention at all). Because the treatment assignment is 

completely random, the observed difference in the outcome variable can be attributed to either a 

true difference, or to chance alone. In comparison, observational studies may yield differences in 

the outcome due to differences in subject characteristics between two treatment groups. In other 

words, confounding factors (which are variables associated with both the treatment and the 

outcome) may create bias in the results of observational studies.  

In general, rigorously designed RCTs (when they are feasible and can be done in pragmatic 

setting) provide the best design for avoiding biases (Grossman, 2005). Results of RCTs are 

therefore often considered as the highest-quality evidence in clinical research as the randomization 

(if done correctly) eliminates potential for confounding. Results can be analyzed with common 

statistical tests (e.g. unadjusted tests or regression models that account for factors used in the 
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randomization strategy). Statistically significant results (i.e. p-values) are then readily interpretable 

as the probability of the observed result or more extreme occurring by chance alone.  

However, a randomized controlled trial is not always feasible to conduct. Common 

challenges of RCTs include cost and time required to design and conduct the study (Grossman, 

2005). Recruiting and retaining a generalizable study cohort is also difficult to accomplish in 

practice. Specifically, participants in RCTs tend to be healthier and fall into higher socio-

demographic categories. Further, for some treatments, randomization may not be ethical, or 

physicians may feel strongly about the best treatment for their patients, and thus refuse to 

randomize treatment assignment. Gaining informed consent may also be impractical. Therefore, 

some research cannot be performed as an RCT.  

Given these limitations of RCTs, observational studies may be more practical for many 

research questions. An observational study is a type of non-experimental research study where 

investigators simply observe the intervention (or use already-collected data), subsequent 

outcomes, and potentially confounding or predictive factors (Lu, 2009). In most cases, 

observational studies are more practically feasible, offer longer follow-up time, and are 

generalizable to a wider population.  

While there are many benefits to using observational data for CER, they also lead to a high 

potential for selection bias because subjects or physicians choose their treatment. Subjects who, 

for instance, choose a more experimental treatment, are likely to have different characteristics from 

subjects who choose a standard treatment. If those factors, which differ between treatment groups, 

are related to both the outcome and treatment assignment, the resulting treatment effect (using 

standard statistical methods) will be biased (i.e. have a systematic error favoring one group over 

the other). Causal effects in the observational study may therefore be difficult to estimate. To 
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potentially overcome these issues, statisticians, and researchers from other disciplines (e.g. 

econometrics) have developed different approaches to causal inference that better address 

confounding to consistently estimate the causal effect. In contrast, the usual (e.g. linear or 

generalized linear) regression model tends to estimate only associations rather than causal effects.  

There are many frameworks for causality, such as potential outcomes, and Campbell’s 

framework (Lewis, 2019). The potential outcomes framework, which is also known as the Rubin 

causal model or the Neyman-Rubin potential outcomes model (Rubin, 2005), is described in 

section 1.2. In contrast to Rubin’s approach to causal inference, Campbell’s framework pays more 

attention to distinguishing factors that might make internal validity implausible (West and 

Thoemmes, 2010). For purposes of this thesis, we will use the potential outcomes framework, as 

it represents the most common framework for causality. Essentially, the potential outcomes 

framework defines the causal effect as the difference in outcomes between two hypothetical 

scenarios: one where the subject is exposed to the first treatment and one where they are exposed 

to the second treatment (or are unexposed) (Rubin, 2005). In practice, one of these outcomes is 

observed, and the other is the counterfactual. The average causal effect is then defined as the 

expected difference in potential outcomes.  

While the individual causal effect is not directly estimable, there are numerous statistical 

approaches aimed at estimating the average causal effect over a population in an unbiased manner 

(or at least in a consistent, i.e. asymptotically unbiased, manner). Tools such as directed acyclic 

graphs (DAGs) may also be used to graphically represent potential causal relationships among 

covariates, and thus assist with developing the model. Statistical approaches fall into two main 

categories: 1) methods that use measured confounders (such as propensity score; see section 1.3), 

and 2) methods that attempt to emulate randomization through some instrument that predicts 
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treatment but is (conditional on the treatment effect) independent of the outcome. This type of 

instrumental variable approach attempts to account for unmeasured confounding (see section 1.4). 

This thesis specifically applies instrumental variables to estimate an unbiased causal effect in the 

setting of observational comparative effectiveness research. More specifically, the goal of this 

thesis is to compare the effectiveness of simultaneous liver and kidney transplants (SLKT) versus 

liver-only transplants (LTA) in improving survival among patients who are on dialysis. We 

hypothesize that SLKT will lead to a better survival rate than LTA.  

1.1 Background on Kidney and Liver Transplants 

There are approximately 15% of adults in the United States that have chronic kidney 

diseases (CDC, 2019). Many factors cause problems in the kidneys like diabetes, high blood 

pressure, genetic diseases, cancer, or certain medicines and illegal drug use. When conditions 

become severe to the extent that the patient’s kidneys do not work any longer, two common 

treatment options can be chosen. One is dialysis, which is using a filtering machine or special fluid 

to help patients to filter waste out of their bodies. Dialysis does not change other functions of the 

kidneys; it just keeps patients alive. The alternative treatment is a kidney transplant, which is a 

surgery using a healthy kidney from donors to replace the non-functioning or diseased kidneys. 

About 430,000 Americans with kidney failure rely on regular blood-filtering dialysis treatments 

to survive. More than 100,000 U.S patients are waiting for kidney transplants, but only around 

19,000 of those will get a kidney transplant each year (UNOS, 2019).  

Even though the liver is the only organ than can regenerate itself, around thirty million 

Americans are affected by liver disease. Liver diseases are one of the leading causes of death 
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among adults between the ages of 25 and 64 in the US. Liver diseases can be genetic or caused by 

many factors, such as obesity, viruses, drug and alcohol use. It is life-threatening when the liver is 

losing or has lost its functions and a liver transplant is necessary. More than ten thousand patients 

in the United States are on the liver transplant waiting list, but around eight thousand liver 

transplant surgeries are performed every year. As a result, thousands of patients die each year while 

on the list (UNOS, 2019).  

For patients who have both liver and kidney diseases and are on the liver transplant waiting 

list, there are two common interventions, simultaneous liver-kidney transplantation (SLKT), 

where patients receive both liver and kidney transplantations at the same time, and liver 

transplantation alone (LTA),  where patients only consent to receive liver transplantation, and thus 

continue using dialysis as the treatment for kidney disease. An RCT is not suitable for this situation 

because a kidney is not always available, especially since organs are often allocated to patients on 

a regional basis. To conduct an observational comparison of SLKT versus LTA, this study will 

use existing databases and employ causal inference techniques. Although comparative 

effectiveness of these methods has previously been studied, past publications (with the exception 

of another thesis that used propensity score-based methods) have relied on standard statistical 

measures of association.  

1.2 Causal Inference 

Causal inference is the process of estimating the effect of a treatment or exposure on the 

potential outcomes. Rubin (2005) defines a causal effect as a comparison of potential outcomes, 

including the outcome they would have had if they had received one treatment and the outcome 
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they would have had if they had received another treatment (Figure 1). The potential outcomes are 

then either observed (for the outcome corresponding to the observed treatment) or counterfactual 

(for the outcome corresponding to the alternative treatment). If a given subject i had received the 

treatment A, then the outcome Yi
(A) is observed and outcome Yi

(B) is counterfactual and vice versa. 

The causal effect is the comparison between Yi
(A) and Yi

(B). In this study, the causal effect is the 

comparison of survival times, in the form of the hazard ratio, between the outcome caused by 

SLKT, Yi
(SLKT), and the outcome caused by LTA, Yi

(LTA).  

 

 

Figure 1. Explanation of causal effect 

 

There are some assumptions for causal inference. First, choices of targeted subjects should 

use covariate histories as criteria; the covariate history should be measured up to but not beyond 

assessment of treatment received. Researchers should describe the population that gave rise to the 

effect estimates. The timing of the outcome assessment should also be relative to the initiation and 

duration of the treatment.  

As mentioned above, even though observational studies tend to be more generalizable and 

can be used for larger data sets, the challenge of causal inference is that we cannot collect outcome 

data under the counterfactual case. Study participants that get one treatment may systematically 

differ from those who get the other treatment. Therefore, differences in outcomes may be a result 

of pre-existing differences, not of the treatment itself. A confounder (Figure 2) is associated with 

both the treatment of interest and the outcome of interest, but not in the causal path between 
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treatment and outcome. In terms of general research practice, it is essential to document approaches 

thoroughly, including pre-specification of the hypotheses and data analysis plans to make results 

reproducible. 

 

Figure 2. Relationships between treatment, outcome and confounders 

 

There are many possible methods to handle the bias caused by lack of randomization in 

causal inference, such as propensity score-based methods, instrumental variable methods, g-

estimation, marginal structural models, and structural nested mean models. Other than propensity 

score-based methods and instrumental variable methods, these three new approaches for causal 

inference are suitable for causal effect of a time-dependent exposure that time-dependent 

covariates may be confounders or intermediate variables (Robins, 2000). Because this study 

instead focuses on a point intervention (transplant, which is administered at a single time point), 

analyses were restricted to propensity score methods (in a past study) and instrumental variables. 

In section 1.3, the preliminary study of the propensity score method is reviewed, and the 

instrumental variable method is introduced in more detail in section 1.4.   
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1.3 Preliminary Study --- Propensity Score Method 

Propensity score-based methods are another set of useful approaches for causal inference 

in the setting of observational data. The propensity score is the probability of an individual 

receiving the treatment condition (vs. the comparison), given a set of observed covariates 

(Rosenbaum and Rubin, 1983). The propensity score is then used, through either matching, 

stratifying, or weighting, to pseudo-randomize the same in an effort to make the treatment and 

comparison groups as similar as possible with respect to the observed covariates (Figure 3). When 

the causal question is addressed using non-randomized data, the assignment mechanism such as 

logistic regression or machine learning methods can be used to model the probability of selecting 

a given treatment. This predicted probability, or propensity score, is then used to match, stratify or 

weight the original data to ‘pseudo-randomized’ the data (i.e. to create a new data set that better 

emulates a randomized trial). A standard statistical approach, or outcomes model, is applied to the 

pseudo-randomized data to estimate the treatment effect.  

 

 

Figure 3. Schematic diagram for main idea of propensity scores 

 

In a previous study (Srivastava, 2019), propensity-score (PS) based methods were used to 

estimate the causal effect, defined as the expected difference in potential outcomes. PS-based 
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methods refer to a series of approaches including calculating the PS, using the PS to define pseudo 

populations, and defining the outcomes model to estimate treatment effects. Logistic regression, 

classification trees, and a random forest model were three approaches used to model the treatment 

assignment mechanism. Three pseudo populations were created from each of the resulting PS 

distribution: 1:1 propensity score matching, stratification into quintiles, and inverse probability of 

treatment weighting (IPTW). A cox proportional hazard model was then fit for each pseudo 

population to estimate the treatment effect. The random forest model showed a significant estimate 

of treatment effectiveness with matched pseudo populations, but there was no significance when 

using stratified pseudo populations. Both the classification tree and random forest models led to 

significant estimates in IPTW pseudo populations.  

In conclusion, these varied results indicated that the assignment mechanism, the approach 

for forming the pseudo population, and the choice of outcomes model, all can significantly 

influence results of PS-based methods and estimates of treatment effect. However, it is not always 

clear how to optimally model the treatment assignment mechanism or form the pseudo population 

because propensity score-based approaches are a multi-step process, not a single method, and each 

step needs to be carefully selected. In addition, results may be sensitive to unmeasured 

confounding. Although there are several methods for assessing sensitivity to unmeasured 

confounding, we are not aware of any such methods that apply to survival analysis.  

1.4 Instrumental Variable Method 

The instrumental variable (IV) method is a common approach to evaluate the causal effects 

of treatments when unmeasured confounding presents a serious concern in an observational study 
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(Baiocchi et al., 2014). More specifically, when potential confounders are not measured as part of 

the dataset, even causal inference methods based on propensity scores cannot consistently estimate 

(i.e. estimate in an asymptotically unbiased manner) the causal effect. The IV method depends on 

specifying a variable that is strongly predictive of treatment but conditionally independent of the 

outcomes. The IV is used to identify the unobserved correlation between X and Y (Figure 4).  

 

 

Figure 4. Path diagram of regression analysis within instrumental variable Z 

 

Valid IVs should satisfy three features (Baiocchi et al., 2014). First, the IV directly causes 

changes in the treatment only, which can be verified from the data by ensuring that changes in the 

IV are related to changes in the treatment. Second, the IV is not associated with variation in 

measured or unmeasured confounders that influence the outcome. The balance check for each 

covariate conditional on the IV and treatment can used to assess the second assumption. Third, IVs 

do not cause changes in the outcome variable directly, rather, the IV only indirectly influences the 

outcome of interest through its effect on the treatment. The standard logistic regression can be used 

to test whether there is any relationship between the outcome and the IV.  

Angrist and Pischke (2009) used an analysis of Vietnam War veterans as an example to 

explain why the IV could work to estimate the causal effect even without measuring the 

confounders. They indicated that the military participation (X) might lower lifetime income (Y) 

because of the sort of psychological effects of going to war. However, the military participation is 
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likely correlated with unobserved factor such as, preference of office work, academic attitude, 

value of money for choosing jobs, etc., which also detrimentally impact lifetime income. Then the 

effect from OLS will be greater than the true causal effect of military participation on lifetime 

income. This study used draft eligibility as the IV to address the causal effect of military 

participation because there is a highly positive correlation between military participation and draft 

eligibility.  

Subjects were grouped into three categories: eligible for the draft and went to war, not 

eligible for the draft and went to war, and did not go to war. The average of lifetime income for 

individuals who participated in war was much lower than the lifetime income for individuals who 

did not participate in war, but the effect of military participation on lifetime income was overstated. 

In fact, the individuals who were not eligible for the draft, but still participated in the war, were 

likely to earn less during their lifetime. After excluding these individuals, the comparison of the 

lifetime income between individuals who were eligible and also participated in the war and 

individuals who did not participate in war estimated the true causal effect of military participation 

on the lifetime income because there are no other reason to suggest these two types individuals are 

different.  

There are limitations to consider when using IV methods (Baiocchi et al., 2014). More 

specifically, an IV can be categorized as a strong or weak IV, based on its association with 

treatment selection. The weak IV, even if it is valid, could cause high variance in the causal 

estimate, and thus produce misleading inferences from two stage least squares. Trade-offs between 

an IV estimate with a large variance and a conventional estimate with possible bias need to be 

considered when deciding on the best method. IV methods are the most helpful for the analysis 

when unmeasured confounding is a major concern in the study and there exists a valid IV that is 
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strongly associated with choice of treatments. IV methods could be considered as secondary 

analyses or sensitivity analyses when unmeasured confounding is not a serious issue in the study 

or a valid and strong IV is not available. In this thesis, we attempt to find a valid IV that can 

compare the effectiveness of SLKT and LTA to control unmeasured confounding in the 

observational study.  

1.5 Statement of Problem 

In this study, we attempt to determine the causal effect of SLKT versus LTA in patients 

who were on the liver transplant wait list with dialysis between 2006-2016, with a minimum of 

one year of follow-up. More specifically, the goal of this thesis is to conduct an IV analysis to 

reduce the potential for unmeasured confounding that could bias the comparison. The results from 

this study could provide important information for future changes to organ allocation when both 

liver and kidney diseases are present.   
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2.0 Method 

The analysis was conducted in four steps. First, the data set was managed by omitting 

missing values and patients without one-year follow-up. The outcome of interest was specified as 

survival time less than one year, and the primary covariate of interest was the treatment groups of 

either LTA or SLKT. Second, suitable covariates were chosen as the IVs according to the 

aforementioned criteria for defining IVs. Third, other covariates of interest were introduced to the 

model and risk difference estimates for mortality were compared. Last, assumptions of IV methods 

were assessed to see whether they were violated in this study. This study aims to determine the 

causal effect of SLKT versus LTA for reducing the risk of death by performing IV methods to 

reduce unmeasured confounding. The study has substantial importance for organ allocation in 

kidney and liver diseases.  

2.1 Data Sources 

Patient information was collected from the United Network for Organ Sharing (UNOS), 

which is the platform to gather, analyze and publish all Organ Procurement and Transplantation 

Network (OPTN) data. The original dataset included 2,587 observations and 23 covariates. Based 

on input from clinical investigators, ten covariates were retained for this study: date of kidney 

transplant; three continuous covariates: BMI, recipient age and patient survival time in days; three 

binary variables: sex (male/female), transplant type (LTA/SLKT) and death status (yes/no); and 

three categorical variables: diabetes (none, type I, type II), regions where listed or transplanted 
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(Region 1-11), and race (black/not black) included. After omitting 114 patients with missing values 

and 508 patients without one-year follow-up, there were 1,965 observations in the final analytic 

sample.  

2.2 Standard Logistic Regression Analysis 

A logistic regression model is a generalized linear model typically used to model the 

relationship between a binary outcome and treatment or exposure of interest. Logistic regression 

can address questions such as whether, and to what degree, an exposure or treatment is associated 

with the outcome. Logistic regression requires a binary outcome, with independently and 

identically distributed data. While variables in the model may be correlated, their association on 

the outcome may be impossible to disentangle if any variables are approximately equal to a linear 

combination of the other variables (e.g. multicollinearity). Also, while logistic regression makes 

no assumptions about the distribution of the variables in the model, the link function used in the 

model does assume that each of the continuous variables are linearly related to the log odds of the 

outcome.  

While each of these assumptions may be reasonable for our study, the logistic model still 

assesses only associations rather than causation. Specifically, the logistic model estimates the ratio 

in the log-odds given the observed covariate values, which is not the causal effect (i.e. expected 

difference, or log-odds, between potential outcomes). Thus, the results of the logistic model are 

unlikely to represent an unbiased estimate of the causal effect. In addition, the logistic model, as 

is the case for any other regression model, depends on the observed covariates and cannot adjust 

for unmeasured confounding.  
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2.3 Instrumental Variable Analysis 

2.3.1 Assumptions of IV Methods  

As mentioned in section 1.4, an instrument is the variable that directly affects the treatment, 

only affects the outcome through the effect on the treatment, and is not associated with unmeasured 

confounding conditional on covariates. Thus, there are three basic assumptions of IV methods in 

general: the relevance assumption, the exclusion restriction, and the independence assumption 

(Baiocchi et al., 2010). The relevance assumption indicates that the IV, Z, directly have a causal 

effect on the treatment, X. In other words, IV is associated with the treatment received. We 

assumed that patients in certain regions are encouraged to have an SLKT. In this case, we assume 

that the patient is encouraged to have SLKT (E(XSLKT|U) > E(XLTA|U)). The exclusion restriction 

requires that Z affects the outcome Y only through X. Figure 4 depicts this relationship, YSLKT is 

the potential outcome for the patient that received SLKT; YLTA is the potential outcome for the 

patient that received LTA, there is no direct outcome from the IV. The independence assumption 

describes that there is no confounding between the effect of Z on Y, which is exogenous. If the 

variable is uncorrelated with the unmeasured confounding, then this variable is exogenous. When 

the instrument and treatment are binary, the independence assumption can also be written as “Z is 

independent of (X1, X0, Y1,1, Y1,0, Y0,1, Y0,0) |U”; 0 and 1 in X indicates two categories of IV, and 

in Y indicates combinations of IV and treatment (Baiocchi et al., 2010). 

Because the instrument and treatment are binary variables in this thesis, there are two 

extensions of the assumptions. One is called stable unit treatment value assumption (SUTVA), the 

other is the monotonicity assumption (Baiocchi et al., 2010). SUTVA suggests that the treatment 

only affects the patient who takes that treatment, and this treatment will not have other versions 
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that cause differences in the outcome. To be specific, the patient who accepts SLKT will not 

influence the next patient who will receive either SLKT or LTA. Also, SLKT treatment will only 

generate one outcome; there are no other outcomes for SLKT treatment.  

Introducing the monotonicity assumption requires definitions for the following terms: 

Complier, Never-taker, Always-taker, and Defier. These are the four subgroups of patients or 

subjects for which we observe both actual assignment and the counterfactual assignment (Table 

1). Always-takers are the subjects who are always treated no matter under which instrumental 

assignment. Alternatively, Never-takers are the subjects who are never treated regardless of 

instrumental assignments. Compliers are the subjects with treatments following instrumental 

assignments.  Defiers are the subjects with treatments opposite of instrumental assignments, which 

is essentially related to the monotonicity assumption. In clinical trials, the effect homogeneity 

assumption is never achieved because it is biologically implausible to keep the effect of the 

treatment X on the outcome Y constant among patients. Furthermore, we cannot identify these 

four subgroups in real world situations because we can only observe the treatment under the actual 

assignment; the counterfactual assignment will never be observed.  

 
Table 1. Four subgroups defined by combinations between actual and counterfactual assignments and 

exposure 

 

 Z = 0 

X = 0 X = 1 

Z = 1  

     X = 0 Never-takers Defiers 

     X = 1 Compliers Always-takers 

 

Alternatively, the more feasible assumption of monotonicity only requires that there are no 

Defiers (Lousdal, 2018), i.e. “no subject i with Di
1 = 0, Di

0 = 1 (Baiocchi et al., 2010). Always-

takers and Never-takers have no causal effect of the instrument on the treatment because they have 
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constant values of treatments regardless of instrumental assignments. If we assume no Defiers 

exist, Compliers are the only subgroup having effect of the instrument Z on the treatment X. Then 

the Complier average causal effect (CACE) or the local average treatment effect (LATE), E(Yi
1 – 

Yi
0 | Compliers), can be estimated to infer the treatment effects.  

2.3.2 Sources for IVs 

Based on the assumptions above, finding a strong valid IV is vital in IV analysis. 

Randomized assignment in trials would be a desirable instrument because the CACE could then 

be estimated (Lousdal, 2018). However, in observational studies, a variety of factors, both 

measured and/or unmeasured, may affect a patient’s treatment selection and/or the treatment 

assigned by their physician. Because of this, natural features are commonly chosen as the 

instrument variable (e.g. geographical variation, physical distance to facility, physician’s 

preference, genetic factors, or timing variables) (Lousdal, 2018).  

In this thesis, the region is one variable that could be used as described above and was 

chosen as the IV. The United States was partitioned into 11 regions (as shown in Appendix A). To 

simplify the analysis, the region variable was dichotomized using two approaches. In one 

approach, the regions were divided into high proportion of SLKT group and low proportion of 

SLKT group. If the proportion of SLKT in the region was higher than 40%, then this region was 

regarded as the high proportion of SLKT group, and vice versa. The other approach was to only 

keep the two regions with extreme proportions of SLKT. The region with the highest proportion 

of SLKT was regarded as yes for IV predictive SLKT, and the region with the lowest proportion 

of SLKT was regarded as no for IV predictive SLKT. Based on these two classifications of regions, 

there were two series of IV analyses.  
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2.4 Two Stage Least Squares (2SLS) Regressions 

The ordinary least squares (OLS) estimator is used in traditional regression analysis to infer 

the relationship between X and Y. The coefficient of interest, β, is a function of the covariance 

between X and Y and the variance of X, where β = σXY / σ2
XY (Pokropek 2016). Under this 

circumstance, when X is uncorrelated with U (a potential confounder), corr (X, U) = 0, we can say 

X is an exogenous variable. When Y is correlated with a potential confounder, U, corr (Y, U) ≠ 0, 

then Y is an endogenous variable. However, having an endogenous variable is not completely 

suitable for the IV analysis. In the IV analysis, X and Y are correlated with U, but Z is uncorrelated 

with U. Thus, Z is the IV that can be used to estimate β, the association between X and Y. However, 

the OLS estimator of β will be biased and inconsistent in this situation because part of the variance 

in Y is endogenous and part is exogenous.  

Therefore, a two-stage least squares estimator is necessary to infer β by the ‘ivreg’ function 

in the ‘ivpack’ package in R. According to the assumptions in section 2.2.1, the complier average 

causal effect (CACE) can be written as  

E(𝑌𝑖
1 – 𝑌𝑖

0 | Compliers)  =
𝐸 (𝑌|𝑍 =  1)− 𝐸 (𝑌|𝑍 =  0)

𝐸 (𝑋|𝑍 =  1)−𝐸 (𝑋|𝑍 =  0)
 ,               (1) 

where we can see the IV is estimated through two stages of OLS estimations. The first stage is 

regressing X on Z to eliminate the endogenous part of the variation in Y. We can write the 

equation:  

                                          X = a + bZ + e,                                                    (2) 

where X is the observed treatment, a is the intercept, b is the coefficient of the IV Z, and e is the 

error term. From equation (2), we can obtain the consistently estimated E(X|Z). The second stage 
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is to solve the exogenous part of the variation by regressing Y on the estimated E(X|Z), the 

equation can be written as:   

                              Y = β0 + β1 * E(X|Z) + e                                         (3) 

where Y is the outcome variable, β0 is the intercept, β1 is the coefficient of the estimated E(X|Z), 

which is also the inferred relationship between X and Y, and e is the error term. 

Sometimes, the IV will be valid or become a strong IV only after adjusting on covariates 

(Baiocchi et al., 2010). After incorporating covariates into the model, the first stage of 2SLS will 

be regressing the treatment X on the covariates and instrument Z to obtain the estimated X, and 

then regressing the outcome Y on the estimated X and covariates in the second stage. In the current 

study, we adjusted for sex, age, BMI, diabetes, and race as covariates in the IV model that can turn 

region into the strong IV.  

2.5 Assessing the IV Assumptions 

The three basic assumptions of IV methods relevance assumption, exclusion restriction, 

and independence were assessed. The relevance assumption was assessed by the first stage of the 

2SLS. This is the most convenient approach to test whether there is association between the 

instrument and the treatment. If this assumption is violated, it would be necessary to change a 

different variable as the instrument. Baiocchi et al. (2010) stated that IV would violate the 

exclusion restriction if the IV was associated with other treatments which accompanied the primary 

treatment of interest. In this case, besides SLKT and LTA treatments, all subjects were treated 

with the dialysis; therefore, our IV region is not associated with the concomitant treatment. The 

exclusion restriction was satisfied in the current study.  
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The association between the IV and the measured confounders may reflect whether the 

independence assumption is violated (Baiocchi et al., 2010). The imbalance of measured covariates 

across level of the IV and the bias ratio should be assessed to prove if there is association between 

the IV and observed covariates. If so, there might be some associations between IV and the 

unmeasured confounding.  

2.6 Overview of Statistical Analyses 

For each of the 11 regions, the frequency and proportion of the two treatments were 

calculated. The total number of deaths and the number of deaths within one-year follow-up were 

calculated for each region, along with the proportion of deaths. The central tendencies (i.e. mean, 

median, and range) of the continuous covariates BMI and age were calculated. To simplify and 

standardize, all covariates were dichotomized as binary variables. The mean was used as a cut 

point to dichotomize BMI and age into high and low categories. Diabetes was categorized as “No 

Diabetes”, “Insulin Dependent Diabetes”, “Non-Insulin Dependent Diabetes”, and “Diabetes, 

Dependency Unknown” in the original dataset, and was dichotomized as “No Diabetes” and 

“Diabetes”, collapsing the three diabetes categories together, in the current analysis. Self-reported 

race had three responses Hispanic/Latino, Black and Other, then was dichotomized as black and 

non-black. The binary IV is the simplest and most frequent option; thus, we dichotomized region 

using two strategies. The first approach was to dichotomize region into high proportion of SLKT 

region and low proportion of SLKT region. The second strategy was only to keep the highest and 

the lowest proportion of SLKT region as IV. These two strategies of dichotomizing region 

followed the same process of the logistic regression and IV regression analysis.  
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In each of the two strategies for dichotomizing region, six logistic regression models were 

performed. To determine whether the IV has the direct influence on the treatment, the IV region 

was regressed on the treatment. To investigate whether the IV has the direct effect on the outcome, 

the IV region was regressed on the outcome. Then four logistic regression models: outcome regress 

on treatment, outcome regress on treatment and region, outcome regress on treatment and other 

covariates, and outcome regress on treatment, region and other covariates, were built to compare 

with the IV analysis.  

In the IV analysis, the first stage model was regressing IV and the matrix of all covariates 

on the treatment. The first stage models with and without IV were performed and the F test from 

ANOVA was used to determine whether the IV was valid and strong enough for two stage least 

squares inference. The proportion of compliers was estimated using the first stage logistic 

regression model. The two stage least squares analysis was performed by the package in R called 

‘ivpack’ (Jiang and Small, 2014). The IV regression model was run via ‘ivreg’ function. The odds 

ratios were calculated by exponentiating coefficients of the logistic regression model. Finally, the 

robust standard errors with or without clustering were both calculated. The transplant center code 

was used as the unit of clustering. 

The imbalance of measured covariates across level of the IV was calculated to assess 

whether there was an association between IV and the observed covariates. When measured 

confounders are proxies for the true confounder, an association between the IV and measured 

confounders could imply that there would be an association between the IV and unmeasured 

confounders. The probabilities of each covariate conditional on Z = 0 and Z = 1 were calculated 

separately, and a chi-squared test was performed to determine whether there is significant 
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difference for each covariate between Z = 0 and Z = 1. CrossTable function in R package ‘gmodels’ 

(Warnes, et al.,2018) was used to achieve above calculation.  

All analyses were performed by the Software R version 3.6.1 (R Foundation for Statistical 

Computing).  
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3.0 Results  

This section presents the results of the methods described above. Section 3.1 presents a 

summary of the data, including mortality rates by region and by transplant method. Section 3.2 

gives the results for the IV approach where region was dichotomized into high and low proportions 

of SLKT. Section 3.3 gives the results for the IV approach using region with the two extreme 

proportions of SLKT.  

3.1 Summary Statistics 

Table 2 provides the summary statistics for frequency of treatments and total deaths for 

each region as well as the proportion of deaths within one year. Using the information from this 

table, region was dichotomized into two groups. In the first strategy, regions 3, 4, 7, 8, 10, and 11 

had more than 40% of SLKT; these regions were then defined as yes for the IV for using SLKT; 

regions 1, 2, 5, 6, and 9 had lower than 40% of SLKT and were defined as the IV for using LTA 

(i.e. not using SLKT).  

The first N column in Table 2 displays the percentage of patients in each region relative to 

the entire sample; the N columns under LTA and SLKT indicated the percentages of patients using 

each treatment in each region.  The death columns under LTA and SLKT shows the percentages 

of total deaths for each treatment separately in each region. Also, the last total death indicated the 

percentage of patients who had survival time less than one year. As shown in Table 2, region 5 has 

the highest percentage of the patients (25.4% patients of the total). However, region 5 has the 



 24 

lowest percentage of SLKT usage (29%). Region 7 has around 16% patients in the total sample, 

and 53% of patients had SLKT, which is the highest values of the SLKT compared to other regions. 

In the second strategy, region 5 and region 7 were used as the lowest and highest percentages of 

SLKT, respectively. Table 2 also describes the mortality rates by region. The mortality for each 

treatment in each region varies from 20% to 40%. The highest mortality is using LTA in region 2 

and region 10, both of which are greater than 37%. The lowest mortality is also using LTA in 

region 6, which is less than 22%. Comparing mortality between LTA and SLKT shows that regions 

2, 5, 8 have the similar mortalities with either treatment. Region 2 has the relatively higher 

mortality and region 5 has the relatively lower mortality using either treatment. In region 9, 21.5% 

of patients survived less than one year after transplantations, which was the highest percentage. In 

region 6 and region 11, less than 10% of patients survived less than one year after transplantations.  
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Table 2. Frequency table of transplant method and death rate before and at 1 year by region 

Region N LTA SLKT  Death 

within  

one year  

N Death N Death  

1 86  

(4.4%) 

53  

(61.6%) 

15  

(28.3%) 

33 

(38.4%) 

11  

(33.3%) 

11  

(12.8%) 

2 164 

(8.3%) 

107 

(65.2%) 

40  

(37.4%) 

57 

(34.8%) 

21  

(36.8%) 

28  

(17.1%) 

3 235 

(12.0%) 

138 

(58.7%) 

32  

(23.2%) 

97 

(41.3%) 

33  

(34.0%) 

29  

(12.3%) 

4 177  

(9.0%) 

102 

(57.6%) 

25  

(24.5%) 

75 

(42.4%) 

22  

(29.3%) 

30  

(16.9%) 

5 499 

(25.4%) 

354 

(70.9%) 

81  

(22.9%) 

145 

(29.1%) 

32  

(22.1%) 

58  

(11.6%) 

6 45  

(2.3%) 

28  

(62.2%) 

6  

(21.4%) 

17 

(37.8%) 

5  

(29.4%) 

4  

(8.9%) 

7 323 

(16.4%) 

152 

(47.1%) 

49  

(32.2%) 

171 

(52.9%) 

40  

(23.4%) 

39  

(12.1%) 

8 98  

(5.0%) 

54  

(55.1%) 

14  

(25.9%) 

44 

(44.9%) 

12  

(27.3%) 

10  

(10.2%) 

9 79  

(4.0%) 

55  

(69.6%) 

18  

(32.7%) 

24 

(30.4%)  

7  

(29.2%) 

17  

(21.5%) 

10 161  

(8.2%) 

93  

(57.8%) 

35  

(37.6%) 

68 

(42.2%) 

18  

(26.5%) 

28  

(17.4%) 

11 98  

(5.0%) 

50  

(51.0%) 

11  

(22.0%) 

48 

(49.0%) 

12  

(25.0%) 

7  

(7.1%) 

Overall  1965 1241 

(60.2%) 

344  

(27.7%) 

819 

(39.8%) 

228  

(27.8%) 

261  

(13.3%) 

 

3.2 Strategy One: High Proportion of SLKT vs Low Proportion of SLKT 

3.2.1 The Logistic Regression Analysis 

The treatment was regressed on the IV region, and the ANOVA test was used to calculate 

the p-value of this model, which was less than 0.0001, and was therefore highly significant. The 
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IV we chose in this strategy was significantly associated with the treatment, thus indicating that 

the relevance assumption was not violated. The outcome was then regressed on the IV region, to 

determine whether there was an association between the outcome and the IV. The p-value of the 

model was 0.78, so there was no evidence shown that the IV region was directly associated with 

the outcome. We can assume that region only affects the outcome through the exposure, which 

means the exclusion restriction was not violated.   

Four logistic regression models were performed: outcome regressed on treatment, outcome 

regressed on treatment and region, outcome regressed on treatment and other covariates, and 

outcome regressed on treatment, region and other covariates (results not shown). Based on these 

four models, there was no evidence that the treatment was statistically significantly associated with 

the outcome. Because of this, IV analysis was performed to estimate the causal relationship 

between the treatment and the outcome.  

3.2.2 The IV Regression Analysis 

In the first approach, region was dichotomized as more than 40% SLKT and less than 40% 

SLKT. Shown in Table 1, regions 3, 4, 7, 8, 10, 11 had more than 40% patients who chose SLKT; 

for this group, the IV was defined as yes SLKT. Regions 1, 2, 5, 6, 9 had less than 40% patients 

who chose SLKT; for this group, the IV was defined as no SLKT. In the first-stage model, the 

treatment variable (i.e. the actual transplant method received) was regressed on the IV and the 

observed covariates. A partial F statistic was calculated to test whether the instrument had an effect 

in the first model. The partial F statistic was 39.8, indicating that the IV was strong enough for two 

stage least squares inference to be reliable. The proportion of compliers was also calculated and 

13.78% of the subjects were estimated as compliers.  
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The two-stage least squares model was fitted by ‘ivreg’ function in the ‘ivpack’ R package. 

Table 3 gives the summary of non-robust standard errors. The residual standard error was 0.3385 

on 1958 degrees of freedom, and the multiple R-Squared and adjusted R-Squared were 0.0086 and 

0.0056, respectively. The F test was 2.208 on 6 and 1958 degrees of freedom, and the p-value was 

0.040, which was statistically significant. Based on Table 3, we estimated that the effect of using 

SLKT (treatment) was to reduce the mortality rate for compliers by 0.029 or 28.6 patients per 1000 

patients on the waiting list. The odds of death within one year for the high SLKT group is 3% 

lower than the odds of death within one year for the low SLKT group, but was not statistically 

significant.  

 
Table 3. Non-robust standard errors of the 2SLS model 

  
Estimate Std. Error t value P-value OR CI.2.5 % CI.97.5 % 

Intercept 0.014 0.077 0.18 0.85 
   

Treatment -0.028 0.11 -0.25 0.81 0.97 0.78 1.21 

Sex 0.0019 0.016 0.12 0.91 1.00 0.97 1.03 

Diabetes 0.027 0.022 1.22 0.22 1.03 0.98 1.07 

Race 0.046 0.040 1.16 0.25 1.05 0.97 1.13 

BMI 0.0059 0.018 0.33 0.74 1.01 0.97 1.04 

Age 0.041 0.016 2.52 0.012 1.04 1.01 1.08 

* BMI indicates the body mass index.  

 

The standard errors in Table 3 were non-robust, Table 4 shows the results of standard errors 

that are robust for heteroscedasticity with and without clustering. The transplant center code was 

chosen as the unit of clustering. Robust standard errors did not lead to any substantial change as 

compared to the non-robust error after accounting for clustering. In both analyses, we concluded 

that the treatment (SLKT or LTA) did not have a significant influence on the outcome in the IV 

analysis.  
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Table 4. Robust standard errors (RSE) with and without clustering 

 RSE without clustering RSE with clustering 

Std. Error t value P-value Std.Error t value P-value 

Intercept 0.072 0.20 0.84 0.067 0.21 0.83 

Treatment 0.11 -0.25 0.81 0.12 -0.22 0.83 

Sex 0.016 0.12 0.91 0.016 0.12 0.91 

Diabetes 0.021 1.26 0.21 0.020 1.35 0.18 

Race  0.034 1.38 0.17 0.030 1.52 0.13 

BMI 0.018 0.34 0.74 0.016 0.37 0.71 

Age 0.016 2.55 0.011 0.017 2.42 0.015 

3.2.3 The Association Between IV and Unmeasured Confounding 

The proportion of measured covariates across levels of the IV was calculated by the Cross-

Table function in R. Table 5 shows the balance of covariates between patients living in low SLKT 

region (Z = 0) or high SLKT region (Z = 1). All covariates seem balanced between the two types 

of region, except race, with high SLKT region patients being much more likely to be non-black.  

 
Table 5. Balance of measured covariates between patients living in low SLKT region vs high SLKT region 

Covariate X P (X | Low SLKT region) P (X | High SLKT region) p-value 

Sex (Female) 28.9% 35.5% 0.57 

Diabetes (Yes) 14.5% 19.6% 0.21 

Race (Non-black) 43.2% 52.6% 0.0048 

BMI (>30) 23.5% 28.4% 0.45 

Age (>55) 24.7% 31.4% 0.71 

 

From Table 5, all covariates except race had p-values greater than 0.05, indicating that they 

were not statistically significantly different between low SLKT region and high SLKT region. 

Because we did not find evidence of association between the IV and any measured covariates, we 

assumed that IV was not associated with any unmeasured covariates either.  
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3.3 Strategy Two: The Highest and Lowest Proportion of SLKT 

3.3.1 The Logistic Regression Analysis 

This approach used the same analysis process as the previous approach. Treatment was 

regressed on IV region, and the ANOVA test was used to calculate the p-value of this model, 

which was less than 0.0001, and thus highly significant. The IV we chose in this strategy was 

significantly associated with treatment, proving that the relevance assumption held. Outcome was 

regressed on IV region to determine whether there was association between the outcome and the 

IV. The p-value of model was 0.85, indicating that there was no evidence that IV region was 

directly associated with the outcome. We can assume that region only affected the outcome 

through the exposure, which means that the exclusion restriction was not violated.   

Four logistic regression models were performed: outcome regressed on treatment, outcome 

regressed on treatment and region, outcome regressed on treatment and other covariates, and 

outcome regressed on treatment, region and other covariates (results not shown). In these four 

models, treatment was a factor that had a statistically significant influence on the outcome, but the 

models were not statistically significant. The results from the logistic regression are biased because 

they do not consider the unmeasured confounding, so the IV analysis was performed to estimate 

the causal relationship between the treatment and the outcome.  

3.3.2 The IV Regression Analysis 

In the second approach, a dichotomized version of region with region 7 as the highest 

percentage of SLKT and region 5 as the lowest percentage of SLKT was used as our IV. Like 
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approach one, the treatment variable was regressed on the IV and observed covariates, which was 

the first stage model. The partial F statistic was calculated by the ANOVA test as 49, which is 

greater than 10, so that IV is considered valid for two stage least squares inference to be reliable. 

With this model, 23.63% of the subjects are estimated as compliers.  

The two-stage least squares model was fitted with results in Table 6 gave the non-robust 

standard errors of the IV model. The residual standard error was 0.32 on 815 degrees of freedom. 

The multiple R-Squared was 0.0020, and the adjusted R-Squared was approximately 0.0. The F 

test was approximately 1.00 on 6 and 815 DF and the p-value was 0.43. We estimated that the 

effect of moving to SLKT for treatment will increase the mortality rate for compliers by 0.019 or 

19 patients per 1000 subjects who are on the waiting list. As shown in Table 6, the odds of death 

within one year for the high SLKT group are 2% higher than the odds of death within one year for 

the low SLKT group, which is not statistically significant.  

 
Table 6. Non-robust standard errors of the 2SLS squares model 

 
Estimate Std. Error t value P-value OR CI.2.5 % CI.97.5 % 

Intercept 0.067 0.16 0.43 0.67 
   

Treatment 0.019 0.099 0.19 0.85 1.02 0.84 1.24 

Sex -0.027 0.024 -1.13 0.26 0.97 0.93 1.02 

Diabetes 0.029 0.028 1.02 0.31 1.03 0.97 1.09 

Race -0.0049 0.071 -0.069 0.94 0.99 0.86 1.14 

BMI 0.0058 0.024 0.24 0.81 1.00 0.96 1.05 

Age 0.033 0.023 1.41 0.16 1.03 0.99 1.08 

 

The standard errors in Table 6 were non-robust, Table 7 shows the results of standard errors 

that are robust for heteroscedasticity with and without clustering. The transplant center code was 

chosen as the unit of clustering. Robust standard errors did not change a lot comparing with the 

non-robust error with the addition of cluster. Therefore, we concluded that the treatment (SLKT 

or LTA) did not have a significant influence on the outcome in the IV analysis.  
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Table 7. Robust standard errors (RSE) with and without clustering 

 RSE without clustering RSE with clustering 

Std.Error t value P-value Std.Error t value P-value 

Intercept 0.15 0.45 0.65 0.14 0.48 0.63 

Treatment 0.098 0.19 0.85 0.12 0.16 0.88 

Sex 0.025 -1.09 0.27 0.023 -1.18 0.24 

Diabetes 0.029 0.99 0.32 0.027 1.07 0.28 

Race 0.075 -0.066 0.95 0.066 -0.074 0.94 

BMI 0.024 0.24 0.81 0.017 0.34 0.73 

Age 0.023 1.46 0.15 0.024 1.38 0.17 

 

3.3.3 The Association Between IV and Unmeasured Confounding 

The proportion of measured covariates across levels of the IV was calculated by the Cross-

Table function in R. Table 8 shows the balance of covariates between patients living in low SLKT 

region (Z = 0) or high SLKT region (Z = 1). All covariates seem balanced between the two types 

of region, except race, with high SLKT region patients being much more likely to be non-black.  

 
Table 8. Balance of measured covariates between patients living in low SLKT region vs high SLKT region 

Covariate X P (X | Low SLKT region) P (X | High SLKT region) p-value 

Sex (Female) 38.9% 25.4% 0.87 

Diabetes (Yes) 20.4% 12.2% 0.42 

Race (Non-black) 60.0% 37.3% 0.0011 

BMI (>30) 32.4% 18.4% 0.066 

Age (>55) 33.7% 23.1% 0.35 

 

From Table 8, all covariates except race have p-values greater than 0.05, indicating that 

they were not statistically significantly different between low SLKT region and high SLKT region. 

Because we did not find evidence of association between the IV and any measured covariates, we 

assumed that IV was not associated with any unmeasured covariates either.  
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4.0 Discussion  

In a previous study, Srivastava (2019) used propensity score methods to compare the causal 

effectiveness of two treatments. She used three approaches (logistic regression, classification trees 

and random forest model) to model the treatment assignment, and three pseudo populations were 

created from each of the three PS distributions (1:1 matching, stratification into quintiles, and 

inverse probability of treatment weighting). However, most outcome models were not statistically 

significant with no statistically significant differences between SLKT and LTA treatment for liver 

transplant patients on dialysis. Even though some results show that SLKT was more effective than 

LTA for dialysis patients, models also displayed more overlaps in propensity score distributions, 

which were not well-balanced. Thus, it is unclear that which treatment assignment approaches and 

PS distributions are more optimal combinations to compare the causal effectiveness of two 

treatments.  

PS-based method is a multi-step analysis, each single step in the analysis could lead to 

completely different results. The analyses described above were essential because they 

demonstrated a CER of the causal effect for two treatments only using observational data. Yet, the 

major limitation of PS-based analysis is unmeasured confounding. In this specific data set, the 

regional allocation for SLKT is inconsistent because the use of SLKT is largely region-based due 

to transplant organ and recipients. Also, the degree to which the region affects the outcome is hard 

to measure. Unmeasured confounding in this data set is a necessary issue which needed to be 

considered. IV analysis is commonly used to estimate causal inferences when the unmeasured 

confounding is a potential complexity in the study.  
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In the current study, an IV approach was used with geographic region dichotomized to 

simplify the data set. Two strategies were used to dichotomize region.  In strategy one (section 

3.2), the OLS regressions estimates indicated that the treatment (SLKT/LTA) did not have 

statistically significant association with the outcome (survival time less than one year) regardless 

of adjustment for other covariates. Because the unmeasured confounding was not considered in 

the OLS regression, the IV analysis about strategy one was performed. Overall, the first stage 

model of the IV analysis indicated that dichotomized region was the strong IV. In the second stage 

model, SLKT slightly reduced the mortality for compliers, but not statistically significantly. The 

odds of death within one year for patients who used SLKT were lower than the odds of death 

within one year for patients who used LTA.  

In strategy two (section 3.3), the OLS regression estimates showed there was a statistically 

significant association between treatment and outcome with or without controlling for the other 

covariates. As the results in the OLS regression may be biased because of unmeasured 

confounding, the IV analysis was performed for strategy two. The dichotomized region in the 

strategy two was also regarded as the strong IV from the first stage model of the IV analysis. 

However, SLKT in the second stage of model showed slightly increasing mortality for compliers, 

although not statistically significant. The odds of death within one year for SLKT patients were 

higher than the odds of death within one year for LTA patients in the analysis of strategy two. In 

summary, this IV analysis did not show significant causal effect between treatment and the 

mortality of patients using SLKT or LTA. SLKT and LTA did not have statistically significantly 

different effectiveness for liver transplant patients on dialysis.  

According to the balance check in both strategies, the distribution of measured confounding 

across levels of the IV and treatment is equivalent, except race (shown in Table 5 and Table 8), 
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indicating that the IV did not have any association with measured and unmeasured confounding. 

The independence assumption was met. However, not all assumptions can be totally assessed, but 

methods have been proposed to test certain parts of the assumptions. Also, even if some 

assumptions are not fully satisfied, e.g. the IV only has a weak association with treatment, it still 

could provide some useful information. The monotonicity assumption is not suitable for the 

transplant study. It is implausible to have defiers in the transplant patients; therefore, we assumed 

the monotonicity assumption was satisfied. As for SUTVA, it is hard to test in this study because 

the amount of donated kidney and liver is limited, and if one patient matches successfully, it will 

decrease the probability of other patients matching. SLKT treatment may affect LTA treatment in 

some way. SUTVA is not testable and may be violated in this case, which may cause some 

limitations. Further, sensitivity analysis can be performed to test how sensitive the results are to 

these violations of the IV assumptions.  

Except violations of the IV assumptions, the strategies of choosing IV and dichotomizing 

IV could also influence results. The US was partitioned into eleven regions in the UNOS dataset; 

however, use of binary IVs is the most common approach in the literature. Therefore, we 

dichotomized the eleven regions into high versus low proportion of SLKT. Partitioning the whole 

country into only two levels could, however, lead to substantial variability and inaccurate results 

showing not statistically significant causal effects between the treatment and the outcome. Future 

analyses could use a continuous IV, such as the distance between matched donors and recipients, 

or the number of donors and recipients in the specific region. There are many possible sources of 

data for defining the IV. Although preference-based IVs (region, hospital or individual physician) 

are common, numerous other choices, such as calendar time or genetic variants may be used as 
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potential IVs in other scenarios. Defining multiple IVs to capture unmeasured confounding is 

another possible, although less common approach.  

In addition to the above-described statistical considerations, the availability and 

complexity of transplantation data also complicate findings. The choice of SLKT versus LTA, and 

subsequent results of the operation, depend on many factors, such as the organ allocation policy, 

the availability of matching organs, risk factors that affect potential for graft rejection, and 

increased medical costs. The transplantation system is very complicated in the US (DeRoos et al., 

2019), including comprehensive physical checks for both donors and receivers, strict screening 

criteria for deceased donor or living donor, and legally required consent and monitoring for both 

donors and recipients. The need for organ matching before transplant, the distance between donor 

and recipient, the feasibility of transferring the organs, and the background of patients who need 

both transplants, all impact the ability to select SLKT versus LTA. A number of other factors 

unrelated to the transplant method (e.g. potential risk for graft rejection, lifestyle and psychological 

factors) further complicate the results in a way that is difficult to account for in the analysis 

(Galletta et al., 2016). Data in transplantation are often limited, thus further limiting the utility of 

observational data to estimate the causal relationship and comparative effectiveness of the two 

treatments.  

The current study is informative in three points. First, IV analysis is potentially more useful 

in the clinical setting than other statistical approaches when unmeasured confounding threatens 

our ability to make causal inferences. Second, it is important to choose a valid and strong IV in the 

analysis. The assumptions of IV analysis need to be assessed and hold for IVs to be useful for a 

given clinical problem. Last, due to the availability of organ donation and complexity of 

transplantation, it is difficult to use any single statistical method to compare the effectiveness of 
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SLKT and LTA and estimates the causal effect. The real-world challenges and complexities of the 

organ allocation system need to be considered in interpreting the study results. This thesis is a 

preliminary study of an IV analysis in the context of observational data, which yielded some 

potentially useful findings for informing clinical decisions for liver transplant patients on dialysis.   
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Appendix A Region Partition 

Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Eastern 

Vermont 

Region 2: Delaware, District of Columbia, Maryland, New Jersey, Pennsylvania, West 

Virginia, Northern Virginia 

Region 3: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Puerto Rico 

Region 4: Oklahoma, Texas 

Region 5: Arizona, California, Nevada, New Mexico, Utah 

Region 6: Alaska, Hawaii, Idaho, Montana, Oregon, Washington 

Region 7: Illinois, Minnesota, North Dakota, South Dakota, Wisconsin 

Region 8: Colorado, Iowa, Kansas, Missouri, Nebraska, Wyoming 

Region 9: New York, Western Vermont 

Region 10: Indiana, Michigan, Ohio 

Region 11: Kentucky, North Carolina, South Carolina, Tennessee, Virginia 

 



 38 

Appendix B Code 

#Instrumental Variable methods 

 

#install.packages("haven") 

#install.packages("AER") 

#install.packages("gmodels") 

 

setwd("C:/Users/mengqi/Documents/MasterSpring2020/Capstone/Thesis") 

library(haven) 

data <- read_dta("editedPSdata.dta") 

summary(data) 

colnames(data) 

dim(data) 

table(data$tx_typ) 

 

# data pre-processing  

myvars<-c("tx_typ", "GENDER", "diab", "region", "race", "ctr_code", 

          "bmi_tcr", "age", "death", "tx_date", "ptime") 

data_omit<-data[myvars] 

data_omit<-na.omit(data_omit) 

 

# SUBSETTING DATA 

# 1 yr followup 

d1<-subset(data_omit, tx_date < "2015-01-01") 

d1_death<-subset(d1, death=="1") 

d1_alive<-subset(d1, death=="0") 

# working dataset is data_omit 

data_omit<-d1 

 

remove(d1) 

remove(d1_alive) 

remove(d1_death) 

 

# NEW DEATH VARIABLE 

#table for deaths and survival time <= 1 year 

table(data_omit$death, data_omit$ptime<=365) 

 

#adding indicator for death within 1 year 

#data_omit$death1yr<-data_omit$death 

data_omit$death1yr<-ifelse(data_omit$ptime<=365, 

                           ifelse(data_omit$death==1, 1, 0),0) 
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#checking count of subjects with death within 1 year 

working<-data_omit$death1yr[data_omit$death1yr==1] 

remove(working) 

 

# SUMMARY STATISTICS 

table(data_omit$death) 

table(data_omit$region) 

 

# recode region 5 as region 0 as reference group 

#data_omit$region<-ifelse(data_omit$region==5, 0, data_omit$region) 

 

 

#recode as factor variables 

data_omit$region<-factor(data_omit$region) 

data_omit$race<- factor(data_omit$race) 

data_omit$diab <- factor(data_omit$diab)  

data_omit$death <- factor(data_omit$death) 

data_omit$death1yr <- factor(data_omit$death1yr) 

data_omit$GENDER <- factor(data_omit$GENDER) 

data_omit$tx_typ <- factor(data_omit$tx_typ) 

 

# DESCRIPTIVES 

summary(data_omit$bmi_tcr) 

sd(data_omit$bmi_tcr) 

summary(data_omit$age) 

sd(data_omit$age) 

table(data_omit$diab) 

table(data_omit$race) 

 

#recode diab to ordered 0=no 1=typeII 2=typeI  

data_omit$diabNew<-data_omit$diab  

data_omit$diabOld<-data_omit$diab  

 

data_omit$diabNew[data_omit$diabNew==5]<-NA  

data_omit$diabNew[data_omit$diabNew==998]<-NA  

 

#remove missing (1965 obs left)  

data_omit<-na.omit(data_omit)  

#drop empty levels  

data_omit$diabNew<-droplevels(data_omit$diabNew)  

data_omit$diabNew<-ifelse(data_omit$diabNew==1, 0, 1) 

data_omit$diabNew <- factor(data_omit$diabNew) 

table(data_omit$diabNew) 

 

# dichotomize bmi, age, race, and diab 

data_omit$bmi_tcr <- ifelse(data_omit$bmi_tcr<30, 0, 1) 
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data_omit$bmi_tcr <- factor(data_omit$bmi_tcr) 

data_omit$age <- ifelse(data_omit$age<55, 0,1) 

data_omit$age <- factor(data_omit$age) 

data_omit$race <- ifelse(data_omit$race==0 | data_omit$race==1, 1,0) 

data_omit$race <- factor(data_omit$race) 

 

library(gmodels) 

CrossTable(data_omit$region,data_omit$death1yr) 

table(data_omit$tx_typ, data_omit$death,data_omit$region) 

 

# Approach 1: recode region 3,4,7,8,10,11 as yes, others as no 

data_omit$region.high.SKLT<-

ifelse(data_omit$region==1|data_omit$region==2|data_omit$region==5|data_omit$region==6|da

ta_omit$region==9, 0, 1) 

data_omit$region.high.SKLT<-factor(data_omit$region.high.SKLT) 

 

# typical logistic regression 

library(aod) 

 

#Logistic regression model of treatment with IV 

model.xz <- glm(tx_typ ~ region.high.SKLT, family = binomial(link = 'logit'), data = 

data_omit) 

model.xz 

summ.xz <- summary(model.xz) 

summ.xz 

nmod <- glm(tx_typ~1, family = 'binomial',data = data_omit) ##"null" mod 

anova(nmod, model.xz, test = 'Chisq') 

 

#Logistic regression model of death with IV 

model.yz <- glm(death1yr ~ region.high.SKLT, family = binomial(link = 'logit'), data = 

data_omit) 

summ.yz <- summary(model.yz) 

summ.yz 

nullmod <- glm(death1yr~1, family = 'binomial',data = data_omit) ##"null" mod 

anova(nullmod, model.yz, test = 'Chisq') 

 

#Logistic regression model of death with treatment 

model.xy <- glm(death1yr ~ tx_typ, family = binomial(link = 'logit'), data = data_omit) 

summ.xy <- summary(model.xy) 

summ.xy 

anova(nullmod, model.xy, test = 'Chisq') 

 

#Logistic regression model of death with treatment and IV 

model.xyz <- glm(death1yr ~ tx_typ+region.high.SKLT, family = binomial(link = 'logit'), 

data = data_omit) 

summ.xyz <- summary(model.xyz) 
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summ.xyz 

anova(nullmod, model.xyz, test = 'Chisq') 

 

#Logistic regression model of death with treatment and xmat 

model1 <- glm(death1yr ~ tx_typ+age+race+GENDER+bmi_tcr+diabNew, family = 

binomial(link = 'logit'), data = data_omit) 

summ <- summary(model1) 

summ 

anova(nullmod, model1, test = 'Chisq') 

 

#Logistic regression model of death with treatment, IV and xmat 

model2 <- glm(death1yr ~ 

tx_typ+region.high.SKLT+age+race+GENDER+bmi_tcr+diabNew, family = binomial(link = 

'logit'), data = data_omit) 

summ <- summary(model2) 

summ 

anova(nullmod, model2, test = 'Chisq') 

 

# The IV Analysis 

 

library(ivpack) 

# y is the nx1 vector of the outcome (mortality) 

# d is the nx1 vector of the treatment (1 if SKLT, 0 if LTA) 

# xmat is the nxp matrix of observed covariates (e.g., gender, age, race, etc.) 

# z is the IV 

# (1 if regions with more SKLT, 0 regions with less SKLT) 

 

# Fit first stage model 

y <- as.numeric(data_omit$death1yr)-1 

d <- as.numeric(data_omit$tx_typ)-1 

vars <- c("GENDER", "diabNew", "race", "bmi_tcr", "age") 

xmat <- data.matrix(data_omit[vars]) 

z <- as.numeric(data_omit$region.high.SKLT)-1 

 

# Fit first stage model 

first.stage.model=lm(d ~ z+xmat) 

summary(first.stage.model) 

# Calculate Partial F statistic for testing whether instrument has an effect 

# in the first stage model 

first.stage.model.without.z=lm(d ~ xmat) 

summary(first.stage.model.without.z) 

anova(first.stage.model.without.z,first.stage.model) 

 

# The partial F statistic is 39.844, which is much greater than 10, 

# so that IV is strong enough for two stage least squares inference to be reliable. 
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# Estimate proportion of compliers 

first.stage.model.logistic=glm(d ~ z+xmat,family=binomial) 

newdata.z1=data.frame(z=rep(1,length(z)),xmat); 

expected.treatment.zequal1=predict(first.stage.model.logistic, 

                                   newdata=newdata.z1,type="response"); 

newdata.z0=data.frame(z=rep(0,length(z)),xmat) 

expected.treatment.zequal0=predict(first.stage.model.logistic, 

                                   newdata=newdata.z0,type="response"); 

proportion.compliers=mean(expected.treatment.zequal1-expected.treatment.zequal0); 

proportion.compliers 

# 0.1378 

# We estimate that 13.78% of the subjects are compliers  

 

 

# Two stage least squares analysis 

ivmodel=ivreg(y ~ d+xmat | z + xmat) 

# This summary gives the non-robust standard errors 

summiv <- summary(ivmodel) 

summiv 

summIVtable <- as.data.frame(summiv$coefficients) 

summIVtable$OR <- exp(coef(ivmodel)) 

summIVtable$CI <- exp(confint(ivmodel)) 

write.csv(summIVtable, paste(" IV regression ",".csv",sep='')) 

# We estimate that the effect of going to a SKLT is to  

# reduce the mortality rate for compliers by 0.02857 or 28.57 patients per 1000  

# subjects who are on the waiting list.  

 

# Standard errors that are robust for heteroskedasticity but not clustering 

robust.se(ivmodel) 

 

# Huber-White standard errors that account for clustering due to transplant center 

# and are also robust to heteroskedasticity 

# ctr_code is transplant center code 

cluster.robust.se(ivmodel,data_omit$ctr_code) 

 

# Imbalance measurement 

CrossTable(data_omit$GENDER,data_omit$region.high.SKLT, prop.chisq = FALSE, 

chisq = TRUE) 

CrossTable(data_omit$diabNew,data_omit$region.high.SKLT, prop.chisq = FALSE, 

chisq = TRUE) 

CrossTable(data_omit$race,data_omit$region.high.SKLT, prop.chisq = FALSE, chisq = 

TRUE) 

CrossTable(data_omit$bmi_tcr,data_omit$region.high.SKLT, prop.chisq = FALSE, chisq 

= TRUE) 

CrossTable(data_omit$age,data_omit$region.high.SKLT, prop.chisq = FALSE, chisq = 

TRUE) 
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# Approach 2: only keep region 5 as no, region 7 as yes 

data_omit1 <- subset(data_omit, region== "5" | region == "7")  

data_omit1$region.extreme<-ifelse(data_omit1$region==7, 1, 0) 

 

#recode as factor variables 

data_omit1$region.extreme<-factor(data_omit1$region.extreme) 

 

#Logistic regression model of treatment with IV 

model.xz <- glm(tx_typ~region.extreme, family = binomial(link = 'logit'), data = 

data_omit1) 

model.xz 

summ.xz <- summary(model.xz) 

summ.xz 

nmod <- glm(tx_typ~1, family = 'binomial',data = data_omit1) ##"null" mod 

anova(nmod, model.xz, test = 'Chisq') 

 

#Logistic regression model of death with IV 

model.yz <- glm(death1yr ~ region.extreme, family = binomial(link = 'logit'), data = 

data_omit1) 

summ.yz <- summary(model.yz) 

summ.yz 

nullmod <- glm(death1yr~1, family = 'binomial',data = data_omit1) ##"null" mod 

anova(nullmod, model.yz, test = 'Chisq') 

 

#Logistic regression model of death with treatment 

model.xy <- glm(death1yr ~ tx_typ, family = binomial(link = 'logit'), data = data_omit1) 

summ.xy <- summary(model.xy) 

summ.xy 

anova(nullmod, model.xy, test = 'Chisq') 

 

#Logistic regression model of death with treatment and IV 

model.xyz <- glm(death1yr ~ tx_typ+region.extreme, family = binomial(link = 'logit'), data 

= data_omit1) 

summ.xyz <- summary(model.xyz) 

summ.xyz 

anova(nullmod, model.xyz, test = 'Chisq') 

 

#Logistic regression model of death with treatment and xmat 

model1 <- glm(death1yr ~ tx_typ+age+race+GENDER+bmi_tcr+diabNew,  

              family = binomial(link = 'logit'), data = data_omit1) 

summ <- summary(model1) 

summ 

anova(nullmod, model1, test = 'Chisq') 
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#Logistic regression model of death with treatment, IV and xmat 

model2<-glm(death1yr~tx_typ+region.extreme+age+race+GENDER+bmi_tcr+diabNew,  

              family = binomial(link = 'logit'), data = data_omit1) 

summ <- summary(model2) 

summ 

anova(nullmod, model2, test = 'Chisq') 

 

# The IV Analysis 

 

y2 <- as.numeric(data_omit1$death1yr)-1 

d2 <- as.numeric(data_omit1$tx_typ)-1 

xmat2 <- data.matrix(data_omit1[vars]) 

z2 <- as.numeric(data_omit1$region.extreme)-1 

 

# Fit first stage model 

first.stage.model=lm(d2 ~ z2+xmat2) 

# Calculate Partial F statistic for testing whether instrument has an effect 

# in the first stage model 

first.stage.model.without.z=lm(d2 ~ xmat2) 

anova(first.stage.model.without.z,first.stage.model) 

 

# The partial F statistic is 49.08, which is greater than 10, 

# so that IV is valid for two stage least squares inference to be reliable. 

 

# Estimate proportion of compliers 

first.stage.model.logistic=glm(d2 ~ z2+xmat2,family=binomial) 

newdata.z1=data.frame(z2=rep(1,length(z2)),xmat2); 

expected.treatment.zequal1=predict(first.stage.model.logistic, 

                                   newdata=newdata.z1,type="response"); 

newdata.z0=data.frame(z2=rep(0,length(z2)),xmat2) 

expected.treatment.zequal0=predict(first.stage.model.logistic, 

                                   newdata=newdata.z0,type="response"); 

proportion.compliers=mean(expected.treatment.zequal1-expected.treatment.zequal0); 

proportion.compliers 

# 0.2363 

# We estimate that 23.63% of the subjects are compliers  

 

 

# Two stage least squares analysis 

ivmodel=ivreg(y2 ~ d2 + xmat2 | z2 + xmat2) 

# This summary gives the non-robust standard errors 

summiv <- summary(ivmodel) 

summiv 

summIVtable <- as.data.frame(summiv$coefficients) 

summIVtable$OR <- exp(coef(ivmodel)) 

summIVtable$CI <- exp(confint(ivmodel)) 
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write.csv(summIVtable, paste(" IV regression ",".csv",sep='')) 

 

# We estimate that the effect of going to a SKLT is to  

# increase the mortality rate for compliers by 0.01905 or 19.05 patients per 1000  

# subjects who are on the waiting list.  

 

# Standard errors that are robust for heteroskedasticity but not clustering 

robust.se(ivmodel) 

 

# Huber-White standard errors that account for clustering due to transplant center 

# and are also robust to heteroskedasticity 

# ctr_code is transplant center code 

cluster.robust.se(ivmodel,data_omit1$ctr_code) 

 

# Imbalance measurement 

CrossTable(data_omit1$GENDER,data_omit1$region.extreme, prop.chisq = FALSE, 

chisq = TRUE) 

CrossTable(data_omit1$diabNew,data_omit1$region.extreme, prop.chisq = FALSE, chisq 

= TRUE) 

CrossTable(data_omit1$race,data_omit1$region.extreme, prop.chisq = FALSE, chisq = 

TRUE) 

CrossTable(data_omit1$bmi_tcr,data_omit1$region.extreme, prop.chisq = FALSE, chisq 

= TRUE) 

CrossTable(data_omit1$age,data_omit1$region.extreme, prop.chisq = FALSE, chisq = 

TRUE) 
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