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Abstract 

Event-Based Noise Filtration with Point-of-Interest Detection  

and Tracking for Space Situational Awareness 

 

Nikolaus Salvatore, MS 

 

University of Pittsburgh, 2020 

 

 

 

 

This thesis explores an asynchronous noise-suppression technique to be used in 

conjunction with asynchronous, Gaussian-blob tracking on dynamic vision sensor (DVS) data. 

This type of sensor is a member of a relatively new class of neuromorphic sensing devices that 

emulate the change-based detection properties of the human eye. By leveraging a biologically 

inspired mode of operation, these sensors can achieve significantly higher sampling rates as 

compared to conventional cameras, while also eliminating redundant data generated by static 

backgrounds. The resulting high dynamic range and fast acquisition time of DVS recordings 

enables the imaging of high-velocity targets despite ordinarily problematic lighting conditions.  

The technique presented here relies on treating each pixel of the sensor as a spiking cell keeping 

track of its own activity over time, which in turn can be filtered out of the resulting sensor event 

stream by user-configurable threshold values that form a temporal bandpass filter. In addition, 

asynchronous blob-tracking is supplemented with double-exponential smoothing prediction and 

Bezier curve-fitting in order to smooth tracker movement and interpolate target trajectory 

respectively.  This overall scheme is intended to achieve asynchronous point-source tracking using 

a DVS for space-based applications, particularly in tracking distant, dim satellites. In the space 

environment, radiation effects are expected to introduce transient, and possibly persistent, noise 

into the asynchronous event-stream of the DVS. Given the large distances between objects in 

space, targets of interest may be no larger than a single pixel and can therefore appear similar to 
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such noise-induced events. In this thesis, the asynchronous approach is experimentally compared 

to a more traditional approach applied to reconstructed frame data for both performance and 

accuracy metrics. The results of this research show that the asynchronous approach can produce 

comparable or even better tracking accuracy, while also drastically reducing the execution time of 

the process by seven times on average.  
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1.0 Introduction 

The primary motivation behind the work presented within this thesis is to leverage the 

strengths of new dynamic vision sensor (DVS) technologies for space applications. These sensors’ 

high dynamic range, under-sampling of redundant visual information, and exceptional power 

efficiency make them ideal for tracking dim, orbital objects on space platforms for space 

situational awareness. In addition to leveraging existing event-based object tracking algorithms, 

new methods of noise filtration are required to mitigate the radiation effects found within space 

environments. The goal of this work is to provide performance gains in terms of both speed and 

accuracy by exploiting the asynchronous nature of recorded DVS data. 

Recent years have seen the development of a new class of imaging sensors capable of 

replicating basic properties of biological vision, namely its focus on detecting changes within 

scenes. The first of these new neuromorphic vision systems was the DVS proposed in [1], which 

details the sensor’s architecture and relation to biological analogs. The DVS functions by detecting 

logarithmic intensity of luminance changes through a series of photoreceptors and integrating and 

comparative circuits associated with each individual pixel. Luminance changes are detected via 

conventional photodetectors such as those often found in active-pixel sensors. Once the luminance 

change at a given pixel induces a voltage beyond a certain predefined threshold, the cell will 

generate an event that encodes the (x, y) coordinates, polarity, and timestamp. Each of the pixel 

cells of the sensor monitors both positive and negative changes in luminance intensity, which is in 

turn reported in the positive or negative value of the polarity associated with each pixel event. It 

is also important to note that the events generated are not synchronized with the internal clock, 

creating the need for the timestamp recorded with each event. These events are then streamed to 
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the onboard processor through a multiplexing technique referred to as address-event representation 

(AER) that serves to maintain the absolute order in which events occurred. This system and 

addressing scheme have been shown to register events on the microsecond scale, making the DVS 

ideal for applications requiring extremely fast response times. The overall benefit of this 

asynchronous, change-based architecture is superior power efficiency, temporal resolution, and 

dynamic range as well as drastically reduced data rate as compared to conventional cameras [1,2]. 

After several iterations on similar biomimetic vision systems, the asynchronous time-based image 

sensor (ATIS) has emerged as one of the more well-developed variations on the base DVS design. 

While it retains the strengths of the DVS architecture, the ATIS also encodes the relative intensity 

of luminance in the timing of events, enabling it to reconstruct full gray-scale images in addition 

to the binary events generated by the DVS. The ability to reconstruct variable-intensity images 

allows for more traditional image-processing and computer-vision techniques, while still 

leveraging the high-speed data acquisition of the asynchronous sensor [3]. 

The primary focus of this research is to exploit the capabilities of DVSs for object tracking 

within the context of space-based observation, particularly in a low-Earth orbit (LEO) 

environment. The space environment imposes a unique set of challenges on computer vision that 

impact both the software and underlying hardware involved. First, and perhaps most fundamental, 

of these challenges is the size, weight, power, and cost (SWaP-C) constraints placed on hardware. 

DVSs excel in this regard as they are both lightweight and power-efficient, while also requiring 

fewer computing resources to perform event-based image processing. These qualities make them 

ideal for deployment on space platforms that make use of embedded architectures with strict power 

constraints. Another challenge faced by object tracking in space is the relative visibility of certain 

objects of interest. A significant percentage of space debris is made up of objects mere centimeters 
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in size, and which have exceptionally low reflectance while travelling at extremely high speeds. 

Despite their small size, the high speed of debris poses a serious danger to space platforms, which 

stand to benefit greatly from autonomous methods of avoidance [4,5]. Although some large-scale, 

ground-based optical solutions have been able to track exceptionally small space debris, the high 

dynamic range (HDR) and temporal resolution of DVSs may prove useful for autonomous 

collision avoidance onboard space platforms. Furthermore, the change-based detection properties 

of DVSs, coupled with their HDR and relatively low data rate, could be ideal for detecting aerial 

objects on Earth. Recent work using DVSs in conjunction with ground-based telescopes has 

demonstrated the potential of event-based approaches to tracking celestial objects. This research 

compared several bio-inspired vision sensors, including a DVS and ATIS, for the purposes of 

tracking objects in both low-Earth orbit and geosynchronous orbit (GEO) during daytime lighting 

conditions, displaying the efficacy of the HDR of bio-inspired sensors [6].   

Another challenge of particular interest in this research is the effect of radiation on 

spaceborne hardware. Radiation effects are typically classified as either transient or cumulative, 

from which correct operation may or may not be recoverable. Both types of radiation effects can 

pose significant issues for space missions, though transient single-event effects (SEEs) can often 

be managed by simple power-cycling of hardware or through standard hardware and software 

dependability techniques [7]. For imaging equipment, SEEs can manifest as salt-and-pepper noise 

that can be mitigated via common noise-filtering techniques when processing captured images. 

However, not all SEEs are transient, and some can cause permanent damage to sensing equipment 

that results in affected pixels being latched in an excited or unexcited state. Cumulative total 

ionizing dose (TID) effects are of relatively greater concern due to the long-term deleterious effects 

on hardware [8]. TID studies with CMOS cameras have shown that proton and heavy-ion radiation 
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common in space can significantly impact photodiode responsivity and contribute to long-term 

degradation [9]. Other studies conducted on bipolar transistors, such as those that compose 

operational amplifiers, have shown significant impacts on voltage response with increasing TID 

[10]. Given the reliance of DVS upon CMOS components, they will likely experience many of the 

same types of degradation as other types of conventional CMOS cameras [11]. 
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2.0 Event-Based Vision Techniques 

The following section explores several approaches to object detection/tracking and noise 

filtration using asynchronous event stream data. These approaches differ in their interaction with 

the asynchronous DVS data, where some approaches reconstruct frames and apply conventional 

image processing techniques while others use the one-dimensional event data directly. These 

differing approaches form the basis of the comparison studies performed in this work. This section 

also introduces several existing tracker filtering methods and accuracy metrics that are used to 

supplement the event-based algorithms used in this work. 

2.1 Object Detection and Tracking 

The asynchronous nature of DVS data introduces new avenues for image processing given 

that the pixel data does not exist in conventional image frames. It is possible to use conventional 

image-processing and computer-vision techniques by integrating the events over a predefined 

period of time and then reconstructing conventional frames from these events based on the x and 

y pixel locations supplied. However, reconstructing frames from event data drastically slows the 

overall execution time of image processing algorithms, removing much of the benefit of the DVS 

versus conventional cameras. Furthermore, the high temporal resolution of event data is lost in 

reconstructed frames since events occurring at the same pixel location within the integration time 

will be reduced to a single event in the resulting frame. Nonetheless, recent work has also shown 

that a hybrid approach can be taken where conventional feature detection algorithms, such as the 
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Harris corner detector, are used to locate features within reconstructed frames which are then 

tracked in the asynchronous event stream [12]. However, processing the events entirely in an 

asynchronous manner can significantly reduce the execution time of various operations as well as 

decrease the overall computational load beyond even hybrid approaches. To date, several common 

image processing algorithms have been modified to work solely within an asynchronous context, 

while maintaining the accuracy derived from the original implementations. Event-based cluster 

trackers have proven to be quite effective at tracking large objects such as vehicles, which have 

clear positive and negative polarity edges, at extremely high framerate and with low computational 

resource usage [13]. Algorithms for asynchronous optical-flow calculation have exhibited superior 

speed and resource usage, while also retaining comparable performance to frame-based 

approaches [14]. An event-based Hough circle transform demonstrated the ability to perform high-

speed, multi-object tracking within the context of microparticle tracking [15]. Additionally, 

spiking neural networks (SNNs) have been shown to naturally complement the spiking nature of 

DVS pixels. In recent work, SNNs have been used to asynchronously detect and track lines via 

clusters of spiking neurons representing line parameters in the Hough space. However, this 

approach scales poorly with increasing DVS pixel array size due to the large increase in the number 

of neurons required [16]. 

One technique of particular relevance used in this research is the event-based Gaussian 

blob tracker introduced in [17]. This approach allows for both object detection and tracking by 

instantiating a series of trackers whose position and shape in the visual field are defined by the 

parameters of their bivariate Gaussian distribution. Every new event generated by the sensor is 

evaluated for its probability of belonging to each of the existing trackers, spawning a new tracker 

if no tracker has a score beyond a predefined threshold. An exponentially decaying activity score 
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is also associated with each tracker in order for trackers to be deactivated or removed entirely after 

long periods of no excitation. 

2.2 Noise Filtration 

Several means of noise filtration have also been adapted for use with asynchronous event 

streams. One such method exploits the temporal aspect of the event stream by requiring each 

incoming event to be supported by neighboring events within a certain predefined time threshold. 

A two-dimensional array of the camera’s visual field records the timestamp of the most recently 

generated event within a window. When a new event is generated, the event is only passed on if 

the timestamp at the corresponding pixel coordinate has a timestamp more recent than the chosen 

support time [13]. An issue with using this method for space applications is that objects of low 

reflectance may not always induce enough luminance change to generate an event. As a result, 

objects appearing as a single pixel may not necessarily excite every pixel in its path of motion and 

thus true events could be eliminated by the filter. Event-based optical flow has also been adapted 

for noise filtration by approximating the “lifetime” of events defined as the time required for 

adjacent pixels to be excited. Events with lifetimes close to zero are considered noise and omitted 

from the resulting event stream. While this method is effective, it requires events to be stored 

within a spatiotemporal window and can be computationally intensive with increasing window 

sizes [18]. 

Another technique relies on the supposition that actions and objects of interest in the 

foreground will generate relatively more events than the background. The visual field of the sensor 

is divided into an arbitrary number of cells that then maintain an exponentially decaying record of 
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the activity occurring within each of them. Only cells with activity scores higher than the average 

activity of all cells will pass their corresponding events through the filter [19]. A modified form of 

this noise suppression is employed in this research. An alternative approach has been developed 

that generates a sparse representation within the cells using the K-SVD algorithm, which has been 

used to denoise both individual frames and videos composed of reconstructed frames. Although 

this approach thoroughly denoises tested frames, it is computationally time-consuming and has not 

yet been shown to operate in real-time [20, 21]. 

2.3 Tracker Smoothing and Metrics 

Even with the inclusion of noise filtration, event-based blob tracking solutions rely on 

position updates that pull the tracker in opposing directions despite accurately tracking objects as 

a whole. This non-uniform movement occurs because the events associated with an object do not 

necessarily have timestamps temporally ordered in the direction of the object’s physical motion. 

These constant changes of direction necessitate some form of predictive filter in order to smoothly 

track object trajectories. Kalman and extended Kalman filters have been established as extremely 

effective for object tracking, but the overhead imposed can severely impact execution time [22]. 

Given the high-speed data acquisition of the DVS, event-based algorithms must be able to cope 

with potentially high-activity scenes generating large numbers of events. One alternative approach 

to Kalman filtering makes use of double exponential smoothing prediction (DESP), a common 

data-forecasting method, and was demonstrated in tracking head and hand movements. The 

experimental results showed comparable accuracy to the Kalman filtering approach, but with 135 

times faster performance [23]. Assuming reduced or eliminated noise events and the generally 
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consistent motion expected for orbital objects of interest, this approach is well-suited for 

smoothing event-based tracker trajectories. 

In addition to smoothing tracker trajectories, the error of the tracker position is assessed by 

several means adapted from previous works. One metric used to predict tracking failure is the 

forward-backward error typically employed with median flow tracking. This technique involves 

comparing the future and past trajectories of a given tracker and assigning an error value based on 

a chosen measure of distance. In an event-based context, this error can be used to suppress trackers 

activated by areas of constantly changing motion, which most likely do not correspond to objects 

of interest [24]. Lastly, a common metric for measuring tracker precision is the intersection over 

union (IoU) calculated between the given tracker and a ground-truth representation of the object 

of interest. This metric has been used extensively to compare the performance of different tracking 

algorithms and is used in this work to compare asynchronous and frame-based approaches with 

noise suppression [25]. 
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3.0 Space Tracking Approach and Testing 

The following section details the algorithm used for object tracking and noise suppression 

intended for space-based applications. The blob-tracking aspect of this research relies on the event-

based Gaussian tracker technique established in [17] with slight modifications made to emphasize 

tracking single-point sources. This emphasis is necessitated by the large distances at which space 

objects are to be tracked in relation to the comparatively low resolution of the DVS (640×480). 

The event-based Gaussian trackers allow for both efficient object detection and tracking but would 

be susceptible to noise and attraction to non-target objects in space environments. The 

asynchronous approach attempts to mitigate this behavior by introducing tracker suppression in 

addition to noise suppression. Both asynchronous and conventional frame-based approaches are 

presented and then compared across a variety of metrics. The frame-based approach differs in that 

it accumulates events over a predefined interval of time and then constructs an image frame from 

the resulting array. The reconstruction of frames allows more conventional image-processing 

techniques to be applied, but it also increases the execution time and computational resources 

required.  

3.1 Tracking Algorithm 

The following section details the blob tracking algorithms adapted and analyzed in this 

work for object tracking. The section also elaborates on the trajectory projection and interpolation 

used in conjunction with blob tracking. 
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3.1.1 Event-Based Gaussian Blob Tracking 

As stated previously, each event generated by the DVS is represented by a vector of the 

form 𝑒𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑡𝑖, 𝑝𝑖], where the x and y values correspond to the pixel location, t to the 

timestamp of the event and 𝑝 to the polarity of the event. The polarity may only take on a value of 

𝑝 ∈  {1, −1}, indicating an increase or decrease in luminance respectively. The motion of objects 

can then be visualized as a point-cloud of events modeled by a bivariate Gaussian 

distribution, 𝛮(𝜇, 𝛴). The parameters of the Gaussian distribution used to model the position and 

shape of a tracked object are defined as  

 

𝒖 = [𝒙, 𝒚]𝑻                                                            3-1 

 

𝚺 =  [
𝝈𝒙
𝟐 𝝈𝒙𝒚

𝝈𝒙𝒚 𝝈𝒚
𝟐 ].                                                        3-2 

 

As each new event is generated, the probability of the event being associated with an active 

or inactive tracker is calculated as  

 

     𝒑𝒊(𝒖) =
𝟏

𝟐𝝅
|𝚺𝒊|

−
𝟏

𝟐𝒆−
𝟏

𝟐
(𝒖−𝒖𝒊)

𝑻𝚺−𝟏(𝒖−𝒖𝒊)                                     3-3 

 

where ui denotes the corresponding locations of active and inactive trackers. The event is then 

associated with the tracker with the highest calculated p score and the parameters of the tracker 

are updated according to the weighted update calculation 
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         𝒖𝒕 = 𝜶𝟏𝒖𝒕−𝟏 + (𝟏 − 𝜶𝟏)𝒖                                                  3-4 

 

𝚺𝒕 = 𝜶𝟐𝚺𝒕−𝟏 + (𝟏 − 𝜶𝟐)𝚫𝚺                                                3-5 

 

where 

𝚫𝚺 =  [
(𝒙 − 𝒖𝒕𝒙)

𝟐 (𝒙 − 𝒖𝒕𝒙)(𝒚 − 𝒖𝒕𝒚)

(𝒙 − 𝒖𝒕𝒙)(𝒚 − 𝒖𝒕𝒚) (𝒚 − 𝒖𝒕𝒚)
𝟐 ] .                            3-6 

 

If no tracker has a calculated 𝑝 score above a certain predefined threshold 𝛿𝑝, a new tracker 

is instantiated with mean centered on the new event’s location and covariance matrix initialized to 

predefined values. In this work, a 𝛿𝑝 of 0.001 was used while the starting values of the covariance 

matrix were varied experimentally. In addition to the parameters of the bivariate Gaussian, each 

of the trackers has an activity score that is updated according to the equation 

 

𝑨𝒊(𝒕) = {
𝑨𝒊(𝒕 − 𝚫𝒕)𝒆

−𝚫𝒕/𝝉𝟏 + 𝟏, 𝐢𝐟 𝒑𝒊(𝒖) > 𝜹𝒑

𝑨𝒊(𝒕 − 𝚫𝒕)𝒆
−𝚫𝒕/𝝉𝟏 , 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

                                 3-7 

 

where ∆𝑡 is the time elapsed since the last tracker update and 𝜏1 is a constant chosen to tune the 

rate of tracker deactivation. If the activity 𝐴𝑖 falls below a certain predefined threshold, the tracker 

will become inactive and no longer displayed. In the asynchronous tracking approach, every event 

is processed in the order in which it is received. However, while the frame-based approach retains 

the timestamps associated with each event, it evaluates all events in order at discrete time steps 

after noise suppression has taken place. In [17], two activity thresholds were used to differentiate 
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between deactivated and destroyed trackers. However, given that trackers in this research are 

intended for single-point sources that may have activities as low as one between updates, the 

activity threshold is chosen such that any activity is sufficient for the tracker to be considered 

active and no trackers are permanently destroyed. This can lead to large numbers of inactive 

trackers, but also ensures that small objects of interest will be tracked effectively. 

3.1.2 Tracker Trajectory Tracking 

In order to monitor the trajectory of the Gaussian blob tracker, its position is smoothed 

using DESP at regular intervals of time 𝜏, which are chosen at runtime. With this method, the 𝑥 

and 𝑦 positions of the blob tracker are treated as a time series of points modeled with a linear 

regression equation whose y-intercept and slope vary over time. At each multiple of time 𝜏, two 

smoothing statistics are calculated as  

 

𝑺𝒖𝝉⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜶𝟑𝒖𝝉⃗⃗⃗⃗ + (𝟏 − 𝜶𝟑)𝑺𝒖𝝉−𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                    3-8 

 

𝑺𝒖𝝉⃗⃗ ⃗⃗ ⃗⃗  ⃗
[𝟐]
= 𝜶𝟑𝒖𝝉⃗⃗⃗⃗ + (𝟏 − 𝜶𝟑)𝑺𝒖𝝉−𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

[𝟐]
                                             3-9 

 

where α3 is an update parameter chosen to determine the degree of exponential decay and 𝑢𝜏⃗⃗⃗⃗  is the 

vector representing the blob tracker’s x and y location at time τ. The first smoothing statistic, 𝑆𝑢𝜏⃗⃗ ⃗⃗ ⃗⃗  , 

represents the smoothed average value of event positions associated with the tracker, while the 

second, 𝑆𝑢𝜏⃗⃗ ⃗⃗ ⃗⃗  
[2]

, captures the smoothed trend in event positions, i.e. the tracker’s motion. With these 

smoothing statistics, the tracker position at time 𝜏 + 1 is then forecasted according to the equation 
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𝒖𝝉+𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝒃𝒐⃗⃗⃗⃗ (𝝉) +  𝒃𝟏⃗⃗ ⃗⃗  ⃗(𝝉 + 𝟏)                                                    3-10 

Where 

 

𝒃𝟏⃗⃗ ⃗⃗ (𝝉) =
𝜶

(𝟏−𝜶)
(𝑺𝒖𝝉⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑺𝒖𝝉⃗⃗ ⃗⃗ ⃗⃗  ⃗

[𝟐]
)                                                 3-11 

 

 𝒃𝟎⃗⃗ ⃗⃗  ⃗(𝝉) = 𝟐𝑺𝒖𝝉⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑺𝒖𝝉⃗⃗ ⃗⃗ ⃗⃗  ⃗
[𝟐]
− 𝝉 𝒃𝟏⃗⃗ ⃗⃗  ⃗(𝝉)                                            3-12 

 

The values calculated here, 𝑏1⃗⃗  ⃗(𝜏) and  𝑏0⃗⃗⃗⃗  ⃗(𝜏), represent the estimated slope and y-intercept 

respectively of the linear regression fitting the given tracker’s position over time. Since these 

values vary over time, the 𝛼3  parameter controls the extent to which new points affect the linear 

regression fit to the tracker’s position. As a result, very small values on the order of 1 × 10−4 are 

chosen due to the large number of events involved in tracker updates.  Finally, the smoothed 

trajectory of the tracked object is then interpolated between time steps with a cubic Bezier curve 

fit with the equation 

 

𝑩(𝒕) = (𝟏 − 𝒕)𝟑𝑼𝟎 + 𝟑(𝟏 − 𝒕)
𝟐𝒕𝑼𝟏 + 𝟑(𝟏 − 𝒕)𝒕

𝟐𝑼𝟐 + 𝒕
𝟑𝑼𝟑                  3-13 

 

where 𝑈𝑖 indicates the [𝑥, 𝑦]𝑇  position of points obtained from the smoothed tracker trajectory. In 

this equation, 𝑈3 refers to the most recent tracker position in time obtained via smoothing, while 

the remaining points 𝑈𝑖 refer to previous points in its trajectory. 
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Since new trackers are constantly spawned when an event has no tracker with 𝑝 score above 

the given threshold, it is possible, and in practice quite likely, that multiple trackers will begin to 

overlap on the same object being tracked. To remedy this problem, the distances between and 

activities of active trackers are compared at each discrete timestep before curve-fitting takes place. 

Trackers that overlap with adjacent trackers of relatively higher activity are deactivated and 

omitted from curve-fitting. 

3.2 Noise Filtration 

This section describes both the frame-based and asynchronous noise suppression 

approaches compared in this work. Both filtration methods are applied to all DVS data streams 

received during experimental testing and used the same method of object and trajectory tracking 

outlined in the previous section. 

3.2.1 Frame-Based Noise Filtration 

The noise-suppression techniques employed differ between the asynchronous and frame-

based approaches. For the frame-based approach, a conventional image frame is built by tallying 

the presence of events at each pixel location regardless of polarity or frequency. Once an event is 

received with timestamp greater than or equal to a multiple of the integration time chosen, a simple 

summation kernel is convolved with the integrated image according to 

 

𝒈(𝒙, 𝒚) = ∑ ∑ 𝑲(𝒖, 𝒗)𝑰(𝒙 − 𝒖, 𝒚 − 𝒗)𝒃
𝒗=−𝒃

𝒂
𝒖=−𝒂                             3-14 
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where 𝐼(𝑥, 𝑦) is the integrated event frame and 𝐾 is the kernel 

 

𝑲 =
𝟏

𝟑
[
𝟏 𝟏 𝟏
𝟏 𝟎 𝟏
𝟏 𝟏 𝟏

] .                                                          3-15 

 

Given that the outputs of this operation are fixed to integer values, 𝑔(𝑥, 𝑦) will only have 

values greater than zero when an event has at least three neighboring events within the integrated 

frame. This function therefore serves to mask any pixel location with fewer than three neighboring 

events occurring within the integration time 𝜏. Since objects travelling within the DVS’ view 

should ordinarily induce positive polarity events immediately followed by negative polarity 

events, the threshold of three neighboring events is chosen to ensure the events in question 

constitute an actual object in the sensor’s view.  

3.2.2 Asynchronous Noise Filtration 

The asynchronous approach uses a version of the event-based dynamic background 

suppression introduced in [19], except that every pixel is associated with its own cell rather than a 

large number of pixels falling into the same cell. Reducing the number of events grouped for noise 

suppression is necessary for tracking targets that may be exceptionally small in size and induce 

small amounts of activity. In addition, cells are suppressed using a two-sided activity threshold 

rather than the average of all current cell activity. This change to the suppression technique serves 

to filter events occurring at pixels of both low and high activity, resulting in band-pass behavior 
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with respect to the frequency of events in question.  As an event is received, the corresponding cell 

is updated in a similar fashion to the activity associated with trackers as  

 

𝑨𝒖(𝒕) = 𝑨𝒖(𝒕 − 𝚫𝒕)𝒆
−𝚫𝒕/𝝉𝟐 + 𝟏                                            3-16 

 

where ∆𝑡 is the time elapsed since the last pixel update, 𝐴𝑢 is the activity associated with the pixel 

at 𝑢 = [𝑥, 𝑦]𝑇 and 𝜏2 is a constant chosen to tune pixel activity decay. Thresholds 𝛿1 and 𝛿2 are 

chosen such that only events occurring at pixels with activity 𝛿1 < 𝐴𝑢(𝑡)  <  𝛿2 will be processed 

by the Gaussian blob tracking algorithm. Negative polarity events are ignored in this filtering since 

motion of exceptionally small objects is expected to generate positive polarity events immediately 

followed by negative polarity events on their trailing edges. This programmatic filtering of noise 

events also serves to filter large regions of change in the sensor’s view such as sections of the Earth 

that might lie in the sensor’s view. Since the sensitivity of the hardware itself would need to be 

maximized in order to track distant, dim objects, portions of the Earth would generate a significant 

number of spatially and temporally close events. These events will be filtered by the asynchronous 

approach and therefore significantly reduce computational load and lessen the number of false 

positives in tracking.  

3.3 Tracker Suppression 

Since the intent of this research is to track objects that may be as small as a single pixel in 

the DVS’s view, parameters are chosen for the Gaussian blob tracker algorithm such that trackers 

will be spawned even for regions of exceptionally low activity. Setting the activation threshold so 
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low can in turn lead to some noise events behaving similarly to objects of interest and therefore 

escaping noise suppression. As a result, the trackers themselves are also suppressed by two 

separate metrics, where suppression indicates that the corresponding tracker is deactivated. First, 

the Gaussian tracker algorithm is modified such that negative polarity events are accumulated 

separately from negative polarity events as  

 

𝑵𝒊(𝒕) = {
𝑵𝒊(𝒕 − 𝚫𝒕)𝒆

−𝚫𝒕/𝝉𝟏 + 𝟏, 𝒊𝒇 𝒑𝒊(𝒖) > 𝜹𝒑

𝑵𝒊(𝒕 − 𝚫𝒕)𝒆
−𝚫𝒕/𝝉𝟏 , 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

                               3-17 

 

where 𝑁𝑖(𝑡) is the negative polarity activity of tracker 𝑖 at time 𝑡. A threshold is chosen at runtime 

such that trackers with negative polarity activity below this threshold will not be subject to DESP 

or trajectory curve fitting. These trackers are essentially omitted as not corresponding to an object 

of interest, but the trackers are still subject to being associated with new incoming events. This 

suppression serves to omit both trackers that may be associated with noise events as well as 

trackers that may be attracted by larger objects, such as sections of the Earth, which are not the 

intended target of this work. Second, a forward-backward error statistic is calculated at each 

multiple of the integration time 𝜏 when applying DESP. The Euclidean distance between the next 

predicted location 𝑢𝜏+1 of the smoothed trajectory and the last update location of the tracker is 

calculated and added to a running average of the tracker’s forward-backward error as shown below.  

 

𝑬𝒕  = 𝑬𝒕−𝟏 + √(𝒙𝝉+𝟏 − 𝒙𝒕)𝟐 + (𝒚𝝉+𝟏 − 𝒚𝒕)𝟐                                 3-18 

 

𝑬̅𝒕  =  
𝑬𝒕

𝒏𝒆𝒗𝒆𝒏𝒕𝒔
                                                             3-19 
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As with the negative polarity activity, an error threshold is chosen such that, if a tracker’s 

forward-backward error exceeds the threshold, it will be deactivated and hidden from trajectory 

fitting. It should be noted that the frame-based approach does not employ tracker suppression due 

to spatially solitary events always being filtered. As a result, the frame-based method’s ability to 

track point-source objects is limited, but the number of trackers instantiated is greatly reduced in 

comparison to the asynchronous method. The entirety of both algorithms is described with the 

pseudocode detailed in Algorithm 1 and 2. 
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3.4 Experimental Setup 

In order to compare the asynchronous and frame-based approaches and assess their ability 

to track point source objects, experimental testing was conducted with varied velocity, luminance 

contrast, and distance to a point-source of interest. In this experiment, the point-source of interest 

consisted of a laser pointer projected onto a background illuminated by two direct current (DC), 

variable-intensity LED lamps. The lighting intensity of the lamps was varied at several discrete 

levels in order to assess tracking with different contrast levels.  DC lighting was necessary, in 

addition to the room being darkened, due to the DVS’s tendency to detect flickering from 

alternating current (AC) lighting. The laser pointer was mounted onto a stepper motor controlled 

via microcontroller board in order to control the angular velocity of the target at discrete micro-

stepping levels.  

3.4.1 Testing Conditions 

Table 1 and 2 list the contrast ratios and speeds measured for each of the discrete levels 

used in testing. Tests were conducted using each combination of contrast ratio and speed mode for 

a total of 30 trials under base conditions. To study the effect of having a smaller target area, the 

distance from the camera to the target was then increased and additional tests were conducted with 

all contrast ratios and the Full, Quarter, and Slowest speed modes in order to cover the breath of 

speeds chosen. These 15 additional trials are denoted among the results with the corresponding 

contrast level and “Incr. Distance” in order to distinguish them.  Tests were conducted at 2.5 meters 

and 5.0 meters to target respectively due to the constraints of the testing area.  
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Table 1: Contrast Conditions 

Contrast # Contrast Ratio 

1 ∞ 

2 25.87 

3 6.23 

4 3.01 

5 1.09 

 

 

Table 2: Speed Conditions 

 

 

 

 

 

 

 

 

 

 

 

Speed Mode Angular Velocity (Deg/s) 

“Full” 455.7 

“Half” 232.26 

“Quarter” 136.88 

“Eighth” 63.16 

“Sixteenth” 25.68 

“Slowest” 7.4 
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Since the targets in the 45 preceding trials follow a simple, horizontal and linear path, an 

additional 11 tests were conducted that included sudden and/or persistent changes in the direction 

of motion as well as multiple targets of interest. These additional tests are described in Table 3, 

several of which were repeated multiple times with different patterns of movement. 

 

 

Table 3: Additional Tests 

Experiment (# of Trials) Description 

Multiple Targets (3) Several targets with sudden movements and collisions 

between them 

High Contrast Non-Linear 

(3) 

Non-linear, varying-speed targets at the highest contrast, 

i.e. no backlighting 

Low Contrast Non-Linear 

(3) 

Non-linear, varying-speed targets at contrast level 4 

(chosen due to accuracy loss at the lowest contrast level) 

Changing Direction (1) Target with persistent changes in motion, a spiraling 

motion, at highest contrast level 

Increased Distance (1) Non-linear, varying-speed target with 5m distance to 

target and highest contrast level 
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3.4.2 Accuracy Metrics 

The ground-truth for each test was generated using built-in OpenCV functions to locate 

contours and calculate minimum enclosing circles on noise-suppressed event frames [26]. 

Intersection-over-union and active tracking time metrics were then calculated by comparing the 

intersection of the event-based Gaussian blob trackers with the set of minimum enclosed circles. 

It should be noted that although the Gaussian trackers are elliptical in shape, the IoU metric was 

calculated using a circle circumscribed with the tracker’s larger axis as its diameter. This approach 

results in a decrease in the IoU scores calculated but should not impact the active tracking time 

measured in each experiment since active tracking is determined by the tracker simply intersecting 

with the ground-truth circles across frames. Contrast levels were calculated as the ratio of laser 

pointer luminance to background lighting luminance as measured via luxmeter. 

3.5 Event Simulation 

While the experiments conducted in this work provide an analogue to the conditions that 

might be expected within a space environment, the scenarios posed during testing are obviously 

greatly simplified compared to those actually found in space. The experiments presented attempted 

to assess multiple aspects of relevance to object tracking in space, such as the sensors ability to 

discern small objects against backgrounds of varying illumination and the tracking algorithms’ 

ability to track small objects moving at varying speeds. The additional testing also included 

multiple targets of interest in addition to non-linear movement patterns with sudden changes in 

direction to better emulate real world conditions. Even so, it is difficult for a ground-based 
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experimental setup to fully capture all of the conditions involved with object tracking on a real 

space platform. Furthermore, no DVS has yet been deployed on a space platform, so, to date, no 

publicly available event stream datasets exist. As a result, the ability to emulate an asynchronous 

event stream from conventional frame-based video recordings is extremely useful for assessing 

how a DVS might actually perform on the proposed task.  

3.5.1 Previous Approaches to Event Stream Simulation 

In order to produce a sufficiently accurate simulation of an event stream, several key 

characteristics of the DVS must be extrapolated from the available framed video data, chiefly, the 

change-based imaging and high temporal resolution. Several works have already explored creating 

event stream data from conventional videos, and the simulation used in this work adopts a similar 

approach. The earliest attempt at simulating asynchronous event streams simply uses the logarithm 

of the brightness sampled at each pixel stored in an array in memory. As each frame of 

conventional camera data is received, the difference between the new logarithmic brightness value 

and the previous is calculated, and if this difference surpasses the predefined threshold, positive or 

negative polarity events are generated accordingly. The simulator generates a number of spikes 

equal to the intensity difference divided by the chosen threshold, which are then assigned 

timestamps either all synchronous with the current image frame or linearly interpolated over the 

time period between frames. This linear interpolation would result in the generated spikes being 

equally distributed over the time period between frames [27]. This approach was later applied 

towards generating artificial, event-based datasets for visual odometry and SLAM algorithms 

hoping to leverage event-based techniques. Artificial scenes were created within the computer 

graphics program Blender, which were then converted to asynchronous event streams using the 
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method presented. In order to emulate DVS data using RGB pixel channels, the intensity at each 

pixel was calculated according to: 

 

𝒀 =  𝟎. 𝟐𝟗𝟗𝑹 +  𝟎. 𝟓𝟖𝟕𝑮 +  𝟎. 𝟏𝟏𝟒𝑩                                     3-20 

 

Given that the generated event stream should capture all intensity changes over the course of the 

simulated video, the event streams were validated by reconstructing the conventional video frames 

at time 𝑡 according to: 

 

𝒍𝒐𝒈 𝑰̂(𝒖; 𝒕)  =  𝒍𝒐𝒈 𝑰(𝒖; 𝟎)  + ∑ 𝒑𝒌𝑪𝜹(𝒖 − 𝒖𝒌)𝜹(𝒕 − 𝒕𝒌)𝟎< 𝒕𝒌≤ 𝒕                  3-21 

 

where 𝑙𝑜𝑔 𝐼(𝑢; 0) represents the entire frame at time 𝑡 =  0, 𝑝𝑘 is the event polarity, C is the 

contrast threshold for event generation, and 𝑢𝑘 is the x, y location of corresponding events [28]. 

In addition to this straight-forward event simulation, several extensions have been made to 

the basic algorithm with varying degrees of success. PIX2NVS is an event stream simulation 

framework that attempts to better capture the imaging properties of a DVS by using log-intensity, 

contrast-enhanced (LICE) brightness values. Luminance values at each pixel are first calculated 

using the ‘perceptual’ luminance of the pixel and its immediate neighborhood, followed by taking 

a weighted average of values in surrounding pixels. The spike trains are then generated according 

to similar manner as in [27], but with the threshold for event generation being compared to the 

minimum of a neighborhood of values rather than a single pixel. Upon validation testing, using 

LICE pixel values resulted in the simulated event stream having events temporally and spatially 

distributed more similarly to a true event stream, albeit with worse performance than log-intensity 
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approach [29]. Yet another framework, pyDVS, follows a similar approach to [27], but with 

several modifications that are also adapted in the simulation used in this work. Since most 

commercial cameras use gamma-encoded images whose brightness response does not vary 

significantly from a logarithmic response, intensity values from the conventional camera are used 

as-is rather than taking the logarithmic value. While event generation is determined in the same 

fashion as in [27], a number of spikes is generated up to a maximum number of spike ‘bins’ 

existing between each frame, where the number of spikes is calculated according to: 

 

𝑵𝒔  =  𝒎𝒊𝒏 (𝑵𝒃, 𝑵𝑯)  =  𝒎𝒊𝒏(𝑵𝒃,
∆𝑩

𝑯
)                                        3-22 

 

In this equation, 𝑁𝑏 is the maximum number of bins, ∆𝐵 is the brightness difference between 

frames, and H is the chosen brightness threshold. However, the emulator uses spike-time encoding 

to reduce the overall number of spikes recorded in the event stream by only using the last bin in 

the spike chain generated. Timestamps are then assigned based on the previous frame and the time 

encoded by the generated spike: 

 

𝑹𝒏𝒐𝒘  =  𝑹𝒍𝒂𝒔𝒕 + 𝑵𝒔𝑯.                                                   3-23 

 

In addition to this technique, the emulator introduces several extensions that are also used 

in the emulator in this work. Firstly, adaptive thresholds for pixel intensity values are used such 

that pixels not being actively triggered become more sensitive time and, conversely, consistently 

stimulated pixels become less sensitive. This behavior is meant to emulate the manner in which 

physical pixels will slowly build up charge overtime in areas of slowly changing motion. Secondly, 
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lateral inhibition is a biological phenomenon in which neurons will inhibit the firing of neighboring 

neurons after firing themselves. This framework emulates this behavior by applying non-

maximum suppression to small neighborhoods across the pixel array after calculating event 

generation in a new frame. As a result, only the pixels with the greatest change in intensity will 

generate events and thus drastically reduce the number of spikes present in the simulated event 

stream [30]. 

3.5.2 Event Stream Simulation Approach 

The event simulation in this work draws heavily from the approach taken in [30] and is 

applied to freely available space platform footage in order to estimate performance within a space 

environment. Firstly, pixel luminance is calculated according to Equation 3-20 to emulate the 

DVS’s response to RGB color data. With each new frame, the difference in luminance is calculated 

and the new value stored in the corresponding pixel array location. For difference values greater, 

positively or negatively, than a chosen threshold, a spike train is generated according to Equation 

3-22. However, rather than encoding the magnitude of change in the timing of a single spike, a 

train of spikes is generated in each bin preceding the final bin calculated. This modification is 

made so that the blob tracking algorithm will still receive a sufficient number of update events for 

the trackers to be instantiated, moved, and reshaped smoothly. In order to emulate the makeup of 

event streams obtained from actual recordings, lateral inhibition is implemented to prevent large, 

dense cluster of events that would result from simple frame-by-frame intensity differencing. This 

was accomplished by applying non-maximum suppression across all pixel locations before spike 

trains were generated. Finally, the option of adaptive thresholding was implemented as follows: 
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𝑯(𝒖, 𝒕)  =  

{
 
 

 
 𝑯(𝒖, 𝒕 − 𝟏) +=  𝟓,

|∆𝑩|

𝑯(𝒖,𝒕−𝟏)
 >  𝟎 

𝑯(𝒖, 𝒕 − 𝟏)  −=  𝟓,
|∆𝑩|

𝑯(𝒖,𝒕−𝟏)
=  𝟎

     𝑯(𝒖, 𝟎), 𝑯(𝒖, 𝒕 − 𝟏)  <=  𝟎 𝒐𝒓 𝑯(𝒖, 𝒕 − 𝟏)  >=  𝟐𝟓𝟓  

                3-24 

 

Since the threshold of each pixel is held separately, H(u, t) represents the threshold of the 

pixel at 𝑢 =  [𝑥  𝑦]𝑇at time 𝑡, which is incremented by 5 if spikes are generated, decremented by 

5 if no spikes were generated, and returned to the original chosen threshold value if the threshold 

rises above the maximum of 255 or falls below the minimum of 0. Figures 1 and 2 show an example 

of space footage converted to an asynchronous event stream using the emulator detailed. The 

sample footage used was chosen due to the inclusion of both Earth and a section of space falling 

into the camera’s field of view with the rocket being an object of interest that would be ideal for 

tracking with a DVS. 
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Figure 1: Sample Frame of Test Footage [31] 

 

 

 

Figure 2: Reconstructed Frame from Simulated Event Stream 
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4.0 Experimental Results 

The performance of the frame-based and asynchronous approaches was assessed with each 

combination of contrast, speed, and distance conditions previously presented as well as the 

additional 11 non-linear movement trials. Before evaluating accuracy across the experiments, 

threshold values used for noise-filtering in the asynchronous method were first tuned by inspection 

for each experiment. Filtering thresholds were chosen in order to maximize tracking accuracy in 

terms of percentage of actively tracked frames and with regard to the different speeds of the target. 

In general, slower targets necessitate a larger upper-bound threshold, δ2, since they will repeatedly 

trigger events in a small range of pixels. In the same respect, the lower-bound threshold, δ1, can 

be raised as well in order to filter additional non-target events without interfering with accurate 

target tracking. Due to the frame-based method filtering events according to the number of spatial 

and temporal neighbors, no tuning for the frame-based methods was required. 

4.1 Noise Filtration 

Figure 3 depicts the percentage of events that were filtered as noise by the asynchronous 

and frame-based approaches in each of the experiments. As target speed does not affect the number 

of events registered overall, filtered event percentages are averaged across all speed modes in 

experiments with the same contrast ratio. 
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Figure 3: Noise Filtration by Experiment 

 

Across most experiments, the asynchronous approach showed much larger percentages of 

filtered events than the frame-based approach. In some of the additional trials, the asynchronous 

approach reached up to approximately 80% average events filtered, such as in the case of the 

Changing Direction trial. Conversely, the frame-based approach had a maximum of only about 

60% filtered events occurring in the trial with second contrast level and increased distance. The 

fact that the two approaches percentage of filtered events differed greatly between the different 

types of experiments also indicates that the two approaches differ in the context in which events 

are filtered. Since the frame-based approach filters events with few neighbors over time, this 

behavior suggests that the trials with increased distance exhibited far more solitary events as 
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reflected in the much larger percentage of filtered events. By contrast, the multiple target trials had 

many repetitive events occurring spatially and temporally close, resulting in extremely low 

filtering rates for the frame-based method, but much higher rates with the asynchronous method.   

While the total number of events observed in each experiment is largely determined by the length 

of the recording, variations in event numbers were observed with differing contrast levels as well. 

Although the 11 separate trials had varying recording lengths, the original contrast and velocity-

controlled trials had roughly the same recording time across each. This fact indicates that lower 

contrast between the target area and background resulted in larger numbers of events that can be 

attributed to erroneous events occurring in the background. In ground applications, this 

phenomenon could be mitigated by significantly raising the sensitivity thresholds of the sensor 

itself, but this would not be possible on a space platform where maximum sensitivity is required 

to detect exceedingly dim and distant objects. 

4.2 Performance 

Figure 4 depicts the performance in average frames per second (FPS) for the two 

approaches as a function of the number of events generated. These performance numbers are drawn 

from each of the experiments previously detailed. It should be noted that the number of events 

shown is before noise filtration, which partially explains the difference in FPS for trials with 

approximately the same number of events. All trials were run using a four-core Intel Core i5-

8250U 1.6 GHz processor under the Linux Ubuntu OS. The Bezier curve-fitting, frame drawing 

and frame-based noise-suppression portions of the algorithm were all parallelized using the C++ 

OpenMP API. Since the frame-based method involves applying a kernel convolution to the entirety 
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of reconstructed frames, the same number of calculations must be made regardless of the number 

of events in the event stream. As a result, the performance would be expected to be relatively 

constant across all experiments.  Although execution times do appear to be consistent in the frame-

based approach, some trials that exhibited larger or smaller numbers of unfiltered events, as well 

as more trackers being instantiated, resulted in small disparities in average execution time. 

Conversely, the asynchronous approach shows much greater variation in FPS versus the number 

of events, which is a result of the larger number of events filtered before tracking is performed. 

The number of inactive trackers instantiated also affects asynchronous performance, further adding 

to the FPS variation for experiments with approximately the same number of events. 

 

 

 

Figure 4: Performance in FPS vs. Number of Events 
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4.3 Tracker Instantiation and Suppression 

Figures 5 and 6 display the number of trackers generated for each experiment and number 

of trackers suppressed in the asynchronous case respectively. In Figure 5, the number of trackers 

generated is reported as an average across all experiments with the same contrast level as the 

number of trackers instantiated is primarily dependent on the contrast. By contrast, Figure 6 shows 

the average number of trackers suppressed with experiments grouped by target speed since the 

asynchronous tracker suppression varies more with the speed of the target rather than brightness 

contrast.  It should be noted that the vast majority of the trackers instantiated are inactive 

throughout most of the experiments and do not necessarily indicate a false positive in tracking. 

Full results can be seen in Figure 17 in Appendix. 

 

 

Figure 5: Average Number of Trackers Generated per Experiment Group 
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As expected, the asynchronous approach spawned considerably more trackers in each trial 

as a result of some noise events passing through filtration. However, there are a few notable 

exceptions, such as the multiple target trials, where the much higher percentage of events filtered 

by the asynchronous method resulted in comparatively fewer trackers being generated. Several 

trials at the slowest speed also exhibited no trackers instantiated by the frame-based method, which 

represented a complete failure to track the target. This failure was due primarily to the exceedingly 

small number of events generated by the target, which were in turn filtered by the frame-based 

noise suppression. 

 

 

Figure 6: Number of Trackers Suppressed in Asynchronous Approach 
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thresholding, leading to the majority of omissions being attributed to negative polarity. In some 

trials, the negative polarity threshold successfully suppressed all erroneous trackers, leaving none 

to be suppressed as a result of forward-backward error. Additionally, there were several instances 

in the trials with the slowest target speed and increased distance where no trackers were suppressed 

by negative polarity thresholding. During these trials, the exceptionally slow targets exhibited few 

or no negative polarity events during movement, which necessitated reducing the negative polarity 

threshold to zero. Full tracker suppression results can be seen in Figure 18 in Appendix. 

4.4 Experimental Tracking Accuracy 

Figures 7 and 8 show the general trends in tracking accuracy with averaged values across 

experiments with the same target speed. Tracking accuracy was measured as the intersection over 

union with the ground-truth position of the target per frame, while active tracking time refers to 

the percentage of frames where an active tracker intersected with the ground-truth target position.  
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Figure 7: Intersection over Union vs. Target Speed 

 

Note that active tracking time specifically means that the tracker was active and not 

suppressed, so frames that were not actively tracked may have still contained an inactive or 

suppressed tracker on target. This impact of tracker suppression on active tracking time can be 

observed in the relatively lower active tracking time of the asynchronous method for lower velocity 

targets. Although the target tracker was suppressed in some frames, the asynchronous method 

maintained relatively the same or better IoU than the frame-based method with the same velocity 

targets. 
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Figure 8: Percentage of Actively Tracked Frames vs. Target Speed 

 

Figures 9 and 10 show the same accuracy metrics measured for the 11 additional trials with 
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measurements of target velocity, they are presented per experiment. The additional trials showed 
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Figure 9: Intersection over Union per Experiment 

 

Although many of the trials displayed only a slight difference between the percentage of 

frames tracked for both methods, the non-linear, increased distance trials showed a significant 

improvement for the asynchronous approach. Since the increased distance leads to a relatively 

smaller target size, this result supports the asynchronous method’s proposed superior, single-point 

tracking ability. 
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Figure 10: Percentage of Actively Tracked Frames per Experiment 
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at a value of 0.8, with some exceptions. Interestingly, the increased distance trials showed 

comparable or even better accuracy with much smaller update values and diminishing accuracy 

with increased values. This trend can be explained by the much smaller number of events seen in 

these trials, and thus the corresponding targets were composed of far fewer events as well. As a 

result, the position update parameter must be smaller such that fewer events are required for the 

trackers to accurately track the targets. Since these reported values are averaged across all trials, 

the average accuracy metrics are somewhat skewed due to the relatively low accuracies measured 

in the slowest target trials. Full results can be found in Figures 19, 20, 21, and 22 in Appendix. 

 

 

 

Figure 11: Intersection over Union vs. Position Update Parameter 
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Figure 12: Percentage of Actively Tracked Frames vs. Position Update Parameter 

4.5 Visualized Tracking Results 
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These erroneous trackers belong only to the asynchronous approach; however, these trackers have 

no estimated trajectory and promptly become inactive between frames. Trajectories are drawn for 

both the asynchronous and frame-based approaches, which can be seen to diverge most 

significantly in the trials containing multiple targets. 

 

 

 

Figure 13: Original Unfiltered Frames (a) High Contrast 3 Experiment (b) Multiple Targets 1 Experiment (c) 

Changing Direction Experiment 

(a) (b) 

(c) 
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Figure 14: Filtered and Tracked Frames (a) High Contrast 3 Experiment (b) Multiple Targets 1 Experiment 

(c) Changing Direction Experiment 

4.6 Event-Simulation Tracking 

As a supplement to the experimental trials performed, the tracking and noise filtration 

algorithms were also applied to an event stream simulated from the footage in [31] in order to 

assess their performance in a more realistic scenario. The event stream was simulated using a 

luminance threshold of zero, allowing the adaptive threshold functionality to prevent an excessive 

number of events being generated, but emulating the maximum sensitivity expected to be used for 

space applications. However, lateral inhibition was not used in this case due to its incompatibility 

with the frame-based noise filtration method. In other words, performing non-maximum 

suppression would have resulted in many more isolated events that would then be removed through 
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noise filtration. In addition, the OpenCV object localization scheme used for ground-truth 

comparison created many enclosing contours around large sections of luminance change on the 

Earth’s surface, radically decreasing the IoU measured when compared to both the frame-based 

and asynchronous trackers. As a result, the frame-based and asynchronous tracking schemes were 

compared directly without determining accuracy with a ground-truth tracker position. 

Furthermore, unlike in the experimental trials, the number of trackers instantiated must be limited 

due to some instances in the video where the entire visual field changes in luminance, and thus 

generates an exceedingly large number of events. Although this event stream is merely simulated 

from a frame-based video, it is likely that in some cases the DVS’ entire pixel array will be excited 

concurrently, which would result in the large number of events as seen in simulation. Figures 15 

and 16 show a reconstructed frame of the simulated event stream with trackers drawn from the 

frame-based and asynchronous approaches respectively.  

 

 

Figure 15: Reconstructed Frame of Frame-Based Tracking Applied to Event Stream Simulation 
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Figure 16: Reconstructed Frame of Asynchronous Tracking Applied to Event Stream Simulation 

 

Unlike in the experimental trials, the asynchronous approach showed a slight, 

approximately 7% slowdown in execution time as compared to the frame-based approach, despite 

filtering almost 3.8 times the number of simulated events.  However, as can be seen in the captured 

frames shown in Figures 15 and 16, the trackers instantiated by the frame-based approach 

frequently lose the trajectory trails as a result of the trackers being deactivated between frames. 

Furthermore, the target of interest, i.e. the rocket, is frequently filtered out as noise by the frame-

based noise filtration method, resulting in repeated loss of tracking. Conversely, the asynchronous 

approach effectively tracks the target of interest throughout a majority of the frames and the 

negative polarity and forward-backward error suppression reduce the number of active trackers 

instantiated for uninteresting events. Since the frame-based and asynchronous approaches were 

only compared directly, Table 4 includes the relevant metrics collected. 
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Table 4: Event Stream Simulation Tracking Results 

Tracking/Filtration 

Approach 

Execution 

Time 

Filtered 

Events 

Neg. Polarity 

Suppressions 

Forward-Backward 

Error Suppressions 

Frame-based 64511 ms 1466379 N/A N/A 

Asynchronous 69408 ms 5546043 49344 149267 
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5.0 Discussion 

In most instances, the experimental results showed anticipated trends when comparing the 

frame-based and asynchronous approaches. Generally, the asynchronous approach showed 

exceptionally lower execution times, while maintaining or even improving across accuracy 

metrics. However, some interesting exceptions did arise in several experiments as well as in the 

results of the event-simulation testing. 

5.1 Performance and Noise Filtration Outcomes 

In terms of average performance, the asynchronous approach had an average of 7× better 

performance but had a much larger variation in relation to the total number of events. The reason 

for this disparity is primarily the differing forms of noise suppression used by both algorithms. 

The frame-based approach will always perform approximately the same number of comparisons 

whereas the asynchronous approach leverages the sparsity of the event stream to dramatically 

reduce computation time as evidenced by the differing trends in Figure 4. The two forms of noise 

suppression also resulted in very different ratios of unfiltered to filtered events, with the 

asynchronous approach filtering out many more events across all experiments. The multiple targets 

trials are an outstanding example of this with the asynchronous approach exhibiting an average of 

about 60% of filtered events compared to the frame-based approach’s mere 6%. This large 

discrepancy is most likely due to the asynchronous approach also filtering events that may not 

necessarily be noise, but constituent events of potential targets. However, for the purposes of this 
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research, filtering redundant events can reduce computation time without negatively impacting the 

tracking performance itself.  

In addition to large differences in the number of filtered events, the filtering techniques 

also differed greatly in terms of the number of trackers instantiated. The asynchronous algorithm 

exhibited many more trackers being instantiated across all trials as compared to the frame-based 

approach. According to both algorithms, new trackers will be created if no pre-existing tracker has 

a 𝑝 score above the predefined threshold. The asynchronous approach having more instantiated 

trackers would indicate more solitary events passing through the filter, though these trackers are 

largely hidden as they are correctly deemed to be associated with noise. In the asynchronous 

approach, the negative-polarity threshold served to suppress the majority of erroneous trackers. 

However, there were several trials in which the target had few or no negative-polarity events 

associated with it, and which relied entirely on the forward-backward error threshold to filter noise-

attracted trackers. These occurrences highlighted the need for both forms of tracker suppression as 

well as the necessity of tuning the suppression thresholds to the behavior of the intended target. 

5.2 Tracker Accuracy Comparisons and Outcomes 

In regard to tracker accuracy, the asynchronous approach displayed either comparable or, 

in some cases, superior results in the IoU measurements. While the IoU scores for both approaches 

did fall below what might be considered an acceptable level of 50% in several trials, these results 

can be explained by a number of factors. As mentioned earlier, the IoU metric was calculated using 

the circle circumscribed around the larger axis of each elliptical Gaussian tracker. This 

approximation was made to ease the calculation involved in the metric as well as due to the 
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assumption that the target is circular and would not cause significant change in tracker shape. 

However, this assumption was not always necessarily the case, especially with the additional non-

linear and multiple target trials. As a result, the area of the tracker would be overestimated and 

cause the IoU metric to be much smaller than expected.  

Another issue with the IoU metric is the use of reconstructed frames to form the ground-

truth comparison. Since the ground-truth position of the target is evaluated per frame, events must 

be accumulated over the chosen integration time in order to reconstruct a conventional image 

frame. However, sufficiently fast-moving targets, such as those in the highest speed trials, would 

exhibit motion blur due to events from multiple positions of the target falling into the same 

reconstructed frame. While the event-based tracking would track these targets accurately due to 

the serial nature of the tracker update, the ground-truth comparison would fit a larger than 

necessary circle around the target and thus artificially decrease the IoU metric. Nonetheless, the 

IoU metric still shows that the asynchronous noise suppression did not result in a loss of tracker 

accuracy compared to the frame-based approach. Conversely, the percentage of actively tracked 

frames does seem to favor the frame-based approach across many of the experiments. This general 

trend is largely due to the tracker suppression employed by the asynchronous approach, where the 

target tracker may be made hidden if the negative-polarity activity falls below threshold or the 

forward-backward error rises above threshold. However, the tracker is not destroyed and positions 

that may not be actively tracked are in most cases correctly interpolated by the smoothing and 

curve-fitting operations. Even so, the asynchronous approach showed comparable active tracking 

time across most experiments. 

With respect to varying the Gaussian tracker position update parameter, both approaches 

showed similar trends with respect to the resulting tracking accuracy. As previously mentioned, 
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the position update weight tunes the number of events that are required to shift the center of the 

tracker. As a result, the noise suppression employed and size and speed of the target influence the 

optimal parameter value required to maximize tracking accuracy. During testing, the frame-based 

approach showed peak accuracy with position update parameters, 𝛼1, between 0.9 and 0.95, while 

the asynchronous approach exhibited better accuracy with value 0.8 for several trials. This 

disparity is most likely due to the asynchronous noise suppression, which as previously mentioned 

likely removed target events in addition to noise. As a result, the update factor would need to be 

lower in order to weight each event of the target greater when updating position and maintain 

accuracy. This behavior indicates that the asynchronous approach is more sensitive to changes in 

algorithm parameters and would likely need to be tuned according to the expected targets of 

interest.  

For the event-simulation experiment, the frame-based approach surprisingly showed a 

slightly faster execution time than the asynchronous method, albeit with almost a quarter of the 

number of events filtered. However, this performance disparity with the experimental trials can be 

explained by the differences between the simulated and recorded event streams themselves. Since 

repeated spikes are generated at a greater rate to indicate larger changes in luminance in simulation, 

these redundant spikes are filtered out in the asynchronous approach, but have no effect on the 

frame-based method. The frame-based noise filtration is unaffected by redundant spiking due to 

the fact that it only checks for the previous support of events in adjacent pixel locations. This 

differing filtration behavior can explain not only the execution times, but also the large discrepancy 

in numbers of events filtered. The removal of isolated events led to the frame-based trackers being 

deactivated frequently between frames. This consistent deactivation not only resulted in losing 

track of the object of interest, i.e. the rocket, but also resulted in the trajectories being refreshed 
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between most frames. Since drawing the trajectory curves for the large number of trackers 

instantiated can be a costly process, it is likely that maintaining object tracking is responsible for 

a significant increase in the asynchronous approach’s execution time. While the asynchronous 

method actively tracks the trajectories of many more trackers within a given timeframe compared 

to the frame-based method, additional steps could be taken to isolate specific targets of interest, 

such as selecting trackers with an expected direction and speed of motion. 
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6.0 Conclusions 

This research has introduced an asynchronous noise and tracker suppression scheme for 

Gaussian-blob tracking with dynamic vision data. The intent of this work was to establish a method 

of effectively tracking point-source targets that would likely be of interest in space-based 

applications. The need for point-source tracking was motivated by the incredibly large distances 

between objects in space coupled with the low resolution of most currently available neuromorphic 

sensors. Furthermore, the radiation effects expected in the space environment necessitated a new 

noise filtration scheme tailored to the one-dimensional, asynchronous data received from the DVS. 

The inclusion of trajectory interpolation and forecasting served to increase the robustness of the 

target tracking algorithm, while the tracker suppression methods helped mitigate erroneous target 

tracking. Experimental testing was conducted to assess both the speed and accuracy of this 

asynchronous approach as compared to a more conventional, frame-based tracking approach. To 

evaluate the method’s effectiveness in a realistic scenario, an event-stream simulation method was 

applied to space-based footage in order to generate a relevant dataset for further testing. 

Experimental results show comparable or superior tracking accuracy with the 

asynchronous approach, while also exhibiting dramatically better performance as compared to the 

frame-based approach across all trials. Although the asynchronous method exhibited slightly larger 

execution times in the event-simulation experiment, this effect was largely due to the frame-based 

method’s frequent loss of target tracking and subsequent reduced processing time devoted to 

trajectory interpolation.  Furthermore, unlike the frame-based and other previous event-based 

noise-suppression techniques, the asynchronous approach is shown to be effective in tracking 

objects that may only appear as a single pixel within the DVS’s view. While the frame-based 
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approach was shown to be at least as effective across many of the experimental trials, the method 

failed to track the target of interest in several trials with low contrast and/or slower targets as well 

as the more realistic scenario presented in the event-simulation experiment. These results suggest 

that asynchronous method established in this research achieves superior point-source tracking 

compared to the conventional approach as was the primary intent of this work. 

In regards to the differing forms of noise filtration, the asynchronous method exhibited 

much higher ratios of events filtered across all trials, which contributed not only to increased 

tracking accuracy, but also reducing the overall execution time. The Multiple Targets trials in 

particular greatly highlighted the advantages of the asynchronous method by displaying much 

larger ratios of filtered events that consequently led to a significant increase in tracking accuracy. 

However, although the blob tracking associated with both methods requires the tuning of multiple 

parameters, the asynchronous approach introduces additional parameters, i.e. noise filtration 

thresholds, that must be tuned for detecting and tracking specific types of objects in terms of speed, 

size and relative luminance. While the frame-based approach may be more easily applied to 

multiple scenarios, some knowledge of a given scene and target of interest is required to maximize 

the effectiveness of the asynchronous method. 

The possibility for several extensions exists for both the core noise filtration and tracking 

algorithms as well as the event simulation method used for experimental testing. Modifications to 

the asynchronous method could be made that suppress trackers based on a variety of characteristics 

in order to fine tune the type of objects actively tracked. The number of constituent events and 

duration of active tracking time are both readily available metrics that could be used to distinguish 

objects of interest based on size and/or relative importance. The velocity, in terms of both speed 
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and direction, of targets could be calculated via interpolated tracker positions over time and thus 

provide another means of selecting particular objects of interest for active tracking.  

Although it would be ideal to capture event recordings in space, improvements could be 

made to the event stream simulator that would allow simulated event streams to more closely 

mimic the properties of true event streams, such as randomizing the temporal distance between 

pixel spikes and/or implementing a refractory period in the pixel spiking similar to actual spiking 

neurons. The asynchronous nature of DVS imaging also makes the event simulation process 

inherently parallelizable given that the output generated at each pixel is unaffected by other pixels. 

As a result, event simulation could be accelerated using multiprocessing techniques on both CPU 

and GPU architectures to achieve real-time simulation. This accelerated event simulation could be 

used to assess the effectiveness of neuromorphic vision techniques in the absence of neuromorphic 

hardware, using either a conventional camera or in simulations with 3D computer graphics 

software. 
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Appendix 
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Figure 17: Trackers Instantiated per Experiment 
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Figure 19: IoU Tracking Results for Asynchronous Position Update Parameter Variation 

 

 

Figure 20: % Tracked Frames Results for Asynchronous Position Update Parameter Variation 
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Figure 21: IoU Tracking Results for Frame-based Position Update Parameter Variation 

 

 

Figure 22: % Tracked Frames Results for Frame-based Position Update Parameter Variation 
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