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Chaosheng Dong, PhD

University of Pittsburgh, 2020

Inverse optimization is a powerful paradigm for learning preferences and restrictions

that explain the behavior of a decision maker, based on a set of external signal and the

corresponding decision pairs. However, most inverse optimization algorithms are designed

specifically in a batch setting, where all data is available in advance. As a consequence,

there has been rare use of these methods in an online setting that is more suitable for real-

time applications. To change such a situation, we propose a general framework for inverse

optimization through online learning. Specifically, we develop an online learning algorithm

that uses an implicit update rule which can handle noisy data.

We also note that the majority of existing studies assumes that the decision making

problem is with a single objective function, and attributes data divergence to noises, errors

or bounded rationality, which, however, could lead to a corrupted inference when decisions

are tradeoffs among multiple criteria. We take a data-driven approach and design a more

sophisticated inverse optimization formulation to explicitly infer parameters of a multiob-

jective decision making problem from noisy observations. This framework, together with

our mathematical analyses and advanced algorithm developments, demonstrates a strong

capacity in estimating critical parameters, decoupling interpretable components from noises

or errors, deriving the denoised optimal decisions, and ensuring statistical significance. In

particular, for the whole decision maker population, if suitable conditions hold, we will be

able to understand the overall diversity and the distribution of their preferences over multiple

criteria.

Additionally, we propose a distributionally robust approach to inverse multiobjective

optimization. Specifically, we study the problem of learning the objective functions or con-

straints of a multiobjective decision making model, based on a set of observed decisions. In

particular, these decisions might not be exact and possibly carry measurement noises or are

generated with the bounded rationality of decision makers. We use the Wasserstein metric

iv



to construct the uncertainty set centered at the empirical distribution of these decisions.

We show that this framework has statistical performance guarantees. We also develop an

algorithm to solve the resulting minmax problem and prove its finite convergence.

Keywords: inverse optimization, utility estimation, online learning, inverse multiobjective

optimization, distributionally robustness, clustering, manifold learning.
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1.0 Introduction

In business and management practice, humans, enterprises and organizations keep mak-

ing various decisions. A common assumption made is that these decision makers are rational,

i.e., they acquire and carry out optimal decisions in their decision making problems. These

decision making problems can be classified as the single objective optimization problem and

the multiobjective optimization problem. The fundamental problem we consider is how to

learn these decision making schemes. Based on the type of the decision making problem,

the research problems we study generally consist of two parts: inverse optimization problem

and inverse multiobjective optimization problem. Specifically, we consider interactions be-

tween inverse optimization, inverse multiobjective optimization, and other research topics,

such as online learning, clustering, manifold learning, and robust optimization, in the area

of machine learning and optimization. We summarize these interactions in Figure 1.

(a) (b)

Figure 1: An overview of the topics we consider in our research.
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1.1 Inverse Optimization through online learning

Possessing the ability to elicit customers’ preferences and restrictions (PR) is crucial to

the success for an organization in designing and providing services or products. Nevertheless,

as in most scenarios, one can only observe their decisions or behaviors corresponding to

external signals (e.g., prices, assortments) while cannot directly access their decision making

schemes. Indeed, decision makers probably do not have exact information regarding their

own decision making process [1]. To bridge that discrepancy, inverse optimization has been

proposed and received significant research attention, which is to infer or learn the missing

information of the underlying decision models from observed data, assuming that human

decision makers are rationally making decisions [2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11]. Nowadays,

extending from its initial form that only considers a single observation [2, 3, 4, 5] with clean

data, inverse optimization has been further developed and applied to handle more realistic

cases that have many observations with noisy data [1, 6, 7, 9, 10, 11].

Despite of these remarkable achievements, traditional inverse optimization (typically in

a batch setting) has not proven fully applicable for supporting recent attempts in AI to

automate the elicitation of human decision maker’s PR in real time. Consider, for example,

recommender systems (RSs) used by online retailers to increase product sales. The RSs first

elicit one customer’s PR from the historical sequence of her purchasing behaviors, and then

make predictions about her future shopping actions. Indeed, building RSs for online retailers

is challenging because of the sparsity issue. Given the large amount of products available,

one customer’s shopping vector, each element of which represents the quantity of one product

purchased, is highly sparse. Moreover, the shift of the customer’s shopping behavior along

with the external signal (e.g., price, season) aggravates the sparsity issue. Therefore, it

is particularly important for RSs to have access to large data sets to perform accurate

elicitation [12]. Considering the complexity of the inverse optimization problem (IOP), it

will be extremely difficult and time consuming to extract user’s PR from large, noisy data

sets using conventional techniques. Thus, incorporating traditional inverse optimization into

RSs is impractical for real time elicitation of user’s PR.

2



To automate the elicitation of human decision maker’s PR, we aim to unlock the potential

of inverse optimization through online learning. Specifically, we formulate such learning

problem as an IOP considering noisy data, and develop an online learning algorithm to

derive unknown parameters occurring in either the objective function or constraints. At

the heart of our algorithm is taking inverse optimization with a single observation as a

subroutine to define an implicit update rule. Through such an implicit rule, our algorithm

can rapidly incorporate sequentially arrived observations into this model, without keeping

them in memory. Indeed, we provide a general mechanism for the incremental elicitation,

revision and reuse of the inference about decision maker’s PR.

To the best of authors’ knowledge, we propose the first general framework for eliciting

decision maker’s PR using inverse optimization through online learning. This framework can

learn general convex utility functions and constraints with observed (signal, noisy decision)

pairs. In Figure 2, we provide the comparison of inverse optimization through batch learning

versus through online learning. Moreover, we prove that the online learning algorithm, which

adopts an implicit update rule, has a O(
√
T ) regret under certain regularity conditions.

In addition, this algorithm is statistically consistent when the data satisfies some rather

common conditions, which guarantees that our algorithm will asymptotically achieves the

best prediction error permitted by the inverse model we consider. Numerical results show

that our algorithm can learn the parameters with great accuracy, is robust to noises even if

some assumptions do not hold, and achieves a dramatic improvement over the batch learning

approach on computational efficacy.

1.2 Inverse Multiobjective Optimization

Human decision makers are often confronted with multiple objectives when making deci-

sions. For example, comfort and cost are two often conflicting criteria when customers make

purchases [15]. Actually, in economics, science and engineering, the multiobjective decision

making problem (DMP) is quite common and many decision making processes naturally

involve multiple conflicting objectives [16]. These underlying multiobjective decision making

3



Figure 2: An overview of inverse optimization through batch learning versus through online

learning. Left: Framework of inverse optimization in the batch setting. Right: Framework

of the generalized inverse optimization in the online setting proposed.

schemes, once learned by artificial intelligence (AI) system, would presumably assist and

accelerate the human expert’s decision making process, such as supporting organizations in

designing products or in providing services to customers.

Mathematically, we observe a set of decisions {yi}i∈[N ], where each yi with i ∈ [N ] is an

observation of the Pareto optimal solution of the multiobjective optimization problem

min
x∈Rn

{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}

s.t. x ∈ X(θ),

where θ ∈ Rn is the true but unknown parameter for the expert’s multiobjective decision

making problem. Formally, we investigate the following fundamental question

how do we learn θ given {yi}i∈[N ]?

This question naturally occurs in many settings. For example, a portfolio manager typically

uses the Markovitz mean-variance model to make investment decisions [17]. One analyst

might be interested in learning the key parameter of this model, e.g., the expected returns of

the assets, by observing the portfolio manager’s historical investment records. To learn the

parameter θ, we formulate an inverse multiobjective optimization problem (IMOP), assuming

that human expert is rational or bounded rational. Given the fact that the learner often only
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Table 1: Comparisons between IOP and IMOP from the machine learning point of view.

Task # of obj Signal Supervised learning Paper

IOP single yes yes
[1, 13, 7]

[10, 6, 14]

IMOP multiple no no this dissertation

has access to human expert’s decisions and no other data, we show that IMOP essentially is

an unsupervised learning task.

We reveal connections between IMOP and two seemingly unrelated unsupervised learning

problems. The first one is the K-means clustering problem [18, 19, 20]. Specifically, we prove

that every K-means clustering problem can be transformed equivalently to an IMOP. As

solving K-means clustering problem is NP-hard [21, 22] even when n = 2, we thus show the

NP-hardness of IMOP. Furthermore, we note that solving IMOP will automatically assign

the observations to different clusters, while the centroids of these clusters are restricted to

be Pareto optimal solutions of the estimated DMP. Hence, IMOP can be interpreted as a

constrained K-means clustering problem [23].

The second one is the manifold learning problem, which constructs low-dimensional man-

ifolds from data points embedded in high-dimensional spaces [24, 25]. We note that the

Pareto optimal set is a piecewise continuous manifold with an intrinsic dimension of p − 1

(p is the number of objective functions) under suitable smoothness conditions, regardless of

the dimension of the decision space. Since the dimension of the decision space is usually

much larger than p, the Pareto optimal set is a low-dimensional manifold embedded in the

ambient decision space. Moreover, given that solving IMOP is to construct a DMP whose

Pareto optimal set closely matches observations, IMOP can also be interpreted as a manifold

learning problem.

5



1.3 Wasserstein Distributionally Robust IMOP

Inverse multiobjective optimization is a compelling tool for learning humans and robots’

behaviors and preferences. Similar to the extensively studied area of inverse optimization

where the decision making model consists of only one objective function [2, 1, 13, 7, 10,

26, 14], the performance of inverse multiobjective optimization also relies critically on the

availability of an accurate decision making model, sufficient decisions of high quality, and

a parameter space that contains as much information about the objective functions or con-

straints of the underlying decision making model as possible. In practice, however, it is

highly unlikely that all of these critical factors would be satisfied. Consider, for example,

presence of outliers in a limited amount of decisions would render the empirical distribution

of decisions deviate from the true distribution, and thus significantly weaken the predictive

power of the inverse multiobjective optimization estimator.

To hedge against these uncertainties contained in the hypothetical decision making

model, the data and the selected parameter space, we investigate the distributionally ro-

bust approach for inverse multiobjective optimization. More specifically, motivated by

[27, 28, 29, 30], etc., we use the Wasserstein metric [31] to construct the uncertainty set

centered at the empirical distribution of the observed decisions. Subsequently, we propose

a distributionally robust inverse multiobjective optimization program that minimizes the

worst-case risk of loss, where the worst case is taken over all distributions in the uncertainty

set. Through such a distributionally robust framework, we aim to bridge the discrepancy

between lack of certainties in the information and the expectation for the accurate prediction

of human or robot’s future behavior.

We present a novel Wasserstein distributionally robust framework for constructing inverse

multiobjective optimization estimator. Our research is motivated by the fast developing area

of distributionally robust optimization [27, 32, 33, 34]. We use the prominent Wasserstein

metric to construct the uncertainty set centered at the empirical distribution of observed

decisions. Moreover, by employing recent minmax statistical learning results [35], we show

that the proposed framework has statistical performance guarantees, and the excess risk of

the distributionally robust inverse multiobjective optimization estimator would converge to
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zero with a sub-linear rate as the number of observed decisions approaches to infinity. To

solve the resulting minmax problem, we reformulate it as a semi-infinite program and develop

a cutting-plane algorithm which converges to an approximate solution in finite iterations.

We demonstrate the effectiveness of our method on both a multiobjective quadratic program

and a portfolio optimization problem.
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2.0 Generalized Inverse Optimization through Online Learning

2.1 Literature Review

Up to now, many studies on parameter estimations through inverse optimization have

been designed and developed, where almost all of them assume that the underlying DMP

is of a single objective function. According to the model development and the treated

observations, they can be classified into four groups, i.e., inverse optimization with (i) a

single observation without noise, (ii) a single observation subject to noise, (iii) multiple

observations without noise, and (iv) multiple observations subject to noises.

In the first group, structured inverse network and combinatorial optimization problems

are probably the first set of IOP studies in the literature, where costs of individual arcs are

estimated to render the given solution (e.g., network flows, paths, spanning trees) optimal

[36, 37, 38, 39, 40, 41, 42]. General linear programming IOP with a single observation is

investigated in the seminal paper by [2], where the distance between the estimated objective

function, to which the observation is an optimal solution, and a nominal objective function

serves as the loss function. this dissertation shows that its IOP using L1 or L∞ norm

is also a linear program. This research is then further extended to study IOPs of more

general decision making schemes, including inverse conic problems [3], inverse optimization

for linearly constrained convex separable programming problems [43], constrained inverse

quadratic programming problems [44], and inverse integer programming problems [4, 5]. In

addition, [45] considered the problem of inverse reinforcement learning that seeks to extract

a reward function given optimal behavior in a Markov decision process.

Different from studies in group one that assume the observation is an optimal decision,

which is rather restrictive in practice, IOP studies in the second group allow the observation

to be noisy. To the best of our knowledge, the research in [46] probably produces the

first general study considering noisy observation. They adopt the bilevel optimization to

construct an IOP, where the lower level problem receives the utility function estimation and

generates an optimal solution of the underlying DMP, and the upper level problem is to
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determine a utility function that minimizes the distance between that optimal solution and

the noisy observation. The research in [47] analyzes a similar linear programming IOP for

a noisy observation, where closed form solutions for several special cases are derived with

clear geometric intuitions. Actually, we point out that, although implicitly, the popular O-D

matrix estimation problem that in fact is an IOP, has also been treated traditionally as a

bilevel model, e.g., [48]. Hence, similar to [7], we believe that bilevel optimization scheme

probably provides the most appropriate modeling tool to connect the inference intention and

the underlying DMP.

Studies of IOP in the third group extend to consider multiple optimal observations, which

can been found in the research on model predictive control (MPC) [49, 50, 51, 52, 53]. In this

context, a control law, which might be a piecewise function with each piece representing an

optimal solution over a region in a polyhedral partition of the parameter space, will be used

to recover parameters of the underlying DMP. Note that multiple pieces of that function,

which are treated as multiple optimal observations, should be considered simultaneously in

the associated IOP mode [50, 51, 52, 53].

The research of IOP in the fourth group, which takes the data-driven approach to di-

rectly consider multiple noisy observations, recently has received a substantial attention

[54, 1, 13, 7, 10]. In [54], an IOP formulation that minimizes the decisional regret, which is

the value differences between observed decisions and expected solutions associated with the

cost estimation, is developed and then is illustrated for cost estimation in production plan-

ning. The research in [1] presents an IOP framework to impute a convex objective function

by minimizing the residuals of Karush-Kuhn-Tucker (KKT) conditions incurred by noisy

data. Similarly, an inverse variational inequalities problem, which is a more general scheme,

is introduced in [13], noting that solutions of an optimization problem can be represented

as solutions to a set of variational inequalities. Then, parameter estimation is derived to

minimize the slackness needed to render observations to (approximately) satisfy those varia-

tional inequalities. We mention that in [7] a bilevel optimization based IOP that minimizes

the differences between observations and expected optimal solutions is introduced, whose,

for the first time, statistical consistency properties with respect to noisy observations are

systematically analyzed and established. In the most recent paper [10], the authors propose
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to adopt the suboptimality loss in IOP, which has a clear advantage in the computational

tractability over that in [7], and formulate a distributionally robust IOP model to achieve

some out-of-sample guarantees.

2.2 Problem Setting

2.2.1 Decision Making Problem

We consider a family of parameterized decision making problems, in which x ∈ Rn is the

decision variable, u ∈ U ⊆ Rm is the external signal, and θ ∈ Θ ⊆ Rp is the parameter.

min
x∈Rn

f(x, u, θ)

s.t. g(x, u, θ) ≤ 0,
(2.1)

where f : Rn × Rm × Rp 7→ R is a real-valued function, and g : Rn × Rm × Rp 7→ Rq is a

vector-valued function. We denote X(u, θ) = {x ∈ Rn : g(x, u, θ) ≤ 0} the feasible region of

2.1. We let S(u, θ) = arg min{f(x, u, θ) : x ∈ X(u, θ)} be the optimal solution set of 2.1.

Throughout this dissertation we assume that the signal-decision pair (u,x) is distributed

according to some unknown distribution P supported on {(u,x) : u ∈ U ,x ∈ X(u, θ)}.

2.2.2 Inverse Optimization and Online Setting

Consider a learner who monitors the signal u ∈ U and the decision maker’ decision

x ∈ X(u, θ) in response to u. We assume that the learner does not know the decision maker’s

utility function or constraints in 2.1. Since the observed decision might carry measurement

error or is generated with a bounded rationality of the decision maker, i.e., being suboptimal,

we denote y the observed noisy decision for u ∈ U . Note that y does not necessarily belong

to X(u, θ), i.e., it might be infeasible with respect to X(u, θ). Throughout the paper, we

assume that the (signal,noisy decision) pair (u,y) is distributed according to some unknown

distribution P supported on {(u,y) : u ∈ U ,y ∈ Y}.
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In our inverse optimization model, the learner aims to learn the decision maker’s ob-

jective function or constraints from (signal, noisy decision) pairs. More precisely, the goal

of the learner is to estimate the parameter θ of the 2.1. In our online setting, the (signal,

noisy decision) pair become available to the learner one by one. Hence, the learning al-

gorithm produces a sequence of hypotheses (θ1, . . . , θT+1). Here, T is the total number of

rounds, and θ1 is an arbitrary initial hypothesis and θt for t ≥ 2 is the hypothesis chosen

after observing the (t − 1)th (signal,noisy decision) pair. Let l(yt, ut, θt) denote the loss

the learning algorithm suffers when it tries to predict the tth decision given ut based on

{(u1,y1), · · · , (ut−1,yt−1)}. The goal of the learner is to minimize the regret, which is the

cumulative loss
∑

t∈[T ] l(yt, ut, θt) against the possible loss when the whole batch of (sig-

nal,noisy decision) pairs are available. Formally, the regret is defined as

RT =
∑
t∈[T ]

l(yt, ut, θt)−min
θ∈Θ

∑
t∈[T ]

l(yt, ut, θ). (2.2)

In the following, we make a few assumptions to simplify our understanding, which are

actually mild and frequently appear in the inverse optimization literature [1, 13, 10, 7].

Assumption 2.2.1. Set Θ is a convex compact set. There exists D > 0 such that ‖θ‖2 ≤ D

for all θ ∈ Θ. In addition, for each u ∈ U , θ ∈ Θ, both f(x, u, θ) and g(x, u, θ) are convex in

x.

2.3 Learning the Parameters

2.3.1 The Loss Function

Different loss functions that capture the mismatch between predictions and observations

have been used in the inverse optimization literature. In particular, the (squared) distance

between the observed decision and the predicted decision enjoys a direct physical meaning,

and thus is most widely used [48, 46, 47, 7]. Hence, we take the (squared) distance as our loss

function in this dissertation. In batch setting, statistical properties of inverse optimization
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with such a loss function have been analyzed extensively in [7]. In this dissertation, we focus

on exploring the performance of the online setting.

Given a (signal,noisy decision) pair (u,y) and a hypothesis θ, we define the following loss

function as the minimum (squared) distance between y and the optimal solution set S(u, θ).

l(y, u, θ) = min
x∈S(u,θ)

‖y − x‖2
2. (2.3)

2.3.2 Online Implicit Updates

Once receiving the tth (signal,noisy decision) pair (ut,yt), θt+1 can be obtained by solving

the following optimization problem:

θt+1 = arg min
θ∈Θ

1
2
‖θ − θt‖2

2 + ηtl(yt, ut, θ), (2.4)

where ηt is the learning rate in round t, and l(yt, ut, θ) is defined in (2.3).

The updating rule (2.4) seeks to balance the tradeoff between ”conservativeness” and

correctiveness”, where the first term characterizes how conservative we are to maintain the

current estimation, and the second term indicates how corrective we would like to modify

with the new estimation. As there is no closed form for θt+1 in general, we call (2.4) an

implicit update rule [55, 56].

To solve (2.4), we can replace x ∈ S(u, θ) by KKT conditions of the 2.1, and get a

mixed integer nonlinear program. Consider, for example, a decision making problem that is

a quadratic optimization problem. Namely, the 2.1 has the following form:

min
x∈Rn

1
2
xTQx + cTx

s.t. Ax ≥ b.

(2.5)

Suppose that b changes over time t. That is, b is the external signal for 2.5 and equals

to bt at time t. If we seek to learn c, the optimal solution set for 2.5 can be characterized by

KKT conditions as S(bt) = {x : Ax ≥ bt, u ∈ Rm
+ , uT (Ax− bt) = 0, Qx + c−ATu = 0}.
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Here, u is the dual variable for the constraints. Then, the single level reformulation of the

update rule by solving (2.4) is

min
c∈Θ

1
2
‖c− ct‖2

2 + ηt‖yt − x‖2
2

s.t. Ax ≥ bt,

u ≤Mz,

Ax− bt ≤M(1− z),

Qx + c−ATu = 0,

c ∈ Rm, x ∈ Rn, u ∈ Rm
+ , z ∈ {0, 1}m,

(2.6)

where z is the binary variable used to linearize KKT conditions, and M is an appropriate

number used to bound the dual variable u and Ax−bt. Clearly, 2.6 is a mixed integer second

order conic program (MISOCP). More examples are given in supplementary material.

Our application of the implicit updates to learn the parameter of 2.1 proceeds in Algo-

rithm 1.

Algorithm 1 Implicit Online Learning for Generalized Inverse Optimization

1: Input: (signal,noisy decision) pairs {(ut,yt)}t∈[T ]

2: Initialization: θ1 could be an arbitrary hypothesis of the parameter.

3: for t = 1 to T do

4: receive (ut,yt)

5: suffer loss l(yt, ut, θt)

6: if l(yt, ut, θt) = 0 then

7: θt+1 ← θt

8: else

9: set learning rate ηt ∝ 1/
√
t

10: update θt+1 = arg min
θ∈Θ

1
2
‖θ − θt‖2

2 + ηtl(yt, ut, θ) (solve (2.4))

11: end if

12: end for
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Remark 2.3.1. (i) In Algorithm 1, we let θt+1 = θt if the prediction error l(yt, ut, θt) is

zero. But in practice, we can set a threshold ε > 0 and let θt+1 = θt once l(yt, ut, θt) < ε.

(ii) Normalization of θt+1 is needed in some situations, which eliminates the impact of trivial

solutions.

Remark 2.3.2. To obtain a strong initialization of θ in Algorithm 1, we can incorporate an

idea in [1], which imputes a convex objective function by minimizing the residuals of KKT

conditions incurred by the noisy data. Assume we have a historical data set T̃ , which may be

of bad qualities for the current learning. This leads to the following initialization problem:

min
θ∈Θ

1

|T̃ |

∑
t∈[T̃ ]

(
rtc + rts

)
s.t. |uTt g(yt, ut, θ)| ≤ rtc, ∀t ∈ T̃ ,

‖∇f(yt, ut, θ) +∇uTt g(yt, ut, θ)‖2 ≤ rts, ∀t ∈ T̃ ,

ut ∈ Rm
+ , rtc ∈ R+, rts ∈ R+, ∀t ∈ T̃ ,

(2.7)

where rtc and rts are residuals corresponding to the complementary slackness and stationarity

in KKT conditions for the t-th noisy decision yt, and ut is the dual variable corresponding

to the constraints in 2.1. Note that (2.7) is a convex program. It can be solved quite

efficiently compared to solving the inverse optimization problem in batch setting [7]. Other

initialization approaches using similar ideas e.g., computing a variational inequality based

approximation of inverse model [13], can also be incorporated into our algorithm.

2.3.3 Theoretical Analysis

Note that the implicit online learning algorithm is generally applicable to learn the

parameter of any convex 2.1. In this section, we prove that the average regret RT/T converges

at a rate of O(1/
√
T ) under certain regularity conditions. Furthermore, we will show that the

proposed algorithm is statistically consistent when the data satisfies some common regularity

conditions. We begin by introducing a few assumptions that are rather common in literature

[1, 13, 10, 7].
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Assumption 2.3.1. (a) For each u ∈ U and θ ∈ Θ, X(u, θ) is closed, and has a nonempty

relative interior. X(u, θ) is also uniformly bounded. That is, there exists B > 0 such

that ‖x‖2 ≤ B for all x ∈ X(u, θ).

(b) f(x, u, θ) is λ-strongly convex in x on Y for fixed u ∈ U and θ ∈ Θ. That is, ∀x,y ∈ Y ,(
∇f(y, u, θ)−∇f(x, u, θ)

)T
(y − x) ≥ λ‖x− y‖2

2.

Remark 2.3.3. For strongly convex program, there exists only one optimal solution. There-

fore, Assumption 2.3.1.(b) ensures that S(u, θ) is a single-valued set for each u ∈ U . How-

ever, S(u, θ) might be multivalued for general convex 2.1 for fixed u. Consider, for example,

minx1,x2{x1 +x2 : x1 +x2 ≥ 1}. Note that all points on line x1 +x2 = 1 are optimal. Indeed,

we find such case is quite common when there are many variables and constraints. Actually,

it is one of the major challenges when learning parameters of a function that’s not strongly

convex using inverse optimization.

For convenience of analysis, we assume below that we seek to learn the objective function

while constraints are known. Then, the performance of Algorithm 1 also depends on how

the change of θ affects the objective values. For ∀x ∈ Y ,∀u ∈ U ,∀θ1, θ2 ∈ Θ, we consider

the difference function

h(x, u, θ1, θ2) = f(x, u, θ1)− f(x, u, θ2). (2.8)

Assumption 2.3.2. ∃κ > 0, ∀u ∈ U ,∀θ1, θ2 ∈ Θ, h(·, u, θ1, θ2) is Lipschitz continuous on

Y :

|h(x, u, θ1, θ2)− h(y, u, θ1, θ2)| ≤ κ‖θ1 − θ2‖2‖x− y‖2, ∀x,y ∈ Y .

Basically, this assumption says that the objectives functions will not change very much

when either the parameter θ or the variable x is perturbed. It actually holds in many

common situations, including the linear program and quadratic program.

Lemma 2.3.1. Under Assumptions 2.2.1 - 2.3.2, the loss function l(y, u, θ) is uniformly

4(B+R)κ
λ

-Lipschitz continuous in θ. That is, ∀y ∈ Y ,∀u ∈ U ,∀θ1, θ2 ∈ Θ, we have

|l(y, u, θ1)− l(y, u, θ2)| ≤ 4(B +R)κ

λ
‖θ1 − θ2‖2.
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The establishment of Lemma 2.3.1 is based on the key observation that the perturbation

of S(u, θ) due to θ is bounded by the perturbation of θ through applying Proposition 6.1 in

[57]. Details of the proof are given in supplementary material.

Remark 2.3.4. When we seek to learn the constraints or jointly learn the constraints and

objective function, similar result can be established by applying Proposition 4.47 in [58]

while restricting not only the Lipschitz continuity of the difference function in (2.8), but also

the Lipschitz continuity of the distance between the feasible sets X(u, θ1) and X(u, θ2) (see

Remark 4.40 in [58]).

Assumption 2.3.3. For the 2.1, ∀y ∈ Y ,∀u ∈ U ,∀θ1, θ2 ∈ Θ, ∀α, β ≥ 0 s.t. α + β = 1, we

have

‖αS(u, θ1) + βS(u, θ2)− S(u, αθ1 + βθ2)‖2 ≤ αβ‖S(u, θ1)− S(u, θ2)‖2/(2(B +R)).

Essentially, this assumption requires that the distance between S(u, αθ1 + βθ2) and the

convex combination of S(u, θ1) and S(u, θ2) shall be small when S(u, θ1) and S(u, θ2) are

close. Actually, this assumption holds in many situations. We provide an example in sup-

plementary material.

Let θ∗ be an optimal inference to minθ∈Θ
1
T

∑
t∈[T ] l(yt, θ), i.e., an inference derived with

the whole batch of observations available. Then, the following theorem asserts that RT =∑
t∈[T ](l(yt, θt)− l(yt, θ∗)) of the implicit online learning algorithm is of O(

√
T ).

Theorem 2.3.2 (Regret bound). Suppose Assumptions 2.2.1 - 2.3.3 hold. Then, choosing

ηt = Dλ
2
√

2(B+R)κ
1√
t
, we have

RT ≤
4
√

2(B +R)Dκ

λ

√
T . (2.9)

Remark 2.3.5. We establish of the above regret bound by extending Theorem 3.2. in [56].

Our extension involves several critical and complicated analyses for the structure of the

optimal solution set S(u, θ) as well as the loss function, which is essential to our theoretical

understanding. Moreover, we relax the requirement of smoothness of loss function in that

theorem to Lipschitz continuity through a similar argument in Lemma 1 of [59] and [60].
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By applying both Theorem 3 in [7] and the regret bound proved in Theorem 2.3.2, we

show the risk consistency of the online learning algorithm in the sense that the average

cumulative loss converges in probability to the true risk in the batch setting.

Theorem 2.3.3 (Risk consistency). Let θ0 = arg minθ∈Θ{E [l(y, u, θ)]} be the optimal solu-

tion that minimizes the true risk in batch setting. Suppose the conditions in Theorem 2.3.2

hold. If E[y2] <∞, then choosing ηt = Dλ
2
√

2(B+R)κ
1√
t
, we have

1

T

∑
t∈[T ]

l(yt, ut, θt)
p−→ E

[
l(y, u, θ0)

]
. (2.10)

Corollary 2.3.3.1. Suppose that the true parameter θtrue ∈ Θ, and y = x + ε, where

x ∈ S(u, θtrue) for some u ∈ U , E[ε] = 0,E[εT ε] <∞, and u,x are independent of ε. Let the

conditions in Theorem 2.3.2 hold. Then choosing ηt = Dλ
2
√

2(B+R)κ
1√
t
, we have

1

T

∑
t∈[T ]

l(yt, ut, θt)
p−→ E[εT ε]. (2.11)

Remark 2.3.6. (i) Theorem 2.3.3 guarantees that the online learning algorithm proposed

in this dissertation will asymptotically achieves the best prediction error permitted by the

inverse model we consider. (ii) Corollary 2.3.3.1 suggests that the prediction error is in-

evitable as long as the data carries noise. This prediction error, however, will be caused

merely by the noisiness of the data in the long run.

2.4 Applications to Learning Problems in IOP

In this section, we will provide sketches of representative applications for inferring objec-

tive functions and constraints using the proposed online learning algorithm. Our preliminary

experiments have been run on Bridges system at the Pittsburgh Supercomputing Center

(PSC) [61]. The mixed integer second order conic programs, which are derived from using

KKT conditions in (2.4), are solved by Gurobi. All the algorithms are programmed with

Julia [62].
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2.4.1 Learning Consumer Behavior

We now study the consumer’s behavior problem in a market with n products. The

prices for the products are denoted by pt ∈ Rn
+ which varies over time t ∈ [T ]. We assume

throughout that the consumer has a rational preference relation, and we take u to be the

utility function representing these preferences. The consumer’s decision making problem of

choosing her most preferred consumption bundle x given the price vector pt and budget b

can be stated as the following utility maximization problem (UMP) [63]:

max
x∈Rn+

u(x)

s.t. pTt x ≤ b,

(2.12)

where pTt x ≤ b is the budget constraint at time t.

For this application, we will consider a concave quadratic representation for u(x). That

is, u(x) = 1
2
xTQx+rTx, where Q ∈ Sn− (the set of symmetric negative semidefinite matrices),

r ∈ Rn.

We consider a problem with n = 10 products, and the budget b = 40. Q and r are

randomly generated and are given in supplementary material. Suppose the prices are chang-

ing in T rounds. In each round, the learner would receive one (price,noisy decision) pair

(pt,yt). Her goal is to learn the utility function or budget of the consumer. The (price,noisy

decision) pair in each round is generated as follows. In round t, we generate the prices from

a uniform distribution, i.e. pti ∼ U [pmin, pmax], with pmin = 5 and pmax = 25. Then, we solve

2.12 and get the optimal decision xt. Next, the noisy decision yt is obtained by corrupting

xt with noise that has a jointly uniform distribution with support [−0.25, 0.25]2. Namely,

yt = xt + εt, where each element of εt ∼ U(−0.25, 0.25).

Learning the utility function In the first set of experiments, the learner seeks to

learn r given {(pt,yt)}t∈[T ] that arrives sequentially in T = 1000 rounds. We assume that r

is within [0, 5]10. The learning rate is set to ηt = 5/
√
t. Then, we implement Algorithm 1

with two settings. We report our results in Figure 3. As can be seen in Figure 3a, solving

the initialization problem provides quite good initialized estimations of r, and Algorithm 1

with Warm-start converges faster than that with Cold-start. Note that (2.7) is a convex
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program and the time to solve it is negligible in Algorithm 1. Thus, the running times

with and without Warm-start are roughly the same. This suggests that one might prefer

to use Algorithm 1 with Warm-start if she wants to get a relatively good estimation of the

parameters in few iterations. However, as shown in the figure, both settings would return

very similar estimations on r in the long run. To keep consistency, we would use Algorithm

1 with Cold-start in the remaining experiments. We can also see that estimation errors over

rounds for different repetitions concentrate around the average, indicating that our algorithm

is pretty robust to noises. Moreover, Figure 3b shows that inverse optimization in online

setting is drastically faster than in batch setting. This also suggests that windowing approach

for inverse optimization might be practically infeasible since it fails even with a small subset

of data, such as window size equals to 10. We then randomly pick one repetition and plot

the loss over round and the average cumulative loss in Figure 3c. We see clearly that the

average cumulative loss asymptotically converges to the variance of the noise. This makes

sense because the loss merely reflects the noise in the data when the estimation converges

to the true value as stated in Remark 2.3.6.

Learning the budget In the second set of experiments, the learner seeks to learn the

budget b in T = 1000 rounds. We assume that b is within [0, 100]. The learning rate is set to

ηt = 100/
√
t. Then, we apply Algorithm 1 with Cold-start. We show the results in Figure

4. All the analysis for the results in learning the utility function apply here. One thing to

emphasize is that learning the budget is much faster than learning the utility function, as

shown in Figure 3b and 4b. The main reason is that the budget b is a one dimensional

vector, while the utility vector r is a ten dimensional vector, making it drastically more

complex to solve (2.4).

2.4.2 Learning the Transportation Cost

We now consider the transshipment network G = (Vs ∪ Vd, E), where nodes Vs are

producers and the remaining nodes Vd are consumers. The production level is yv for node

v ∈ Vs, and has a maximum capacity of wv. The demand level is dtv for node v ∈ Vs and

varies over time t ∈ [T ]. We assume that producing yv incurs a cost of Cv(yv) for node
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v ∈ Vs; furthermore, we also assume that there is a transportation cost cexe associated with

edge e ∈ E, and the flow xe has a maximum capacity of ue. The transshipment problem can

be formulated in the following:

min
∑
v∈Vs

Cv(yv) +
∑
e∈E

cexe

s.t.
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = yv, ∀v ∈ Vs,∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = dtv, ∀v ∈ Vd,

0 ≤ xe ≤ ue, 0 ≤ yv ≤ wv, ∀e ∈ E,∀v ∈ Vs,

(2.13)

where we want to learn the transportation cost ce for e ∈ E. For this application, we will

consider a convex quadratic cost for Cv(yv). That is, Cv(yv) = 1
2
λvy

2
v , where λv ≥ 0.

We create instances of the problem based on the network in Figure 5a. λ1, λ2, {ue}e∈E,

{wv}v∈Vs and the randomly generated {ce}e∈E are given in supplementary material. In each

round, the learner would receive the demands {dtv}v∈Vd , the production levels {yv}v∈Vs and

the flows {xe}e∈E, where the later two are corrupted by noises. In round t, we generate the

dtv for v ∈ Vd from a uniform distribution, i.e. dtv ∼ U [−1.25, 0]. Then, we solve 2.13 and

get the optimal production levels and flows. Next, the noisy production levels and flows are

obtained by corrupting the optimal ones with noise that has a jointly uniform distribution

with support [−0.25, 0.25]8.

Suppose the transportation cost on edge (2, 3) and (2, 5) are unknown, and the learner

seeks to learn them given the (demand,noisy decision) pairs that arrive sequentially in T =

1000 rounds. We assume that ce for e ∈ E is within [1, 10]. The learning rate is set

to ηt = 2/
√
t. Then, we implement Algorithm 1 with Cold-start. Figure 5b shows the

estimation error of c in each round over the 100 repetitions. We also plot the average

estimation error of the 100 repetitions. As shown in this figure, ct asymptotically converges

to the true transportation cost cture pretty fast. Also. estimation errors over rounds for

different repetitions concentrate around the average, indicating that our algorithm is pretty

robust to noises. We then randomly pick one repetition and plot the loss over round and the

average cumulative loss in Figure 5c. Note that the variance of the noise E[εT ε] = 0.1667.
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We can see that the average cumulative loss asymptotically converges to the variance of the

noise.

2.5 Conclustions and Final Remarks

In this dissertation, an online learning method to infer preferences or restrictions from

noisy observations is developed and implemented. We prove a regret bound for the implicit

online learning algorithm under certain regularity conditions, and show the algorithm is

statistically consistent, which guarantees that our algorithm will asymptotically achieves the

best prediction error permitted by the inverse model. Finally, we illustrate the performance

of our learning method on both a consumer behavior problem and a transshipment problem.

Results show that our algorithm can learn the parameters with great accuracy and is very

robust to noises, and achieves drastic improvement in computational efficacy over the batch

learning approach.iop
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Figure 3: Learning the utility function over T = 1000 rounds. (a) We run 100 repetitions of

the experiments using Algorithm 1 with two settings. Cold-start means that we initialize

r as a vector of zeros. Warm-start means that we initialize r by solving the initialization

problem (2.7) with the 1000 (price,noisy decision) pairs. We plot the estimation errors over

round t in pink and brown for all the 100 repetitions, respectively. We also plot the average

estimation errors of the 100 repetitions in red line and dashed brown line, respectively. (b)

The dotted brown line is the error bar plot of the average running time over 10 repetitions

in batch setting. The blue line is the error bar plot of the average running time over 100

repetitions in online setting. (c) We randomly pick one repetition. The loss over round is

indicated by the dot. The average cumulative loss is indicated by the line. The dotted line

is the reference line indicating the variance of the noise. Here, E[εT ε] = 0.2083.
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Figure 4: Learning the budget over T = 1000 rounds. (a) We run 100 repetitions of the

experiments. We plot the estimation error over round t for all the 100 repetitions in pink.

We also plot the average estimation error of the 100 repetitions in red. (b) The dotted brown

line is the error bar plot of the average running time over 10 repetitions in batch setting.

The blue line is the error bar plot of the average running time over 100 repetitions in online

setting. (c) We randomly pick one repetition. The loss over round is indicated by the dot.

The average cumulative loss is indicated by the line. The dotted line is the reference line

indicating the variance of the noise. Here, E[εT ε] = 0.2083.

23



3

41

2 5

(a)

0 200 400 600 800 1000
0

1

2

3

4

Estimation error per round

Average estimation error

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

L
o

s
s

Average cumulative loss

Loss per round

E[
T

]

(c)

Figure 5: Learning the transportation cost over T = 1000 rounds. (a) We plot the five-node

network in our experiment. (b) Denote c ∈ R|E| the vector of transportation costs. We run

100 repetitions of the experiments. We plot the estimation error at each round t for all the

100 experiments. We also plot the average estimation error of the 100 repetitions. (c) We

randomly pick one repetition. The loss over round is indicated by the dot. The average

cumulative loss is indicated by the line. The dotted line is the reference line indicating the

variance of the noise. Here, E[εT ε] = 0.1667.
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3.0 Inferring Parameters Through Inverse Multiobjective Optimization

3.1 Literature Review

The inverse multiobjective optimization research is rather new and much less investi-

gated. The research in [64] considers an IOP for a binary integer DMP given a set of linear

objective functions, and develops branch-and-bound and cutting plane algorithms, which are

not numerically evaluated yet, to find minimal adjustment of the objective functions such

that a given set of feasible solutions becomes Pareto optimal. Research in [8, 65] addresses

another situation where preferences or weights of several known criteria in the decision mak-

ing problem will be inferred based on a single noisy observation. A demonstration on cancer

therapy shows that their inversely optimized weights of medical metrics leads to clinically

acceptable treatments. Different from those studies, our study follows the data-driven ap-

proach to build an unconventional IMOP framework that directly considers many noisy

observations to infer multiple objective functions or constraints of a convex DMP with a

solid statistical significance. Detailed discussions of the differences are provided in Table 2.

3.2 Inverse Multiobjective Optimization

3.2.1 Decision Making Problem with Multiple Objectives

Consider the following decision making problem with p (≥ 2) objective functions param-

eterized by θ:

min
x∈Rn

{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}

s.t. x ∈ X(θ).
(3.1)

For easy exposition, we use f(x, θ) to denote the vector of objective functions

(f1(x, θ), f2(x, θ), . . . , fp(x, θ))
T .
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Table 2: Comparisons of the Problem Settings and Leaning Tasks for Different Models.

Paper Linear case Observations Learn weights Learn parameters

[64] yes multiple, noiseless no yes

[8] yes single, noisy yes no

[65] no, general convex single, noisy yes no

this dissertation no, general convex multiple, noisy yes yes

Also, the feasible set X(θ) is characterized as X(θ) = {x ∈ Rn : g(x, θ) ≤ 0}, where

g(x, θ) = (g1(x, θ), . . . , gq(x, θ))
T is another vector-valued function.

Following the current mainstream of inverse optimization study [1, 13, 7, 10], we restrict

our focus to a convex DMP. Formally, we make the following assumption throughout the

paper.

Assumption 3.2.1. Θ is a convex set. For each θ ∈ Θ, f(x, θ) is convex in x, i.e., fl(x) is

convex on X(θ) for all l ∈ [p]. Here, X(θ) is also a convex set for each θ ∈ Θ.

Definition 3.2.1 (Pareto optimality). A decision vector x∗ ∈ X(θ) is said to be Pareto

optimal (or efficient, or non-dominated) if there exists no other decision vector x ∈ X(θ)

such that fi(x, θ) ≤ fi(x
∗, θ) for all i ∈ [p], and fk(x, θ) < fk(x

∗, θ) for some k ∈ [p].

In the study of multiobjective optimization, the set of all Pareto optimal solutions is

denoted by XP (θ) and called the Pareto optimal set. A common way to derive a Pareto

optimal solution is to solve a problem with a single objective function constructed by the

weighted sum of original functions, i.e., to solve the following problem [66].

min wT f(x, θ)

s.t. x ∈ X(θ)
(3.2)

where w = (w1, . . . , wp)T is the nonnegative weight vector in the (p − 1)-simplex Wp ≡

{w ∈ Rp
+ : 1Tw = 1}. When all weight components are required to be positive, such

set is denoted by W +
p . Denote S(w, θ) the set of optimal solutions of 3.2, i.e., S(w, θ) =

arg minx

{
wT f(x, θ) : x ∈ X(θ)

}
.
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Then, we have a couple of theoretical results regarding 3.2 that directly follow Theorems

3.1.1 - 3.1.3 of [67].

Proposition 3.2.1. Let x ∈ S(w, θ) be an optimal solution of 3.2. The following statements

hold.

(a) If w ∈ W +
p , then x ∈ XP (θ).

(b) If x is the unique optimal solution of 3.2, then x ∈ XP (θ).

According to Proposition 3.10 of [68] and Theorem 3.1.4 of [67], all Pareto optimal

solutions of a convex 3.1 can be found by solving 3.2.

Proposition 3.2.2. Given that 3.1 is convex and x ∈ XP (θ), there exists a weight vector

w ∈ Wp such that x is an optimal solution to 3.2, i.e., x ∈ S(w, θ).

Based on Propositions 3.2.1 and 3.2.2, the following inclusive relationships can be derived.

Corollary 3.2.2.1. For a convex 3.1,⋃
w∈W +

p

S(w, θ) ⊆ XP (θ) ⊆
⋃
w∈Wp

S(w, θ). (3.3)

Remark: (i) Results in Corollary 3.2.2.1 provides us a theoretical basis to make use

of the weighted sum method to derive all Pareto optimal solutions. Actually, when 3.1 is

convex and the objective functions are strictly convex, we have XP (θ) =
⋃
w∈Wp

S(w, θ). (ii)

When 3.1 is convex and X(θ) is compact, one important property of XP (θ) is that it is a

connected set, which, however, might not be convex as stated in [69, 68]. We note that it

is very different from the situation of a convex single objective optimization problem, whose

optimal solution set is convex.

3.2.2 Models for IMOP as an Unsupervised Learning Task

In this section, we present the development of our inverse multiobjective optimization

models for parameter learning. Specifically, given a set of observations that are noisy Pareto

optimal solutions collected from the decision maker population under study, we construct

models for IMOP to infer parameter θ of 3.1. In addition to its more sophisticated structure,

it is worth pointing out that we must handle a new challenge that does not occur in any
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inverse optimization with a single objective function. Different from the single objective case

that typically employs observations consisting of clear signal-response pairs [1, 13, 7, 10],

decision makers’ decisions are often observed without any information on their trade-off

among objective functions. Hence, this is an unsupervised learning problem. Under such a

situation, as demonstrated in this section, an unconventional framework for IMOP shall be

developed to address this challenge.

We consider a set of observations that are noisy Pareto optimal solutions collected with

possible measurement errors or decision makers’ bounded rationality. Let y denote one such

observation that is distributed according to an unknown distribution Py and supported on

Y . As noted in [7, 10], noise might come from measurement error, and thus y does not

necessarily belong to X(θ).

Next, we describe the construction of our loss function with respect to a hypothesis θ.

When weights over objective functions, i.e., the weight vector w, are known, the conventional

quadratic loss function can be directly applied with respect to y and S(w, θ). Nevertheless,

as previously mentioned, w is often missing and the Pareto optimal set should be adopted

instead.

l(y, θ) = min
x∈XP (θ)

‖y − x‖2
2, (3.4)

where XP (θ) is the Pareto optimal set of 3.1 for a given θ.

Remark 3.2.1. Note that data for the single objective IOP typically consists of clear signal-

response pairs {(ui,yi)}i∈[N ] [1, 13, 7, 10], where the signal ui can be seen as the input or

predictor variables and the response yi is the output or response variables. Consequently, all

the loss functions adopted in the single objective IOP essentially belong to the supervised

learning type of loss functions. In contrast, the (3.4) defined above is of unsupervised learning

type because the data available to the learner is only the decision makers’ decisions {yi}i∈[N ],

not including any information on their preferences {wi}i∈[N ] that generate these decisions. In

other words, the weight information associated with yi is a ”hidden variable”. Particularly,

both our loss function and the one used in [7] characterize the squared distance between an

observed response yi and a set. However, the set in [7] is determined by the signal ui while

ours is independent of any signal. That said, our loss function is of unsupervised learning
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type while theirs is not. This big difference also highlights the main reason why IMOP is

much more complex than single objective IOP.

Using (3.4), our inverse multiobjective optimization problem can be formulated as follows

min
θ∈Θ

M(θ) ≡ E
(
l(y, θ)

)
, (3.5)

where M(θ) is also called the risk of the loss function l(y, θ) for the hypothesis θ.

Practically, θ can not be learned by directly solving 3.5 as Py is not known a priori.

Given available observations {yi}i∈[N ], it is often the case that θ will be inferred through

solving the following empirical risk minimizing problem:

min
θ∈Θ

MN(θ) ≡ 1
N

∑
i∈[N ]

l(yi, θ). (3.6)

Nevertheless, one remaining challenge of using (3.4) is that there is no general approach

to comprehensively and explicitly characterize the Pareto optimal set XP (θ). One way is to

introduce weight variable representing the appropriate weight and convert the (3.4) into

min
w∈Wp,x∈S(w,θ)

‖y − x‖2
2.

However, this approach might not be suitable for a data-driven study, since it results in

a drastically complicated model, where every single observation requires one weight variable

and the nonlinear term between it and θ is heavily involved. On the contrary, according

to Corollary 3.2.2.1 and its following remarks, we adopt a sampling approach to generate

wk ∈ Wp for each k ∈ [K] and approximate XP (θ) as the union of their S(wk, θ)s. Then, by

utilizing binary variables that select an appropriate Pareto optimal solution from this union,

the loss function is converted into the following sampling based loss problem.

lK(y, θ) = minxk,zk∈{0,1} ‖y −
∑
k∈[K]

zkxk‖2
2

s.t.
∑
k∈[K]

zk = 1, xk ∈ S(wk, θ).
(3.7)

where constraint
∑

k∈[K] zk = 1 ensures that one and only one of Pareto optimal solutions

will be selected to approximate the distance from y to XP (θ). Hence, solving this problem

29



identifies some wk with k ∈ [K] such that one Pareto optimal solution from S(wk, θ) is closest

to y.

Comparisons between (3.4) and (3.7) are illustrated in Figure 6. The convergence rate

of lK(y, θ) to l(y, θ) is of O(1/K
1
p−1 ). Details are provided in section 3.4. As p increases, we

might require (approximately) exponentially more weight samples {wK}k∈[K] to achieve an

approximation accuracy. In fact, this phenomenon is a reflection of curse of dimensionality

[70], a principle that estimation becomes exponentially harder as the number of dimension

increases. In particular, the dimension here is the number of objective functions p.

Figure 6: Illustration of the Loss Dunction and Surrogate Loss Function. Yellow Dots are

the Pareto Optimal Solutions Sampled from XP (θ). Red and Blue Arrows Indicate l(y, θ)

and lK(y, θ), Respectively.

Remark 3.2.2. (i) Similar to (3.4), the (3.7) still belongs to the unsupervised learning

type because the observation y is independent from the sampled weights {wk}k∈[K] and

there is no external weight information associated with y. Rather, the (3.7) would help

reveal the hidden weight associated with y.

(ii) As shown in Corollary 3.2.2.1, it is guaranteed that no Pareto optimal solution will

be excluded if all weight vectors in Wp are enumerated. As it is practically infeasible,

we can control the number of sampled weights K to achieve a desired tradeoff between

the approximation accuracy and computational efficacy. Certainly, if the computational

power is strong, we would suggest to draw a large number of weights evenly in Wp to avoid

any bias. Although a set of binary variables {zik}k∈[N ] is needed for each observation yi,
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Figure 7: Blue Dots Indicate the Evenly Sampled Weights from the 3-dimensional Simplex

W3. Here, w1 + w2 + w3 = 1.

the number of sampled weights K is independent from the number of observations N .

As an example, we show the evenly sampled weights when p = 3 in Figure 7.

(iii) Indeed, as shown later in section 3.4.3, the large number of weight samples help recover

the distribution of weights among decision makers under suitable conditions. As discussed

earlier, such information should be very critical to manufacturers or service providers

when dealing with many customers.

As previously mentioned, we indeed do not have the explicit representation of XP (θ).

Through the sampling approach described in the last subsection, variants of 3.5 using (3.7)

can be easily defined. The following one is to reformulate 3.5 with weight samples, which

helps us perform theoretical analysis of the reformulation of 3.6.

min
θ∈Θ

MK(θ) ≡ E
(
lK(y, θ)

)
. (3.8)

Next, we provide the reformulation of 3.6 with the (3.7). As it serves as the primary

model for analysis and computation, we present its comprehensive form to facilitate our

discussion and understanding.
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min
θ∈Θ

MN
K (θ) ≡ 1

N

∑
i∈[N ]

‖yi −
∑
k∈[K]

zikxk‖2
2

s.t. xk ∈ S(wk, θ), ∀k ∈ [K],∑
k∈[K]

zik = 1, ∀i ∈ [N ],

zik ∈ {0, 1}, ∀i ∈ [N ], k ∈ [K].

(3.9)

Remark 3.2.3. 3.9 is the only model one can practically compute among all four models

discussed previously. By making use of optimality conditions to represent S(wk, θ), 3.9

can be solved numerically to derive an estimation of θ and two examples are provided in

C.4.2 and C.4.3. According to [7, 10], existing data-driven inverse optimization models

primarily differ from each other by using different loss functions. Our 3.9 model clearly has

a more sophisticated structure with many new variables and constraints, which probably

are necessary due to the learning context and task. To handle the incurred computational

challenge, advanced algorithm developments are presented in section 3.5, which support our

real applications with a greatly improved efficiency.

Before proceeding to next section, we summarize the proposed models for IMOP in Table

3, where Empirical and Obj mean that we use empirical risk and the specific objective

function, respectively. Here, N is the number of observations, and K denotes the number of

weight samples.

Table 3: Summary of Four IMOP Models

Model Risk/Empirical Loss function Obj Estimator Computable

3.5 Risk l(y, θ) M(θ) θ∗ 7

3.6 Empirical l(y, θ) MN(θ) θ̂N 7

3.8 Risk lK(y, θ) MK(θ) θ̂K 7

3.9 Empirical lK(y, θ) MN
K (θ) θ̂NK X
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3.2.3 IMOP, Inverse Optimization, and Machine Learning

For simplicity and avoiding any confusion, we refer to data-driven inverse optimization

problem with single objective function as IOP throughout the remainder of this dissertation.

Data-driven inverse optimization is the current mainstream and has been extensively

investigated recently for the single objective case [1, 13, 7, 10, 6]. Similarly, our paper also

follows the data-driven approach and takes a learning perspective to build an IMOP frame-

work that directly considers many noisy observations. To clarify differences and connections,

we propose a taxonomy that is applicable to both IOP and IMOP from the machine learning

point of view.

As summarized in Table 1, IMOP transitions from a supervised learning task into an

unsupervised learning task when less weight information for the decision is accompanied,

while IOP is a supervised learnig task given that the data consists of clear signal-response

pairs.

For the first class of IMOP, the weight-decision pair (wi,yi) is available to the learner for

each i ∈ [N ]. As a result, IMOP naturally becomes a supervised learning task [70] because wi

can be seen as the input or predictor variables and yi is the output or response variables. In

other words, {(wi,yi)}i∈[N ] is the set of training samples for the supervised learning problem

of inferring the parameter θ in 3.1. Similar to any other supervised learning tasks, once

obtained, 3.1 could be used to predict the decision maker’s behavior given the preference

w over different objective functions. Additionally, we note that IOP in essence is also a

supervised learning task and IMOP degenerates into IOP when the weight-decision pair

(wi,yi) is available to the learner for each i ∈ [N ]. Here, the weight and decision correspond

to the external signal (input) and response (output) in IOP, respectively. Therefore, all those

methods for IOP are readily applicable to IMOP, making it the simplest among all three

classes listed in Table 1.

For the second class of IMOP, some decisions are observed with the weight information

while others are not. Through a similar analysis for the first class, IMOP is an unconventional

semi-supervised learning task [71] where the supervision comes from the predictor variables,

i.e., the additional weight information associated with the decisions. Specifically, it occurs
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that some decisions are observed with knowledge on the range of weights over those objective

functions. For example, some decision makers are risk-averse, indicating that their decisions

are with large weights over the function representing risk. In fact, 3.9 can be easily extended

to handle such situations without much efforts. More precisely, we merely need to replace

the second set of constraints in 3.9 by the following constraints.

∑
k∈K̃i

zik = 1, ∀i ∈ [N ′],

∑
k∈[K]

zik = 1, ∀i ∈ [N ] \ [N ′],
(3.10)

where the first N ′ observations are with some information on weights captured in subset

K̃i ⊆ [K] for each i ∈ [N ′]. If we would like to emphasize the contribution of the observations

in learning, the objective function of 3.9 can be modified as follows:

min
θ∈Θ

1
N

∑
i∈[N ]\[N ′]

‖yi −
∑
k∈[K]

zikxk‖2
2 + λ

N

∑
i∈[N ′]

‖yi −
∑
k∈K̃i

zikxk‖2
2 (3.11)

where coefficient λ ≥ 1 reflects the value of such more specific information.

For the third class of IMOP, the learner only has access to the decisions without any

weight information. Thus, IMOP is an unsupervised learning task and the goal is to recover

the structure of the Pareto optimal set from which these decisions are generated. However,

this does not mean that the weight w disappears in our setting. In contrast, w appears in

IMOP as a hidden variable and generates the decision y together with θ as shown in Figure

8. Just like any other machine learning tasks involving hidden variables [72], we need to

learn w in order to infer the model parameter θ. Moreover, we can also see that the main

difference between IOP and IMOP of this class is whether the predictors are hidden variables

or not. As a consequence, the involvement of hidden information makes IMOP much more

complex than IOP.

Throughout the remainder of the paper, we focus on discussing IMOP of the third class,

and refer to it as IMOP for two main reasons. The first is that the weight information is

typically very expensive to obtain in practice and what the learner can observe are only the

decisions. Another reason is that the model for IMOP, i.e., 3.9, is quite flexible and analysis

and algorithms for it can be readily extended to other two classes.
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Figure 8: Graphical Plate Model of IMOP. The Unshaded Nodes are Hidden Variables

and the Shaded Nodes Represent the Observed Variables. The Directed Links Indicate

Dependencies between Variables.

3.3 Connections between IMOP, Clustering and Manifold Learning

In section 3.2.3, we show that IMOP is an unsupervised learning task. Subsequently, we

study in this section connections between IMOP and two seemingly unrelated unsupervised

learning tasks. The first one is the clustering problem, in particular the K-means clustering

problem [18, 19]. The second one is the manifold learning problem, which seeks to construct

low-dimensional manifolds from data points embedded in high-dimensional spaces [24, 25].

3.3.1 Connection bewteen IMOP and Clustering

We show that every K-means clustering problem can be transformed equivalently to

an IMOP. Consequently, we prove the NP-hardness of IMOP from the reduction of K-

means clustering problem. Conversely, we show that IMOP indeed can be interpreted as a

Constrained K-means problem.

K-means clustering aims to partition the observations into K clusters such that the aver-

age squared distance between each observation and its closest cluster centroid is minimized.
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Given observations {yi}i∈[N ], a mathematical formulation of K-means clustering is presented

in the following [73, 74].

min
xk,zik

1
N

∑
i∈[N ]

‖yi −
∑
k∈[K]

zikxk‖2
2

s.t.
∑
k∈[K]

zik = 1, ∀i ∈ [N ],

xk ∈ Rn, zik ∈ {0, 1}, ∀i ∈ [N ], k ∈ [K],

(3.12)

where K is the number of clusters, and {xk}k∈[K] are the centroids of the clusters.

Proposition 3.3.1. Given any 3.12 problem, we can construct an instance of 3.9, such that

solving the K-means clustering problem is equivalent to solving the instance of 3.9.

The key step for the proof in Proposition 3.3.1 is to construct a 3.1 whose objective

functions are quadratic and feasible region is a ball. Details of the proof are given in the

supplementary material.

Lemma 3.3.2 ([21, 22]). 3.12 is NP-hard.

One should distinguish K-means clustering problem from K-means algorithm (a.k.a.

Lloyd’s algorithm) [19], where the later one is a fast heuristic to solve the former prob-

lem. Indeed, K-means clustering problem is NP-hard to solve even for instances in the plane

[22], or K = 2 in general dimension [21].

Theorem 3.3.3 (NP-hardness of IMOP). In general, 3.9 is NP-hard.

We conclude the proof by further noting that the construction is indeed polynomial.

By Lemma 3.3.2, K-means clustering problem is NP-hard to solve even for instances in the

plane, or with two clusters in the general dimension. This suggests that 3.9 is also difficult

to solve even for instances in the plane, or K = 2 in general dimension.

Denote MK the optimal value for 3.12. The following theorem depicts the relationship

between MK and MN
K (θ̂NK).

Theorem 3.3.4 (Constrained K-means clustering). Given any observations {yi}i∈[N ], and

weight samples {wk}k∈[K], we have MK ≤ MN
K (θ̂NK). Moreover, MK = MN

K (θ̂NK) if and only

if there exists a 3.1, such that its Pareto optimal solutions {S(wk, θ)}k∈[K] are the centroids

obtained by 3.12.
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Now, we explain why one can interpret 3.9 as a Constrained K-means clustering problem.

Here, the meaning of Constrained in our paper is slightly different from that of [23]. While

both emphasize the incorporation of background knowledge into the clustering process, their

Constrained means more about which observations should or should not be grouped together.

Note that 3.9 has one more type of constraints than 3.12, i.e., xk ∈ S(wk, θ), ∀k ∈ [K]. These

constraints require that the centroids of the clusters are restricted to be Pareto optimal

solutions of the estimated 3.1. This also explains why 3.9 always has a larger optimal value

than 3.12 as shown in Theorem 3.3.4.

3.3.2 Connection between IMOP and Manifold Learning

We show in this section that the Pareto optimal set is a piecewise continuous manifold

with intrinsic dimension of p − 1, where p is the number of objectives, regardless of the

dimension of the decision space. Furthermore, we show IMOP could be interpreted as a

manifold learning problem since solving IMOP in essence is to construct a 3.1 whose Pareto

optimal closely matches observations.

Given a set of high-dimensional observations {yi}i∈[N ] in Rn, manifold learning attempts

to find an embedding set {xi}i∈[N ] in a low-dimensional space Rd (d < n), and the local

manifold structure formed by {yi}i∈[N ] is preserved in the embedded space [25, 24, 75].

Formally, given a set of data points {yi}i∈[N ], we are required to find a mapping f : Rd → Rn

and another set of points {xi}i∈[N ] in Rd such that

yi = f(xi) + εi, i ∈ [N ], (3.13)

where εi represents random noise.

The central questions of manifold learning are: 1) Can we find a set of low-dimensional

points {xi}i∈[N ] such that the equation (3.13) holds? 2) What kind of regularity conditions

should be imposed on f? 3) Is the model well defined [76, 77] ? These questions are the

main focus of this section in the context of IMOP.

Theorem 3.3.5 (Pareto manifold). Suppose Assumption 3.2.1 holds. For each θ ∈ Θ, the

Pareto optimal set of 3.1 is a (p− 1)-dimensional piecewise continuous manifold, where p is

the number of objectives.
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From this theorem, one can see that the Pareto optimal set of a 3.1 with two objectives

is a piecewise continuous curve, and the Pareto optimal set of a 3.1 with three objectives is

a piecewise continuous surface, etc.

Corollary 3.3.5.1. Suppose that both f(x, θ) and g(x, θ) are linear functions in x for all

θ ∈ Θ. Then, XP (θ) is a (p− 1)-dimensional piecewise linear manifold for all θ ∈ Θ.

Remark 3.3.1. Note that the feasible set for a multiobjective linear program is a polyhe-

dron. Thus, one way to interpret Corollary 3.3.5.1 is that the Pareto optimal set of such

a program consists of Pareto optimal faces of the polyhedron that are arc-wise connected.

Therefore, the Pareto optimal set naturally has a piecewise linear structure and forms a

manifold.

Recall that {xk}k∈[K] are used in 3.9 to measure the distances between the observations

{yi}i∈[N ] and the underlying Pareto optimal set, which is a manifold by Theorem 3.3.5. Also,

xk is restricted to be an optimal solution of the 3.2 for all k ∈ [K]. That is, xk ∈ S(wk, θ)

for all k ∈ [K]. Then, following from Theorem 3.1.1 - 3.1.3 of [67], we have the following

result regarding {xk}k∈[K].

Proposition 3.3.6. Suppose Assumption 3.2.1 holds. Then, S(wk, θ) ⊆ XP (θ) for all w ∈

W +
p . If f(x, θ) is strictly convex in x, then S(wk, θ) ⊆ XP (θ) for all w ∈ Wp.

Now, we explain why we can interpret IMOP as a manifold learning problem. Combining

Proposition 3.3.6 and the way we sample {wk}k∈[K] in Remark 3.2.2, one can show that

{xk}k∈[K] in 3.9 are Pareto optimal points on the XP (θ) to be estimated. Note that 3.9

is solved by minimizing the average distance between {yi}i∈[N ] and {xk}k∈[K]. Therefore,

IMOP essentially seeks to find the 3.1 whose Pareto optimal set matches best the true

Pareto optimal set where {yi}i∈[N ] are sampled from.

Remark 3.3.2. Manifold learning methods typically returns a set of points in the dimension-

reduced space [24, 25]. By solving 3.9, however, we obtain a set of representative points

{xk}k∈[K] of a manifold in the decision space, instead of the (p−1)-dimensional space. Thus,

the manifold recovered by solving IMOP is more like the Principal manifold introduced by

[78] as lines or surfaces passing through ”the middle” of the data distribution. Note that

we also obtain the weights that generate the observations by solving 3.9. These weights are
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Figure 9: Uniform Convergence Diagram for Empirical Risks.
P−→ Means Convergence in

Probability. −→ Indicates the Convergence of a Sequence of Numbers.
P
99K Means Conver-

gence in Probability for Double-index Random Variable.

lying on the (p−1)-dimensional manifold Wp. Therefore, another way to interpret the result

is that solving 3.9 yields a function S(w, θ) that maps a low dimensional point w ∈ Wp to a

high dimensional point in the decision space. This answers the first question we ask in this

section.

3.4 Consistency, Generalization Bound, and Identifiability Analysis

Our major task in this section is to show statistical properties of estimators constructed in

section 3.2.2. More specifically, we show that these estimators asymptotically predict as well

as the best possible result this type of inverse optimization model can achieve. In addition,

we provide a generalization bound for the estimator constructed in 3.9. Subsequently, we

propose the concept of identifiability in the context of decision making problems with multiple

objectives, and show its correlation with the performance of our model for IMOP. We will

begin by proving the uniform convergences of the empirical risks.
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3.4.1 Risk Consistency of 3.9

Before proving the risk consistency of the estimators, we first need to prove the uniform

convergence of the empirical risks as shown in Figure 9. Different from conventional learning

tasks that consider convergence only in data size N , we need to show that the empirical

risk MN
K (θ) uniformly converges to the risk M(θ) in two directions, that is, in N and K

simultaneously. As being common in the inverse optimization literature e.g., [7, 10], we now

adopt the following assumptions.

Assumption 3.4.1. (i) The parameter set Θ is compact.

(ii) For each θ ∈ Θ, X(θ) is compact, and has a nonempty relatively interior. Also, X(θ)

is uniformly bounded. Namely, there exists B > 0 such that ‖x‖2 ≤ B for all x ∈ X(θ)

and θ ∈ Θ.

(iii) Functions f(x, θ) and g(x, θ) are continuous on Rn ×Θ.

(iv) E[yTy] < +∞.

Assumptions (ii) and (iii) are important for the continuity of XP (θ). Also, Assumption

(iv), which is ensured once variance of the noise is finite, is fundamental to applying the uni-

form law of large numbers (ULLN) [79], one of the most used tools in performing consistency

analysis.

Lemma 3.4.1. Suppose Assumptions 3.2.1 - 3.4.1 hold. X(θ) is continuous on Θ.

The continuity of X(θ) follows from its lower semicontinuity (l.s.c.) and upper semicon-

tinuity (u.s.c.), both of which can be derived by using [80] under our assumptions.

Lemma 3.4.2. Suppose Assumptions 3.2.1 - 3.4.1 hold. If f(x, θ) is strictly convex in x for

each θ ∈ Θ, then XP (θ) is continuous on Θ.

Remark 3.4.1. Several things need to be emphasized when applying Theorem 7.1 of [81]

to prove Lemma 3.4.2. (i) This theorem employs the condition that X(θ) is uniformly

compact near θ, which guarantees that a sequence {xk}, generated from X(θk), contains a

convergent subsequence. In Euclidean spaces, the uniform boundedness of X(θ), as stated

in Assumption 3.4.1, is also adequate in the proof. (ii) This theorem gives the sufficient

conditions for the l.s.c. of XP (θ). All of these conditions are naturally satisfied under
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Assumptions 3.2.1 - 3.4.1 except the one that requires f(x, θ) to be one-to-one, i.e., injective

in x. In fact, we can safely replace the one-to-one condition by the strict quasi-convexity of

f(x, θ) in x without affecting the result. Since strict convexity implies strict quasi-convexity,

the lower semicontinuity naturally follows.

Proposition 3.4.3 (ULLN for MN(θ) in N). Under the same conditions of Lemma 3.4.2,

MN(θ) uniformly converges to M(θ) in N . That is,

sup
θ∈Θ
|MN(θ)−M(θ)| p−→ 0. (3.14)

Proposition 3.4.4 (ULLN for MN
K (θ) in N). Under the same conditions of Lemma 3.4.2,

MN
K (θ) uniformly converges to MK(θ) in N . That is, ∀K,

sup
θ∈Θ
|MN

K (θ)−MK(θ)| p−→ 0. (3.15)

Throughout the paper, we use K2 ≥ K1 to denote the set of weights {wk}k∈[K1] ⊆

{wk}k∈[K2], and K2 > K1 to denote the set of weights {wk}k∈[K1] ( {wk}k∈[K2]. Then, we

depict the monotonicity of {MK(θ)} and {MN
K (θ)} in K for each θ ∈ Θ in the following

lemma.

Lemma 3.4.5 (Monotonicity of {MK(θ)} and {MN
K (θ)} in K). We have the following:

(a) The sequence {MK(θ)} is monotone decreasing inK for all θ ∈ Θ. Moreover, {MK(θ̂K)}

is monotone decreasing in K. Specially, MK(θ̂K) ≥M(θ∗).

(b) Given any {yi}i∈[N ], the sequence {MN
K (θ)} is monotone decreasing in K for all θ ∈ Θ.

Moreover, {MN
K (θ̂NK)} is monotone decreasing in K. Specially, MN

K (θ̂NK) ≥MN(θ̂N).

Lemma 3.4.6. Suppose Assumptions 3.2.1 - 3.4.1 hold. Suppose also that f(x, θ) is strongly

convex in x for each θ ∈ Θ, that is, ∀l ∈ [p], ∃λl > 0, ∀x,y ∈ Rn,

fl(y, θ) ≥ fl(x, θ) +∇fl(x, θ)T (y − x) +
λl
2
‖y − x‖2

2. (3.16)

Then, ∀θ ∈ Θ, ∀w,w0 ∈ Wp,

‖S(w, θ)− S(w0, θ)‖2 ≤
2L

λ
‖w − w0‖2, (3.17)

where L =
√
p ·maxl∈[p],θ∈Θ,x∈X(θ) |fl(x, θ)| is a finite number, and λ = minl∈[p]{λl}.

41



Lemma 3.4.7. Under Assumptions 3.2.1 - 3.4.1, we have that ∀y ∈ Y ,∀θ ∈ Θ,

0 ≤ lK(y, θ)− l(y, θ) ≤ 4(B +R)ζ

λ
·
√

2p

Λ− 1
, (3.18)

where

K =
(Λ + p− 2)!

(Λ− 1)!(p− 1)!
, ζ = max

l∈[p],x∈X(θ),θ∈Θ
|fl(x, θ)|. (3.19)

Furthermore,

0 ≤ lK(y, θ)− l(y, θ) ≤ 16e(B +R)ζ

λ
· 1

K
1
p−1

. (3.20)

Thus, the surrogate loss function uniformly converges to the loss function at the rate of

O(1/K
1
p−1 ). Note that this rate exhibits a dependence on the number of objective functions

p. As p increases, we might require (approximately) exponentially more weight samples

{wK}k∈[K] to achieve an approximation accuracy. In fact, this phenomenon is a reflection

of curse of dimensionality [70], a principle that estimation becomes exponentially harder

as the number of dimension increases. In particular, the dimension here is the number of

objective functions p. Naturally, one way to deal with the curse of dimensionality is to

employ dimension reduction techniques in statistics to find low-dimensional representation

of the objective functions.

Example 3.4.1. When p = 2, 3.1 is a bi-objective decision making problem. Then, Lemma

3.4.7 shows that lK(y, θ)− l(y, θ) is of O(1/K). That is, lK(y, θ) asymptotically converges

to l(y, θ) sublinearly.

Proposition 3.4.8 (Uniform convergence of MK(θ) in K). Under the same conditions of

Lemma 3.4.6, MK(θ) uniformly converges to M(θ) in K for θ ∈ Θ. That is, sup
θ∈Θ
|MK(θ) −

M(θ)| −→ 0.

Next, we present a very mild assumption to bound random observations.

Assumption 3.4.2. The support Y of the distribution y is contained within a ball of radius

R almost surely, where R <∞. That is, P(‖y‖2 ≤ R) = 1.
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Proposition 3.4.9 (Uniform convergence of MN
K (θ) in K). Suppose Assumptions 3.2.1 -

3.4.2 hold. If f(x, θ) is strongly convex in x for each θ ∈ Θ, then MN
K (θ) uniformly converges

to M(θ) in K for θ ∈ Θ and N . That is, ∀N , sup
θ∈Θ
|MN

K (θ)−MN(θ)| p−→ 0.

We would like to point out that previous four convergence results are provided merely

for theoretical understanding as neither the distribution of y or the Pareto optimal set

XP (θ) is available in practice. Nevertheless, they serve as the bridge to prove the uniform

convergence of the numerically computable one of MN
K (θ) to the abstract concept of M(θ).

Before establishing the formal proof, we introduce one definition to support our convergence

analysis with respect to both N and K.

Definition 3.4.1 (Double-index convergence). Let {Xmn} be an array of double-index ran-

dom variables. Let X be a random variable. If ∀δ > 0,∀ε > 0, ∃N , s.t. ∀m,n ≥ N ,

P(|Xmn − X| > ε) < δ. Then Xmn is said to converge in probability to X (denoted by

Xmn
P
99K X).

Proposition 3.4.10 (Uniform convergence of MN
K (θ) in N and K). Under the same condi-

tions of Proposition 3.4.9, MN
K (θ) uniformly converges to M(θ) in N and K for all θ ∈ Θ.

That is,

sup
θ∈Θ
|MN

K (θ)−M(θ)| P
99K 0. (3.21)

We next show the risk consistency of the estimators. We denote Θ∗ the set of parameters

that minimizes the risk and refer to it as the optimal set. Namely, Θ∗ = {θ∗ ∈ Θ : M(θ∗) =

minθ∈ΘM(θ)}.

Theorem 3.4.11 (Consistency of 3.6). Suppose Assumptions 3.2.1 - 3.4.1 hold. If f(x, θ) is

strictly convex in x for each θ ∈ Θ, then M(θ̂N)
p−→M(θ∗).

Theorem 3.4.11 states that θ̂N converges in probability to one point in the optimal set

Θ∗.

Theorem 3.4.12 (Consistency of 3.8). Suppose Assumptions 3.2.1 - 3.4.1 hold. If f(x, θ) is

strongly convex in x for each θ ∈ Θ, then M(θ̂K)
P−→M(θ∗).
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Proof of Theorem 3.4.12 is essentially the same to that of Theorem 3.4.11, and is omitted.

Theorem 3.4.12 indicates that θ̂K also converges in probability to one point in the optimal

set Θ∗.

Recall that 3.9 is the only one we can and will solve to infer the unknown parameters

of a decision making problem among the four models listed in Table 3. Thus, the following

theorem is the most important one from the perspective of computation.

Theorem 3.4.13 (Consistency of 3.9). Suppose Assumptions 3.2.1 - 3.4.2 hold. If f(x, θ) is

strongly convex in x for each θ ∈ Θ, then M(θ̂NK)
P
99KM(θ∗).

Proof of Theorem 3.4.13 is essentially the same to those of Theorems 3.4.11 and 3.4.13,

and is omitted.

Similar to Theorems 3.4.11 - 3.4.12, Theorem 3.4.13 indicates that θ̂NK converges in prob-

ability to one point in the optimal set Θ∗. Actually, as we will see in EXAMPLE 3.4.2 and

3.4.3, if no information about decision makers’ preference or partial understanding on θ is

imposed, the optimal set Θ∗ is often not a singleton even when the objective functions are

strongly convex. This indicates one challenge of parameter inference through inverse mul-

tiobjective optimization. With such an observation, the risk consistency, or persistence in

[82], is a more realistic standard for the estimator when learning parameters through solving

IMOP.

3.4.2 Generalization Bound of 3.9

For fixed weight samples {wk}k∈[K], we want to estimate the risk MK(θ̂NK) as it quantifies

how well the performance of our estimator θ̂NK generalizes to the unseen data. However, this

quantity cannot be obtained since the distribution Py is unknown, and thus is a random

variable (since it depends on the data). Hence, one way to make a statement about this

quantity is to say how it relates to an estimate such as the empirical risk MN
K (θ̂NK). Before

providing the main theorem, we first introduce some important definitions and lemmas.

Definition 3.4.2 (Rademacher random variables). Random variables σ1, . . . , σN are called

Rademacher random variables if they are independent, identically distributed and P(σi =

1) = P(σi = −1) = 1/2 for i ∈ [N ].
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Let F be a class of functions mapping from Z to [a, b], and Z1, . . . , ZN be independent

and identically distributed (i.i.d.) random variables on Z.

Definition 3.4.3. The Rademacher complexity of F is

RadN(F) =
1

N
E
[

sup
f∈F

∑
i∈[N ]

σif(Zi)

]
, (3.22)

where the expectation is taken over σ and Z1, . . . , ZN .

Intuitively, RadN(F) is large if one can find function f ∈ F that look like random noise,

that is, these functions are highly correlated with Racemacher random variables σ1, . . . , σN .

Lemma 3.4.14. Let F be a class of functions mapping from Z to [a, b]. Let Z1, · · · , ZN be

i.i.d. random variables on Z. Then, for any 0 < δ < 1, with probability at least 1− δ, every

f ∈ F satisfies

E[f(Z)] ≤ 1

N

∑
i∈[N ]

f(Zi) + 2RadN(F) + (b− a)

√
log(1/δ)

2N
. (3.23)

Remark 3.4.2. The last term of the inequality in Lemma 3.4.14 might not be tight. We are

able to obtain tighter bounds using more complex methods such as the one in [83]. We refer

the reader to [84, 85] for detailed introductions on how to characterize the generalization

bound that the estimators may have in given situations.

Given K and θ, we define a function f(·, θ) by f(y, θ) = min
k∈[K]
‖y − xk‖2

2, where xk ∈

S(wk, θ) for all k ∈ [K]. Now consider the class of functions F = {f(·, θ) : θ ∈ Θ}.

To bound the risk E[f(y, θ)] using Lemma 3.4.14, we need to either compute the vaule of

RadN(F) or find an upper bound of it. Note that the computation of RadN(F) involves

solving a difficult optimization problem over F . In contrast, obtaining a bound of RadN(F)

is relatively easier. Therefore, we seek to bound RadN(F) in the following lemma.

Lemma 3.4.15. The Rademacher complexity of F is bounded by a function of sample size

N ,

RadN
(
F
)
≤ K√

N

(
B2 + 2BR

)
. (3.24)
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Theorem 3.4.16 (Generalization bound). Suppose Assumptions 3.2.1 - 3.4.2 hold. For any

0 < δ < 1, with probability at least 1− δ with respect to the observations,

MK(θ̂NK) ≤MN
K (θ̂NK) +

1√
N

(
2K(B2 + 2BR) + (B +R)2

√
log(1/δ)/2

)
for each K.

(3.25)

Essentially, this theorem indicates that the risk of the estimator constructed by solving

3.9, which can be seen as the test error for fixed weight samples {wk}k∈[K], is no worse than

the empirical risk, which can be seen as the training error, by an additional term that is of

O(1/
√
N).

3.4.3 Identifiability Analysis for IMOP

In this section, we propose the concept of identifiability in the context of decision making

problems with multiple objectives, and show its correlation with the performance of our

model for IMOP.

Definition 3.4.4 (Hausdorff semi-distance). Let X and Y be two nonempty set. We define

their Hausdorff semi-distance by

dsH(X, Y ) = sup
x∈X

inf
y∈Y

d(x, y). (3.26)

Clearly, dsH(X, Y ) = 0 if X = Y . Nevertheless, dsH(X, Y ) = 0 does not always lead to

X = Y .

Lemma 3.4.17. dsH(X, Y ) = 0 if and only if X ⊆ Y .

We are now ready to state our definition of Identifiability in the context of 3.1.

Definition 3.4.5 (Identifiability). A 3.1 is said to be identifiable at θ ∈ Θ, if for all θ′ ∈ Θ\θ,

dsH(XP (θ), XP (θ′)) > 0. (3.27)

Intuitively, a 3.1 is identifiable if its Pareto optimal set can not be covered by that of

any other DMP with parameter in Θ. More precisely, XP (θ) is not a subset of XP (θ′) for

any θ′ ∈ Θ \ θ.
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3.4.3.1 Estimation Consistency of IMOP under Identifiability Let θ0 be the un-

derlying parameter of the 3.1 that generates the data. If 3.1 is identifiable at θ0, and the

data is not corrupted by noise, then M(θ) achieves its minimum uniquely at θ0. We are now

ready to state our result regarding the estimation consistency of θ̂NK .

Theorem 3.4.18 (Consistency of θ̂NK). Suppose Assumptions 3.2.1 - 3.4.1 hold. Suppose

also that f(x, θ) is strongly convex in x for each θ ∈ Θ, and that ∀y ∈ Y ,y ∈ XP (θ0). That

is, there is no noise in the data. If 3.1 is identifiable at θ0 ∈ Θ, then θ̂NK
P
99K θ0.

On top of the ability of inferring parameters in 3.1, we would like to point out that our

model for IMOP has an additional benefit of learning the distribution of decision makers’

preferences.

By solving 3.9, we obtain not only an estimation of θ and {xk}k∈[K], but also the value

of zik for each i ∈ [N ] and k ∈ [K]. We group all those noisy decisions with zik = 1 among

{yi}i∈[N ] to the cluster Ck for each k ∈ [K]. For the cluster Ck, all the noisy decisions

share the same preference over objective functions. More precisely, we let wk, the kth

weight sample, represent the preference of the decision makers in Ck over multiple objective

functions. Here, one latent assumption we make is that decision makers in the same cluster

are homogeneous in their preferences for different objectives. Next, we propose the concept

of the bijectivity of a 3.1 to support the performance analysis of the inferred preference.

Definition 3.4.6 (Bijectivity). A 3.1 is said to be bijective at θ ∈ Θ if XP (θ) =
⋃

w∈Wp

S(w, θ),

S(w, θ) is single valued for w almost surely, and ∀w1, w2 ∈ Wp, w1 6= w2 implies S(w1, θ) 6=

S(w2, θ).

With a slight abuse of notation, we let wy be the true weight for y, and wNKy be the

estimated weight for y given θ̂NK . More precisely, wNKy = arg minwk:k∈[K]{lK(y, θ̂NK)}. The

following theorem shows that the inferred preference converges in probability to the true

preference if the 3.1 we investigate enjoys the identifiability and the bijectivity defined above.

Theorem 3.4.19 (Consistency of wNKy ). Suppose the same conditions of Theorem 3.4.18

hold. If 3.1 is bijective at θ0, then ‖wy − wNKy ‖2
P
99K 0 for y ∈ Y almost surely.

47



3.4.3.2 Non-identifiability of a Decision Making Problem A 3.1 might be non-

identifiable in various ways. One trivial non-identifiability occurs due to scaling or permuting

the component functions in f(x, θ) or g(x, θ). Nevertheless, this is not a serious problem in

practice because some components of f(x, θ) or g(x, θ) might be known a priori, which helps

avoid the occurrence of such non-identifiability. Otherwise, such non-identifiability could be

prevented by normalizing certain components of the parameter before solving 3.9.

A more subtle non-identifiability issue occurs when different 3.1s have the same Pareto

optimal set, as shown by the following two examples. Under such circumstances, one could

not tell which program generates the observed decisions provided that no extra information

is available.

Example 3.4.2.

min

 x2
1 + 2x2

2 + 6x1 + 2x2

2x2
1 + x2

2 − 12x1 − 10x2


s.t. 3x1 − x2 ≤ 6,

x2 ≤ 3,

x1, x2 ≥ 0.

(3.28)

Example 3.4.3.

min

 7x2
1 + 11x2

2 + 19x1

12x2
1 + 6x2

2 − 72x1 − 60x2


s.t. 3x1 − x2 ≤ 6,

x2 ≤ 3,

x1, x2 ≥ 0.

(3.29)

Proposition 3.4.20. EXAMPLE 3.4.2 and EXAMPLE 3.4.3 have the same Pareto optimal

set.

We plot the two Pareto optimal sets in Figure 10. One can see that the two examples

share the same Pareto optimal set. Suppose no restrictions on the variables x1 and x2, we

obtain a set of points that consists of the optimal solution of 3.2 for each w ∈ [0, 1]. We call

it the solution path for 3.1. To further illustrate why these two examples share the same

Pareto optimal set, we plot the solution paths for both of them in Figure 10. It shows that

solution path 2 is covered by solution path 1. Note that both solution paths have points

lying outside of the feasible region. These points are rendered to become the same Pareto

optimal solutions on the boundary of the feasible region, which explains why two 3.1s with

different solution paths have the same Pareto optimal set.
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Figure 10: The Black Diamond Dots Represent the Solution Path of Example 3.4.2. The

Blue ”+” Dots Show the Solution Path of Example 3.4.3. The Red Circle Dots Indicate the

Pareto Optimal Set for Both Examples.

3.4.3.3 Test Non-identifiability of a Decision Making Problem As shown in pre-

vious section, non-identifiability of a 3.1 occurs in various ways. It occurs even when 3.1 is

strongly convex, which would bring serious problems to the inference of parameters. There-

fore, it is necessary for us to provide a systematic procedure to test whether a 3.1 is identi-

fiable or not. To achieve this goal, we first introduce the test problem in the following.

max
θ∈Θ

‖θ − θ̂NK‖1

s.t. xi ∈
⋃

k∈[K′]

S(wk, θ) ∀i ∈ [N ′],
(3.30)

where θ̂NK is an optimal solution of 3.9, and {xi}i∈[N ]′ are the Pareto optimal points on XP (θ̂NK)

which could be obtained a priori by solving 3.2 with a set of weights {wi}i∈[N ′]. Indeed, 3.30

seeks to find the furthest θ to θ̂NK that still keeps XP (θ̂NK) Pareto optimal. Thus, the test

statistic could be the optimal value ztest of 3.30, where ztest > 0 suggests that there might

exist multiple parameters keeping XP (θ̂NK) Pareto optimal, and that 3.1 is non-identifiable.

We need three sets of weight samples to solve 3.30. The first set of weight samples

{wk}k∈[K] is used in 3.9. Once obtaining θ̂NK , we use the second set of weight samples

{wi}i∈[N ′] to generate the Pareto optimal points on XP (θ̂NK). The third set of weight samples
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{wk}k∈[K′] is used to find the furthest θ to θ̂NK that keeps {xi}i∈[N ′] Pareto optimal. These

three sets of weights do not necessarily be the same. Since the weighting problem 3.2 is a

convex program and thus is the easiest one among the three problems, {wi}i∈[N ′] should be

the largest set. In addition, 3.9 is the most difficult one to solve, and thus {wk}k∈[K] should

be the smallest set.

Suppose f(x, θ) and g(x, θ) are smooth in x, we can reformulate the 3.30 by replacing the

optimal set S(wk, θ) with strong duality or its KKT conditions and using binary variables

to indicate the inclusion relationship between xi and S(wk, θ). The reformulation is given in

APPENDIX C.4.1. The test process is formally presented in Algorithm 2. We emphasize

that this procedure becomes more accurate when more data are available.

Algorithm 2 Test Non-identifiability of a Decision Making Problem

1: Choose weight samples {wk}k∈[K]. Solve 3.9. Denote θ̂NK the optimal solution.

2: Choose a new set of weight samples {wi}i∈[N ′]. Generate |N ′| Pareto optimal points on

XP (θ̂NK) by solving 3.2. Namely, xi ∈ S(wi, θ̂
N
K) for each i ∈ [N ′].

3: Choose another set of weight samples {wk}k∈[K′]. Solve 3.30. Let the test statistic be

the optimal value ztest.

4: If ztest 6= 0 , we believe 3.1 is non-identifiable based on the data.

3.5 Solution Approaches to 3.9

The most natural approach to solve 3.9 is to transform it into a single level optimization

problem by replacing the constraints xk ∈ S(wk, θ) with optimality conditions [86]. In gen-

eral, there are at least three ways to achieve this. One way is to replace xk ∈ S(wk, θ) by the

variational inequalities, the second way is to employ the strong duality theorem of convex

optimization, and the third way is to replace xk ∈ S(wk, θ) by the KKT conditions. Note

that the first and second ways will introduce product terms of the upper level decision vari-

ables (i.e., θ) and lower level decision variables (i.e., xk), making the reformulated problems

extremely difficult to solve by State-of-Art solvers. Nevertheless, the third approach would
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avoid such a situation since the complementary constraints in KKT conditions can be lin-

earized, and the resulting single level reformulation can be solved efficiently by State-of-Art

mixed integer nonlinear programming solvers as demonstrated later in section 3.6. Hence,

we will present our solution approaches based on the reformulations using KKT conditions.

Due to the NP-hardness shown in Theorem 3.3.3, solving 3.9 exactly with large size or

high dimensional data set is practically infeasible. To tackle this challenge, we develop an

expectation-maximization (EM)-style clustering-type algorithm that guarantees to converge

to a (local) optimal solution. Moreover, this algorithm can be enhanced through incorpo-

rating manifold learning. Finally, we present a fast heuristic algorithm based on alternating

direction method of multipliers (ADMM) to solve the Maximization step of the clustering-

type algorithm. Although ADMM requires solving a much smaller problem many times,

experimental results in section 3.6 indeed shows that it provides a tractable approach for

solving 3.9. Since ADMM is not the main contribution of our paper, we put it in Appendix

C.3.1. The general framework of IMOP and these algorithms is presented in Figure 11.

Figure 11: The Framework of Solving IMOP through Manifold Learning and Clustering.

3.5.1 Solving IMOP through a Clustering-type Approach

We provide in section 3.3.1 deep insights on the connections between 3.9 and the K-

means clustering problem. Leveraging these insights, we develop an efficient clustering-type

algorithm to solve 3.9. Clearly, in both 3.9 and 3.12, one needs to assign {yi}i∈[N ] to certain

clusters in such a way that the average squared distance between yi and its closest xk is
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minimized. The difference is whether xk has restriction or not. In 3.9, each xk is restricted

to belong to S(wk, θ), while there is no restriction for xk in 3.12. As such, each xk in 3.12

is the centroid of the observations in the kth cluster. Nevertheless, we will show in the

following that the centroid of cluster k is closely related to xk in 3.9 for each k ∈ [K]. More

precisely, we are able to obtain xk given only the centroid and the number of observations

in each cluster.

For each k ∈ [K], we denote Ck the set of noisy decisions with zik = 1 after solving 3.9 to

optimal. That is, observations in Ck are closest to xk. Consequently, we partition {yi}i∈[N ]

into K clusters {Ck}k∈[K]. Let yk = 1
|Ck|
∑

yi∈Ck yi be the centroid of cluster Ck, and denote

V ar(Ck) the variance of Ck. Through an algebraic calculation, we get

MN
K (θ) =

1

N

∑
i∈[N ]

‖yi −
∑
k∈[K]

zikxk‖2
2 =

1

N

∑
k∈[K]

|Ck|
(
‖yk − xk‖2

2 + V ar(Ck)

)
. (3.31)

Note that {V ar(Ck)}k∈[K] is a set of fixed values when clusters {Ck}k∈[K] are given. If

we know the clusters {Ck}k∈[K] beforehand, we see in (3.31) that K centroids {yk}k∈[K] and

{|Ck|}k∈[K] are enough to solve 3.9. This is the key insight we leverage to solve 3.9. How-

ever, similar to K-means clustering, {Ck}k∈[K] are not known a priori. In K-means clustering

algorithm [19], this problem is solved by initializing the clusters, and then iteratively up-

dating the clusters and centroids until convergence. Similarly, we propose a procedure that

alternately clusters the noisy decisions (assignment step) and find θ and {xk}k∈[K] (update

step) until convergence. Given θ and {xk}k∈[K], the assignment step can be done easily as we

discussed previously. Moreover, the update step can be established by solving the problem

as follows.

min
θ,xk′

1
N

∑
k∈[K]

|Ck|‖yk −
∑

k′∈[K] zkk′xk′‖2
2

s.t. xk′ ∈ S(wk′ , θ), ∀k′ ∈ [K],∑
k′∈[K]

zkk′ = 1, ∀k ∈ [K],

zkk′ ∈ {0, 1}, ∀k ∈ [K], k′ ∈ [K].

(3.32)

The expectation-maximization (EM)-style algorithm is formally presented in the follow-

ing.
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Algorithm 3 Solving 3.9 through a Clustering-based Approach

1: Input: Noisy decisions {yi}i∈[N ], weight samples {wk}k∈[K].

2: Initialization: Partition {yi}i∈[N ] into K clusters using K-means clustering. Calculate

{yk}k∈[K]. Solve 3.32 and get an initial estimation of θ and {xk}k∈[K].

3: while stopping criterion is not satisfied do

4: Assignment step: Assign each yi to the closest xk to form new clusters. Calculate

their centroids {yk}k∈[K].

5: Update step: Update θ and {xk}k∈[K] by solving 3.32.

6: end while

7: Output: An estimate of the parameter of 3.1. Denote it by θ̂C .

Remark 3.5.1. (i) In practice, we would apply one of the following as the stopping criterion:

cluster assignments do not change; or, the maximum number of iterations is reached. (ii) In

Initialization step, we take K-means++ algorithm [20] as the default clustering method, run

it multiple times and select the centroids of the best clustering results to further solve 3.32.

(iii) In the Assignment step, note that we only handle non-empty clusters and break ties

consistently, e.g., by assigning an observation yi to the cluster with the lowest index if there

are several equidistant xk. Otherwise, the algorithm can cycle forever in a loop of clusters

that have the same cost. (iv) In the Update step, 3.32 can be solved either by directly

computing the KKT based single level reformulation or by applying the ADMM approach

shown in Appendix C.3.1 We note that 3.32 indeed can be solved efficiently by State-of-Art

mixed integer nonlinear programming solvers as demonstrated in the experiments.

Since 3.9 is non-convex, there may exist multiple local optimal solutions. Nevertheless,

we will show that Algorithm 3 indeed converges to a (local) optimal solution in finite steps.

The key step of the proof is established in the following lemma.

Lemma 3.5.1. Both the Assignment step and the Update step in Algorithm 3 decrease

MN
K (θ).

Theorem 3.5.2 (Finite convergence). Suppose there is an oracle to solve 3.32. Algorithm

3 converges to a (local) optimal solution of 3.9 in a finite number of iterations.
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Proof. Since there is at most KN ways to partition {yi}i∈[N ] into K clusters, the mono-

tonically decreasing Algorithm 3 will eventually arrive at a (local) optimal solution in finite

steps.

Remark 3.5.2. (i) In practice, Algorithm 3 converges pretty fast, typically within several

iterations. The main reason is that the Initialization step often provides a good estimation

of the true parameter, since the K centroids returned by K-means clustering represent the

observations well in general, especially when K is large. (ii) Algorithm 3 is extremely Pareto

optimal in computation especially when N � K. The reason is that in each iteration only

K representative points (i.e., the centroids of clusters) are used to update θ, instead of the

whole batch of observations.

3.5.2 An Enhanced Algorithm for Solving IMOP with Manifold Learning

We provide another algorithm leveraging the connection shown in section 3.3.2 that the

Pareto optimal set is a piecewise continuous manifold with intrinsic dimension of p−1, where

p is the number of objectives, regardless of the dimension of the decision space.

Algorithm 4 Solving 3.9 with manifold learning and clustering

1: Input: Noisy decision {yi}i∈[N ], evenly sampled weights {wk}k∈[K].

2: Apply nonlinear manifold learning algorithm for {yi}i∈[N ]. Get low dimensional points

{xi}i∈[N ], where xi ∈ Rp−1.

3: Group {xi}i∈[N ] into K clusters using 3.12.. Denote IK the set of labels of {xi}i∈[N ].

Find K centroids of {yi}i∈[N ] according to IK . Denote {Ck}k∈[K] these centroids.

4: Run Algorithm 3 with {Ck}k∈[K] and {wk}k∈[K].

5: Output: An estimate of the parameter θ of 3.1.

Remark 3.5.3. (i) Linear manifold learning methods, such as Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA), perform well when there exists a linear

structure in the data. However, applying them in step 2 might not be appropriate since our

data has a non-linear structure by Theorem 3.3.5, even for the simplest linear case stated in

Corollary 3.3.5.1. Hence, we focus on nonlinear manifold learning methods. (ii) Similar to
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Algorithm 3, we run K-means++ algorithm multiple times and select the centroids of the

best clustering results in step 3.

3.6 Computational Experiments

In this section, we illustrate the performances of the proposed algorithms on a multi-

objective linear program (MLP), two multiobjective quadratic programs (MQP) and one

general multiobjective nonlinear program. Our experiments have been run on Bridges sys-

tem at the Pittsburgh Supercomputing Center (PSC) [61]. The mixed integer second order

conic problems (MISOCP) are solved with Gurobi [87]. All the algorithms are programmed

with Julia [62] unless otherwise specified. All the single level reformulations of the IMOP

are given in Appendix C.4. Throughout this section we use SR to refer that we solve these

single level reformulations to optimality using Gurobi.

3.6.1 Learning the Objective Functions of an MLP

Consider the following Tri-objective linear programming problem:

min {−x1,−x2,−x3}

s.t. x1 + x2 + x3 ≤ 5,

x1 + x2 + 3x3 ≤ 9,

x1, x2, x3 ≥ 0.

(3.33)

In this example, there are two efficient faces, one is the triangle defined by vertices

(2, 4, 5), the other one is the tetragon defined by vertices (1, 3, 5, 4) as shown by Figure 12.

We generate the data as follows. First, N = 10000 Pareto optimal points {xi}i∈[N ]

are uniformly sampled on faces (2, 4, 5) and (1, 3, 5, 4). Next, the observations {yi}i∈[N ] are

obtained by adding noise to each Pareto optimal point, where the noise has a jointly normal

distribution with zero mean and 0.52 units identity covariance. Namely, yi = xi + εi, where

εi ∼ N (03, 0.5
2I3) for each i ∈ [N ]. We assume that the parameters to be learned are
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non-positive. In addition, we add the normalization constraints 1Tc1 = −1,1Tc2 = −1 and

1Tc3 = −1 to prevent the arise of trivial solutions, such as c1 = c2 = c3 = [0, 0, 0]T . Then,

we uniformly choose the weights {wk}k∈[K] such that wk ∈ W3 for each k ∈ [K]. Here, we

set K = 81.

Algorithms 3 - 4 are used to solve 3.9. In Algorithm 3, we run K-means++ algorithm

10 times to find the best clustering results. Centroids of the K = 81 clusters are plotted

in Figure 12b. In Algorithm 4, we use Kernel PCA [88] to project the data into a 2-

dimension space, and then apply K-means++ clustering algorithm to find K = 81 clusters.

Centroids of the K = 81 clusters are plotted in Figure 12c. As shown in Figures 12b -

12c, Algorithm 4 provides the better estimation of the manifold before solving 3.9 than

Algorithm 3. Nevertheless, both solve 3.9 as they all recover the true Pareto optimal set

even with the initial estimation of the parameter in the Initialization step. Thus, we won’t

run the later steps in Algorithm 3. The estimating results using Algorithm 3 are ĉ1 =

[0, 0,−1]T , ĉ2 = [−0.3333,−0.3333,−0.3333]T and ĉ3 = [−0.2871,−0.2871,−0.4258]T and

ĉ3 = [−0.2871,−0.2871,−0.4258]T . The estimating results using Algorithm 4 are ĉ1 =

[−0.4,−0.4,−0.2]T , ĉ2 = [−0.2,−0.2,−0.6]T and ĉ3 = [−0.3333,−0.3333,−0.3333]T .

Given the estimation ĉ1 = [0, 0,−1]T , ĉ2 = [−0.3333,−0.3333,−0.3333]T and ĉ3 =

[−0.2871,−0.2871,−0.4258]T , we apply Algorithm 2 to test whether this example is iden-

tifiable or not. Step 1 is omitted since it has been completed in the previous experiment.

In Step 2, we randomly sample |N ′| = 200 points from the Pareto optimal. In Step 3,

we uniformly generate |K ′| = 200 weights. In Step 4, we replace the optimal set S(wk, θ)

by KKT conditions and solve the 3.30 , and it achieves the maximum value when c1 =

[−0.4778,−0.4994,−0.0228]T , c2 = [0.0,−0.0217 − 0.9783]T , c3 = [−0.9556,−0.0444, 0.0]T .

The test statistic ztest = 4.5813, which is greater than 0. Thus, we claim that this example

is non-identifiable.
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3.6.2 Learning the Preferences and Constraints of an MQP

We consider the following multiobjective quadratic programming problem.

min
x∈R2

+

f1(x) = 1
2
xTQ1x + cT1 x

f2(x) = 1
2
xTQ2x + cT2 x


s.t. Ax ≥ b,

(3.34)

where parameters of the objective functions and the constraints are

Q1 =

1 0

0 2

 , c1 =

3

1

 , Q2 =

2 0

0 1

 , c2 =

−6

−5

 , A =

−3 1

0 −1

 ,b =

−6

−3

 . (3.35)

3.6.2.1 Learning the Right-hand Side of Constraints In the first set of experiments,

suppose the right-hand side b is unknown, and the learner seeks to learn b given the noisy

decisions she observes. Assume that b is within the range [−8,−1]2. We generate the data

as follows. We first compute Pareto optimal solutions {xi}i∈[N ] by solving 3.2 with weight

samples {wi}i∈[N ] that are uniformly chosen from W2. Next, the noisy decision yi is obtained

by adding noise to xi for each i ∈ [N ]. More precisely, yi = xi + εi, where each element

of εi has a truncated normal distribution supported on [−1, 1] with mean 0 and standard

deviation 0.1 for all i ∈ [N ].

Both the SR approach and the ADMM approach (Algorithm 6) are applied to solve for

b with different N and K. The basic parameters for the implementation of the ADMM

approach are given in the following. The observations are equally partitioned into T = N/2

groups. We pick the penalty parameter ρ = 0.5 as the best out of a few trials. We use

the initialization b0 = vt,0 = 02 for the iterations. The tolerances of the primal and dual

residuals are set to be εpri = εdual = 10−3. We find that Algorithm 6 converges in 100

iterations in general, thus the termination criterion is set to be either the norms of the

primal and dual residuals are smaller than 10−3 or the iteration number k reaches 100.

In Figure 13 we summarize the computational results averaged over 10 repetitions of the

experiments for each N and K using Algorithm 6. Note that btrue = [−3,−6]T . The smaller

the estimator error is, the closer is b̂ to btrue. Note that 3.9 is prediction consistent by

Theorem 3.4.13 for this example. The results in Figure 13 show the estimation consistency
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of the 3.9 as the estimation error decreases to zero with the increase of the data size N and

weight sample size K, although it does not satisfy the conditions for Theorem 3.4.18. Note

that estimation consistency implies risk consistency. Thus, this result illustrates Theorem

3.4.13. Also, we see that the estimation error becomes more stable when using more weight

samples, i.e., K becomes larger. In Tables 4- 5, we summarize the computational time

that averages over 10 repetitions of the experiments for each algorithm, N and K. Here

p-ADMM means that we implement the θt-update step of ADMM in parallel with 28 cores.

∗ means that we can not get reasonable estimation of the parameter within three hours.

As shown in these tables, both ADMM and p-ADMM approaches dramatically improve the

computational efficacy over the SR approach when N and K are large. On average, p-ADMM

is two times faster than ADMM. Moreover, the SR approach could handle only small size

problems with roughly N ≤ 20 and K ≤ 11. To further illustrate the performance of the

ADMM algorithm, we plot the primal and dual residuals versus the iteration number in

each of the 100 repetitions for N = 20, K = 21, and the estimation error versus the iteration

number in Figures 14a and 14b, respectively. The two figures show that the ADMM approach

converges within 100 iterations under the above setting.

3.6.2.2 Learning the Objective Functions In the second set of experiments, suppose

c1 and c2 are unknown, and the learner seeks to learn them given the noisy decisions. Assume

that c1 and c2 are within range [−10, 10]2. We generate the data in a way similar to the

first set of experiments. The only difference is that each element of the noise has a uniform

distribution supporting on [−0.25, 0.25] with mean 0 for all i ∈ [N ].

We would like to use Algorithm 3 to solve large-scale 3.9. We note that the SR approach

can not handle cases when N ≥ 10 and K ≥ 11 in the Update step. Hence, the ADMM

approach (Algorithm 6) is applied to solve 3.32. The stopping criterion for Algorithm 3 is that

the maximum iteration number reaches five. In the Initialization step, we run K-means++

algorithm 50 times to find the best clustering results. When solving 3.32 using ADMM, we

partition the observations in such a way that each group has only one observation. We pick

the penalty parameter ρ = 0.5 as the best out of a few trials. We use the initialization

c0
1 = c0

2 = vt,01 = vt,02 = 02 for the iterations. The tolerances of the primal and dual residuals
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are set to be εpri = εdual = 10−3. The termination criterion is that either the norms of the

primal and dual residuals are smaller than 10−3 or the iteration number k reaches 50.

In Figure 15a, we report the prediction errors averaged over 10 repetitions of the experi-

ments for different N and K. Here, we use an independent validation set that consists of 105

noisy decisions generated in the same way as the training data to compute the prediction er-

ror. We also calculate the prediction error using the true parameter and M(θtrue) = 0.022742.

More precisely, we evenly generate K = 104 weight samples and calculate the associated

Pareto optimal solutions on the true Pareto optimal set. These Pareto optimal solutions are

then used to find the prediction error of the true parameter. We observe that the prediction

error has the trend to decrease to M(θtrue) with the increase of the data size N and weight

sample size K. This makes lots of sense because 3.9 is risk consistent by Theorem 3.4.13 for

this example. To further illustrate the performance of the algorithm, we plot the change of

assignments versus iteration in the Assignment step over 10 repetitions of the experiments

with N = 5 × 104, K = 21 in Figure 15b. One can see the assignments become stable in

5 iterations, indicating the fast convergence of our algorithm. Also, we plot the estimated

Pareto optimal set with N = 5 × 104, K = 21 in the first repetition in Figure 15c. Here,

ĉ1 = [2.0023, 0.0454]T and ĉ2 = [−5.7197,−4.6949]T . They are not equal to the true pa-

rameters as this MQP is non-identifiable. However, our method still recovers the unknown

parameters quite well as the estimated Pareto optimal set almost coincides with the true

one.

We also plot our prediction of the distribution for the preferences of f1(x) and f2(x).

Since there are only two objective functions, it is sufficient to draw the distribution of the

weight for f1(x) (given that weights of f1(x) and f2(x) summing up to 1). As shown in

Figure 15d, except in the two endpoint areas, the number of noisy decisions assigned to

each weight follows roughly uniformly distribution, which matches our uniformly sampled

weights. Indeed, we would like to point out that a boundary effect probably occurs in these

two endpoint areas. Although different weights are imposed on component functions, the

noiseless optimal solutions, as well as observed decisions, do likely to merge together due to

the limited feasible space in those areas. We believe that it reflects an essential challenge in

learning multiple objective functions in practice and definitely deserves a further study.
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We next compare the performance of Algorithm 3 and Algorithm 4. We find that the

manifold learning based method generally performs better when the data has lots of noise.

Specifically, in the third set of experiments, suppose c1 and c2 are unknown, and the learner

seeks to learn them given the noisy decisions. Assume that c1 and c2 are within range

[−10, 10]2. We generate the data in a way similar to the previous two sets of experiments.

The difference is that each element of the noise has a uniform distribution supporting on

[−1, 1] with mean 0 for all i ∈ [N ].

We report the estimation results in Table 6. Here, Laplacian means that we use Laplacian

eigenmaps [89] to do the manifold learning. Similarly, KernelPCA stands for Kernel PCA

[90]. Autoencoder stands for [91]. ManifoldChart stands for Manifold Charting [92]. NCA

stands for Neighborhood Components Analysis [93]. For Algorithm 4, we try 5 common

manifold leaning methods. We report the results for K up to 11 because both algorithms

would recover the true Pareto optimal set quite well when K = 21. We find that Algorithm

4 with Laplacian, Autoencoder and ManifoldChart perform better than Algorithm 3 when

K = 6 or 11, while Algorithm 4 using KernelPCA and NCA cannot beat Algorithm 3. This

suggests that one should try different manifold learning algorithms when using Algorithm

4 In addition, noting that Algorithm 3 involes multiple iterations of solving 3.32. Thus,

Algorithm 4 would take much less time than Algorithm 3.

To further illustrate the performance of the two algorithms, we plot the centroids obtained

in two algorithms when K = 11 in Figure 16a and 16b , respectively. Figure 16b shows

clearly that the principal points (centroids) in Algorithm 4 almost lie on and recover the

true Pareto optimal set, while centroids in Algorithm 3 lie around the true Pareto optimal

set. This explains why Algorithm 4 would give us better estimation results. Also, we can see

in Figure 16b that the estimated Pareto optimal set almost coincides with the true Pareto

optimal set.

3.6.3 Learning the Expected Returns in Portfolio Optimization

In this example, we consider various noisy decisions arising from different investors in a

stock market. More precisely, we consider a portfolio selection problem, where investors need
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to determine the fraction of their wealth to invest in each security in order to maximize the

total return and minimize the total risk. The portfolio selection process typically involves

the cooperation between an investor and a portfolio analyst, where the analyst provides an

efficient frontier on a certain set of securities to the investor and then the investor selects

a portfolio according to her preference to the returns and risks. The classical Markovitz

mean-variance portfolio selection [17] in the following is often used by analysts.

min
x

f1(x) = −rTx

f2(x) = xTQx


s.t. 0 ≤ xi ≤ bi, ∀i ∈ [n],

n∑
i=1

xi = 1,

(3.36)

where r ∈ Rn
+ is a vector of individual security expected returns, Q ∈ Rn×n is the covariance

matrix of securities returns, x is a portfolio specifying the proportions of capital to be invested

in the different securities, and bi is an upper bound put on the proportion of security i ∈ [n].

In portfolio optimization, the forecast of security expected returns r is essential within

the portfolio selection process. Note that different analysts might use different r, which are

due to different information sources and insights, to make recommendations. Consider a

scenario that A observes that customers of B often make more revenues. Then, A might

want to use our model to infer the r that B really uses.

We use the Portfolio data BlueChipStockMoments derived from real data in the Matlab

Financial Toolbox. The true expected returns and true return covariances matrix for the

first 8 securities are given in Appendix. W.L.O.G, we suppose that the expected returns

for the last three securities are known. The data is generated as follows. We set the upper

bounds for the proportion of the 8 securities to bi = 1.0,∀i ∈ [8]. We first generate optimal

portfolios on the efficient frontier in Figure 17a by solving 3.2 with weight samples {wi}i∈[N ]

chosen from W2. The first element of wi, ranging from 0 to 1, follows a truncated normal

distribution derived from a normal distribution with mean 0.5 and standard deviation 0.1. In

what follows, we will not distinguish truncated normal distribution from normal distribution

because their difference is negligible. Subsequently, each component of these portfolios is

rounded to the nearest thousandth, which can be seen as measurement error.
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Algorithm 3 is applied in this experiment. For a reason similar to the previous experi-

ment, we use the ADMM approach (Algorithm 6) to solve 3.32. The stopping criterion for

Algorithm 3 is that the maximum iteration number reaches five. In the Initialization step,

we run K-means++ algorithm 50 times to find the best clustering result. When solving 3.32

using ADMM, we partition the observations in such a way that each group has only one ob-

servation. We pick the penalty parameter ρ = 1 as the best out of a few trials. We initialize

r0 = vt,0 = 08 for the iterations. The tolerances of the primal and dual residuals are set to

be εpri = εdual = 10−4. The termination criterion is that either the norms of the primal and

dual residuals are smaller than 10−4 or the iteration number k reaches 10.

In Table 7, we list the estimation error averaged over 10 repetitions of the experiments

for each N and K using Algorithm 6. The estimation error has the trend to becomes smaller

when N and K increase, indicating the estimation consistency and thus risk consistency of

the method we propose. To further illustrate the performance of our method, we plot the

estimated efficient frontier which is very close to the real one as shown in Figure 17a. We also

plot our estimation on the distribution of the weight of f1(x) among the noisy decisions. As

shown in Figure 17b, the number of noisy decisions assigned to each weight follows a normal

distribution with mean 0.5012 and standard deviation 0.1013. The 0.95 confidence intervals

for the mean and standard deviation are [0.4992, 0.5032] and [0.0999, 0.1027], respectively.

It is reasonable as we generate the portfolios by solving 3.2 with normally sampled weights

and the feasible set of x is of a much weaker boundary effect, comparing to that in Section

3.6.2.2.

3.6.4 Learning the O-D Matrix

Let G = (N,A) be a directed transportation network defined by a set N of nodes and a

set A of directed links. Each link a ∈ A has an associated flow-dependent travel time ta(va)

that denotes the average travel time on each link. The travel time function ta(va) is assumed

to be differentiable, convex, and monotonically increasing with the amount of flow va. Each

link a ∈ A also has an associated flow-dependent traffic emissions ea(va) that denotes the

average traffic emissions on each link. Let W denote the set of O-D pairs, Rw denote the
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set of all routes between the O-D pair w ∈ W , dw represents the travel demand of O-D pair

w, and fwr denote the traffic flow on the route r connecting the O-D pair w. δwar = 1 if route

r ∈ Rw uses link a, and 0 otherwise.

We consider the following Bi-criteria traffic network system optimization problem of

minimizing congestion and traffic emissions simultaneously [94]:

min


∑
a∈A

ta(va)va∑
a∈A

ea(va)va


s.t. dw =

∑
r∈Rw

fwr , ∀w ∈ W,

va =
∑
w∈W

∑
r∈Rw

fwr δ
w
ar, ∀a ∈ A,

va, f
w
r ≥ 0, ∀r ∈ Rw, w ∈ W.

(3.37)

Note that the problem becomes a minimization of a weighted combination of congestion and

traffic emissions if the external costs of congestion and emissions can be obtained. These

costs change from time to time, which will lead to different link flows. We seek to learn the

O-D matrix given the link flows under different values of time and monetary valuation of

traffic emissions. In addition, the presence of measurement errors in the observed link flows

are explicitly considered.

Fig 18 shows a road network with six nodes and seven links used in [95, 94]. The network

has two O-D pairs (1, 3) and (2, 4), where (1, 3) has the demand of 2500 vehicles per hour and

(2, 4) has the demand of 3500 vehicles per hour. We use the US Bureau of Public Road link

travel time function to determine the travel time on each link. The function is of the form

ta(va) = t0a(1 + 0.15 · (va/Ca)4), where t0a and Ca are parameters representing the free-flow

travel time (in minutes) and capacity (vehicles per hour) of link a ∈ A.

We follow the work [96] and assume the total emissions generated by the vehicles on link

a is ea(va) = hava, where ha denotes the emission factor associated with link a. The key part

in the estimation of vehicle emissions is that the volume of emissions equals to the product

of emission factors times the link flow. The values of the parameters are listed in Table 8.

We generate the data as follows. We start by computing the efficient solutions {yi}i∈[N ]

using the weighted sum approach. The weights {wi}i∈[N ] are uniformly sampled such that
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wi ∈ W2 for each i ∈ [N ], where N = 10. Since we do not want to over emphasize either the

congestion or the traffic emission in the bi-criteria traffic network system, we concentrate

the weights and set wi ∈ [0.3, 0.7]2 for each i ∈ [N ]. Subsequently, each component of the

efficient solutions is rounded to the nearest ten, which can be treated as measurement error.

We assume the demand of O-D pairs (1, 3) and (2, 4) are bigger than 1000 and smaller than

10000 vehicles per hour. Then, we evenly sample the weights {wk}k∈[K] such that wk ∈ W2

for each k ∈ [K].

We implement the SRe approach using the solver FilMINT. The solutions returned by

FilMINT are not guaranteed to be optimal since the inference of the O-D matrix involves

solving a mixed integer nonconvex program. FilMINT can handle instances with K ≤ 100

quite efficiently. In Table 9 we summarize the computational results for different K. The

table lists for each K the estimations for the demands of O-D pairs (1, 3) and (2, 4), and also

the estimation error, which is given by ‖estimation - true O-D‖2/‖true O-D‖2. The table

shows that the estimation error becomes smaller and smaller when K increases, indicating

that our method still works for general convex MOP.

3.7 Conclusions

We study in this dissertation the problem of learning the objective functions and con-

straints of a multiobjective decision making problem, based on observations of efficient solu-

tions which might carry noise. Specifically, we formulate such a learning task as an inverse

multiobjective optimization problem, and provide a deep analysis to establish the statis-

tical significance of the inference results from the presented model. Moreover, we discuss

the strong correlation between the identifiability of the decision making problem and the

performance of our inverse optimization model. We then develop two numerical algorithms

to handle the computational challenge from the large number of observations. We confirm

by extensive numerical experiments that the proposed algorithms can learn the parameters

with great accuracy while dramatically improve the computational efficacy.
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Figure 12: Learning the Objective Functions of a Tri-objective Linear Program Using

N = 10000 Observations. (a) The Light Blue Dots Indicate the 1000 Observations Ran-

domly Selected From the Data Set. Two Pareto Optimal Faces are the Triangle (2, 4, 5),

and the Tetragon (1, 3, 5, 4). (b) Orange Dots Indicate the Centroids After Using K-means

Clustering. (C) Orange Dots Indicate the Centroids after Using Kernel PCA and K-means

Clustering.
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Figure 13: Estimation Error ‖b̂− btrue‖2 for Different N and K
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Table 4: Average Running Time over 10 Repetitions (In Seconds)

N = 5 N = 10 N = 20
SR ADMM p-ADMM SR ADMM p-ADMM SR ADMM p-ADMM

K = 6 0.31 14.92 11.72 0.78 23.13 15.10 4.07 43.95 20.73
K = 11 0.42 20.93 12.83 3.10 33.88 19.43 705.36 66.91 28.95
K = 21 3.83 33.23 17.74 391.18 61.99 36.79 * 122.98 55.93
K = 41 38.42 59.67 31.69 * 156.78 107.48 * 343.72 205.98

Table 5: Average Running Time over 10 Repetitions (In Seconds)

N = 50 N = 100 N = 150
SR ADMM p-ADMM SR ADMM p-ADMM SR ADMM p-ADMM

K = 6 119.58 110.42 44.69 5423.19 222.19 87.45 * 335.90 131.73
K = 11 * 166.39 69.25 * 336.82 138.80 * 508.30 208.95
K = 21 * 306.91 141.22 * 613.08 278.28 * 923.58 418.27
K = 41 * 819.94 501.40 * 1705.70 1058.20 * 2536.29 1572.20
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Figure 14: Learning the Right-Hand Side of an MQP. We Run 500 Repetitions of the Ex-

periments with N = 20, K = 21. (a) Norms of Primal Residuals and Dual Residuals Versus

Iteration Number. (b) Norms of Estimation Error Versus Iteration Number.
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Figure 15: Learning the Objective Functions of an MQP with N = 5× 104 and K = 21. (a)

Prediction Error M(θ̂NK) for Different N and K. (b) The Dotted Yellow Line is the Error Bar

Plot of the Change of the Assignments in Five Iterations over 10 Repetitions. (c) We Pick

the First Repetition of the Experiments. Purple Dots Indicate the Data. The Estimated

Pareto Optimal Set is Indicated by the Red Dotted Line. The Real Pareto Optimal Set is

Shown by the Yellow Line. (d) Each Bar Represents the Number of Noisy Decisions that

Have the Corresponding Weights for F1(x).
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Figure 16: (a) Estimation Result for Algorithm 3. Purple Dots Indicate the Noisy Decisions.

The Real Pareto Optimal Set is Shown by the Yellow Line. Blue Diamonds are the Centroids

Obtained in the Initialization Step. The Estimated Pareto Optimal Set is Indicated by the

Red Dotted Line. (b) Estimation Result for Algorithm 4 Using Laplacian. Blue Diamonds

are the Centroids Obtained through Manifold Learning and Clustering in Step 3.

Table 6: Prediction Errors of Different Agorithms with 10000 Observations.

Algorithm 3
Algorithm 4

Laplacian KernelPCA Autoencoder ManifoldChart NCA

K = 6 0.0667 0.0436 0.0775 0.0390 0.0331 0.0323

K = 11 0.0262 0.0238 0.0581 0.0249 0.0244 0.0319
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Table 7: Estimation Error ‖r̂− rtrue‖2 for Different N and K

N = 100 N = 1000 N = 2500 N = 5000 N = 7500 N = 10000

K = 11 0.0337 0.0513 0.0406 0.0264 0.0227 0.0194

K = 21 0.0164 0.0154 0.0077 0.0055 0.0042 0.0043

K = 41 0.0220 0.0054 0.0030 0.0022 0.0018 0.0016

K = 81 0.0215 0.0028 0.0017 0.0008 0.0008 0.0008
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Figure 17: Learning the expected return of a Portfolio optimization problem with N =

10000 noisy portfolios and K = 41 weight samples. (a) The red line indicates the real

efficient frontier. The blue dots indicates the estimated efficient frontier using the estimated

expected return. (b) Each bar represents the number of the noisy portfolios that have the

corresponding weights for f1(x).
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Figure 18: A Six-node Network

Table 8: Data for the Six-node Network

Link a (1,3) (2,4) (1,5) (5,6) (2,5) (6,3) (6,4)

t0a 8.0 9.0 2.0 6.0 3.0 3.0 4.0

Ca 2000 2000 2000 4000 2000 2500 2500

ha 8.0 9.0 2.0 6.0 3.0 3.0 4.0

Table 9: Estimation Results for Different K

K 6 11 21 41 81

O-D (1, 3) 2056.79 2218.64 2218.64 2218.64 2288.95

O-D (2, 4) 2185.46 3259.60 3259.60 3259.60 3576.67

Estimation error 0.3225 0.0860 0.0860 0.0860 0.0522
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4.0 Wasserstein Distributionally Robust Inverse Multiobjective Optimization

4.1 Literature Review

Our work belongs to the emerging field of inverse multiobjective optimization. The goal

is to infer the parameters of the multiobjective decision making problem that explains the

observed decisions well. This field actually carries the data-driven concept and becomes more

applicable as large amounts of data are generated and become readily available, especially

those from digital devices and online transactions. There are several recent studies related

to the presented research. Papers [8, 65] consider a single observation that is assumed to

be an exact solution for a multiobjective linear program. Then, given a set of well-defined

linear functions, an inverse optimization is formulated to learn the corresponding weight for

each objective function to explain the observed decision. The most recent one is [11], which

proposes the general framework to infer the objective functions or constraints from multiple

noisy decisions through inverse multiobjective optimization. This work takes the framework

of empirical risk minimization and generally works well when there are fewer uncertainties

in the model, data or hypothetical parameter space. In contrast, we believe that those

uncertainties root inherently in the field of inverse multiobjective optimization, and we aim to

hedge against their influences by adopting the distributionally robust optimization paradigm

based on Wasserstein metric.

Our work draws inspirations from [10], which develops a distributionally robust approach

for inverse optimization to infer the utility function from sequentially arrived observations.

They propose the suboptimality loss function to quantify the degree of suboptimality of an

observed decision under a given candidate objective function. They show that the associ-

ated distributionally robust inverse optimization approach offers out-of samples performance

guarantees. However, their approach is specifically designed for the simpler case where the

decision making problem has only one objective function. Differently, our approach considers

a more complex situation and is suitable when the decision making problem has multiple

objectives. Moreover, instead of using the suboptimality loss function, we consider another
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one that would better capture the learner’s purpose to predict the decision maker’s decisions.

Due to the nonconvex nature of our loss function, extensive efforts are made to develop the

algorithm for solving the resulting nonconvex minmax program.

4.2 Problem Setting

To help the reader better understand the core concepts in IMOP, we repeat several pieces

of necessary information in Chapter 3.

4.2.1 Multiobjective Decision Making Problem

We consider a family of parametrized multiobjective decision making problems of the

form

min
x∈Rn

{
f1(x, θ), f2(x, θ), . . . , fp(x, θ)

}
s.t. x ∈ X(θ)

(4.1)

where p ≥ 2 and fl : Rn × Rnθ 7→ R for each l ∈ [p]. Assume parameter θ ∈ Θ ⊆ Rnθ .

We denote the vector of objective functions by f(x, θ) = (f1(x, θ), f2(x, θ), . . . , fp(x, θ))
T .

Assume X(θ) = {x ∈ Rn : g(x, θ) ≤ 0,x ∈ Rn
+}, where g(x, θ) = (g1(x, θ), . . . , gq(x, θ))

T is

another vector-valued function with gk : Rn × Rnθ 7→ R for each k ∈ [q].

Definition 4.2.1 (Pareto optimality). For fixed θ, a decision vector x∗ ∈ X(θ) is said to be

Pareto optimal if there exists no other decision vector x ∈ X such that fi(x, θ) ≤ fi(x
∗, θ)

for all i ∈ [p], and fk(x, θ) < fk(x
∗, θ) for at least one k ∈ [p].

In the study of multiobjective optimization, the set of all Pareto optimal solutions is

denoted by XP (θ) and called the Pareto optimal set. The weighting method is commonly

used to obtain a Pareto optimal solution through computing the problem of weighted sum

(PWS) [66] as follows.

min wT f(x, θ)

s.t. x ∈ X(θ)
(4.2)
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where w = (w1, . . . , wp)T . Without loss of generality, all possible weights are restricted to

a simplex, which is denoted by Wp = {w ∈ Rp
+ : 1Tw = 1}. Next, we denote the set of

optimal solutions for the 4.2 by

S(w, θ) = arg min
x

{
wT f(x, θ) : x ∈ X(θ)

}
.

In the following, we make a few assumptions to simplify our understanding, which are

actually mild and appear frequently in the literature.

Assumption 4.2.1. Set Θ is a convex compact set in Rnθ . There exists D > 0 such that

supθ∈Θ‖θ‖2 ≤ D. In addition, f(x, θ) and g(x, θ) are convex in x for each θ ∈ Θ.

4.2.2 Inverse Multiobjective Optimization

We begin with a discussion on the construction of an appropriate loss function for the

inverse multiobjective optimization problem as discussed in Chapter 3. We consider the

following loss function and surrogate loss function.

Given a noisy decision y and a hypothesis θ, the loss function is defined as the minimum

(squared) distance between y and the efficient set XP (θ):

l(y, θ) = min
x∈XP (θ)

‖y − x‖2
2. (4.3)

For a general 4.1, however, there might exist no explicit way to characterize the efficient

set XP (θ). Hence, an approximation approach to practically describe this set can be adopted.

Then, a sampling approach can be adopted to generate wk ∈ Wp for each k ∈ [K] and

approximate XP (θ) as
⋃
k∈[K] S(wk, θ). Then, the surrogate loss function is defined as

lK(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
‖y − x‖2

2. (4.4)

By using binary variables, this surrogate loss function can be converted into the surrogate

loss problem.

lK(y, θ) = min
zj∈{0,1}

‖y −
∑
k∈[K]

zkxk‖2
2

s.t.
∑
k∈[K]

zk = 1, xk ∈ S(wk, θ)
(4.5)
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We make the following assumptions as that in [11], which are common in inverse opti-

mization.

Assumption 4.2.2. (a) X(θ) is closed, and has a nonempty relative interior. X(θ) is also

bounded. Namely, there exists B > 0 such that ‖x‖2 ≤ B for all x ∈ X(θ). The support

Y of the noisy decisions y is contained within a ball of radius R almost surely, where

R <∞. In other words, P(‖y‖2 ≤ R) = 1.

(b) Each function in f is strongly convex on Rn, that is for each l ∈ [p], ∃λl > 0, ∀x,y ∈ Rn

(
∇fl(y, θl)−∇fl(x, θl)

)T
(y − x) ≥ λl‖x− y‖2

2.

Given observations {yi}i∈[N ] drawn i.i.d. according to the distribution Py, the inverse

multiobjective optimization program is given in the following.

min
θ∈Θ

1
N

∑
i∈[N ]

lK(yi, θ). (4.6)

4.2.3 Wasserstein Ambiguity Set

Let Y ⊆ Rn be the observation space where the observed noisy decisions take values.

Denote P(Y) be the set of all probability distributions on Y . From now on, we let the

Wasserstein ambiguity set P be the 1-Wasserstein ball of radius ε centered at P0:

P = Bε(P0) := {Q ∈P(Y) :W(Q,P0) ≤ ε} , (4.7)

where P0 is the nominal distribution on Y , ε > 0 is the radius of the set, and W(Q,P0) is

the wasserstein distance metric of order 1 defined as [31, 30, 28]

W(Q,P0) = inf
π∈Π(Q,P0)

∫
Y×Y
‖z1 − z2‖2π(dz1, dz2),

where Π(Q,P0) is the set of probability distributions on Y × Y with marginals Q and P0.

74



4.3 Wasserstein Distributionally Robust IMOP

In this section, we propose the Wasserstein distributionally robust IMOP, and show its

equivalence to a semi-infinite program. Subsequently, we present an algorithm to handle the

resulting reformulations, and show its convergence in finite steps. Finally, we establish the

statistical performance guarantees for the distributionally robust IMOP.

Given observations {yi}i∈[N ] drawn i.i.d. according to the distribution Py, the corre-

sponding distributionally robust program of (4.6) equipped with the Wasserstein ambiguity

set is constructed as follows

min
θ∈Θ

sup
Q∈Bε(P̂N )

Ey∼Q [lK(y, θ)] , (4.8)

which minimizes the worst case expected loss over all the distributions in the Wasserstein

ambiguity set. Here Bε(P̂N) is defined in (4.7), and P̂N is the empirical distribution satisfying:

P̂N(yi) = 1/N,∀i ∈ [N ].

4.3.1 Semi-infinite Reformulations

Problem (4.8) involves minimizing a supremum over infinitely many distributions, which

makes it difficult to solve. In this section, we establish the reformulation of (4.8) into a

semi-infinite program.

The performance of (4.8) depends on how the change of θ affects the objective values.

For ∀w ∈ Wp, θ1 ∈ Θ, θ2 ∈ Θ, we consider the following function

h(x, w, θ1, θ2) = wT f(x, θ1)− wT f(x, θ2).

Assumption 4.3.1. ∃κ > 0, ∀w ∈ Wp, ∀θ1 6= θ2 ∈ Θ, h(·, w, θ1, θ2) is Lipschitz continuous

on Y :∀x,y ∈ Y ,

|h(x, w, θ1, θ2)− h(y, w, θ1, θ2)| ≤ κ‖θ1 − θ2‖2‖x− y‖2.
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Basically, this assumption requires that the objective functions will not change much

when either the parameter θ or the variable x is perturbed. It actually holds in many

common situations, including the multiobjective linear program (MLP) and multiobjective

quadratic program (MQP). As a motivating example, we give the κ for an MQP.

Example 4.3.1. Suppose that f(x, θ) =

1
2
xTQ1x + cT1 x

1
2
xTQ2x + cT2 x

, where θ = (Q1, Q2, c1, c2).

Under Assumption 4.2.2, we know that ‖y‖2 ≤ R. Then, h(·, w, θ1, θ2) is 2R‖θ1 − θ2‖2-

Lipschitz continuous on Y . That is, we can set κ = 2R.

Under the previous assumptions, we will establish several properties of the loss function

lK(y, θ), which are ensential for our reformulation for (4.8).

Lemma 4.3.1. Under Assumptions 4.2.1 - 4.3.1, the loss function lK(y, θ) has the following

properties:

(a) ∀y ∈ Y , θ ∈ Θ, 0 ≤ lK(y, θ) ≤ (B +R)2.

(b) lK(y, θ) is uniformly 2(B + R)-Lipschitz continuous in y. That is, ∀θ ∈ Θ,∀y1,y2 ∈ Y ,

we have

|lK(y1, θ)− lK(y2, θ)| ≤ 2(B +R)‖y1 − y2‖2.

(c) lK(y, θ) is uniformly 4(B+R)κ
λ

-Lipschitz continuous in θ. That is, ∀y ∈ Y ,∀θ1, θ2 ∈ Θ, we

have

|lK(y, θ1)− lK(y, θ2)| ≤ 4(B +R)κ

λ
‖θ1 − θ2‖2.

(a) and (b) of this lemma are built upon direct analyses of the loss function lK(y, θ).

Proof of (c) is much more involved and needs the key observation that the perturbation of

S(w, θ) due to θ is bounded by the perturbation of θ by applying Proposition 6.1 in [57].

Proof details are given in the supplementary material.

Let

V :=

{
v ∈ RN+1 :V1 ≤ vi ≤ (m+ 1)V2 −mV1,∀i ∈ [N ],

0 ≤ vN+1 ≤ (V2 − V1)/ε

}
.
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where V1 and V2 are the lower and upper bounds for the loss function lK(y, θ), respectively.

By part (a) of Lemma 4.3.1, we will set V1 = 0, and V2 = (B+R)2 throughout the remainder

of the paper.

We are now ready to state the main result in this paper.

Theorem 4.3.2 (Semi-infinite Reformulation). Under Assumptions 4.2.1 - 4.3.1, (4.8) is

equivalent to the following semi-infinite program:

min
θ,v

ε · vN+1 + 1
N

∑
i∈[N ]

vi

s.t. sup
ỹ∈Y

(lK(ỹ, θ)− vN+1 · ‖ỹ − yi‖2) ≤ vi, ∀i ∈ [N ],

θ ∈ Θ,v ∈ V

(4.9)

The establishment of Theorem 4.3.2 relies on those properties of the loss function lK(y, θ)

stated in Lemma 4.3.1. Although lK(y, θ) might not be convex in θ or y, these properties

ensure that strong (Kantorovich) duality holds for the inner problem of (4.8). Details of the

proof are given in the supplementary material.

Next, we will discuss how to incorporate the explicit form of lK(y, θ) into the constraints

of (4.9). For each i ∈ [N ], constraints in (4.9) is equivalent to: ∀ỹ ∈ Y ,

‖ỹ − xk‖2
2 − vN+1 · ‖ỹ − yi‖2 − vi ≤Mzik,∑

k∈[K]

zik = K − 1,
(4.10)

where the additional constraint
∑

k∈[K] zik = K−1, is imposed to ensure that ‖ỹ − xk‖2
2 −

vi − vN+1 · ‖ỹ − yi‖2 ≤ 0 for at least one k ∈ [K]. M is an uniform upper bound for the

left-hand side of the first constraint in (4.10). An appropriate M could be (B + R)2, since

∀i ∈ [N ], k ∈ [K],

‖ỹ − xk‖2
2 − vN+1 · ‖ỹ − yi‖2 − vi ≤ ‖ỹ − xk‖2

2

≤ (B +R)2.

One can verify that (4.10) is indeed equivalent to the first set of constraints in (4.9)

without much effort.
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Remark 4.3.1. We admit that the semi-infinite reformulation in Theorem 4.3.2 might still

be valid if some assumption is not satisfied. Consider, for example, one of the objective

functions is known to be strongly convex and the decision makers always has a positive

preference for it.

4.3.2 Algorithm and Analysis of Convergence

Theorem 4.3.2 shows that the Wasserstein distributionally inverse multiobjective pro-

gram (4.8) is equivalent to the semi-infinite program (4.9). Now, any existing method for

solving the general semi-infinite program can be employed to solve (4.9). In particular, we

are interested in using exchange methods [97], since our proposed algorithm inherits the

spirit of these methods when applied to solving the minmax problem. The basic idea is

to approximate the infinite set of constraints in (4.9) with a sequence of finite sets of con-

straints. Iteratively, new constraints are added to the previous set of constraints by solving

a maximum constraint violation problem. This is repeated until certain stopping criterion

is satisfied.

Next, we will discuss how to construct the finite problem (i.e., the master problem).

Let Ỹi = {ỹi1, · · · , ỹiJi} ⊆ Y ,∀i ∈ [N ] be a collection of finite subsets of Y , where each

subset has Ji samples. Then, the associated finite problem of (4.9) is

min
θ,v

ε · vN+1 + 1
N

∑
i∈[N ]

vi,

s.t. lK(ỹij, θ)− vN+1 · ‖ỹij − yi‖2 ≤ vi,∀j ∈ [Ji], i ∈ [N ],

θ ∈ Θ, v ∈ V .

(4.11)

By the same arguments for the transformation from constraints in (4.9) to (4.10), constraints

in (4.11) are equivalent to

‖ỹij − xk‖2
2 − vN+1 · ‖ỹij − yi‖2 − vi ≤Mzijk,∑

k∈[K]

zijk = K − 1, ∀i ∈ [N ], j ∈ [Ji].
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Using the above transformation, (4.11) can be further cast into the following finite problem

with finitely many constraints:

min
θ,v,xk,zijk

ε · vN+1 + 1
N

∑
i∈[N ]

vi,

s.t. ‖ỹij − xk‖2
2 − vN+1 · ‖ỹij − yi‖2 − vi ≤Mzijk,

xk ∈ S(wk, θ),∑
k∈[K]

zijk = K − 1,

θ ∈ Θ, v ∈ V , zijk ∈ {0, 1}, ∀i ∈ [N ], j ∈ [Ji], k ∈ [K].

(4.12)

At each iteration, new constraints are determined to add to the previous set of constraints

in (4.12) by solving the following Maximum constraint violation problem (i.e., the

subproblem): ∀i ∈ [N ],

CVi = max
ỹ∈Y

lK(ỹ, θ̂)− v̂N+1 · ‖ỹ − yi‖2 − v̂i. (4.13)

Denote ỹi the optimal solution of (4.13) for each i ∈ [N ]. Whenever we find that CVi > 0, we

append ỹi to Ỹi. As a result, we tighten our approximation for the infinite set of constraints

in (4.9) by imposing the additional constraint lK(ỹi, θ̂) − v̂N+1 · ‖ỹi − yi‖2 − v̂i ≤ 0 in the

next iteration.

With the above assumptions and analyses, we now present our method to solve (4.8) in

Algorithm 5. We also illustrate the general scheme of Algorithm 5 in Figure 19.

Remark 4.3.2. In Step 6, the maximum constraint violation problem can be solved exactly

and efficiently by invoking solver such as Baron [98]. Nevertheless, it can also be solved

approximately by decomposing into K subproblems, each of which is a possibly nonconvex

program when v̂N+1 < 1. Nevertheless, this nonconvex problem is a quadratically constrained

quadratic program (QCQP) with a single constraint. Thus, it can be solved exactly and

efficiently through the S-procedure [99, 100]. Additionally, K different subproblems can be

solved independently and in parallel, allowing a linear speedup of Step 6.

For completeness, we provide the convergence proof of Algorithm 5 in the following

theorem.
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Algorithm 5 Wasserstein Distributionally Robust IMOP

1: Input: noisy decisions {yi}i∈[N ], weights {wk}k∈K , radius ε of Wasserstein ball, and

stopping tolerance δ

2: Initialize Ỹi ← ∅,∀i ∈ [N ]

3: repeat

4: solve the master problem in (4.12) with Ỹi,∀i ∈ [N ], and return an optimal solution

(θ̂, v̂)

5: for i = 1, . . . , N do

6: solve the subproblem, i.e., the maximum constraint violation problem in (4.13)

7: if CVi > 0 then let Ỹi ← Ỹi ∪ {ỹi} end if

8: end for

9: until maxi∈[N ] CVi ≤ δ

10: Output: a δ-optimal solution θ̂N of (4.9)

Theorem 4.3.3. Under Assumptions 4.2.1 - 4.3.1, Algorithm 5 converges within (GR0

δ
+

1)nθ+N+1 iterations. Here,

G = (1 + 2R +
4(B +R)κ

λ
),

R0 =

√
D2 +N

(
(m+ 1)V2 −mV1

)2
+

(
V2 − V1

ε

)2

.

Remark 4.3.3. The proof of convergence is in spirit similar to that of the cutting plane

methods for robust optimization and distributionally robust optimization [101, 29]. In prac-

tice, we mention that the actual number of iterations typically required is much smaller than

(GR0

δ
+ 1)nθ+N+1.

Variants of Algorithm 5 Note that we add ỹi to Ỹi whenever Vi > 0 for each i ∈ [N ].

Nevertheless, from the convergence proof, it suffices to add only one ỹi corresponding to the

biggest Vi that are positive. Consequently, we dramatically ease the computational burden

in each iteration.
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Semi-infinite 

problem (4.9)

Finite problem (4.12)

Maximum constraint 

violation problem (4.13)Add constraints

Figure 19: General scheme of Algorithm 5.

4.3.3 Performance Guarantees

One of the main goals of statistical analysis of learning algorithms is to understand how

the excess risk of a data dependent decision rule output by the empirical risk minimization

depends on the sample size of the observations and on the ”complexity” of the class Θ. Next,

we provide a performance guarantee for (4.8) by showing below that the excess risk of the

estimator obtained by solving (4.8) would converge sub-linearly to zero.

Theorem 4.3.4 (Excess risk bound). Define the minimax risk estimator

θ∗ ∈ arg min
θ∈Θ

{
sup

Q∈Bε(P )

Ey∼Q [lK(y, θ)]

}
,

where P is the distribution from which the observations {yi}i∈[N ] are drawn, and the minimax

empirical risk estimator

θ̂N ∈ arg min
θ∈Θ

{
sup

Q∈Bε(P̂N )

Ey∼Q [lK(y, θ)]

}
.

and P̂N is the empirical distribution of the observations {yi}i∈[N ].

Under Assumptions 4.2.1 - 4.3.1, ∀0 < δ < 1, the following holds with probability at

least 1− δ:

sup
Q∈Bε(P )

Ey∼Q

[
lK(y, θ̂N)

]
− sup

Q∈Bε(P )

Ey∼Q [lK(y, θ∗)] ≤ H√
N

+
3(B+R)2

√
log(2/δ)

√
2N

where H is a constant depending only on D,B,R, nθ, κ:

H = 96

(
3D
√
nθ

κ
+ 2R

)
(B +R).
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Remark 4.3.4. Analogous to the convergence rate of empirical risk minimization when

ε = 0, we get an O(1/
√
N) excess risk bound. However, the obtained excess risk bound

does not depend on the radius ε of the Wasserstein ambiguity set. Similar to [35], this

phenomenon is due to the fact that we are using the Lipschitz continuity of the loss function

lK(y, θ). Moreover, the right terms in the excess risk bound inequality increase as either

D,B,R, nθ grow or κ shrinks, indicating that the learnability of the decision making model

decreases. This is consistent with our observation that uncertainties in the model, data,

and parameter space will enhance the difficulty for learning the parameters trhough inverse

multiobjective optimization in general.

4.4 Experiments

In this section, we will provide a multiobjective quadratic program (MQP) and a port-

folio optimization problem to illustrate the performance of the proposed algorithm 5. The

mixed integer second order conic problems are solved by Gurobi [87]. All the algorithms are

programmed with Julia [62].

4.4.1 Learning the Objective Functions of an MQP

Consider the following multiobjective quadratic optimization problem.

min
x∈R2

+

f1(x) = 1
2
xTQ1x + cT1 x

f2(x) = 1
2
xTQ2x + cT2 x


s.t. Ax ≤ b

(4.14)

where the parameters of the two objective functions are

Q1 =

1 0

0 2

 , c1 =

−0.5

−1

 , Q2 =

2 0

0 1

 , c2 =

 −5

−2.5

 ,
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and the parameters for the feasible region are

A =

1 0

0 1

 ,b =

3

3

 .
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Figure 20: Learning the objective functions of a Multiobjective quadratic program. (a)

Maximum constraint violation versus iteration for N = 15. (b) Prediction errors for two

methods with different N . Results are averaged over 10 repetitions.

We seek to learn c1 and c2 in this experiment. The data is generated as follows. We

first compute Pareto optimal solutions {xi}i∈[N ] by solving 4.2 with weight samples {wi}i∈[N ]

that are uniformly chosen from W2. Next, the noisy decision yi is obtained by adding noise

to xi for each i ∈ [N ]. More precisely, yi = xi + εi, where each element of εi has a uniform

distribution supporting on [−0.25, 0.25] with mean 0 for all i ∈ [N ].

We assume that c1 and c2 are within [−6, 0]2, and the first elements for them are given.

K = 6 weights from W2 are evenly sampled. The radius ε of the Wasserstein ambiguity set

is selected from the set {10−4, 10−3, 10−2, 10−1, 1}. We report below the results with lowest
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prediction error across all candidate radii. The stopping criteria δ is set to be 0.1. Then, we

implement Algorithm 5 with different N .

To illustrate the performance of the algorithm in a statistical way, we run 10 repetitions

of the experiments. Figure 20a shows the maximum constraint violation maxi∈[N ] Vi ver-

sus iteration for one repetition when N = 10. As can be seen in the figure, the algorithm

converges very fast. In Figure 20b, we report the prediction errors averaged over 10 repe-

titions with both the robust and non-robust approaches for different N . Here, we use an

independent validation set that consists of 105 noisy decisions generated in the same way

as the training data to compute the prediction error. The experiments suggest that the

Wasserstein distributionally robust approach can significnatly reduce the prediction error,

especially when N is small, i.e., we have very limited number of observations.

4.4.2 Learning the Expected Returns

In this example, we consider various noisy decisions arising from different investors in a

stock market. More precisely, we consider a portfolio selection problem, where investors need

to determine the fraction of their wealth to invest in each security in order to maximize the

total return and minimize the total risk. The classical Markovitz mean-variance portfolio

selection [17] in the following is frequently employed by analysts.

min

f1(x) = −rTx

f2(x) = xTQx


s.t. 0 ≤ xi ≤ bi ∀i ∈ [n]

n∑
i=1

xi = 1

(4.15)

where r ∈ Rn
+ is a vector of individual security expected returns, Q ∈ Rn×n is the covariance

matrix of securities returns, x is a portfolio specifying the proportions of capital to be invested

in the different securities, and bi is an upper bound on the proportion of security i, ∀i ∈ [n].

We use the portfolio data BlueChipStockMoments derived from real data in the Matlab

Financial Toolbox. The true expected returns and true return covariance matrix for the first

8 securities are given in the supplementary material. Suppose a learner seeks to learn the

84



expected return for the first four securities that an analyst uses based on 20 noisy decisions

from investors that the analyst serves.

The noisy decision for each investor i ∈ [20] is generated as follows. We set each upper

bound for the proportion of the 8 securities to bi = 1.0,∀i ∈ [8]. Then, we uniformly sample

20 weights and use them to generate optimal portfolios on the efficient frontier that is plot

in Figure 22. Subsequently, each component of these portfolios is rounded to the nearest

thousandth, which can be seen as measurement error. The radius ε of the Wasserstein

ambiguity set is selected from the set {10−4, 10−3, 10−2, 10−1, 1}. The stopping criteria δ is

set to be 0.1.

1 2 3 4 5 6 7 8

0

5

10

15

Figure 21: Maximum constraint violation versus iteration.

Figure 21 shows that our algorithm converges in 8 iterations. We also plot the estimated

efficient frontiers using both the robust and non-robust approaches with K = 6 in Figure 22.

We can see that the estimated efficient frontier of the Wasserstein distributionally robust

approach is closer to the real one than the non robust approach, showing that our method in

this paper allows for a lower prediction error when only limited number of decisions observed

are accessible. Note that the first function is not strongly convex. The experiment results

suggest that our reformulation is generalizable to a broader class of problems.
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Figure 22: The red line indicates the real efficient frontier. The yellow dots indicates the es-

timated efficient frontier using the distributionally robust approach. The blue dots indicates

the estimated efficient frontier using the non-robust approach.
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5.0 Conclusion and Future Work

In this dissertation, we develop a set of methodologies in the field of inverse optimization

based learning. First, we propose an online learning method to infer preferences or restric-

tions from noisy observations is developed and implemented. We prove a regret bound for

the implicit online learning algorithm under certain regularity conditions, and show the al-

gorithm is statistically consistent, which guarantees that our algorithm will asymptotically

achieves the best prediction error permitted by the inverse model. Finally, we illustrate the

performance of our learning method on both a consumer behavior problem and a trans-

shipment problem. Results show that our algorithm can learn the parameters with great

accuracy and is very robust to noises, and achieves drastic improvement in computational

efficacy over the batch learning approach.

We also study the problem of learning the objective functions and constraints of a multi-

objective decision making problem, based on observations of efficient solutions which might

carry noise. Specifically, we formulate such a learning task as an inverse multiobjective

optimization problem, and provide a deep analysis to establish the statistical significance

of the inference results from the presented model. Moreover, we discuss the strong corre-

lation between the identifiability of the decision making problem and the performance of

our inverse optimization model. We then develop two numerical algorithms to handle the

computational challenge from the large number of observations. We confirm by extensive

numerical experiments that the proposed algorithms can learn the parameters with great

accuracy while dramatically improve the computational efficacy.

In addition, we propose a distributionally robust approach to inverse multiobjective opti-

mization. Specifically, we study the problem of learning the objective functions or constraints

of a multiobjective decision making model, based on a set of observed decisions. In particular,

these decisions might not be exact and possibly carry measurement noises or are generated

with the bounded rationality of decision makers. We use the Wasserstein metric to con-

struct the uncertainty set centered at the empirical distribution of these decisions. We show

that this framework has several nice statistical performance guarantees. We also develop an
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efficient algorithm to solve the resulting minmax problem and prove its finite convergence.

Numerical experiments demonstrate the effectiveness of the proposed algorithm.

Future work for the inverse optimization and the inverse multiobjective optimization will

mainly focus on the application of the proposed methods, exploring new models and algo-

rithms, and developing strong theories. For example, we seek to apply the online learning

methods to real world machine learning problems, such as those occurred in designing recom-

mender systems. We will also investigate the robustness of the proposed inverse optimization

model, and apply it to infer the preferences of the decision makers such as those investors

in portfolio optimization. Furthermore, we will explore incorporating deep learning into in-

verse optimization and inverse multiobjective optimization to scale up their capabilities in

the modern machine learning framework.
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Appendix A

A.1 Omitted Mathematical Reformulations

A.1.1 Single Level Reformulation for the Inverse LP

When the objective function is linear, namely, the optimization problem has the following

form

min
x∈Rn+

cTx

s.t. Ax ≥ b

(A.1)

Suppose that the right hand side b changes over time t. That is, b = bt at time t. When

trying to learn c, the single level reformulation the inverse problem is

min
c∈Θ

1
2
‖c− ct‖2

2 + ηt‖yt − x‖2
2

s.t. Ax ≥ bt, x ≥ 0

ATu ≤ c,

x ≤M1z1

c−ATu ≤M1(1− z1)

u ≤M2z2

Ax− bt ≤M2(1− z2)

x ∈ Rn
+, u ∈ Rm

+ , z1 ∈ {0, 1}n, z2 ∈ {0, 1}m

(A.2)

where M1 and M2 are appropriate numbers used to bound x and c−ATu, u and Ax− bt

respectively.

We have a similar single level reformulation when learning the Right-hand side b. Clearly,

this is a Mixed Integer Second Order Cone program(MISOCP) when learning either c or b.
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A.1.2 Single Level Reformulation for the Inverse QP

When the objective functions are quadratic, namely, the optimization problem has the

following form

min
x∈Rn

1
2
xTQx + cTx

s.t. Ax ≥ b

(A.3)

Suppose that c changes over time t. That is, c = ct at time t. When trying to learn b,

the single level reformulation for the inverse problem is

min
b∈Θ

1
2
‖b− bt‖2

2 + ηt‖yt − x‖2
2

s.t. Ax ≥ b,

u ≤Mz

Ax− b ≤M(1− z)

Qx + ct −ATu = 0

b ∈ Rm, x ∈ Rn, u ∈ Rm
+ , z ∈ {0, 1}m

(A.4)

where M is an appropriate number used to bound u and Ax− b.

We have a similar single level reformulation when learning the objective c. Clearly, this

is a Mixed Integer Second Order Cone program(MISOCP) when learning either c or b.
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A.2 Omitted Proofs

A.2.1 Proof of Lemma 2.3.1

Proof. By Assumption 2.3.1(b), we know that S(u, θ) is a single-valued set for each u ∈ U .

∀y ∈ Y , ∀u ∈ U , ∀θ1, θ2 ∈ Θ, without of loss of generality, let l(y, u, θ1) ≥ l(y, u, θ2).

Then,

|l(y, u, θ1)− l(y, u, θ2)| = l(y, u, θ1)− l(y, u, θ2)

= ‖y − S(u, θ1)‖2
2 − ‖y − S(u, θ2)‖2

2

= 〈S(u, θ2)− S(u, θ1), 2y − S(u, θ1)− S(u, θ2)〉

≤ 2(B +R)‖S(u, θ2)− S(u, θ1)‖2

(A.5)

The last inequality is due to Cauchy-Schwartz inequality and the Assumptions 2.3.1(a),

that is

‖2y − S(u, θ1)− S(u, θ2)‖2 ≤ 2(B +R) (A.6)

Next, we will apply Proposition 6.1 in [57] to bound ‖S(u, θ2)− S(u, θ1)‖2.

Under Assumptions 2.2.1 - 2.3.2, the conditions of Proposition 6.1 in [57] are satisfied.

Therefore,

‖S(u, θ2)− S(u, θ1)‖2 ≤
2κ

λ
‖θ1 − θ2‖2 (A.7)

Plugging ( A.6) and ( A.7) in ( A.5) yields the claim.
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A.2.2 Proof of Theorem 2.3.2

Proof. we will use Theorem 3.2 in [56] to prove our theorem.

Let Gt(θ) = 1
2
‖θ − θt‖2

2 + ηtl(yt, ut, θ).

We will now show the loss function is convex. The first step is to show that if Assumption

2.3.3 holds, then the loss function l(y, u, θ) is convex in θ. ∀y ∈ Y , ∀u ∈ U , ∀θ1, θ2 ∈ Θ, we

have

αl(y, u, θ1) + βl(y, u, θ2)− l(y, u, αθ1 + βθ2)

= α‖y − S(u, θ1)‖2
2 + β‖y − S(u, θ2)‖2

2 − ‖y − S(u, αθ1 + βθ2)‖2
2

= α‖y − S(u, θ1)‖2
2 + β‖y − S(u, θ2)‖2

2 − ‖y − αS(u, θ1)− βS(u, θ2)‖2
2

+‖y − αS(u, θ1)− βS(u, θ2)‖2
2 − ‖y − S(u, αθ1 + βθ2)‖2

2

= αβ‖S(u, θ1)− S(u, θ2)‖2
2 + ‖y − αS(u, θ1)− βS(u, θ2)‖2

2 − ‖y − S(u, αθ1 + βθ2)‖2
2

= αβ‖S(u, θ1)− S(u, θ2)‖2
2

−〈αS(u, θ1) + βS(u, θ2)− S(u, αθ1 + βθ2),

2y − S(u, αθ1 + βθ2)− αS(u, θ1)− βS(u, θ2)〉

≥ αβ‖S(u, θ1)− S(u, θ2)‖2
2 − ‖αS(u, θ1) + βS(u, θ2)

−S(u, αθ1 + βθ2)‖2‖2y − S(u, αθ1

+βθ2)− αS(u, θ1)− βS(u, θ2)‖2

(A.8)

The last inequality is by Cauchy-Schwartz inequality. Note that

‖αS(u, θ1) + βS(u, θ2)− S(u, αθ1 + βθ2)‖2

‖2y − S(u, αθ1 + βθ2)− αS(u, θ1)− βS(u, θ2)‖2

≤ 2(B +R)‖αS(u, θ1) + βS(u, θ2)− S(u, αθ1 + βθ2)‖2

≤ αβ‖S(u, θ1)− S(u, θ2)‖2

(A.9)

Plugging ( A.9) in ( A.8) yields the result.

Using Theorem 3.2 in [56], for αt ≤ Gt(θt+1)
Gt(θt)

, we have

RT ≤
∑T

t=1
1
ηt

(1− αt)ηtl(yt, ut, θt) + 1
2ηt

(‖θt − θ∗‖2
2 − ‖θt+1 − θ∗‖2

2) (A.10)
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Notice that

Gt(θt)−Gt(θt+1) = ηt(l(yt, ut, θt)− l(yt, ut, θt+1))− 1
2
‖θt − θt+1‖2

2

≤ 4(B+R)κηt
λ

‖θt − θt+1‖2 − 1
2
‖θt − θt+1‖2

2

≤ 8(B+R)2κ2η2t
λ2

(A.11)

The first inequality follows by applying Lemma 2.3.1.

Let αt = Rt(θt+1)
Rt(θt)

. Using ( A.11), we have

(1− αt)ηtl(yt, ut, θt) = (1− αt)Gt(θt) = Gt(θt)−Gt(θt+1) ≤ 8(B+R)2κ2η2t
λ2

(A.12)

Plug ( A.12) in ( A.10), and note the telescoping sum,

RT ≤
T∑
t=1

8(B +R)2κ2ηt
λ2

+
T∑
t=1

1

2ηt
(‖θt − θ∗‖2

2 − ‖θt+1 − θ∗‖2
2)

Setting ηt = Dλ
2(B+R)κ

√
2t

, we can simplify the second summation to D(B+R)κ
√

2
λ

since the sum

telescopes and θ1 = 0, ‖θ∗‖2 ≤ D. The first sum simplifies using
∑T

t=1
1√
t
≤ 2
√
T − 1 to

obtain the result

RT ≤
4
√

2(B +R)Dκ

λ

√
T .
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A.2.3 Proof of Theorem 2.3.3

Proof. Since f(x, u, θ) is strongly convex in x on Rn by Assumption 2.3.1, it is also strictly

convex in x on Rn. Then, all the conditions required in Theorem 3. of [7] are naturally

satisfied under our assumptions. Applying that theorem yields

1

T

∑
t∈[T ]

l(yt, ut, θ
T )

p−→ E [l(y, u, θ∗)] (A.13)

where θT = arg min
θ∈Θ
{
∑
t∈[T ]

l(yt, ut, θ)} is the estimation of the parameter in batch setting.

From Theorem 3.2 we have

1

T

∑
t∈[T ]

l(yt, ut, θt)−
1

T

∑
t∈[T ]

l(yt, ut, θ
T ) ≤ 4

√
2(B +R)Dκ

λ
√
T

p−→ 0 (A.14)

Adding ( A.13) and ( A.14) up, we have the risk consistency result

1

T

∑
t∈[T ]

l(yt, ut, θt)
p−→ E [l(y, u, θ∗)]

A.2.4 Proof of Corollary 2.3.3.1

Proof. Note that ∀θ ∈ Θ,

E [l(y, u, θ)] = E
[

min
x̃∈S(u,θ)

‖x + ε− x̃‖2
2

]
= E

[
min

x̃∈S(u,θ)
‖x− x̃‖2

2

]
+ E[εT ε] ≥ E[εT ε]

We further notice that E
[
minx̃∈S(u,θ0)‖x− x̃‖2

2

]
= 0, since x ∈ S(u, θ0). Therefore, we

have

E [l(y, u, θ∗)] = E [l(y, u, θ0)] = E[εT ε]

Then, applying Theorem 2.3.3 yields the result, since we have shown E [l(y, u, θ∗)] =

E[εT ε].
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A.3 Omitted Examples

A.3.1 Examples for which Assumption 3.3 holds

Consider for example the following quadratic program

min
x∈Rn

1
2
xTQx + (c + u)Tx

s.t. Ax ≥ b

(A.15)

where Q is a positive semidefinite matrix, and u is the external signal.

Suppose that the parameter we seek to learn is c, all the others are given. If for each

u ∈ U , the optimal solution for the above program is in the interior of the feasible region.

Then,

S(u, c1) = −Q−1(c1 + u); S(u, c2) = −Q−1(c2 + u);

S(u, αc1 + βc2) = −Q−1(αc1 + βc2 + u).

Then, we have

0 = ‖αS(u, c1) + βS(u, c2)− S(u, αc1 + βc2)‖2 ≤ αβ‖S(u, θ1)− S(u, θ2)‖2/(2(B +R)).

A.4 Data for the Applications

A.4.1 Data for Learning the Consumer Behavior

Table 10: True r

1.180 1.733 1.564 0.040 2.443 1.055 4.760 5.000 1.258 4.933
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Table 11: True Q

2.360 0 0 0 0 0 0 0 0 0

0 3.465 0 0 0 0 0 0 0 0

0 0 3.127 0 0 0 0 0 0 0

0 0 0 0.0791 0 0 0 0 0 0

0 0 0 0 4.886 0 0 0 0 0

0 0 0 0 0 2.110 0 0 0 0

0 0 0 0 0 0 9.519 0 0 0

0 0 0 0 0 0 0 9.999 0 0

0 0 0 0 0 0 0 0 2.517 0

0 0 0 0 0 0 0 0 0 9.867

A.4.2 Data for Learning the Transportation Cost

We let λ1 = 2, λ2 = 10, ue = 1.3 for all e ∈ E, y1 = 3 and y2 = 1.5.

Table 12: True transportation cost for each edge

c13 c14 c23 c25 c34 c35

3.124 4.119 3.814 1.071 5.398 2.899
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Appendix B

Nomenclature

θ̂N The estimator of θ constructed by solving 3.6

θ̂K The estimator of θ constructed by solving 3.8

θ̂NK The estimator of θ constructed by solving 3.9

λl fl in 3.1 is strongly convex with parameter λl

Wp The standard (p− 1)-simplex given by {w ∈ Rp
+ : 1Tw = 1}

W +
p The interior of the standard (p− 1)-simplex

xy The nearest point to y in XP (θ)

Θ The parameter space for θ

θ The parameter that determines 3.1

θ∗ The estimator of θ constructed by solving 3.5

{yi}i∈[N ] The observed noisy decisions

B The upper bound for the radius of the feasible region X(θ)

dsH(X, Y ) The Hausdorff semi-distance between two sets X and Y

K The number of weight samples in (3.7)

l(y, θ) The unsupervized learning (3.4)

lK(y, θ) The unsupervized learning (3.7)

N The number of observations

p The number of objective functions in 3.1

q The number of constraints in 3.1

R The upper bound for the radius of the support Y of the observations

RadN(F) The Rademacher complexity of the function class F

S(w, θ) The set of optimal solutions for 3.2

wKy The nearest weight to wy among {wk}k∈[K]

wNKy The estimated weight for y using θ̂NK
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wy The weight such that xy = S(wy, θ)

wy
K The weight among {wk}k∈[K] such that lK(y, θ) = ‖y − S(wKy , θ)‖2

2

X(θ) Feasible region for 3.1

XP (θ) The set of all Pareto optimal solutions for 3.1
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Appendix C

C.1 Why IMOP instead of IOP?

Consider a scenario where decision makers are subject to same restrictions but need to

make their individualized optimal decisions considering two objective functions, as in the

following bi-objective linear programming problem with a > b > 0 and c > 0. Figure 23

displays the feasible region of an instance with a = 6, b = 1, c = 1, i.e., the triangle AOB.

0 0.5 1

0

0.5

1

Figure 23: O(0, 0), A(−0.2, 1.2), and B(1.2,−0.2) are the Vertices of the Feasible Region.

C(−0.1, 0.6), D(0.6,−0.1) and x0(0.5, 0.5) are the Midpoints of OA, OB, and AB, Respec-

tively. The Red Dot x∗(0.375, 0.375) is the Geometric Mean of All the Points in Segments

AC and BD. The Bold Segments OA and OB are the Pareto Optimal (solution) Set for the

Bi-objective Linear Programming Problem.
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min x1 (C.1a)

min x2 (C.1b)

s.t. ax1 + bx2 ≥ 0, (C.1c)

bx1 + ax2 ≥ 0, (C.1d)

x1 + x2 ≤ c. (C.1e)

With multiple objectives, rational decision makers seek Pareto optimal solutions, which

are those that cannot be improved without sacrificing performances in one or more criteria

(see section 3.2.1). In Figure 23, it is straightforward to see that points on edges OA and

OB are Pareto optimal solutions that could be selected by rational decision makers. Assume

that many observed decisions evenly occur in segments AC and BD. If they are treated as

noisy observations of a pristine solution to min{cTx : ( C.1c) − ( C.1e)}, we can infer the

coefficient c and obtain a denoised solution x∗ through computing the IOP model with the

quadratic loss function. Actually, noting that optimal x∗ minimizes the averaged distance

to those observations, we can derive its analytical characterization.

Specifically, the sum of squares of the Euclidean distance between x∗ and evenly dis-

tributed observations on AC and BD can be represented as the following integral:∫ bc
a−b

bc
2(a−b)

‖
(
x∗1
x∗2

)
−
(
−v
a
b
v

)
‖2

2 d v +

∫ bc
a−b

bc
2(a−b)

‖
(
x∗1
x∗2

)
−
(

a
b
v
−v

)
‖2

2 d v (C.2)

=
bc

a− b
(x∗1 −

3

8
c)2 +

bc

a− b
(x∗2 −

3

8
c)2 + ∆, (C.3)

where ∆ depends on a, b and c only. Thus, x∗ = (3
8
c, 3

8
c), the arithmetic mean of observations,

minimizes this integration. As x∗ is an interior point, the only c that renders x∗ optimal is

the trivial one, i.e., (c1, c2) = (0, 0), which does not have any relevance to the actual objective

functions.

Indeed, we still cannot obtain reasonable explanation of the data, even if taking an

additional consideration by restricting x∗ to be on the boundary of the feasible region, which

helps to avoid the previous trivial estimation. Note from Figure 23 x0, i.e., the projection of

x∗ on AB, is the optimal boundary point to that integration. Because x0 is in the interior
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of AB, the unique c that renders x0 optimal is (c1, c2) = (−1,−1). This inference basically

reflects opposite information regarding decision makers’ intentions or desires.

C.2 Omitted Proofs

C.2.1 Proof of Proposition 3.3.1

Proof. Denote {yi}i∈[N ] these points, denote K the number of clusters, and denote {xk}k∈[K]

the set of optimal centroids. We then construct an equivalent instance of 3.9 as follows. Note

that an IMOP is determined by a 3.1, the parameter space of θ, and a set of weight samples

{wk}k∈[K].

First, let us consider the 3.1 whose objective functions are quadratic and feasible region

is a ball in Rn that has the following form

min
x∈Rn


1
2
xTx + cT1 x

...

1
2
xTx + cTKx


s.t. ‖x‖2 ≤ 2 max

i∈[N ]
‖yi‖2,

(C.4)

where cl ∈ Rn for l ∈ [K]. The task of IMOP for C.4 is to learn {cl}l∈[K] given {yi}i∈[N ].

Since the objective functions and the constraint are convex, C.4 is a convex 3.1.

Second, we let Θ be the parameter space that consists of cl ∈ Rn such that ‖cl‖2 ≤

maxi∈[N ]‖yi‖2 for each l ∈ [K]. One can readily check Θ defined in such a way is a convex

and compact set. Assume {xk}k∈[K] are the optimal centroids for {yi}i∈[N ] in K-means

clustering. Since each of the optimal centroid is the mean of the points in that cluster, we have

xk ≤ maxi∈[N ]‖yi‖2. Now, let ck = −xk, which is achievable because ‖ck‖2 ≤ maxi∈[N ]‖yi‖2

for each k ∈ [K].

Third, we select {wk}k∈[K] in the following way: the K weights are the K vertices of WK .

With a slight abuse of notation, let xk = S(wk, c1, . . . , cK) be the optimal solution of 3.2

for C.4 for each k ∈ [K]. This mild abuse of notation allows us to express our results in
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a unified manner. It will be clear from context whether we are treating K-means clustering

problem or 3.9, and consequently be clear which definition of xk we mean. Since the objective

functions in C.4 are strictly convex, each xk is a Pareto optimal point by Proposition 3.2.1.

Now, we are ready to show the equivalence between 3.12 and the constructed IMOP. Note

that the only difference between the two problems is that {xk}k∈[K] for IMOP are restricted

to be Pareto optimal points for some 3.1, while no restriction is put on {xk}k∈[K] for K-means

clustering. Thus, the optimal value of the K-means clustering provides a lower bound for the

optimal value of the constructed IMOP. Then, it suffices to show that they have the same

optimal value, which can be done by proving that the previously defined {ck}k∈[K] and the

optimal centroids {xk}k∈[K] solve 3.9.

Since the K weights are vertices of the simplex WK , each Pareto optimal point xk corre-

sponds to the unique optimal solution for one single objective optimization problem. More

specifically,

xk = arg min
x
{1

2
xTx + cTk x : ‖x‖2 ≤ 2 max

i∈[N ]
‖yi‖2}. (C.5)

One can readily check that the previously defined ck = −xk indeed make the optimal

centroid xk of the K-means clustering problem also an optimal solution in ( C.5). It shows

that the construed 3.9 is solved bt {ck}k∈[K] and the optimal centroids {xk}k∈[K].

To this end, we have shown that the optimal values of 3.9 we constructed and 3.12 are

indeed equal. Therefore, solving the 3.9 we constructed provides an optimal partition of

{yi}i∈[N ] for the K-means clustering.

C.2.2 Proof of Theorem 3.3.5

Proof. Under our assumption, for each Pareto optimal point y, ∃w ∈ Wp, s.t. y ∈ S(w, θ)

by PROPOSITION 3.2.2. Recall that w ∈ Rp
+,1

Tw = 1, thus w lies in a (p− 1)-d manifold.

We show that the mapping S(w, θ) : w → y for fixed θ is continuous in w in Lemma 3.4.6.

By the definition of manifold, the Pareto optimal set is a (p− 1)-d manifold.
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C.2.3 Proof of Lemma 3.4.1

Proof. Since g(x, θ) is continuous and thus l.s.c. on Rn×Θ by ASSUMPTION 3.4.1, X(θ)

is u.s.c. for each θ ∈ Θ by Theorem 10 in [80]. From ASSUMPTION 2.2.1, we know that

g(x, θ) is convex in x for each θ ∈ Θ. From ASSUMPTION 3.4.1, X(θ) has a nonempty

relatively interior. Namely, there exists a x̄ ∈ Rn such that g(x̄, θ) < 0. Then, X(θ) is l.s.c.

for each θ ∈ Θ by Theorem 12 in [80]. Hence, X(θ) is continuous on Θ.

C.2.4 Proof of Lemma 3.4.2

Proof. First, we will show that XP (θ) is u.s.c. on Θ. Since f(x, θ) is strictly convex in

x for each θ ∈ Θ, the Pareto optimal set XP (θ) coincides with the weakly Pareto optimal

set. In addition, we know that X(θ) is continuous on Θ by Lemma 3.4.1. Also, note the

pointed convex cone we use throughout this paper has the same meaning as the domination

structure D in [81], and we set D = Rp
+. To this end, we can readily verify that the sufficient

conditions for upper semicontinuity in Theorem 7.1 of [81] are satisfied. Thus, XP (θ) is

u.s.c..

Next, we will show that XP (θ) is l.s.c. on Θ. Theorem 7.2 of [81] provides the sufficient

conditions for the lower semicontinuity of XP (θ). All of these conditions are naturally

satisfied under Assumptions 2.2.1 - 3.4.1 except the one that requires f(x, θ) to be one-

to-one, i.e., injective in x. Next, we will show that the one-to-one condition can be safely

replaced by the strict quasi-convexity of f(x, θ) in x.

Theorem 7.2 of [81] is a direct result of part (ii) in Lemma 7.2 of [81]. To complete our

proof, we only need to sightly modify the last part of the proof in Lemma 7.2. In what

follows we will use notations in that paper.

Since strict convexity implies strict quasi-convexity, f is strictly quasi-convex. Suppose

that f(x̄, û) = f(x̂, û) does not imply x̄ = x̂. Let z = x̄+x̂
2

. By the strict quasi-convexity of

f , we have

f(z, û) = f(
x̄+ x̂

2
, û) < max{f(x̄, û), f(x̂, û)} = f(x̂, û). (C.6)
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This contradicts the fact that x̂ ∈M(û), where M(û) is the Pareto optimal set given û.

Hence, x̄ must be equal to x̂. The remain part of the proof is the same as that of Lemma

7.2.

C.2.5 Proof of Proposition 3.4.3

Proof. We apply Theorem 2 of [79] in our proof. We start by checking that the three

conditions for using this theorem are satisfied. First, by Lemma 3.4.2, XP (θ) is contin-

uous. Then, applying Berge Maximum Theorem [102] to 3.6 implies that the empirical

risk MN(θ) is continuous. Second, by Assumption 3.4.1, Θ is a compact set. Third,

∀y ∈ Y ,minx∈XP (θ)‖y − x‖2
2 ≤ ‖y‖2

2 + B2 + 2B‖y‖2 and the right-hand side is integrable

with respect to y under Assumption 3.4.1. Consequently, all three conditions are satisfied

and the proof is concluded.

C.2.6 Proof of Proposition 3.4.4

Proof. Similar to Proposition 3.4.3, the key step is to show the continuity of MN
K (θ) in θ

for each K. It suffices to show that
⋃
k∈[K] S(wk, θ) is continuous in θ for all K. First, let us

establish the continuity of S(wk, θ) in θ for each k ∈ [K]. Note that the feasible region X(θ)

is irrelevant to w. Thus, applying the Berge Maximum Theorem [102] to (3.2) implies that

S(wk, θ) is upper semicontinuous in θ. Hence, S(wk, θ) is continuous in θ as it is a single-

valued set. Second, let us show the continuity of
⋃
k∈[K] S(wk, θ) in θ. By Propositions 2 and

4 of [80], we know that a finite union of continuous sets, i.e.,
⋃
k∈[K] S(wk, θ), is continuous

in θ. Finally, applying Theorem 2 of [79] yields the uniform convergence of MN
K (θ) to MK(θ)

in N .

C.2.7 Proof of Lemma 3.4.5

Proof. (a) Let K2 ≥ K1. Under our setting, K2 ≥ K1 implies {wk}k∈[K1] ⊆ {wk}k∈[K2]. By

the definition of lK(y, θ), we have lK1(y, θ) ≥ lK2(y, θ) for all y ∈ Y , and thus MK1(θ) ≥

MK2(θ) for all θ ∈ Θ. Therefore, {MK(θ)} is monotone decreasing in K.
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Recall the definition of θ̂K in Table 3, we know θ̂K2 minimizes MK2(θ). Therefore,

MK2(θ̂K1) ≥ MK2(θ̂K2). In addition, MK1(θ̂K1) ≥ MK2(θ̂K1) by the first part of (a). Conse-

quently,

MK1(θ̂K1) ≥MK2(θ̂K1) ≥MK2(θ̂K2).

Therefore, MK1(θ̂K1) ≥MK2(θ̂K2) for K2 ≥ K1.

Similarly, we can readily show that MK(θ̂K) ≥M(θ∗) by noting that

MK(θ̂K) ≥M(θ̂K) ≥M(θ∗).

The first inequality is a direct result of the first part of (a); the second inequality follows

from the fact that θ∗ minimizes M(θ) by definition.

(b) Let K2 ≥ K1. By the definition of lK(y, θ), we have lK1(yi, θ) ≥ lK2(yi, θ) for

all i ∈ [N ], and thus MN
K1

(θ) ≥ MN
K2

(θ) for all θ ∈ Θ. Therefore, {MN
K (θ)} is monotone

decreasing in K.

Recall the definition of θ̂NK in Table 3, we know θ̂NK2
minimizes MN

K2
(θ). Therefore,

MN
K2

(θ̂NK1
) ≥MN

K2
(θ̂NK2

). In addition, MN
K1

(θ̂NK1
) ≥MN

K2
(θ̂NK1

) by the first part of (b). Conse-

quently,

MN
K1

(θ̂NK1
) ≥MN

K2
(θ̂NK1

) ≥MN
K2

(θ̂NK2
). (C.7)

Hence, MN
K1

(θ̂NK1
) ≥MN

K2
(θ̂NK2

) for K2 ≥ K1.

Finally, we can show MN
K (θ̂NK) ≥ MN(θ̂N) by noting that MN

K (θ̂NK) ≥ MN(θ̂NK) ≥

MN(θ̂N).

105



C.2.8 Proof of Lemma 3.4.6

Proof. ∀w ∈ Wp, one can readily check that wT f(·, θ) is strongly convex for each θ and thus

wT f(y, θ) ≥ wT f(x, θ) +∇wT f(x, θ)T (y − x) +
λ

2
‖y − x‖2

2. (C.8)

Thus, the second-order growth condition holds for wT f(·, θ) for all θ ∈ Θ. That is,

wT f(x, θ) ≥ wT f(S(w, θ), θ) +
λ

2
‖(S(w, θ)− x‖2

2. (C.9)

In addition, ∀w,w0 ∈ Wp, we have

|wT f(x, θ)− wT0 f(x, θ)| = |(w − w0)T f(x, θ)|

≤ ‖w − w0‖2‖f(x, θ)‖2 (Cauchy-Schwarz inequality)

≤ L‖w − w0‖2.

(C.10)

C.2.9 Proof of Lemma 3.4.7

Proof. By definition,

lK(y, θ)− l(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
‖y − x‖2

2 − min
x∈XP (θ)

‖y − x‖2
2 ≥ 0. (C.11)

Let ‖y − S(wy
K , θ)‖2

2 = min
x∈

⋃
k∈[K]

S(wk,θ)
‖y − x‖2

2, and ‖y − S(wy, θ)‖2
2 = min

x∈XP (θ)
‖y − x‖2

2. Let

wKy be the closest weight sample among {wk}k∈[K] to wy. Then,

lK(y, θ)− l(y, θ) = ‖y − S(wy
K , θ)‖2

2 − ‖y − S(wy, θ)‖2
2

≤ ‖y − S(wKy , θ)‖2
2 − ‖y − S(wy, θ)‖2

2

=
(
2y − S(wKy , θ)− S(wy, θ)

)T
(S(wy, θ)− S(wKy , θ))

≤ ‖2y − S(wKy , θ)− S(wy, θ)‖2‖S(wy, θ)− S(wKy , θ)‖2

≤ 2(B +R)‖S(wy, θ)− S(wKy , θ)‖2

≤ 4(B+R)ζ
√
p

λ
· ‖wy − wKy ‖2,

(C.12)
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where ζ = max
l∈[p],x∈X(θ),θ∈Θ

|fl(x, θ)|. The third inequality is due to Cauchy Schwarz inequality.

Under Assumptions 2.2.1 - 3.4.1, we can apply Lemma 3.4.6 to yield the last inequality.

Next, we will show that ∀w ∈ Wp, the distance between w and its closest weight sample

among {wk}k∈[K] is upper bounded by the function of K and p and nothing else. More

precisely, we will show that

sup
w∈Wp

min
k∈[K]
‖w − wk‖2 ≤

√
2

Λ− 1
. (C.13)

Here, Λ is the number of evenly spaced weight samples between any two extreme points of

Wp.

Note that {wk}k∈[K] are evenly sampled from Wp, and that the distance between any

two extreme points of Wp equals to
√

2. Hence, the distances between any two neighboring

weight samples are equal and can be calculated as the distance between any two extreme

points of Wp divided by Λ − 1. Proof of ( C.13) can be done by further noticing that the

distance between any w and {wk}k∈[K] is upper bounded by the distances between any two

neighboring weight samples.

Combining ( C.12) and ( C.13) yields that

0 ≤ lK(y, θ)− l(y, θ) ≤ 4(B +R)ζ

λ
·
√

2p

Λ− 1
, (C.14)

Then, we can prove that the total number of weight samples K and Λ has the following

relationship:

K =

Λ + p− 2

p− 1

 (C.15)

Proof of ( C.15) can be done by induction with respect to p. Obviously, ( C.15) holds when

p = 2 as K = Λ. Assume ( C.15) holds for the ≤ p− 1 cases. For ease of notation, denote

KΛ
p =

Λ + p− 2

p− 1

 . (C.16)
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Then, for the p case, we note that the weight samples can be classified into two categories:

wp = 0;wp > 0. For wp = 0, the number of weight samples is simply KΛ
p−1. For wp > 0, the

number of weight samples is KΛ−1
p . Thus,

K = KΛ
p−1 +KΛ−1

p . (C.17)

Iteratively expanding KΛ−1
p through the same argument as ( C.15) and using the fact that

n
k

 =

n− 1

k − 1

+

n− 1

k

 , (C.18)

we have

K = KΛ
p−1 +KΛ−1

p = KΛ
p−1 +KΛ−1

p−1 +KΛ−2
p

...

= KΛ
p−1 +KΛ−1

p−1 + · · ·+K2
p−1 +K1

p

=

Λ + p− 3

p− 2

+

Λ + p− 4

p− 2

+ · · ·+

p− 1

p− 2

+

p− 1

p− 1


= (Λ+p−2)!

(Λ−1)!(p−1)!

(C.19)

To this end, we complete the proof of ( C.15).

Furthermore, we notice that

K =
(Λ + p− 2)!

(Λ− 1)!(p− 1)!
≤ (Λ + p− 2)p−1

(p− 1)!
<

(
Λ + p− 2

p− 1

)p−1

· ep−1. (C.20)

Then, when Λ ≥ p(K ≥ 2p−1), through simple algebraic calculation we have

e

K
1
p−1

>
p− 1

Λ + p− 2
>

1

4
· p

Λ− 1
(C.21)

We complete the proof by combining ( C.14) and ( C.21) and noticing that
√

2p ≤ p.
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C.2.10 Proof of Proposition 3.4.8

Proof. Note that ∀θ ∈ Θ, S(w, θ) is single-valued due to the fact that f is strongly convex.

∀y ∈ Y , let xy ∈ XP (θ) be the nearest point to y. By Proposition 3.2.2, there exists a

wy ∈ Wp such that xy = S(wy, θ). Let wKy be the nearest one to wy among the weight

samples {wk}k∈[K]. Then,

MK(θ) = E
(
lK(y, θ)

)
≤ E

(
‖y − S(wKy , θ)‖2

2

)
= E

(
‖y − S(wy, θ)‖2

2

)
+ E

(
‖S(wy, θ)− S(wKy , θ)‖2

2

)
+2E

(〈
y − S(wy, θ), S(wy, θ)− S(wKy , θ)

〉)
≤ E

(
‖y − S(wy, θ)‖2

2

)
+ E

(
‖S(wy, θ)− S(wKy , θ)‖2

2

)
+2E

(
‖y − S(wy, θ)‖2‖S(wy, θ)− S(wKy , θ)‖2

)
(Cauchy Schwarz inequality)

= M(θ) + E
(
‖S(wy, θ)− S(wKy , θ)‖2

2

)
+2E

(
‖y − S(wy, θ)‖2‖S(wy, θ)− S(wKy , θ)‖2

)
,

(C.22)

where the first inequality is due to the fact that lK(y, θ) = mink∈[K]{‖y − xk‖2
2 : xk =

S(wk, θ)} ≤ ‖y − S(wKy , θ)‖2
2.

Let AK := supy∈Y,θ∈Θ‖S(wy, θ)− S(wKy , θ)‖2. Then,

E
(
‖S(wy, θ)− S(wKy , θ)‖2

2

)
≤ A2

K . (C.23)

Moreover,

E
(
‖y − S(wy, θ)‖2‖S(wy, θ)− S(wKy , θ)‖2

)
≤ AKE

(
‖y − S(wy, θ)‖2

)
≤ AKE

(
‖y‖2 + ‖S(wy, θ)‖2

)
≤ AKE

(
‖y‖2 +B

)
.

(C.24)
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Note that E
(
‖y‖2 + B

)
in ( C.24) is a finite number under our assumptions. Putting

( C.23) and ( C.24) into ( C.22), and further noticing that MK(θ) ≥ M(θ) by part (a) of

Lemma 3.4.5, we have

0 ≤MK(θ)−M(θ) ≤ AK

(
AK + 2B + 2E

(
‖y‖2

))
. (C.25)

By ( C.25), we will conclude the proof if we can show AK −→ 0 in K. By Lemma 3.4.6,

AK ≤
2L

λ
sup
y∈Y
‖wy − wKy ‖2. (C.26)

( C.26) implies that we only need to show ‖wy − wKy ‖2
2 −→ 0 in K for any y ∈ Y .

It suffices to show that given any w ∈ Wp, the nearest wk to w among {wk}k∈[K] can be

arbitrarily small as K →∞. This is readily satisfied since we evenly sample {wk}k∈[K] from

Wp.

C.2.11 Proof of Proposition 3.4.9

Proof. We use notations here similar to those in Proposition 3.4.8. We have

MN
K (θ) = 1

N

∑
i∈[N ]

min
k∈[K]
‖yi − xk‖2

2

≤ 1
N

∑
i∈[N ]

‖yi − S(wKyi , θ)‖
2
2

= 1
N

∑
i∈[N ]

‖yi − S(wyi , θ)‖2
2 + 1

N

∑
i∈[N ]

‖S(wyi , θ)− S(wKyi , θ)‖
2
2

+ 2
N

∑
i∈[N ]

〈
yi − S(wyi , θ), S(wyi , θ)− S(wKyi , θ)

〉
≤ 1

N

∑
i∈[N ]

‖yi − S(wyi , θ)‖2
2 + 1

N

∑
i∈[N ]

‖S(wyi , θ)− S(wKyi , θ)‖
2
2

+ 2
N

∑
i∈[N ]

‖yi − S(wyi , θ)‖2‖S(wyi , θ)− S(wKyi , θ)‖2.

(C.27)

Moreover, by part (b) of Lemma 3.4.5, we have MN
K (θ) − MN(θ) ≥ 0. To this end,

through a similar argument as in the proof of Proposition 3.4.8, we have

0 ≤MN
K (θ)−MN(θ) ≤ AK

(
AK + 2B + 2R

)
, (C.28)

where the last inequality follows from the fact that maxi∈[N ],θ∈Θ‖S(wyi , θ)−S(wKyi , θ)‖2 ≤ AK .

The remaining proof is exactly the same as that of Proposition 3.4.8.

110



C.2.12 Proof of Proposition 3.4.10

Proof. ∀θ ∈ Θ, |MN
K (θ)−M(θ)| P

99K 0 if and only if ∀δ > 0,∀ε > 0, ∃J , s.t. ∀N,K ≥ J ,

P(|MN
K (θ)−M(θ)| > ε) < δ. (C.29)

To prove the above statement, we first note that

P(|MN
K (θ)−M(θ)| > ε) = P(|MN

K (θ)−MN(θ) +MN(θ)−M(θ)| > ε)

≤ P(|MN
K (θ)−MN(θ)|+ |MN(θ)−M(θ)| > ε)

≤ P(|MN
K (θ)−MN(θ)| > ε/2) + P(|MN(θ)−M(θ)| > ε/2).

(C.30)

For the first term on the last line of ( C.30), by Proposition 3.4.9, ∃K1, s.t. ∀K ≥ K1,

∀N ,

P(|MN
K (θ)−MN(θ)| > ε/2) < δ/2. (C.31)

For the second term on the last line of ( C.30), by Proposition 3.4.3, ∃N1, s.t. ∀N ≥ N1,

P(|MN(θ)−M(θ)| > ε/2) < δ/2. (C.32)

Now, let J = max{N1, K1}. Putting ( C.31) and ( C.32) in ( C.30), we have ∀N,K ≥ J ,

P(|MN
K (θ)−M(θ)| > ε) < δ. (C.33)

Hence, we complete the proof.

C.2.13 Proof of Theorem 3.4.11

Proof. Let θ∗ ∈ Θ∗, and θ̂N ∈ arg min{MN(θ) : θ ∈ Θ}. Then, M(θ̂N)−M(θ∗) ≥ 0. Also,

M(θ̂N)−M(θ∗) = M(θ̂N)−MN(θ̂N) +MN(θ̂N)−M(θ∗) (C.34)

≤M(θ̂N)−MN(θ̂N) +MN(θ∗)−M(θ∗) (C.35)

≤ 2 sup
θ∈Θ
|MN(θ)−M(θ)|, (C.36)

where the first inequality follows the fact that MN(θ̂N) ≤MN(θ∗). Hence, applying Propo-

sition 3.4.3 yields that M(θ̂N)−M(θ∗)
p−→ 0.
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C.2.14 Proof of Lemma 3.4.14

Proof. Let G be a class of functions g mapping from Z to R, where

g(Z) =
f(Z)− a
b− a

. (C.37)

Note that g(Z) ∈ [0, 1]. By Theorem 3.1 in [103], we have

E[g(Z)] ≤ 1

N

∑
i∈[N ]

g(Zi) + 2RadN(G) +

√
log(1/δ)

2N
. (C.38)

Using part 3 in Theorem 12 of [83], and the translation invariant property, i.e., RadN(F−a) =

RadN(F), we have

RadN(G) = RadN

(
F − a
b− a

)
=
RadN(F)

b− a
. (C.39)

Plugging ( C.37) and ( C.39) in ( C.38) yields the main result.

C.2.15 Proof of Lemma 3.4.15

Proof. By the definition of Rademacher complexity, we have

RadN
(
F
)

= 1
N
E
[

sup
f∈F

∑
i∈[N ]

σif(yi, θ)

]
= 1

N
E
[

sup
θ∈Θ

∑
i∈[N ]

σi min
k∈[K]
‖yi − xk‖2

2

]
= 1

N
E
[

sup
θ∈Θ

∑
i∈[N ]

σi min
k∈[K]

(
‖yi‖2

2 − 2〈yi,xk〉+ ‖xk‖2
2

)]
= 1

N
E
[

sup
θ∈Θ

∑
i∈[N ]

σi min
k∈[K]

(
− 2〈yi,xk〉+ ‖xk‖2

2

)]
.

(C.40)

Note the fact P(‖x‖2 ≤ B) = 1 by Assumption 3.4.1. Through a similar argument in

statement (ii) of Lemma 4.3 in [104], we get

1

N
E
[

sup
θ∈Θ

∑
i∈[N ]

σi min
k∈[K]

(
− 2〈yi,xk〉+ ‖xk‖2

2

)]
≤ 2K

(
1

N
E
[

sup
‖x‖2≤B

∑
i∈[N ]

σi〈yi,x〉
]

+
B2

2
√
N

)
.

(C.41)
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The first term on the right-hand side of ( C.41) can be upper bounded in the following

way:

1
N
E
[

sup
‖x‖2≤B

∑
i∈[N ]

σi〈yi,x〉
]

= 1
N
E
[

sup
‖x‖2≤B

〈
∑
i∈[N ]

σiyi,x〉
]

≤ 1
N
E sup
‖x‖2≤B

‖x‖2‖
∑
i∈[N ]

σiyi‖2 (Cauchy-Schwarz inequality)

≤ B
N
E‖
∑
i∈[N ]

σiyi‖2

≤ B
N

√
E‖
∑
i∈[N ]

σiyi‖2
2 (Jensen’s inequality)

= B
N

√
NE‖y‖2

2

≤ BR√
N

(P(‖y‖2 ≤ R) = 1).

(C.42)

Plugging the result of ( C.42) in ( C.41), we get the bound for the Rademacher complexity

of F .

C.2.16 Proof of Theorem 3.4.16

Proof. We specialize Lemmas 3.4.14 and 3.4.15 to prove the theorem. Note that

0 ≤ f(y, θ) = min
k∈[K]
‖y − xk‖2

2 ≤ (B +R)2. (C.43)

Let a = 0, b = (B+R)2 in Lemma 3.4.14. Then, combining the results in Lemmas 3.4.14

and 3.4.15 yields this theorem.

C.2.17 Proof of Lemma 3.4.17

Proof. Sufficiency: dsH(X, Y ) = 0 implies that infy∈Y ‖x − y‖2 = 0,∀x ∈ X. That is,

∃y ∈ Y , st. x = y. Hence, X ⊆ Y . Necessity: X ⊆ Y implies that ∀x ∈ X, ∃y ∈ Y , s.t.

y = x. Thus, infy∈Y ‖x− y‖2 = 0. Therefore, dsH(X, Y ) = 0.
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C.2.18 Proof of Theorem 3.4.18

Proof. First, we show that θ0 minimizesM(θ) among Θ. This is readily true sinceM(θ0) = 0

by noting that there is no noise in the data. By Theorem 3.4.13, a direct result is M(θ̂NK)
P
99K

M(θ0) = 0. Second, we show that θ0 is the unique solution that minimizes M(θ) among

Θ. ∀θ′ ∈ Θ \ θ, M(θ) = Ey∈XP (θ0)

(
minx∈XP (θ)‖y − x‖2

2

)
> 0 as dsH(XP (θ), XP (θ′)) > 0.

Consequently, we have M(θ) > M(θ0) = 0. Finally, since 3.1 is identifiable at θ0, then

∀ε > 0, ∃δ > 0, s.t. M(θ) − M(θ0) > δ for every θ with d(θ, θ0) > ε. Thus, the event

{d(θ̂NK , θ0) > ε} is contained in the event {M(θ̂NK)−M(θ0) > δ}. Namely, P(d(θ̂NK , θ0) > ε) ≤

P(M(θ̂NK)−M(θ0) > δ). We complete the proof by noting that the probability of the right

term converges to 0 as M(θ̂NK)
P
99KM(θ0).

C.2.19 Proof of Theorem 3.4.19

Proof. First, note that

‖S(wNKy , θ0)− S(wy, θ0)‖2 = ‖S(wNKy , θ0)− S(wNKy , θ̂NK)

+S(wNKy , θ̂NK)− S(wy, θ0)‖2

≤ ‖S(wNKy , θ0)− S(wNKy , θ̂NK)‖2

+‖S(wNKy , θ̂NK)− S(wy, θ0)‖2.

(C.44)

By Theorem 3.4.18, we have θ̂NK
P
99K θ0. Note that S(w, θ) is continuous in θ ∈ Θ.

By continuous mapping theorem, the first term in the last line of ( C.44) ‖S(wNKy , θ0) −

S(wNKy , θ̂NK)‖2
P
99K 0.

By the argument in the proof of Theorem 3.4.18, the second term in the last line of

( C.44) ‖S(wNKy , θ̂NK)− S(wy, θ0)‖2
P
99K 0 almost surely. Otherwise,

M(θ̂NK) = Ey∈XP (θ0)

(
min

x∈XP (θ̂NK )
‖y − x‖2

2

)
= Ey∈XP (θ0)‖S(wNKy , θ̂NK)− S(wy, θ0)‖2

2 > 0,

and thus will not converge to M(θ0).

Putting the above two results into ( C.44) yields ‖S(wNKy , θ0)−S(wy, θ0)‖2
P
99K 0 almost

surely.
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Next, note that S(w, θ0) is continuous in w, and that MOP (θ0) is bijective. Then,

we have that S(·, θ0) : Wp → XP (θ0) is a one-to-one correspondence. Thus, S(·, θ0) is

a homeomorphism by the inverse mapping theorem [105], meaning that the inverse map

S−1(·, θ0) : XP (θ0) → Wp is also continuous. Therefore, ‖S(wNKy , θ0) − S(wy, θ0)‖2
P
99K 0

implies that ‖wy − wNKy ‖2
P
99K 0 by the continuous mapping theorem.

C.2.20 Proof of Proposition 3.4.20

Proof. Since both examples are strongly convex MOPs, any Pareto optimal solution of them

can be obtained by solving 3.2 according to Proposition 3.2.2. Also, every optimal solution

of the weighting problem is a Pareto optimal solution by part (b) of Proposition 3.2.1.

Let w ∈ [0, 1] be the weight of the first function. The optimal solutions for 3.2 in Example

3.4.2 can be characterized parametrically by w as

x1
1(w) =


6−9w
2−w , if 0 ≤ w ≤ 2/3,

0, if 2/3 < w ≤ 1,

x1
2(w) =


3, if 0 ≤ w ≤ 2/9,

5−6w
1+w

, if 2/9 < w ≤ 5/6,

0, otherwise.

(C.45)

Similarly, the optimal solutions for the 3.2 in Example 3.4.3 can be characterized para-

metrically as

x2
1(w) =


36−45w
12−5w

, if 0 ≤ w ≤ 4/5,

0, otherwise,

x2
2(w) =

3, if 0 ≤ w ≤ 4/15,

30−30w
6+5w

, otherwise.

(C.46)

We can show that x1
1(w) = x2

1(6
5
w) and x1

2(w) = x2
2(6

5
w) for 0 ≤ w ≤ 5

6
. In addition,

x1
1(w) = x1

2(w) = 0 for 5
6
≤ w ≤ 1. Therefore, these parametric points in ( C.45) and ( C.46)

correspond to the same curve. Hence, EXAMPLE 3.4.2 and EXAMPLE 3.4.3 have the same

Pareto optimal set.

115



C.2.21 Proof of Lemma 3.5.1

Proof. First, MN
K (θ) decreases in the Assignment step since each yi is assigned to the

closest xk. So the distance yi contributes to MN
K (θ) decreases. Second, MN

K (θ) decreases in

the Update step because the new θ and {xk}k∈[K] are the ones for which MN
K (θ) attains

its minimum.

C.3 Omitted Algorithms

C.3.1 ADMM for IMOP

The ADMM was originally proposed in [106] and [107], and recently revisited by [108].

In practice, ADMM often exhibits a substantially faster convergence rate than traditional

methods in solving convex optimization problems. Characterizing the convergence rate of

ADMM for convex optimization problems is still a popular research topic [109, 110, 111].

Although ADMM might not converge even for convex problems with more than two blocks

of variables [112], many recent papers have numerically demonstrated the fast and appealing

convergence behavior of ADMM on nonconvex problems [113, 114, 115]. Hence, we apply

ADMM as a heuristic to solve the nonconvex problem 3.9.

3.9 is closely related to the global consensus problem discussed heavily in [108], but

with the important difference that 3.9 is a nonconvex problem. In order to use ADMM, we

first partition {yi}i∈[N ] equally into T groups, and denote {yi}i∈[Nt] the observations in t-th

group. Then, we introduce a set of new variables {θt}t∈T , typically called local variables,

and transform 3.9 equivalently to the following problem:

min
θ∈Θ,θt∈Θ

∑
t∈T

∑
i∈[Nt]

lK(yi, θ
t)

s.t. θt = θ, ∀t ∈ [T ].

(C.47)

ADMM for problem ( C.47) can be derived directly from the augmented Lagrangian

Lρ(θ, {θt}t∈[T ], {vt}t∈[T ]) =
∑
t∈[T ]

( ∑
i∈[Nt]

lK(yi, θ
t)+ < vt, θt − θ > +(ρ/2)‖θt − θ‖2

2

)
, (C.48)
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where ρ > 0 is an algorithm parameter, vt is the dual variable for the constraint θt = θ.

Let θ
k

= 1
|T |
∑

t∈T θ
t,k. As suggested in [108], the primal and dual residuals are

rkpri =
(
θ1,k − θk, . . . , θ|T |,k − θk

)
, rkdual = −ρ

(
θ
k − θk−1

, . . . , θ
k − θk−1

)
, (C.49)

so their squared norms are

‖rkpri‖2
2 =

∑
t∈T

‖θt,k − θk‖2
2, ‖rkdual‖2

2 = |T |ρ2‖θk − θk−1‖2
2. (C.50)

‖rkpri‖2
2 is |T | times the variance of {θt,k}t∈T , which can be interpreted as a natural measure

of (lack of) consensus. Similarly, ‖rkdual‖2
2 is a measure of the step length. These suggest that

a reasonable stopping criterion is that the primal and dual residuals must be small.

The resulting ADMM algorithm in scaled form is formally presented in the following.

Algorithm 6 ADMM for 3.9

1: Input: Noisy decisions {yi}i∈[N ], weight samples {wk}k∈[K].

2: Set k = 0 and initialize θ0 and vt,0 for each t ∈ T .

3: while stopping criterion is not satisfied do

4: for t ∈ [T ] do

5: θt,k+1 ← arg minθt
{∑

i∈Nt lK(yi, θ
t) + (ρ/2)‖θt − θk + vt,k‖2

2

}
.

6: end for

7: θk+1 ← 1
|T |
∑
t∈T

(
θt,k+1 + vt,k

)
.

8: for t ∈ [T ] do

9: vt,k+1 ← vt,k + θt,k+1 − θk+1.

10: end for

11: k ← k + 1.

12: end while

Remark C.3.1. (i) With a slight abuse of notation, we use θk to denote the estimation

of θ in the k-th iteration, and θt to denote the local variable for the observations in t-

th group. (ii) The stopping criterion could be that ‖rkpri‖2 < εpri and ‖rkdual‖2 < εdual,

or the maximum iteration number is reached. (iii) Note that Lρ(θ, {θt}t∈[T ], {vt}t∈[T ]) is

separable in θt. Hence, the θt-update step splits into |T | independent problems that can
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be implemented in parallel. We show in experiments parallel computing would dramatically

improve the computational efficiency. For the same reason, the dual variables vt-update step

can be carried out in parallel for each t ∈ [T ].

Remark C.3.2. For the initialization of θ0 in Algorithm 6, we can incorporate the idea in

[1] that imputes a convex objective function by minimizing the residuals of KKT conditions

incurred by noisy data. This leads to the following initialization problem:

min
θ∈Θ

1
N

∑
i∈[N ]

(
ricomp + ristat

)
s.t. ui ≥ 0m, ∀i ∈ [N ],

|uTi g(yi, θ)| ≤ ricomp, ∀i ∈ [N ],∨
k∈[K]

[
‖∇wTk f(yi, θ) + uTi ∇g(yi, θ)‖2 ≤ ristat

]
, ∀i ∈ [N ],

ui ∈ Rm
+ , ricomp ∈ R+, ristat ∈ R+, ∀i ∈ [N ],

(C.51)

where ricomp and ristat are residuals corresponding to the complementary slackness and sta-

tionarity in KKT conditions for the i-th noisy decision yi. The disjunction constraints are

imposed to assign one of the weight samples to yi. Similarly, we can integrate the approach of

minimizing the slackness needed to render observations to (approximately) satisfy variational

inequalities [13] into our model, to provide an initialization of θ0.
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C.4 Omitted Mathematical Formulations

C.4.1 Reformulation of 3.30 Using KKT Conditions

max
θ∈Θ

‖θ − θ̂NK‖1

s.t. ui ≥ 0, ∀i ∈ [N ′],

uTi g(xi, θ) = 0, ∀i ∈ [N ′],

‖∇xiw
T
k f(xi, θ) + uTi ∇xig(xi, θ)‖2 ≤M(1− zik), ∀i ∈ [N ′], k ∈ [K ′],∑

k∈[K′]

zik = 1, ∀i ∈ [N ′],

zik ∈ {0, 1}, ui ∈ Rq
+, ∀i ∈ [N ′], k ∈ [K ′].

(C.52)

C.4.2 Single Level Reformulation for Inferring Objective Functions of MLP

min
c1,··· ,cp

∑
i∈[N ]

‖yi −
∑
k∈[K]

ηik‖2

s.t. cl ∈ Cl, ∀l ∈ [p],

Axk ≥ b, xk ≥ 0,

ATuk ≤ w1
kc1 + · · ·+ wpkcp, uk ≥ 0,

xk ≤M1t1k,

w1
kc1 + · · ·+ wpkcp −ATuk ≤M1(1− t1k),

uk ≤M2t2k,

Axk − b ≤M2(1− t2k)


, ∀k ∈ [K],

0 ≤ ηik ≤Mikzik,

xk −Mik(1− zik) ≤ ηik ≤ xk,∑
k∈[K]

zik = 1, ∀i ∈ [N ],

xk ∈ Rn
+, uk ∈ Rm

+ , t1k ∈ {0, 1}n, t2k ∈ {0, 1}m, zik ∈ {0, 1},

(C.53)
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where Cl is a convex compact set for each l ∈ [p]. M1, M2 and Mik are Big-Ms used to

linearize the program. One can establish similar reformulations for inferring RHS of MLP.

C.4.3 Single Level Reformulation for Inferring RHS of MQP

min
b

∑
i∈[N ]

‖yi −
∑
k∈[K]

ηik‖2

s.t. b ∈ B,

Axk ≥ b, uk ≥ 0,

uk ≤M1tk,

Axk − b ≤M1(1− tk),

(w1
kQ1 + · · ·+ wpkQp)xi + w1

kc1 + · · ·+ wpkcp −ATuk = 0,


, ∀k ∈ [K],

0 ≤ ηik ≤Mikzik,

xk −Mik(1− zik) ≤ ηik ≤ xk +Mik(1− zik),∑
k∈[K]

zik = 1, ∀i ∈ [N ],

b ∈ Rm, xk ∈ Rn, uk ∈ Rm
+ , tk ∈ {0, 1}m, zik ∈ {0, 1},

(C.54)

where B is a convex compact set. M1 and Mik are Big-Ms used to linearize the program.

One can establish similar reformulations for inferring objectives of MQP.
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C.5 Detailed Experiment Results

C.5.1 Learning the RHS of an MQP

Table 13: Estimation Error ‖b̂− btrue‖2 for Different N and K

N = 5 N = 10 N = 20 N = 50 N = 100 N = 150

K = 6 1.496 1.063 0.861 0.601 0.531 0.506

K = 11 1.410 0.956 0.524 0.378 0.217 0.199

K = 21 1.382 0.925 0.498 0.313 0.138 0.117

K = 41 1.380 0.924 0.484 0.295 0.127 0.111

C.5.2 Learning the Objective functions of an MQP

Table 14: Prediction Error M(θ̂NK) for Different N and K

N = 50 N = 100 N = 250 N = 500 N = 1000 N = 5000 N = 10000 N = 50000

K = 6 0.050 0.043 0.039 0.040 0.039 0.040 0.038 0.038
K = 11 0.030 0.028 0.028 0.027 0.027 0.026 0.026 0.025
K = 21 0.026 0.025 0.024 0.024 0.024 0.024 0.024 0.024
K = 41 0.025 0.024 0.024 0.023 0.023 0.023 0.023 0.023

Table 15: True Expected Return

Security 1 2 3 4 5 6 7 8

Expected Return 0.1791 0.1143 0.1357 0.0837 0.1653 0.1808 0.0352 0.0368
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Table 16: True Return Covariances Matrix

Security 1 2 3 4 5 6 7 8

1 0.1641 0.0299 0.0478 0.0491 0.058 0.0871 0.0603 0.0492
2 0.0299 0.0720 0.0511 0.0287 0.0527 0.0297 0.0291 0.0326
3 0.0478 0.0511 0.0794 0.0498 0.0664 0.0479 0.0395 0.0523
4 0.0491 0.0287 0.0498 0.1148 0.0336 0.0503 0.0326 0.0447
5 0.0580 0.0527 0.0664 0.0336 0.1073 0.0483 0.0402 0.0533
6 0.0871 0.0297 0.0479 0.0503 0.0483 0.1134 0.0591 0.0387
7 0.0603 0.0291 0.0395 0.0326 0.0402 0.0591 0.0704 0.0244
8 0.0492 0.0326 0.0523 0.0447 0.0533 0.0387 0.0244 0.1028
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Appendix D

D.1 Omitted Proofs

D.1.1 Example 4.3.1

We will show next that κ = 2R. Let θ1 = (Q1
1, Q

1
2, c

1
1, c

1
2), θ2 = (Q2

1, Q
2
2, c

1
1, c

2
2). Then,

h(x, w, θ1, θ2) = wT f(x, θ1)− wT f(x, θ2)
= 1

2
w1x

TQ1
1x + w1x

Tc1
1 + 1

2
w2x

TQ1
2x + w2x

Tc1
2

−1
2
w1x

TQ2
1x− w1x

Tc2
1 − 1

2
w2x

TQ2
2x− w2x

Tc2
2.

Since h(x, w, θ1, θ2) is continuously differentiable in x, the Lipschitz constant can be esti-

mated by bounding the norm of the gradient of h. We have

∂h

∂x
= w1(Q1

1 −Q2
1)x + w1(c1

1 − c2
1) + w2(Q1

2 −Q2
2)x + w2(c1

2 − c2
2).

Thus,

sup
‖x‖2≤R

‖∂h
∂x
‖2 = sup

‖x‖2≤R
‖w1(Q1

1 −Q2
1)x + w1(c1

1 − c2
1) + w2(Q1

2 −Q2
2)x + w2(c1

2 − c2
2)‖2

≤ sup
‖x‖2≤R

‖w1(Q1
1 −Q2

1)x‖2 + ‖w1(c1
1 − c2

1)‖2

+ sup
‖x‖2≤R

‖w2(Q1
2 −Q2

2)x‖2 + ‖w2(c1
2 − c2

2)‖2

≤ w1‖Q1
1 −Q2

1‖F · sup
‖x‖2≤R

‖x‖2 + w1‖c1
1 − c2

1‖2

+w2‖Q1
2 −Q2

2‖F · sup
‖x‖2≤R

‖x‖2 + w2‖c1
2 − c2

2‖2

≤ R‖Q1
1 −Q2

1‖F + ‖c1
1 − c2

1‖2 +R‖Q1
2 −Q2

2‖F + ‖c1
2 − c2

2‖2

≤ 2R
√
‖Q1

1 −Q2
1‖2
F + ‖c1

1 − c2
1‖2

2 + ‖Q1
2 −Q2

2‖2
F + ‖c1

2 − c2
2‖2

2

= 2R‖θ1 − θ2‖2.

where the last inequality follows from the Power mean inequality. Hence, h(·, w, θ1, θ2) is

2R‖θ1 − θ2‖2-Lipschitz continuous on Y .
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D.1.2 Proof of Lemma 4.3.1

Proof. (a) Proof of (a) is straightforward. lK(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
‖y−x‖2

2 ≤ (‖y‖2 +B)2 ≤

(R +B)2.

(b) ∀θ ∈ Θ, ∀y1,y2 ∈ Y , let

lK(y1, θ) = ‖y1 − S(w1, θ)‖2
2, lK(y2, θ) = ‖y2 − S(w2, θ)‖2

2.

Without of loss of generality, let lK(y1, θ) ≥ lK(y2, θ). Then,

|lK(y1, θ)− lK(y2, θ)| = lK(y1, θ)− lK(y2, θ)

= ‖y1 − S(w1, θ)‖2
2 − ‖y2 − S(w2, θ)‖2

2

≤ ‖y1 − S(w2, θ)‖2
2 − ‖y2 − S(w2, θ)‖2

2

= 〈y1 − y2,y1 + y2 − 2S(w2, θ)〉
≤ 2(B +R)‖y1 − y2‖2

(D.1)

The last inequality is due to Cauchy-Schwartz inequality and the Assumptions 3.1(a),

that is

‖y1 + y2 − 2S(w2, θ)‖2 ≤ 2(B +R) (D.2)

Plugging ( D.2)in ( D.1) yields the claim.

(c) ∀y ∈ Y , ∀θ1, θ2 ∈ Θ, let

lK(y, θ1) = ‖y − S(w1, θ1)‖2
2, lK(y, θ2) = ‖y2 − S(w2, θ2)‖2

2.

Without of loss of generality, let lK(y, θ1) ≥ lK(y, θ2). Then,

|lK(y, θ1)− lK(y, θ2)| = lK(y, θ1)− lK(y, θ2)

= ‖y − S(w1, θ1)‖2
2 − ‖y − S(w2, θ2)‖2

2

≤ ‖y − S(w2, θ1)‖2
2 − ‖y − S(w2, θ2)‖2

2

= 〈S(w2, θ2)− S(w2, θ1), 2y − S(w2, θ1)− S(w2, θ2)〉
≤ 2(B +R)‖S(w2, θ2)− S(w2, θ1)‖2

(D.3)

The last inequality is due to Cauchy-Schwartz inequality and the Assumptions 3.1(a),

that is

‖2y − S(w2, θ1)− S(w2, θ2)‖2 ≤ 2(B +R) (D.4)

Next, we will apply Proposition 6.1 in [57] to bound ‖S(w2, θ2)− S(w2, θ1)‖2.
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Under Assumptions 3.1 - 3.2, the conditions of Proposition 6.1 in [57] are satisfied.

Therefore,

‖S(w2, θ2)− S(w2, θ1)‖2 ≤
2κ

λ
‖θ1 − θ2‖2 (D.5)

Plugging ( D.4) and ( D.5) in ( D.3) yields the claim.

D.1.3 Proof of Theorem 4.3.2

Proof. Under Assumption 4.2.1, we know that Θ is compact. Similarly, Y is also compact

under Assumption 4.2.2 (a). By lemma 4.3.1 (a), ∀y ∈ Y , θ ∈ Θ, 0 ≤ lK(y, θ) ≤ (B + R)2,

and thus lK(y, θ) is bounded. In addition, by lemma 4.3.1 (b), lK(y, θ) is continuous in θ for

any y ∈ Y . Finally, by lemma 4.3.1 (c), lK(y, θ) is uniformly 4(B+R)κ
λ

-Lipschitz continuous

in y. Hence, applying Corollary 3.8 of [29] yields the result.

D.1.4 Proof of Theorem 4.3.3

Proof. For ease of notation, we denote (θ̂s, v̂s) the solution found in Step 4 in the sth

iteration of Algorithm 1.

Suppose that for s = 1, . . . , S the algorithm has not terminated, i.e. max
i∈[N ]

lK(ỹi, θ̂) −

v̂N+1 · ‖ỹi − yi‖2 − v̂i > δ.

Let i∗ = arg max
i∈[N ]

lK(ỹi, θ̂)− v̂N+1 · ‖ỹi − yi‖2 − v̂i. Then, ỹi∗ is added to Ỹi∗ . We have

lK(ỹi∗ , θ̂
s)− v̂sN+1 · ‖ỹi∗ − yi∗‖2 − v̂si∗ > δ. (D.6)

∀t > s, we know that

lK(ỹi∗ , θ̂
t)− v̂tN+1 · ‖ỹi∗ − yi∗‖2 − v̂ti∗ ≤ 0. (D.7)

Combining ( D.6) and ( D.7), we have that, for s < t,

lK(ỹi∗ , θ̂
s)− v̂sN+1 · ‖ỹi∗ − yi∗‖2 − v̂si∗ − (lK(ỹi∗ , θ̂

t)− v̂tN+1 · ‖ỹi∗ − yi∗‖2 − v̂ti∗) > δ. (D.8)
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Note that

lK(ỹi∗ , θ̂
s)− v̂sN+1 · ‖ỹi∗ − yi∗‖2 − v̂si∗ − (lK(ỹi∗ , θ̂

t)− v̂tN+1 · ‖ỹi∗ − yi∗‖2 − v̂ti∗)
= lK(ỹi∗ , θ̂

s)− lK(ỹi∗ , θ̂
t)− (v̂sN+1 · ‖ỹi∗ − yi∗‖2 − v̂tN+1 · ‖ỹi∗ − yi∗‖2)− (v̂si∗ − v̂ti∗)

≤ 4(B+R)κ
λ
‖θ̂s − θ̂t‖2 + 2R‖v̂sN+1 − v̂tN+1‖2 + |v̂si∗ − v̂ti∗|

≤ (1 + 2R + 4(B+R)κ
λ

)‖(θ̂s, v̂s)− (θ̂t, v̂t)‖2

(D.9)

where the first inequality is due to the Lipschitz condition in Lemma 4.3.1(c).

Combining ( D.8) and ( D.9), we have that, for s < t,

‖(θ̂s, v̂s)− (θ̂t, v̂t)‖2 >
δ

G
. (D.10)

Thus, the minimum distance between any two solutions (θ̂1, v̂1), . . . , (θ̂S, v̂S) exceeds δ/G.

Let Bs ∈ Rnθ+N+1 denote the ball centered at (θ̂s, v̂s) with radius δ/G. Let R0 =√
D2 +N((m+ 1)V2 −mV1)2 + ( (V2−V1)

ε
)2. Let B denote the ball centered at origin with

radius R0 + δ
G

. It follows that the balls {Bs}s∈[S], which do not intersect with each other,

are covered by B. Thus, we have

Sβnθ+N+1(
δ

G
)nθ+N+1 ≤ βnθ+N+1(R0 +

δ

G
)nθ+N+1

where βnθ+N+1 is the volume of the unit ball in Rnθ+N+1. Thus, we conclude that

S ≤ (
GR0

δ
+ 1)nθ+N+1.
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D.1.5 Proof of Theorem 4.3.4

Proof. Our proof of the excess risk bound relies on Theorem 2 in [35]. We first verify the

assumptions. By Lemma 4.3.1 (a), Assumption 1 is obviously satisfied since diam(Y) ≤ 2R,

where diam(Y) is the diameter of the observation space Y . ∀θ ∈ Θ, the loss function lK(y, θ)

is 2(B + R)-Lipschitz continuous in y, and 0 ≤ lK(y, θ) ≤ (B + R)2 by Lemma 4.3.1 (a).

Thus, Assumption 2 holds. In addition, Assumption 3 is naturally satisfied according to

Lemma 4.3.1 (b).

Denote F := {lK(·, θ) : θ ∈ Θ} the class of the loss functions. Before evaluating the

Dudley entropy integral, we need to estimate the covering number N (F , ‖·‖∞, ·). First

observe that for any two lK(·, θ1), lK(·, θ2) ∈ F corresponding to θ1, θ2 ∈ Θ, we have

|lK(y, θ1)− lK(y, θ2)| ≤ 4(B +R)κ

λ
‖θ1 − θ2‖2.

Since Θ belongs to the ball in Rnθ with radius D,

N (F , ‖·‖∞, u) ≤ N (Θ, ‖·‖2,
λ

4(B +R)κ
u) ≤

(
12D(B +R)

κu

)nθ
for 0 < u < 4D(B+R)

κ
, and N (F , ‖·‖∞, u) = 1 for u ≥ 4D(B+R)

κ
, which leads to

∫ ∞
0

√
logN (F , ‖·‖∞, u)du ≤

∫ 4D(B+R)
κ

0

√
nθ log

(
12D(B +R)

κu

)
du

=
12D(B +R)

κ

√
nθ

∫ 1/3

0

√
log (1/u)du

≤ 6D(B +R)

κ

√
nθ.

Substituting this into the bound provided in Theorem 2 of [35], we get the desired estimate.
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D.2 Data for the Portfolio Optimization Problem

Table 17: True expected return

Security 1 2 3 4 5 6 7 8

Expected Return 0.1791 0.1143 0.1357 0.0837 0.1653 0.1808 0.0352 0.0368

Table 18: True return covariances Matrix

Security 1 2 3 4 5 6 7 8

1 0.1641 0.0299 0.0478 0.0491 0.058 0.0871 0.0603 0.0492
2 0.0299 0.0720 0.0511 0.0287 0.0527 0.0297 0.0291 0.0326
3 0.0478 0.0511 0.0794 0.0498 0.0664 0.0479 0.0395 0.0523
4 0.0491 0.0287 0.0498 0.1148 0.0336 0.0503 0.0326 0.0447
5 0.0580 0.0527 0.0664 0.0336 0.1073 0.0483 0.0402 0.0533
6 0.0871 0.0297 0.0479 0.0503 0.0483 0.1134 0.0591 0.0387
7 0.0603 0.0291 0.0395 0.0326 0.0402 0.0591 0.0704 0.0244
8 0.0492 0.0326 0.0523 0.0447 0.0533 0.0387 0.0244 0.1028
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learning theory. In Advanced Lectures on Machine Learning, pages 169–207. Springer,
2004.

[86] Stephan Dempe, Vyacheslav Kalashnikov, Gerardo A Pérez-Valdés, and Nataliya
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et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non
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