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Abstract 

Environmental Factors Affecting CaO and CaSO4-Induced Degradation of Second-

Generation Nickel-Based Superalloys 

 

Patrick Thomas Brennan, PhD 

 

University of Pittsburgh, 2020 

 

The goal of this research project was to provide fundamental understanding of CaO- and 

CaSO4-induced degradation observed in aviation gas-turbine engines and to develop a lab-scale 

test procedure which accurately replicates the degradation observed in field-exposed components. 

Based on initial assessments, particular attention was paid to characterizing the nature of 

breakaway internal oxidation caused by CaSO4 deposits and determining how CaSO4-alloy 

interactions induce subsurface changes in the alloy composition and microstructure which can 

make the alloy susceptible to internal attack.  

Both SEM and TEM analyses were used to characterize the morphology of degradation in 

field-exposed components. Emphasis was placed on characterizing the composition and phase 

distribution in the internal oxidation zone (IOZ). Isothermal experiments were conducted to 

investigate the interactions that take place between CaO or CaSO4 deposits and single crystal 

superalloys at elevated temperatures. This was achieved by exposing Rene N5 and N500 coupons 

with CaO or CaSO4 deposits at 900°C or 1150°C in air for various times and characterizing the 

reaction product. From the results obtained, a novel bi-thermal test procedure was developed which 

successfully replicated the degradation that occurs in the field-exposed components. It was 

determined that degradation of the subsurface caused by CaSO4 at 1150°C made the alloys 

susceptible to internal oxidation when exposed to conditions that better simulate the gas-turbine 

environment. Following this result, sets of systematic experiments were developed to determine 

how the environmental variables of atmosphere, thermal profile, and deposit mass influence the 
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oxidation behavior of a subsurface-depleted alloy and how the behavior is linked to the kinetic 

competition between internal and external oxidation. Finally, it was observed that N5 is more 

resistant to CaSO4-induced degradation than N500. Because of this, the influence of alloy 

composition on the degradation resistance of nickel-based alloys was explored by conducting bi-

thermal experiments with CaSO4 deposit on a superalloy with intermediate composition to that of 

N5 and N500 and by conducting oxidation experiments on model Ni-Cr-Al-Re alloys. 
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1.0 Introduction 

The commercial aviation industry has grown from its humble origin of carrying small 

shipments of cargo and passengers in the early twentieth century to becoming a critical generator 

of economic growth across the world. In 2018, the commercial aviation industry transported a 

record number of passengers - more than 4.3 billion - generating revenues of $564 billion [1]. 

Commercial aviation was also responsible for shipping 70.2 billion tons of freight that generated 

an additional $109.8 billion of revenue [1]. The impact of the commercial aviation industry on our 

society can be partly attributed to the increasing efficiency of the engines that propel modern 

aircraft. Highly efficient engines allow people and material to be transported further, faster, and 

comparatively cheaper than ever before. The predominant technology used for propulsion in 

commercial aviation today is the high bypass turbofan [2]. 

A high bypass turbofan operates by drawing air into the engine with the fan blades at the 

front of the engine. Most of the air is diverted to the “bypass” where it is slightly compressed 

causing it to accelerate out of the back of the engine to generate most of the engine’s thrust. The 

air diverted to the core of the engine is compressed up to 30 atmospheres of pressure by several 

stages of compressor blades before it is mixed with jet fuel and ignited in the combustion chamber. 

The hot expanding gases turn a series of turbine blades which generate electricity for the aircraft’s 

systems and turn the fan blade to draw in more air. A schematic diagram of a turbofan is shown in 

Fig. 1.1 [2]. 
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Figure 1-1. Schematic diagram of a turbofan engine used for aero-propulsion. Given 

temperatures are the approximate gas temperature in each section of the engine [2]. 

 

Of particular interest to this research are the materials that are used to make airfoils and 

shrouds for the high-pressure turbine (HPT). The HPT environment poses one of the most 

significant materials development and selection challenges in a turbofan engine. Turbine blades 

can rotate at up to 10,000 rpm which generates large stresses and the temperature of the inlet gas 

can be as hot at 1500°C [2]. The implementation of active cooling channels and application of 

thermal barrier coatings on the components means that components in the gas path can reach 

surface temperatures as high as 1200°C [2–4]. The large stresses and high temperatures that the 

components are exposed to demand that they be made of a material that has good high temperature 

mechanical properties and environmental stability. The materials best suited for this application 

are nickel-based superalloys. 

The specific class of superalloys most commonly used at present to make components that 

serve in the gas path of the HPT are single crystal superalloys. These alloys are optimized with 

respect to their high temperature mechanical properties and creep life. They maintain a relatively 
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high yield strength at temperatures as high as 0.8 Tm (Tm ≈ 1300-1350 °C) and can withstand brief 

exposures to temperatures as high as 1200°C [3]. The alloys are also resistant to creep rupture, the 

failure of a material due to time dependent creep deformation, during the service life of the 

component which can last up to 5,000,000 flying miles [2, 3]. The long service life of engine 

components is important to maintaining the efficiency of commercial aviation by minimizing 

maintenance time and the associated expenses. This is not an insignificant concern as engine 

maintenance is the largest line item for total fleet maintenance expenses. In 2016, the commercial 

aviation industry spent $67.6 billion on fleet maintenance. Of this total, 39% - roughly $26.4 

billion - was spent on engine maintenance [5]. However, the useful service life of components may 

also be limited by the rate at which they degrade due to oxidation and corrosion. 

During service at elevated temperature, alloys can be rapidly attacked by reactions with 

oxidants in the atmosphere and/or airborne contaminants such as sulfates which can form corrosive 

deposits on the components [6]. Alloys with poor environmental resistance have a greater 

likelihood of early failure due to corrosion and stress corrosion cracking. If the accelerated 

degradation via oxidation or corrosion continues unabated, the component must be pulled from 

service prematurely and replaced. Such unwanted degradation can be prevented by adding 

sufficient aluminum and chromium to nickel-based superalloys to promote the formation of an 

Al2O3 scale that acts as a diffusion barrier between the alloy and the oxidants in the atmosphere. 

Al2O3 is ideal for oxidation and corrosion resistance in the HPT environment because it is a slow 

growing oxide that is very thermodynamically stable. However, there are some aggressive 

environmental conditions which can breakdown or prevent the establishment of Al2O3 leading to 

excessive degradation. In aero-turbines, the most common of these forms of attack is “high 

temperature corrosion” induced by sulfate deposits. 
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High temperature corrosion of aero-turbine components is an area of research that has been 

active since the 1960’s [7].  Hot corrosion was first reported to cause accelerated oxidation and 

sulfidation of high-pressure turbine components in military aircraft during the Vietnam War [8]. 

Similar forms of attack via sulfate deposits are also observed in high-temperature systems for 

power generation [9] and naval propulsion [10]. Due to the impact of deposit-induced attack across 

a variety of applications, there is a large body of research on the influences of temperature, 

atmosphere, alloy composition, and deposit composition on the modes and extents of deposit-

induced degradation. However, for the case of aero-applications, nearly all of the past research 

examines degradation induced by Na2SO4 deposits [7]. Na2SO4-induced hot corrosion occurs due 

to the acidic or basic dissolution and subsequent fluxing of the oxide scales in a liquid sulfate film. 

The fluxing process precludes the establishment or re-establishment of protective oxide scales and 

results in a rapid oxidation and sulfidation of the alloy. An excellent review of the fluxing 

processes has been provided by Rapp [8]. The predominant focus on degradation caused by 

Na2SO4 deposits in aero-turbines has, to some extent, resulted in a knowledge gap between the 

degradation catalogued at the lab-scale and that which takes place in field-exposed components. 

For instance, recent publications [7, 11] have reported oxidation-sulfidation attack in high-

pressure turbine airfoils and shrouds in the presence of calcium-rich deposits. While modes of 

degradation associated with calcium-rich deposits have been investigated for applications such as 

the fluidized bed combustion of coal [12–14], there are currently no published explanations for 

similar modes of degradation in aero-engine components. 

The primary focus for this dissertation research was to develop an understanding of the 

mechanisms by which calcium-rich deposits can cause accelerated degradation in single-crystal 

Ni-base superalloys which have a microstructure comprised of a high volume fraction of γ’-Ni3Al 
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precipitates in a matrix of γ-Ni. Particular focus was placed on reproducing breakaway internal 

oxidation observed in field-exposed components with CaSO4 deposit. The component sections 

were supplied by GE Aviation. Representative cross-sectional micrographs of the degradation 

observed in these components are shown in Fig. 1.2. The degradation microstructure consists of 

three characteristic features. There is a dense external layer of nickel-rich oxide with cobalt in 

solution above an internal oxidation zone with “dendrite-like” intrusions of Al- and Cr-rich oxides. 

Lastly, a fine distribution of CrS precipitates is typically present in the γ’-denuded zone ahead of 

the internal oxidation front. More detailed characterization of the reaction product will be 

presented in chapter 5. 

 

 

Figure 1-2. The degradation observed in field-exposed components. 

 

The goals of this thesis research were to develop an understanding of the modes of 

degradation caused by calcium-rich deposits in the high-pressure turbine of aero-engines and to 

develop lab-scale experiments which replicate these modes of degradation. The result of this 

research will broaden our understanding of deposit-induced hot corrosion of aero-turbine 

components and will allow corrosion mitigation strategies to be better targeted against the modes 
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of degradation that components will face during service. Additionally, the development of a lab-

scale testing procedure will allow materials scientists to better evaluate and rank current and future 

alloys for gas-turbine applications. This tool may lead to the development of alloys with increased 

service life that improve engine operating efficiency. 
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2.0 Background and Fundamentals  

2.1 Structure and Properties of Second-Generation Single Crystal Nickel-Based 

Superalloys 

The exceptional high temperature mechanical properties and oxidation resistance of single 

crystal 2nd generation nickel-based superalloys are derived from their carefully controlled 

composition, phase distribution, and microstructure [3, 4, 15]. The basis of these alloys are the γ 

and γ’ phases in the nickel-aluminum binary system (Fig. 2.1). γ is the FCC Ni solid solution phase 

(A1) and γ’ is the intermetallic Ni3Al phase (L12). 

 

 

Figure 2-1. Binary Ni-Al phase diagram [16]. 

 

The optimal distribution of the two phases in these alloys is a γ matrix with semi-coherent 

sub-micron cuboidal γ’ precipitates with a precipitate volume fraction between 60-75%. The γ’ 
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precipitates are an ideal phase for strengthening because their semi-coherent nature and high shear 

strength makes them resistant to “cutting through” by dislocations. This increases the alloy’s 

resistance to plastic deformation by yielding and by time-dependent creep deformation [3]. γ’ 

precipitate strengthening persists at temperatures as high as 1200°C because the dissolution 

temperature of the γ’ is typically only 30-100°C below the solidus of the alloy [4]. An example of 

the γ + γ’ microstructure in a superalloy is shown in Fig. 2.2. The effect of γ’ precipitation 

strengthening on the tensile properties and creep strength of two phase γ + γ’ alloys compared to 

single phase γ or γ’ alloys is shown in Fig. 2.3. 

 

 

Figure 2-2. Microstructure of a nickel-based superalloy. Cuboidal γ’ precipitates in a γ matrix 

[15]. 
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Figure 2-3. Effect of γ’ precipitate strengthening on critical resolved shear stress (left) and creep 

rate (right) of nickel-based alloys [3]. 

 

Another key microstructural feature of these alloys is that they are cast as single crystals to 

further increase their maximum service temperature by improving creep resistance at very high 

temperatures. At temperatures above 1000°C, the thermomechanical creep process is dominated 

by stress-directed atomic diffusion [17]. The elimination of grain boundaries decreases atomic 

diffusivity in the alloy by removing the short circuit diffusion paths for atoms and vacancies. 

Slowing the atomic diffusion in the alloy decreases the creep rate and results in an increase in the 

alloys expected creep rupture life [3]. 

Controlling the microstructure of these alloys begins during the single crystal casting 

process. Single crystal components are cast by vacuum induction melting an ingot and pouring the 

molten alloy into a heated mold. A seed crystal at the bottom of the mold acts as a nucleation site 

to encourage solidification along the (001) orientation during cooling. The cooling rate of the melt 

is carefully controlled by withdrawing the mold from the furnace to maintain a unidirectional 

thermal gradient which is necessary for single crystal growth. Complex part geometries, such as 

turbine blades with internal cooling channels, can be realized by using a complex mold structure 
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which can be dissolved during post processing. A schematic diagram of the single crystal casting 

process is shown in Fig. 2.4 [3]. After casting, the phase distribution and chemical segregation in 

the alloy is controlled through heat treatment by homogenizing the alloy at a temperature between 

the γ’ dissolution temperature and the solidus temperature. Subsequently, an aging treatment is 

used to control the distribution, shape, and size of the γ’ precipitates to achieve the desired 

mechanical properties [18]. 

 

 

Figure 2-4. Schematic diagram of the single crystal casting process [3]. 

 

In additional to nickel and aluminum; elements such as cobalt, chromium, hafnium, 

molybdenum, rhenium, tantalum, titanium, tungsten, and yttrium are added to further improve 

mechanical properties and oxidation resistance of the alloy [3]. The roles of these alloying 

elements are complex, but they can be roughly grouped into two primary categories. The first 
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category are elements added for solid solution strengthening of the γ and γ’. Co, Mo, Re, and W 

are elements which partition to and strengthen the γ-phase while Ta and Ti partition to and 

strengthen the γ’-phase. The second category of elements are added to increase the oxidation and 

corrosion resistance of the alloys. These elements are Cr, Hf, and Y. The addition of chromium to 

the alloys decreases the concentration of aluminum in the alloy necessary to form and maintain a 

protective Al2O3 scale [19] while hafnium and yttrium slow the oxidation rate and increase the 

adhesion of the Al2O3 scale through the “reactive element effect” [20]. The fundamentals of the 

selective oxidation of aluminum in nickel-based alloys to form a protective Al2O3 scale, along with 

the compositional and environmental factors which effect this process, will be covered in greater 

detail in section 2.2. 

2.2 Oxidation of Nickel-Based Alloys 

2.2.1 Thermodynamics, Kinetics, and Mechanisms of Al2O3 Scale Formation  

The oxidation of metals is a phenomenon that occurs for all structural metals and alloys in 

high temperature environments. For a metal or alloy to be “resistant" to oxidation or corrosion 

during service, the material’s oxidation rate - the rate at which an oxide product develops - must 

be low. This is achieved when the alloy can grow a compact and adherent oxide scale, such as 

Al2O3 on its surface. Such a scale acts as a diffusion barrier to slow the consumption of metal by 

oxidation. As a result, superalloys which serve in the high-pressure turbine of aero-engines are 

designed to ensure that aluminum in the alloy is preferentially oxidized to form an external α-

Al2O3 scale [15]. 
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A more generalized treatment of alloy oxidation will now be presented. Criteria for the 

selective oxidation of element B in an alloy A-B [21] are presented below. If these criteria are met, 

the outward diffusion of B to the surface of the alloy will be sufficient to form a continuous external 

BOυ scale. 

 

1.) The value of ∆𝐺𝑜 of formation (per mole O2) for the solute metal oxide, BOv, must be more 

negative than ∆𝐺𝑜of formation (per mole O2) for the base metal oxide AOv. 

2.) The value of ∆𝐺 for the reaction 𝐵 + 𝑣𝑂 = 𝐵𝑂𝑣 must be negative. Therefore, the base 

metal must have a solubility and diffusivity for oxygen which is sufficient to establish the 

required activity of dissolved oxygen 𝑂 at the reaction front to form BOυ. 

3.) The concentration of B in the alloy must be higher than that required for the transition from 

external to internal oxidation. 

 

The classical treatments for the mechanisms and kinetics of oxide scale growth were 

proposed by Wagner based on seven critical assumptions [22]: 

 

1.) The oxide layer is a compact, perfectly adherent scale. 

2.) Migration of ions or electrons across the scale is the rate-controlling process. 

3.) Thermodynamic equilibrium is established at both the metal–scale and scale–gas 

interfaces. 

4.) The oxide scale shows only small deviations from stoichiometry and, hence, the ionic 

fluxes are independent of position within the scale. 

5.) Thermodynamic equilibrium is established locally throughout the scale. 
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6.) The scale is thick compared with the distances over which space charge effects (electrical 

double layer) occur. 

7.) Oxygen solubility in the metal may be neglected. 

 

In Wagner’s theory for oxide scaling, the growth of an oxide scale is driven by a chemical 

potential gradient for oxygen and metal ions between the scale-gas and scale-alloy interface. This 

gradient drives the diffusion of ions from one interface to the other which in turn establishes an 

electrical potential across the scale. This electrical potential drives the transport of electrons from 

the scale-alloy interface to the scale-gas interface and facilitates the chemical reactions necessary 

to form new oxide at the scale-alloy and/or scale-gas interface. A schematic for these processes is 

shown in Fig. 2.5. 

 

 

Figure 2-5. Diffusion of electronic species through a scale in Wagner’s model for oxidation [21]. 
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Because the diffusion of charged species through the scale is the rate limiting step for 

oxidation, the growth of a scale of thickness X with respect to time t is parabolic (equation 2.1). 

Therefore, the oxidation rate of an alloy that forms a compact oxide scale decreases with increasing 

exposure time and scale thickness. 

 

𝑥2 = 𝑘𝑝𝑡 (2.1) 

 

In equation 2.1, kp is the parabolic rate constant for oxidation. In Wagner’s theory, kp can 

be related to the self-diffusion coefficients of the ions in the oxide by equation 2.2. 

 

𝑘𝑝 = ∫ (𝑣
𝐷𝐵

∗

𝑓𝑀
+

𝐷𝑂
∗

𝑓𝑂
) 𝑑(𝑙𝑛𝑎𝑂2

)
𝑠𝑐𝑎𝑙𝑒−𝑔𝑎𝑠 𝑖𝑛𝑡

𝑠𝑐𝑎𝑙𝑒−𝑎𝑙𝑙𝑜𝑦 𝑖𝑛𝑡

(2.2) 

 

𝐷∗ are the self-diffusion coefficients of metal and oxygen ions in the oxide, v is the 

stoichiometric constant for an oxide BOv, f are the correlation coefficients for diffusion (these 

values are near unity) and the limits of integration are the boundary conditions at the scale-alloy 

and scale-gas interfaces. 

While Wagner’s theory establishes the fundamental treatment for oxidation, when 

experimentally measured rate constants are compared to those calculated from equation 2.2, larger 

than predicted rate constants are measured for many oxides, including Al2O3 [23]. The difference 

between the observed growth rate for Al2O3 and that predicted by equation 2.2 comes from factors 

not considered in Wagner’s theory. The most influential of these factors is the presence of grain 

boundaries in the oxide scale. The microstructure of thermally grown Al2O3 typically consists of 



15 

columnar grains throughout the thickness of the scale with equiaxed grains near the scale-gas 

interface [24]. An example of this microstructure is shown in Fig. 2.6. 

 

 

Figure 2-6. SEM micrograph of Al2O3 grown on FeCrAlY after 2000 h at 1200°C [25]. 

 

The influence of grain boundaries on the effective diffusion coefficients of cations and 

anions through the scale can be demonstrated by equation 2.3 where Dgb
 is the grain boundary 

diffusion coefficient, δ is the grain boundary width and g is the grain size in the oxide. 

 

𝐷𝑒𝑓𝑓 =  𝐷𝑙𝑎𝑡𝑡𝑖𝑐𝑒 + 2
(𝐷𝑔𝑏𝛿)

𝑔
(2.3) 

 

While there is variability in the data regarding the lattice and grain boundary diffusivity of 

oxygen and aluminum in Al2O3, it is likely diffusion through grain boundaries is several orders of 

magnitude greater than diffusion through the lattice [26, 27]. Because of this, the oxidation kinetics 

of Al2O3 are controlled by the faster grain boundary diffusion [28]. 
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The specific transport process for ions through thermally grown Al2O3 on Fe-Cr-Al and 

Ni-Al alloys with and without additions of the reactive element (RE) yttrium were determined 

through experiments using 18O and 16O during different stages of an oxidation exposure [29, 30]. 

The influence of RE additions - such as Ce, Hf, La, Y, and Zr - on the mechanism of Al2O3 growth 

is covered in this review because Hf and Y are added to the commercial alloys studied for this 

thesis. 

The oxygen tracer experiments on Fe-Cr-Al [29] began by oxidizing the alloys for 3 h at 

1000°C in air enriched with 10% 18O. The furnace tube was then evacuated and filled with standard 

air for 9 h during the second stage of the exposure. After the experiment, secondary ion mass 

spectroscopy was used to determine where new Al2O3 forms during oxidation by measuring the 

concentration of 16O in the scale as a function of depth from the scale gas interface. The results 

revealed that new oxide formed at both the scale-gas and scale-alloy interface on the RE-free alloy 

and that new oxide formed only at the scale-alloy interface in the RE-containing alloy. The same 

behavior was observed for Al2O3 growth on NiAl and NiAlY alloys [30]. The formation of new 

oxide only at the scale-alloy interface in RE-containing alloys proved that the addition of reactive 

elements to Al2O3-forming alloys suppresses the outward diffusion of Al3+ through the scale. 

Therefore, Al2O3 growth in the Hf- and Y-containing alloys investigated for this research project 

occurs through the inward diffusion of oxygen through the Al2O3 scale. 

More recent analysis has attempted to explain the oxidation behavior of Al2O3 with and 

without RE additions by linking the defect species that are generated at the scale-alloy and scale-

gas interfaces to the transport of oxygen and aluminum ions through grain boundaries. The 

speciation of defects generated are in turn dictated by the oxygen partial pressure at the scale-alloy 
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and scale-gas interfaces and the presence of reactive element dopants. This more recent analysis 

is elaborated in the following. 

During oxidation in air at 1000°C, the 𝑃𝑂2
 at the scale-alloy interface is roughly 10-31 Pa as 

defined by the equilibrium between Al and Al2O3. The 𝑃𝑂2
 at the scale-gas interface is roughly 2 

x 104 Pa. Kitaoka et al. [31] determined that the dissociation of oxygen to create oxygen vacancies 

by the reaction in equation 2.4 occurs at the low 𝑃𝑂2
 scale-alloy interface and that O2 molecules 

are adsorbed at the high 𝑃𝑂2
 scale-gas interface to generate aluminum vacancies by the reaction in 

equation 2.5. 

 

𝑂𝑂
× →

1

2
𝑂2 + 𝑉𝑂

•• + 2𝑒′ (2.4) 

 

1

2
𝑂2 → 𝑂𝑂

× +
2

3
𝑉𝐴𝑙

′′′ + 2ℎ• (2.5) 

 

In a RE-free Al2O3-forming alloy, the outward diffusion of the oxygen vacancies generated 

at the scale-alloy interface results in a counter flow of oxygen ions inward to the scale-alloy 

interface. Likewise, the inward diffusion of aluminum vacancies generated at the scale-gas 

interface results in the outward diffusion of aluminum to the scale-gas interface. It is by these 

processes that new Al2O3 forms at both the scale-alloy and scale-gas interfaces in alloys without 

RE additions. The mechanism by which RE’s affect Al2O3 growth have been investigated by Heuer 

et al. [27]. The authors determined that adding Hf or Y to the alloy resulted in RE segregation to 

the grain boundaries of thermally-grown Al2O3. The presence of this segregation modifies the 

donor/acceptor grain boundary states which inhibits the ionization of Al at the scale-alloy interface 
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resulting in less outward diffusion of aluminum to the scale-gas interface to form new oxide. This 

leaves the inward diffusion of oxygen to the scale-alloy interface as the primary mechanism for 

the growth of Al2O3 in RE doped alloys. 

While Al2O3 scale formation is the desired behavior for Ni-based superalloys, under harsh 

exposure conditions, an alloy may be unable to establish or maintain external Al2O3. When this 

occurs, aluminum will oxidize in the bulk of the alloy as non-protective discontinuous oxide 

precipitates leaving the base alloy susceptible to reaction. Therefore, understanding the factors that 

dictate the transition between external oxidation and non-protective internal oxidation is necessary 

to understanding the degradation observed in the field-exposed components. 

2.2.2 Thermodynamics, Kinetics, and Mechanisms of Internal Aluminum Oxidation 

Internal oxidation of aluminum in a nickel-based alloy occurs when the supply of 

aluminum to the oxidation front is insufficient to establish or maintain an external Al2O3 scale. In 

this case, there is no barrier to slow the permeation of oxygen into the alloy and discontinuous 

Al2O3 precipitates form in the alloy at the interface where the equilibrium activity product, 𝑎𝐴𝑙𝑎𝑂
1.5, 

for Al2O3 formation is established [32]. The fundamental treatment for the kinetics of internal 

oxidation provided by Rapp  based on the assumed conditions in Fig. 2.7 is presented below [33]. 
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Figure 2-7. Concentration profiles used to derive internal oxidation kinetics. NO and NAl are the 

mole fraction of O and Al in the alloy, 𝑁𝑂
(𝑆)

 is the mole fraction of O at the external surface, and 

𝑁𝐴𝑙
𝑜  is the mole fraction of Al in the bulk alloy. 

 

The depth “ξ” of the internal oxidation zone is shown in equation 2.6. The rate limiting 

step for internal oxidation is the diffusion of oxygen to the oxidation front. The corresponding 

velocity of the internal oxidation front (equation 2.7) is given by taking the derivative of equation 

2.6 with respect to time.  

 

𝜉 = 2𝛾(𝐷𝑂𝑡)
1
2 (2.6) 

 

𝑑𝜉

𝑑𝑡
= 𝛾 (

𝐷𝑂

𝑡
)

1
2

 (2.7) 

 

γ is a time-independent dimensionless parameter which can be determined by solving for 

𝑁𝑂 and 𝑁𝐴𝑙 as a function of position in the alloy using the error function solution for Fick’s 2nd 

law with the following boundary conditions (equations 2.8-11). 
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𝑁𝑂 = 𝑁𝑂
(𝑆)

 𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 𝑡 > 0  (2.8) 

 

𝑁𝑂 = 0 𝑓𝑜𝑟 𝑥 ≥ 𝜉 𝑎𝑛𝑑 𝑡 > 0  (2.9) 

 

𝑁𝐴𝑙 = 𝑁𝐴𝑙
𝑜  𝑓𝑜𝑟 𝑥 > 0 𝑎𝑛𝑑 𝑡 = 0  (2.10) 

 

𝑁𝐴𝑙 = 0 𝑓𝑜𝑟 𝑥 ≤ 𝜉 𝑎𝑛𝑑 𝑡 > 0  (2.11) 

 

Assuming that 
𝐷𝐴𝑙

𝐷𝑂
≪

𝑁𝑂
(𝑆)

𝑁𝐴𝑙
𝑜 ≪ 1, equation 2.6 becomes equation 2.12 and equation 2.7 

becomes equation 2.13 where v =1.5 is the stoichiometric ratio for an oxide BOv (AlO1.5). 

 

𝜉 = [
2𝑁𝑂

(𝑆)
𝐷𝑂

𝑣𝑁𝐴𝑙
𝑜 𝑡]

1 2⁄

(2.12) 

 

𝑑𝜉

𝑑𝑡
= [

𝑁𝑂
(𝑆)

𝐷𝑂

2𝑣𝑁𝐴𝑙
𝑜 𝑡

]

1 2⁄

(2.13) 

 

In most practical applications, the 𝑃𝑂2
 of the atmosphere is high enough to form NiO which 

means that the internal oxidation zone is formed below an external NiO scale. The internal 

oxidation observed in the field-exposed components exhibits this general morphology. Therefore, 

the kinetics of internal oxidation in combination with external scale formation is reviewed below. 
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The modifications to the kinetic model for internal oxidation with external scale formation 

were first published by Maak [34]. There are two additional considerations for this model. The 

first is that the oxygen solubility 𝑁𝑂
(𝑆)

 is dictated by the equilibrium 𝑃𝑂2
 between the external scale 

and the alloy at the scale-alloy interface. The second is that the problem becomes a moving 

boundary problem because the position of the external scale-alloy interface advances as the 

external scale thickens. A schematic of the internal oxidation process with external scale formation 

is provided in Fig. 2.8. In this situation, x becomes the distance from the original external surface, 

X is the position of the external scale-IOZ interface and ξ is the position of the internal oxidation 

front. The new boundary conditions used to derive the internal oxidation kinetics with external 

scale growth are presented in equations 2.14-17. 

 

 

Figure 2-8. Concentration profiles used to derive internal oxidation kinetics where No and NAl 

are the mole fraction of O and Al in the alloy, 𝑁𝑂
(𝑆)

 is the mole fraction of O at the external scale-

alloy interface, and 𝑁𝐴𝑙
𝑜  is the mole fraction of Al in the bulk alloy. 
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𝑁𝑂 = 𝑁𝑂
(𝑆)

 𝑓𝑜𝑟 𝑥 = 𝑋 𝑎𝑛𝑑 𝑡 > 0  (2.14) 

 

𝑁𝑂 = 0 𝑓𝑜𝑟 𝑥 ≥ 𝜉 𝑎𝑛𝑑 𝑡 > 0  (2.15) 

 

𝑁𝐴𝑙 = 𝑁𝐴𝑙
𝑜  𝑓𝑜𝑟 𝑥 ≥ 0 𝑎𝑛𝑑 𝑡 = 0  (2.16) 

 

𝑁𝐴𝑙 = 0 𝑓𝑜𝑟 𝑥 ≤ 𝜉 𝑎𝑛𝑑 𝑡 > 0  (2.17) 

 

Doing the same analysis which yielded equation 2.12 will yield the expression which 

defines the kinetics for internal oxidation with external scale formation (equation 2.18) where F is 

an auxiliary function described by 𝐹(𝑢) = 𝜋
1

2 𝑢𝑒𝑢2
𝑒𝑟𝑓𝑐(𝑢). 

 

𝑁𝑂
(𝑆)

𝐷𝑂 = 𝑁𝐴𝑙
𝑜 ×

𝜉(𝜉 − 𝑋)

2𝑡
×

1

𝐹 (
𝜉

2(𝐷𝐴𝑙𝑡)
1
2

)

 (2.18)
 

 

The typical internal oxidation morphology for a nickel-based alloy oxidized in a high 𝑃𝑂2
 

environment is shown below in Fig. 2.9. From the outer part of the product to the inner part, there 

are four distinct regions. First, there is an external NiO scale. Below this is a region of NiO + 

NiAl2O4 which forms when the external NiO layer advances into the IOZ and envelops the internal 

oxide precipitates. The internal oxidation zone consists of two regions of rod-like oxide 

precipitates. The outer region is alloy + NiAl2O4 precipitates and the inner region is alloy + Al2O3 

precipitates. This IOZ assemblage is a result of the oxygen concentration in the internal oxidation 
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zone and the intermediate thermodynamic stability of NiAl2O4 between NiO and Al2O3. In the first 

65-70% of the IOZ, the concentration of oxygen is typically above that required for the reaction 

NiO + Al2O3 = NiAl2O4 to proceed. In the last 30-35% of the IOZ, the concentration of oxygen in 

the drops below this value but remains above what is necessary for Al2O3 formation. The 

development of this product is well described by Hindam and Whittle [35]. 

 

 

Figure 2-9. Typical assemblage of the reaction product which results from the internal oxidation 

of Al2O3-forming nickel-based alloys [35]. 

2.2.3  Factors Dictating the Transition Between External and Internal Oxidation Behavior 

The transition between external and internal oxidation of Al in an Al2O3-forming nickel-

based alloy is largely a function of the concentration of Al in the alloy. Protective external 

oxidation occurs if the alloy can 1.) initially establish an external scale during exposure and 2.) 

subsequently maintain the supply of Al to the oxidation front necessary to maintain the growth of 
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the oxide scale. Wagner once again developed the classical treatment for determining the critical 

concentration of B in an alloy A-B alloy required to establish and maintain an external oxide scale 

[32]. These treatments are reviewed in [21]. 

The critical concentration of Al required to establish an external Al2O3 scale is calculated 

by equating the number of moles of Al arriving at the internal oxidation front via diffusion to the 

number of moles of oxide per volume element in the IOZ. This mass balance is presented in 

equation 2.19.  

 

𝑓𝐴𝑑𝜉

𝑉𝑚
= [

𝐴𝐷𝐴𝑙

𝑉𝑚

𝜕𝑁𝐴𝑙

𝜕𝑥
] 𝑑𝑡 (2.19) 

 

On the left side of the equation, f is the mole fraction of Al2O3 precipitates at the oxidation 

front and Vm is the molar volume of the alloy. f/Vm is the concentration of oxide per volume. The 

number of moles of oxide in a volume element Adξ is (f/Vm)Adξ where A is the cross-sectional 

area for diffusion. The right side of the equation is the number of moles of Al arriving at the 

oxidation front by diffusion in the time dt. By substituting equation 2.12 and the error function 

solution for NAl(x, t) into equation 2.19, the enrichment factor α, which represents the 

accumulation of oxide in the IOZ, can be derived as equation 2.20. 

 

𝛼 =
𝑓

𝑁𝐴𝑙
𝑜 ≈

2𝑣

𝜋
[

𝑁𝐴𝑙
𝑜 𝐷𝐴𝑙

𝑁𝑂
(𝑆)

𝐷𝑂

] (2.20) 

 

If the volume fraction of oxide at the oxidation front, 𝑔 = 𝑓
𝑉𝑜𝑥

𝑉𝑀
, reaches a critical value, 

g*, then a continuous layer of Al2O3 will form. The critical solute concentration 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ
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required to establish an external oxide scale derived from equation 2.20 is given by equation 2.21. 

g* values are difficult to quantify but g* values for most relevant oxides are near 0.3 [21]. 

 

𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ = [

𝜋𝑔∗

2𝑣
𝑁𝑂

(𝑆) 𝐷𝑂𝑉𝑚

𝐷𝐴𝑙𝑉𝑜𝑥
] (2.21) 

 

If external Al2O3 is established, there must be a sufficient supply of Al to the scale-alloy 

interface to maintain the growth of the layer. Should it be too small, the activity of Al at the 

oxidation front will be too small to form Al2O3. This will result in scale breakdown and allow 

oxygen to penetrate into the alloy to cause internal oxidation. The critical concentration of Al for 

the maintenance of an external scale (𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

) can be calculated by equating the flux of 

aluminum to the scale-alloy interface to the flux of Al required to maintain the growth of the oxide 

based on the oxidation kinetics of the scale (equation 2.22). A schematic diagram of the supply of 

Al to the scale-alloy interface is shown in Fig. 2.10. As indicated in this figure, an imposed limiting 

assumption is that the amount of Al in the alloy at the Al2O3-alloy interface is zero. This is not 

physically possible, but it simplifies the analysis. 
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Figure 2-10. Diffusion of Al to the Al2O3-alloy interface [21]. 

 

𝐽𝐴𝑙 =
𝐷𝐴𝑙

𝑉𝑚
 (

𝜕𝑁𝐴𝑙

𝜕𝑥
)

𝑥=0
=

1

2𝑣
(

𝑘𝑝
1 2⁄

𝑀𝑂
𝑡−1 2⁄ ) (2.22) 

 

The left side of this equation is the flux of Al to the scale-alloy interface and the right side 

of the equation is the flux of Al required to sustain the growth of the scale. By evaluating the 

concentration gradient at x = 0 (the scale-alloy interface), the critical 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑖𝑎𝑛

 is given by 

equation 2.23 [36]. 

 

𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 =

𝑉𝑚

32𝑣
(

𝜋𝑘𝑝

𝐷𝐴𝑙
)

1 2⁄

(2.23) 

 

In the case of Al2O3 formation on superalloy components during service, the critical 

concentration of aluminum (𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 and 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

) are difficult to predict because there are 

several environmental factors in addition to the composition of the alloy which affect the values. 
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Therefore, understanding how the composition of the alloy and the environment in which it 

operates affects the alloy’s ability to form and maintain protective Al2O3 is necessary to explain 

how CaSO4-induced degradation may lead to the internal oxidation observed in the field-exposed 

components.  

2.2.3.1 Compositional Effects on The Boundary Between Internal and External Oxidation: 

The Third Element Effect 

One of the critical aspects of this research project was determining how calcium-containing 

deposits such as CaO and CaSO4 can result in breakaway internal oxidation in the 2nd generation 

single crystal superalloys studied in this thesis. Therefore, understanding how the composition of 

a nickel-based alloy affects 𝑁𝐴𝑙
∗  will provide insight into how compositional changes caused by 

reaction with CaO and CaSO4 deposits may affect the alloy’s ability to form a protective scale. 

There are currently only simplified models that predict 𝑁𝐴𝑙
∗  in nickel-based alloys based on 

composition. This means that our knowledge of the influence of alloy composition on the transition 

between external and internal oxidation is mainly based on careful experimentation. The most 

well-regarded empirical results for this transition are those collected by Giggins and Pettit who 

recorded 𝑁𝐴𝑙
∗  at 1000, 1100, and 1200°C over a wide range of compositions in the NiCrAl system. 

The results of these experiments at 1000 °C are presented as an “oxide map” in Fig. 2.11 [19]. 

Their results show that chromium can profoundly affect the transition between external and 

internal Al2O3 formation by significantly decreasing 𝑁𝐴𝑙
∗ . This beneficial effect of chromium has 

been termed the “third element effect” 
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Figure 2-11. Oxide map predicting the oxidation behavior of NiCrAl alloys at 1000 °C. The 

composition of common 2nd generation nickel-based superalloys are superimposed on the 

diagram (Adapted from [19]). 

 

The mechanism of this third element effect was first posed in the context of the Cu-Zn-Al 

system by Wagner to be a “gettering” effect [37]. According to this theory, and applying it to the 

Ni-Cr-Al system, the thermodynamic stability of Cr2O3 is intermediate to that of NiO and Al2O3, 

so that the initial establishment of a Cr2O3 scale (for kinetic reasons) would preclude further Ni 

oxidation but still permit Al oxidation. Moreover, the initially formed Cr2O3 scale would retard 

the dissolution and diffusion of oxygen into the alloy, which allows more time for aluminum to 

reach the oxidation front and form an Al2O3 scale. Some justification for this theory was that the 

formation of a Cr2O3 scale or subscale during the transient stages of oxidation was observed prior 

to the formation of an Al2O3 scale in Ni-15Cr-6Al [38]; however, there are deficiencies in this 

explanation for the effect of chromium on 𝑁𝐴𝑙
∗  which have led to the theory falling out of favor. 

For example, the conditions for the gettering effect are met by adding manganese as a third element 
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with intermediate oxygen affinity to the Fe-Mn-Al and Ni-Mn-Al systems. If the gettering effect 

held true, the addition of manganese to the alloy would decrease 𝑁𝐴𝑙
∗ ; however, experiments have 

found that Mn has little or even a negative effect on the oxidation behavior of the alloys [39–41]. 

Alternative explanations for the third element effect propose that the beneficial effect of chromium 

is due to α-Cr2O3 acting as a “template” stabilize α-Al2O3 opposed to faster growing metastable 

phases of Al2O3. Additionally, there is evidence that chromium can increase the flux of aluminum 

to the oxidation front in the alloy. 

Identifying the mechanisms for the template effect was the subject of research by Yihong 

Kang [41]. When aluminum oxidizes, initially it nucleates and grows as metastable Al2O3 phases 

such as γ or θ [42, 43]. These metastable Al2O3 phases grow faster than α-Al2O3 which means that 

a greater concentration of aluminum in the alloy is required to sustain the growth of metastable 

Al2O3. Several studies have found that the presence of Cr, Fe, or Ti in an alloy during oxidation 

accelerates the transformation of θ-Al2O3 to α-Al2O3 [44–46]. The mechanism behind the template 

effect is that the more rapid nucleation of oxides such as α-Cr2O3, α-Fe2O3, and α-Ti2O3 with the 

same rhombohedral corundum structure as α-Al2O3 will promote the transformation from 

metastable Al2O3 to the desired α-Al2O3. 

Kang studied the oxidation behavior of Ni-8Al, Ni-8Al-6Cr, and Ni-8Al-6Mn (at%) in air 

at 1100°C during the early stages of oxidation. His results showed that, after 3 minutes of exposure, 

the Al2O3 precipitates in Ni-8Al were entirely γ-phase while much of Al2O3 precipitates formed in 

the Ni-8Al-6Cr alloy had transformed to α-phase. This can be seen in a phase map of the internal 

oxide precipitates presented in Fig. 2.12. EDS analysis of the oxide precipitates revealed 

significant chromium enrichment between the Al2O3 precipitates and the alloy matrix. This 
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suggests that the oxidation of aluminum occurs in the alloy followed shortly by the formation of 

α-Cr2O3 at the Al2O3-alloy interface which stabilizes α-Al2O3. This can be seen in Fig. 2.13. 

 

 

Figure 2-12. PED-TEM phase map of the internal oxidation zone in Ni-8Al (left) and Ni-8Al-

6Cr (right) [41]. 

 



31 

 

Figure 2-13. The composition of internal oxide precipitates in Ni-8Al and Ni-8Al-6Cr after a 3 

minute exposure in dry air at 1100°C [41]. 

 

The accelerated transformation from γ-Al2O3 to α-Al2O3 was found to be beneficial in 

decreasing 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 because of the influence that the Al2O3 crystal structure has on the 

morphology of the internal oxide precipitates. It was found that the difference in interfacial surface 

energy between γ-Al2O3 or α-Al2O3 and the alloy causes γ-Al2O3 precipitates to have a rod-like 

morphology and α-Al2O3 precipitates to have a plate-like morphology. Kang calculated that the 

coarse plate-like α-Al2O3 precipitates decrease the oxygen permeability (the product of oxygen 

solubility and diffusivity) in the alloy by decreasing the area of precipitate-alloy interface available 

to act as short-circuit diffusion paths for oxygen into the alloy. Decreasing the oxygen permeability 

would decrease 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 through equation 2.21. This hypothesis is supported by calculations of 
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the oxygen permeability made from measurements of the internal oxidation depth in Ni-Al-Cr and 

Ni-Al-Mn alloys after a 4-hour exposure in dry air at 1100°C. The oxygen permeability decreases 

with increasing chromium content because chromium stabilizes plate-like α-Al2O3. The oxygen 

permeability increases with increasing manganese content because manganese stabilizes rod-like 

γ-Al2O3. This can be seen in Fig. 2.14. 

  

 

Figure 2-14. Effect of third element concentration on measured oxygen permeability in Ni-8Al 

[41]. 

 

In addition to the template effect of Cr, there is evidence that the presence of chromium in 

Al2O3-forming alloys such as Fe-Cr-Al boosts the concentration of aluminum at the surface of the 

alloy. This enrichment of aluminum at the surface is attributed to the addition of chromium 

increasing the chemical potential gradient that drives the diffusion of aluminum from the bulk 

alloy to the aluminum depleted sub-surface. This happens because the addition of chromium 

decreases the chemical potential of aluminum relative to that of iron in the sub-surface compared 

to a binary NiAl alloy [47–49] resulting in a steeper chemical potential gradient. This can be seen 

in Fig. 2.15. 
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Figure 2-15. Concentration profiles versus depth measured after a 1 minute exposure in oxygen 

at 1000°C by Auger electron spectroscopy combined with plasma sputtering [47]. 

2.2.3.2  Influence of Temperature 

The surface temperature that gas path components experience during service in the high-

pressure turbine can vary between 600°C and 1200°C depending on the location of the part in the 

engine and the performance of the aircraft. Due to the dynamic thermal exposure conditions, it is 

important to understand the effect of exposure temperature on the transition between external and 

internal oxidation. 

It is well established that 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 and 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 are strongly linked to exposure 

temperature. Al2O3 scales form and are maintained more easily at high temperature [19, 50]. This 

is clearly shown in an oxide map generated for NiAl between 900°C and 1300°C in Fig. 2.16. 
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Figure 2-16. Effect of temperature on oxidation behavior of NiAl [50]. 

 

The influence of temperature on 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 is linked to the thermally activated diffusion 

of oxygen and aluminum in nickel. In Fig. 2.16, the left-most boundary represents 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 as 

predicted by equation 2.21 where it can be seen that, as 
𝐷𝑂

𝐷𝐴𝑙
 decreases, 𝑁𝐴𝑙

∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ
 decreases. Due 

to a difference in the activation energy for the substitutional diffusion of aluminum and interstitial 

diffusion of oxygen in nickel (equations 2.24 [51] and 2.25 [52]),  as temperature increases, 
𝐷𝑂

𝐷𝐴𝑙
 

and, therefore, 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 decreases. 

 

𝐷𝐴𝑙 (
𝑚2

𝑠
) = 1.9𝑥10−4 exp (−

265 𝑘𝐽 𝑚𝑜𝑙⁄

𝑅𝑇
) (2.24) 

 

𝐷𝑂 (
𝑚2

𝑠
) = 4.9𝑥10−6 exp (−

164 𝑘𝐽 𝑚𝑜𝑙⁄

𝑅𝑇
) (2.25) 

 

The influence of temperature on 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 is linked to the rate at which fast growing 

metastable Al2O3 phases transform to slow growing α-Al2O3. In Fig. 2.16, the knee-like region 

marks compositions at temperatures which can supply enough aluminum to establish an Al2O3 
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scale but not enough to maintain scale growth during longer exposure, i.e. 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

is satisfied 

but 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 is not. This region exists because, at temperatures below ≈1200°C in Ni-Al, the 

transformation of metastable γ- and θ-Al2O3 to α-Al2O3 is slow and metastable alumina scales have 

much larger growth rates than α-Al2O3 (Fig. 2.17) [42, 43]. As described in equation 2.23, the 

growth rate of the oxide plays a significant role on 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 for the maintenance of the scale. 

Therefore, 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 decreases significantly at higher temperatures where the transformation 

from fast growing metastable Al2O3 to slow growing α-Al2O3 becomes more rapid. 

 

 

Figure 2-17. Parabolic rate constants for α-, γ-, and θ-Al2O3 [42]. 

2.2.3.3  Influence of Atmospheric Steam 

Water vapor is present in the high-pressure turbine environment from the intake of water 

or humid air and from the high air-to-fuel ratio combustion process [53]. The presence of water 

vapor in the atmosphere has been shown to be detrimental to Al2O3 scale formation. It has been 

postulated that moisture in the atmosphere can result in hydrogen-induced embrittlement of the 
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scale-alloy interface in alloys with sulfur impurities [54]. The interstitial hydrogen released into 

the alloy by the dissociation of H2O during exposure is attracted to the tensile stress state of the 

scale-alloy interface and, in the presence of sulfur, it embrittles the interface and may lead to scale 

spallation. Wet oxidizing environments have also been found to increase the 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ in NiCrAl 

alloys. The results from Zhao et al. [55] are presented in Figs. 2.18 and 2.19.  

 

 

Figure 2-18. Effect of 30% water vapor on the boundary between internal and external Al2O3 

formation during oxidation at 1000 °C in air. Corresponding cross-sectional SEM images are 

shown in Fig. 2.19 [55]. 
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Figure 2-19. SEM micrographs of model NiCrAl alloys oxidized at 1000 °C in dry air or air + 

30% steam [55]. 

 

The results of these experiments found that the value for 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 increased by 60% in 

alloys oxidized in air with 30% water vapor compared to the alloys oxidized in dry air. To 

determine the mechanism by which atmospheric steam increases 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

, the author’s 

considered the effect of steam on the variables in equation 2.21:  𝑣𝑒𝑓𝑓, oxygen permeability 

(𝐷𝑂𝑁𝑂
(𝑠)

), 𝐷𝐴𝑙, and g*. 

𝑣𝑒𝑓𝑓 can vary between 1.5 for Al2O3 and 2 for NiAl2O4 so any change in 𝑣𝑒𝑓𝑓 could not 

affect 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 significantly enough to explain the 60% difference. Therefore, the change in the 

effective stoichiometry of the internal oxidation product cannot account for the increase in 

𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

. Recent work published on the effect of steam on oxygen permeability in Fe-Ni alloys 

determined that the presence of atmospheric steam has a negligible effect on the oxygen 

permeability which suggests steams effect on 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 is not a result of changes in oxygen 

permeability [56]. Zhao et al. did not experimentally determine if steam has a significant effect on 

𝐷𝐴𝑙 but did show that it would take an unreasonably large change in DAl to account for the 60% 

change in 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

. Zhao et al. concluded that the critical volume fraction of Al2O3 precipitates, 

g*, is the variable that is affected by steam to increase the 𝑁𝐴𝑙
∗  in wet atmospheres. They measured 
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that the volume fraction of internal Al2O3 was the same in the alloys tested in wet air and dry air, 

but that there were a smaller number of coarser, more widely spaced, oxide precipitates in the alloy 

tested in wet air. From this it was inferred that the extent of lateral growth for Al2O3 precipitates 

needed to form a continuous scale is much larger in wet air than in dry air. Therefore, in order to 

form a continuous scale in these conditions, a larger number of Al2O3 precipitates is required to 

establish an Al2O3 scale which requires a higher aluminum content. The reason that steam affects 

the morphology of internal alumina precipitates is still unknown. Zhao et al. [55] proposed that 

hydrogen enters the alloy and acts as a component which affects the thermodynamic driving forces 

for the nucleation and growth of internal Al2O3 precipitates. 

2.3  State of the Art for Deposit-Induced Corrosion in the Aviation Industry 

2.3.1  Na2SO4-Induced Hot Corrosion 

In addition to atmospheric and environmental factors that are detrimental to an alloy’s 

ability to form and maintain a protective Al2O3 scale, more aggressive modes of degradation 

caused by corrosive deposits can breakdown protective scales and lead to accelerated oxidation 

and sulfidation attack. The current understanding of deposit-induced degradation in aero-

applications is largely based on investigations into degradation caused by molten sulfate deposits. 

This attack is called hot corrosion [8]. Hot corrosion is the process by which thermally-grown 

oxides are dissolved and fluxed into a liquid sulfate mixture (typically assumed to be Na2SO4) by 

acidic or basic reactions. When the component surface is first wetted by a molten sulfate salt, the 
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acidity or basicity of the sulfate melt can be given by the following reaction where SO3 is defined 

as the acidic component and Na2O as the basic component (equation 2.26).  

 

𝑁𝑎2𝑆𝑂4 = 𝑆𝑂3 + 𝑁𝑎2𝑂 (2.26) 

 

The acidity/basicity of the melt dictates the mode of oxide dissolution and the solubility of 

the oxides in the melt. It is affected by interactions between the deposit, alloy, and atmosphere. 

Rapp compiled data on solubilities of several technically important oxides in liquid Na2SO4 at 

900°C as a function of the basicity of the melt. These solubility curves are shown in Fig. 2.20 [57]. 

 

 

Figure 2-20. Solubilities of several oxides in Na2SO4 at 900 °C. Figure is from [21] and data is 

from [57–63]. 

 

Hot corrosion is typically separated into two distinct mechanisms, called Type I and Type 

II corrosion, based on the exposure temperature and SO3 content in the atmosphere [64]. Type I 

hot corrosion occurs through basic dissolution of the oxide in liquid Na2SO4 at temperatures above 
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the melting point of Na2SO4 (Tm = 884°C). Type II hot corrosion occurs when liquid Na2SO4 

formation is stabilized below the melting point of Na2SO4 by SO3 in the atmosphere. The 

temperature range where hot corrosion is a concern is between 700 °C and the dew point of the 

sodium sulfate, which is the temperature at which the liquid sulfate begins to volatilize rapidly. 

This dew point depends on the thermodynamic equilibrium in the high pressure turbine 

environment and the deposit composition, but is generally around 1000 °C for pure Na2SO4 

deposits [65]. 

Conventional Type I Na2SO4-induced hot corrosion occurs by basic dissolution and 

associated fluxing of protective oxide into the liquid deposit where it reprecipitates as a porous 

non-protective oxide. Basic dissolution occurs when Na2O activity in the molten sulfate is 

sufficiently high. Using an NiO scale formed on Ni as an example, high basicity is established 

through the following steps. During the initial stages of Type I hot corrosion, the equilibrium 

oxygen potential established by the SO3 component of the sulfate melt (from equation 2.27) is 

sufficient to form NiO at the alloy-sulfate interface. 

 

𝑆𝑂3 = 𝑆𝑂2 +
1

2
𝑂2 (2.27) 

 

The consumption of oxygen to form NiO results in a decrease in 𝑃𝑂2
 at the alloy-sulfate 

interface which results in a corresponding increase in 𝑃𝑆𝑂2
. The increase in 𝑃𝑆𝑂2

 near the sulfate-

alloy interface increases the sulfidizing potential near the interface and NiSx begins to form. The 

removal of both oxygen and sulfur from the molten sulfate at the alloy-sulfate interface decreases 

the 𝑃𝑆𝑂3
 locally which results in a relative increase in the 𝑎𝑁𝑎2𝑂 near the alloy sulfate interface. 

This basic Na2O reacts with the thermally grown oxides to form species that are soluble in the 
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melt. In nickel-based alloys, NiO is susceptible to hot corrosion attack by forming NiO2
2− through 

basic dissolution via the following reaction. 

 

𝑁𝑖𝑂 + 𝑁𝑎2𝑂 = 2𝑁𝑎+ + 𝑁𝑖𝑂2
2− (2.28) 

 

Rapp and Goto [66] determined that this fluxing reaction is able to proceed because the 

solubility gradient of the dissolved species in the melt is negative through the thickness of the 

sulfate melt. Because this criterion is met, 𝑁𝑖𝑂2
2− released by basic dissolution at the oxide-sulfate 

interface will diffuse away from the oxide-sulfate interface driven by  the 𝑁𝑖𝑂2
2− gradient and 

precipitate as non-protective oxides. Should the solubility gradient vanish, the sulfate melt will 

become saturated at the oxide-sulfate interface and no further oxide dissolution will occur. A 

schematic of this process is shown in Fig. 2.21. 
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Figure 2-21. Fluxing and precipitation of thermally grown oxides in molten Na2SO4 with a 

negative solubility gradient [8]. 

 

Type II hot corrosion occurs below the melting point of Na2SO4 when SO3 in the 

atmosphere is high. A recent review and assessment of Type II hot corrosion of Ni in 1000 ppm 

SO2 + O2 was presented by Gheno et al. [67]. The authors proposed that NiO reacts with SO3 to 

form NiSO4. Because NiSO4 is soluble in Na2SO4, increasing the NiSO4 content in the sulfate 

solution decreases the temperature of first liquid formation (the NiSO4-Na2SO4 eutectic 

temperature is 671 °C). The liquid sulfate penetrates the NiO scale which allows SO3 to enter the 

alloy to cause sulfidation. When nickel is sulfidized, an interconnected sulfide network forms 

within the oxide and allows the fast transport of metal, oxygen, and sulfur ions throughout the 

corrosion product resulting in accelerated oxidation-sulfidation. It should be noted that this form 

of attack is not self-sustaining. After longer exposure periods, the consumption of SO3 in the melt 
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by the oxidation-sulfidation of nickel will decrease the 𝑃𝑆𝑂3
 in the sulfate solution. This results in 

a decrease in the solubility of NiO in the solution and destabilizes liquid phase. When the liquid 

becomes unstable, porous NiO will precipitate and further dissolution will not occur. This process 

is shown in Fig. 2.22. 

 

 

Figure 2-22. Schematic representation of the type II hot corrosion process for Ni [67]. 

 

While attack induced by Na2SO4 deposits is a significant concern to the service life of high 

pressure turbine components, little effort has been made to determine if the other alkali sulfates 

commonly found on high pressure turbine components such as K2SO4, MgSO4, and CaSO4 [68] 

cause other modes of degradation. Of particular interest are CaSO4 deposits. The degradation of 

high-pressure turbine components with deposits rich in CaSO4 was the impetus for this research 

and has been reported previously [7, 69]. However, interactions between alumina-forming nickel-

based alloys and calcium-containing deposits are less understood than those for Na2SO4. 
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2.3.2  Degradation Caused by Calcium-Containing Deposits 

The thermodynamic stability between CaO and CaSO4 plays an important role in the 

possible modes of calcium-rich deposit-induced degradation. The stability of a calcium-containing 

deposit can be expected to toggle between CaO and CaSO4 in the dynamic environment of the 

high-pressure turbine. Because of this, both CaO- and CaSO4-induced modes of degradation must 

be considered and reviewed. The stability between CaO and CaSO4 in a low 𝑃𝑆𝑂2
 oxidizing 

environment representative of a high-pressure turbine [10] is shown in Fig. 2.23. 

 

 

Figure 2-23. Thermodynamic stability of CaSO4-CaO in 10 ppm SO2 + O2. Thermodynamic data 

taken from [70] 

 

It should be noted that the melting points of CaO and CaSO4 (2572°C and 1460°C 

respectively) are much higher than the temperature that components are exposed to during service. 

Therefore, the modes of calcium-containing deposit-induced degradation are likely to take place 

through solid-state reactions. 

While explanations for CaO- or CaSO4-induced degradation in aero-engines have not been 

reported, modes of calcium-rich deposit-induced degradation have been proposed to explain 
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accelerated oxidation and sulfidation observed in in-bed heat exchangers for the fluidized bed 

combustion of coal and other applications in power generation [12, 13, 71–73]. The mechanisms 

of CaO and CaSO4-induced degradation from these works can be used to gain insight into the 

modes of degradation that may be taking place in gas-turbine engines. 

2.3.2.1  CaO-Induced Degradation 

An early investigation into CaO-induced attack in oxidizing environments was conducted 

by Chiang et al. [14] who studied the oxidation behavior of Cr2O3-forming alloys with CaO 

deposits in oxygen at temperatures between 850°C and 1050°C. Their work showed that, at 

elevated temperatures, CaO deposits are not stable in contact with thermally grown Cr2O3. 

Reaction between CaO and Cr2O3 occurred to form non-protective calcium chromates (CaxCryO). 

The authors discovered that CaO-induced degradation on Cr2O3-forming alloys was particularly 

aggressive at 1050°C due to the formation of a liquid CaxCryO phase. 

Gheno et al. [72] and Jung [73] were among the first to study the mechanisms of CaO-

induced degradation of Al2O3-forming alloys. Both found that CaO deposits are not stable in 

contact with Al2O3. During high temperature exposure, CaO and Al2O3 react to form non-

protective calcium aluminates. In the cement literature, calcium aluminates are an important 

constituent in cement, calcium aluminates named and defined as xCaO + yAl2O3 = CxAy. Pseudo 

binary phase diagrams for the CaO-Cr2O3 and CaO-Al2O3 systems show that the possible 

stoichiometries of calcium chromate and aluminate phases that may form by reaction between CaO 

and Cr2O3 and Al2O3 (Fig. 2.24). 
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Figure 2-24. CaO-Cr2O3 (left) and CaO-Al2O3 (right) phase [74, 75]. 

 

Gheno et al. characterized in greater detail how CaO deposits react with different Al2O3-

forming NiCoCrAlY compositions at elevated temperatures. Circular coupons with a diameter of 

1 cm were exposed with 35 
𝑚𝑔

𝑐𝑚2 of CaO at 1100°C for 50 hours. All alloys formed an external 

product that consisted of a thin Al2O3 layer at the scale-alloy interface below a thicker layer of 

multi-phase CxAy. The CxAy region was identified to be primarily made of CaAl2O7 and CaAl2O4 

with the Al-rich CaAl4O7 being present closer to the Al2O3 scale and the CaAl2O4 being closer to 

the CaO. The high-Cr alloy studied (Ni-30Co-33Cr-12Al-0.1Y) exhibited a larger extent of 

degradation compared to the high-Al alloy (Ni-20Co-16Cr-23Al-0.1Y) due to the formation of 

liquid (at 1100°C) CaxCryO above the CaxAlyO layer. The presence of an external CaxCryO layer 

on the Cr-rich alloys suggests that the deposit reacted with the Cr-rich transient oxidation product 

on the alloy prior to the establishment of an exclusive Al2O3 scale. This was proven when the Cr-

rich alloy was oxidized for 10 hours with no CaO deposit then re-exposed for 40 hours with CaO 

deposit. In this experiment, the CaO reacted with the thermally grown Al2O3 to form calcium 
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aluminates but no calcium chromate was formed. Images of Al- and Cr-rich alloys after exposure 

are shown in Fig. 2.25. 

 

 

Figure 2-25. Reaction product formed on Ni-20Co-16Cr-23Al-0.1Y (left) and Ni-30Co-33Cr-

12Al-0.1Y (right) after 50 hours of exposure at 1100°C with 35 
𝑚𝑔

𝑐𝑚2 of CaO [72]. 

 

The authors determined that rapid formation of the non-protective CxAy thins the protective 

Al2O3 scale. Because the CxAy layer is an ineffective diffusion barrier, oxygen is able to transport 

relatively quickly through thin Al2O3 scale. Using this information, the authors developed a kinetic 

model for the oxidation rate of an Al2O3-forming alloy with CaO deposit based on the model for 

multi-layered oxide scale growth proposed by Yurek et al. [76]. Figure 2.26 is a schematic from 

[72] that shows the reaction product formed on Al2O3-forming NiCrAlY with CaO deposit at 

1100°C with a description of the reactions, transport, and kinetics for the process. 
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Figure 2-26. Schematic diagram explaining the development of the Al2O3 + CaxAly O reaction 

product during CaO-induced degradation [72]. 

 

The growth of the CxAy layer is controlled by the diffusion of Ca2+ through CxAy [77–80] 

to the Al2O3-CaxAlyO interface where the following reaction takes place. 

 

𝑥𝐶𝑎2+ + 𝑥𝑂2− + 𝑦𝐴𝑙2𝑂3 = 𝐶𝑥𝐴𝑦 (2.29) 

 

The growth of the Al2O3 layer is dictated by two processes. The first is the destruction of 

Al2O3 to form CxAy by equation 2.29 and the second is its generation by oxidation of aluminum at 

the Al2O3-alloy interface. The authors described the multi-phase calcium aluminate layers as a 

single layer of average stoichiometry CxAy because the stoichiometry and thickness of the 

individual calcium aluminates do not affect the oxygen flux used for the oxidation reaction. 

Because the growth of the CxAy layer is limited by diffusion, its thickening kinetics are parabolic 
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and described by equations 2.30 and 2.31 where Y is the thickness of the CxAy layer and 𝑞′ is the 

apparent parabolic rate constant for CxAy layer growth. 

 

𝑑𝑌

𝑑𝑡
=

𝑞′

𝑌
 (2.30) 

 

𝑌2 = 2𝑞′𝑡 (2.31) 

 

The thickening rate of the Al2O3 scale is the sum of the Al2O3 destruction rate at the Al2O3-

CxAy interface and the Al2O3 production rate at the Al2O3-alloy interface. The rate of destruction 

can be derived from the mass balance in equation 2.29 and is given by equation 2.32 where Vi is 

the molar volume of phase “i”. The rate of Al2O3 production is given in equation 2.33 and relies 

on the assumption that the growth mechanism of Al2O3 at the Al2O3-alloy interface is unaffected 

by reaction with CaO. In equation 2.33, X is the thickness of the Al2O3 layer and p is the intrinsic 

parabolic rate constant for Al2O3 growth. 

 

(𝑑𝑋)𝑑

𝑑𝑡
= −

𝑦𝑉𝐴𝑙2𝑂3

𝑉𝐶𝑥𝐴𝑦

𝑑𝑌

𝑑𝑡
 (2.32) 

 

(𝑑𝑋)𝑝

𝑑𝑡
=

𝑝

𝑋
 (2.33) 
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Adding equations 2.32 and 2.33 yields the net Al2O3 growth rate given in equation 2.34. 

 

𝑑𝑋

𝑑𝑡
=

𝑝

𝑋
−

𝑦𝑉𝐴𝑙2𝑂3

𝑉𝐶𝑥𝐴𝑦

𝑑𝑌

𝑑𝑡
 (2.34) 

 

Substituting equations 2.30 and 2.31 into equation 2.34 and defining α = 
𝑦𝑉𝐴𝑙2𝑂3

𝑉𝐶𝑥𝐴𝑦

 will yield 

equation 2.35 which can be solved to yield equations 2.36 and 2.37 where 𝑝′ is the apparent rate 

constant for the growth of the Al2O3 layer considering the destruction of Al2O3 at the CxAy-Al2O3 

interface. 

 

𝑑𝑋

𝑑𝑡
=

𝑝

𝑋
− 𝛼

𝑞′

√2𝑞′𝑡
 (2.35) 

 

𝑋2 = 2𝑝′𝑡 (2.36) 

 

𝑝′ =
1

2
[2𝑝 + 𝛼2𝑞′ − 𝛼√𝑞′(4𝑝 + 𝛼2𝑞′] (2.37) 

 

The relationship between 𝑝 and 𝑝′ and 𝑞 and 𝑞′ are the general equations given by Yurek 

et al. [76] presented in equations 2.38 and 2.39. It follows that the ratio of layer thickness is given 

by equation 2.40. 

 

𝑝′ =
𝑝

1 + 𝛼
𝑌
𝑋

 (2.38)
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𝑞′ =
𝑞

1 +
1
𝛼

𝑋
𝑌

 (2.39)
 

 

𝑌

𝑋
= 𝛼

𝑞

𝑝
 (2.40) 

 

When the authors used the measurements from their experiments to compare to what would 

be predicted by their model, they found that the 𝑝′ obtained from their measurements was roughly 

6 times smaller than that predicted by the model. The difference could not be attributed to any 

experimental error and was therefore attributed to limitations in the assumptions made for the 

analysis. However, their analysis is still useful as it provides a semi-quantitative model that 

explains the effect of CaO-induced degradation on the rate of aluminum consumption. Because 

the Al2O3 is thinned by reaction to form CxAy, it is a less effective diffusion barrier. Substituting 

equation 2.36 into equation 2.33 yields equation 2.41: the rate of Al2O3 production as a function 

of 𝑝, the normal growth rate of Al2O3, and 𝑝′, the apparent growth rate of Al2O3 considering 

destruction to form CxAy. 

 

(𝑑𝑋)𝑝

𝑑𝑡
=

𝑝

√2𝑝′𝑡
 (2.41) 

 

Because 𝑝′ < 𝑝, the rate of aluminum consumption from the alloy is larger with CaO than 

the alloy oxidized without CaO whose Al2O3 production rate is given by equation 2.42. 

 



52 

(𝑑𝑋)𝑝

𝑑𝑡
=

𝑝

√2𝑝𝑡
 (2.42) 

 

The influence of increased Al consumption on the bulk concentration of aluminum in the 

alloy required to maintain an Al2O3 scale was considered by the authors who used the results from 

their model and Wagner’s analysis for 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

  to predict 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 for an Al2O3-forming 

alloy with and without CaO-induced degradation. The resulting chart is presented here as Fig. 2.27. 

 

 

Figure 2-27. Minimum bulk aluminum concentration required to maintain external Al2O3 growth 

with and without CaO reaction as a function of temperature [72]. 

2.3.2.2  CaSO4-Induced Degradation 

Due to a smaller body of completed research, there is much less known about mechanisms 

of CaSO4-induced degradation at high temperatures and nearly all of the research examines attack 

of Cr2O3 forming Fe- and Ni-based alloys used for heat exchangers in the fluidized bed combustion 

(FBC) of coal. The prevailing explanation provided for the degradation was that it was caused 
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when a dense layer of CaSO4 deposited on a heat exchanger and, according to the interpretation 

provided by Stringer and Minchener [12], the SO2 potential (𝑃𝑆𝑂2
) at the deposit-alloy interface 

dropped below that for CaSO4-CaO equilibrium. The CaSO4 consequently decomposed locally at 

the deposit-alloy interface to form CaO and release SO3. The authors calculated that the 

equilibrium 𝑃𝑠2
 established by CaSO4 decomposition would be sufficiently high to form sulfides 

of nickel and chromium. This resulted in the formation of internal nickel and chromium sulfides 

beneath the protective Cr2O3 layer that eventually prevented the maintenance of the Cr2O3 scale 

and lead to extensive degradation of the alloy by oxidation and sulfidation. 

The release of sulfur from a CaSO4 deposit acting as the initiator for corrosion is a 

promising starting point for studying Ca-rich deposit-induced internal oxidation observed in the 

field exposed components of interest. However, the mode of degradation under these conditions 

are likely different from that described by Stringer and Minchener. There are two key differences 

between the FBC environment and the gas-turbine environment. The first is that the 𝑃𝑆2
 in the FBC 

environment is much higher than that of the turbine environment due to a much higher level of 

sulfur impurities in coal as opposed to jet fuel. The second difference is that the maximum 

exposure temperature of the components of interest in the FBC is 900°C [81] while it is 1200°C 

for the high-pressure turbine components. Possible reaction mechanisms for CaSO4-induced 

degradation in high-pressure turbine environments based on thermodynamic calculations are put 

forward in the following paragraphs. 

Thermodynamic calculations of the stability of CaO-CaSO4 deposits and the thermally 

grown oxides formed on 2nd generation superalloys reveal two possible modes of degradation in 

the HPT environment. One possible degradation mechanism was proposed by Chiang et al. [14]. 

In their research, the authors conducted an experiment where they deposited CaSO4 on a Cr2O3 
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forming alloy exposed at 900°C in O2. They observed that the CaSO4 deposit did not significantly 

affect Cr2O3 scale growth at 900°C. However, they believed that CaSO4-induced degradation of 

Cr2O3 and, potentially, Al2O3 forming alloys could occur at higher temperatures where the thermal 

decomposition of CaSO4 to form CaO and release SO3 was more rapid. In this mechanism, the 

thermal decomposition of CaSO4 could cause corrosion through reactions 2.43 and 2.44 for an 

Al2O3 forming alloy. 

 

𝐶𝑎𝑆𝑂4 → 𝐶𝑎𝑂 + 𝑆𝑂3 (2.43) 

 

𝐶𝑎𝑂 + 𝐴𝑙2𝑂3 → 𝐶𝑎𝐴𝑙2𝑂4 (2.44)  

 

The CaO formed by decomposition would react with the thermally grown Al2O3 scale to 

form non-protective calcium aluminates and the released SO3 would establish a sulfur potential 

high enough to form nickel and chromium sulfides. Thermodynamic calculations of the stability 

of CaSO4-CaO in a 10 ppm SO2 + O2 atmosphere representative of the atmosphere of the high 

pressure turbine [10] (seen previously in Fig. 2.23) show that the thermal decomposition 

temperature of CaSO4 in this environment is ≈1100°C. However literature concerning the thermal 

decomposition kinetics of CaSO4 reveal that the decomposition is quite sluggish at temperatures 

below 1200°C [82, 83]. 

Similar calculations show that the second mechanism to consider for CaSO4-induced 

degradation is direct interaction between CaSO4 and Al2O3 via the reaction in equation 2.45. 

 

𝐶𝑎𝑆𝑂4 + 𝐴𝑙2𝑂3 → 𝐶𝑎𝐴𝑙2𝑂4 + 𝑆𝑂3 (2.45) 
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In this case, CaSO4 would react directly with the thermally grown Al2O3 scale to form non-

protective calcium aluminates and release SO3. Thermodynamic calculations of the stability of 

CaSO4 in contact with Al2O3 in a 10 ppm SO2 + O2 atmosphere show that the reaction in equation 

2.45 is possible at temperatures above ≈950°C (Fig. 2.28). 

 

 

Figure 2-28. Thermodynamic stability of CaSO4 in contact with Al2O3 in 10 ppm SO2 + O2. 

Thermodynamic data taken from [70]. 
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3.0 Deficiencies in the Current Body of Knowledge and Research Objectives 

The preceding review of the literature on deposit-induced degradation of nickel-based 

superalloys reveals that the majority of the research has been dedicated to describing corrosion 

caused by molten Na2SO4-rich deposits. While that work has led to an extensive understanding of 

corrosion caused by molten sulfates, the same principles cannot be applied to degradation caused 

by calcium-rich deposits. Therefore, it has become necessary to identify the conditions where 

degradation caused by calcium-rich deposits becomes severe and to elucidate the mechanisms by 

which the degradation occurs. 

The goal of this research project was to provide the foundational understanding of CaO- 

and CaSO4-induced degradation in aviation gas-turbine engines and to develop a lab-scale test 

procedure which accurately replicates the degradation observed in field-exposed components. 

Developing such an understanding will lay the groundwork for future mitigation strategies and aid 

in the alloy development process by providing a novel test procedure which can be used to better 

evaluate and rank alloy performance. In this study, special attention was paid to characterizing the 

nature of breakaway internal oxidation caused by CaSO4 deposits and determining how CaSO4-

alloy interactions induce changes in the alloy composition and microstructure that make it 

susceptible to internal oxidation. 

Chapter 5 presents SEM and TEM analysis that details the morphology of the degradation 

observed in field-exposed components. Emphasis is placed on characterizing the composition and 

phase distribution in the internal oxidation zone. Chapter 6 presents the results of isothermal 

experiments conducted to investigate the interactions that take place between CaO or CaSO4 

deposits and 2nd generation superalloys at elevated temperatures. This was achieved by exposing 
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Rene N5 and N500 coupons with CaO or CaSO4 deposits at 900°C or 1150°C in air for various 

times and characterizing the reaction product. Chapter 7 presents the thought process and 

principles used to develop the bi-thermal test procedure which successfully replicated the 

degradation that occurs in the field-exposed components. Discussion is focused on explaining how 

subsurface depletion of Al and Cr and enrichment of S caused by CaSO4-induced degradation can 

sensitize a superalloy to breakaway internal oxidation. Chapter 8 details how the environmental 

variables of thermal profile and deposit mass influence the oxidation behavior of a subsurface-

depleted alloy and how the oxidation behavior is closely linked to the kinetic competition between 

internal and external oxidation in the subsurface-depleted alloys. Chapter 9 examines how the 

severity of CaSO4-induced degradation varies with alloy composition. Observations from the field-

exposed components and from the results of the lab-scale experiments have shown that N5 is more 

resistant to CaSO4-induced degradation than N500. The influence of alloy composition on the 

oxidation resistance of nickel-based alloys was explored by conducting CaSO4-induced 

degradation experiments on a model superalloy with composition intermediate to that of N5 and 

N500. Additionally, the internal oxidation behavior of model Ni-Cr-Al-Re alloys was studied at 

1000°C. Finally, the thesis ends with a summary of the key research findings and suggestions for 

future work that should be done to further investigate deposit-induced internal oxidation. 
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4.0 Experimental Procedures and Set-Up 

Most of the experiments for this thesis were done by exposing coupons of the 2nd generation 

single-crystal nickel-based superalloys N5 and N500 with CaO or CaSO4 deposit in a horizontal 

tube furnace. The nominal compositions of N5 and N500 are presented in Table 4.1. Rectangular 

coupons of the alloys (25  12.5  3 mm) were received from GE Aviation in the as-cast condition 

and prepared for furnace testing by grinding the flat surfaces of the coupons to a P1200-grit finish 

using SiC paper. The ground coupons were then degreased by ultrasonic cleaning in ethanol. 

Table 4-1. Nominal composition of Rene N5 and Rene N500 (at%). 
 

 

 

Prior to furnace testing, either CaO or CaSO4 was applied to the largest face of the clean 

coupons by wetting that face with 200 proof ethanol and emplacing the desired mass of deposit 

into the ethanol bead. 99.9% purity CaO and 99% purity CaSO4-anhydrous powders were used. 

The ethanol-powder mixture was then spread evenly over the coupon surface and the coupons were 

heated on a hot plate set at 150°C to evaporate ethanol and any moisture absorbed by the deposit. 

The coupon was then weighed using an analytical balance. With this procedure an accurate deposit 

mass to ± 0.01 mg was measured. 

Furnace testing was done in a controlled atmosphere and the target temperature was 

maintained in the 10 cm hot zone within ± 5°C. The work tubes used were 99.8% aluminum oxide 

with an inner diameter of 4.45 cm. Experiments were conducted using either bottled air or bottled 
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air + steam. The air used for the experiments was 99.999% purity. The inlet gas was flowed through 

the furnace tube at a rate of 50 
𝑚𝐿

𝑚𝑖𝑛
. The gas outlet led into a Na2CO3-saturated water bath to remove 

and SO2/SO3, if present, from the exiting gas before being directed into a fume hood. For the steam 

tests, 30% steam was the target content in the atmosphere for the experiments. According to steam 

tables published in reference [84], the temperature of water in equilibrium with air  + 30% steam 

is 70°C. 30% steam was added to the inlet gas by bubbling bottled air was through deionized water 

heated to 72°C. Above this bubbler was a condenser kept at 70°C using flowing heated water from 

a separate bath to condense excess water vapor in the gas before entering the furnace. A schematic 

of the overall experimental set-up is shown in Fig. 4.1. Samples were inserted and removed from 

the furnace while maintaining the controlled atmosphere by using a custom-made assembly. The 

samples were placed into an Al2O3 crucible which was suspended from an Al2O3 rod with Kanthal 

A1 wire. The rod had a magnet tied at its end and fitted into an enclosed extension of the Pyrex 

endcap. The endcap mated with a gas-tight steel adapter that fit over the end of the furnace tube. 

The mate was sealed with high-temperature vacuum grease and affixed via springs. The samples 

were moved into and out of the furnace using the magnet at the end of the guide rod. Figure 4.2 

shows a picture of this set-up.  
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Figure 4-1. Schematic of the furnace set up. 
 

 

Figure 4-2. Set-up for the sample insertion and removal procedure. 

 

All coupons were characterized after exposure by cross-sectional imaging using electron 

microscopy techniques. Samples mounted in epoxy resin were prepared for microscopy by cross-

sectioning with an oil-lubricated saw and polishing with oil or alcohol-based solutions to retain 

any water-soluble corrosion products. Most coupons were cross-sectioned twice prior to grinding 

and polishing to ensure that three unique cross-sections could be characterized. Mounted cross-
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sections were prepared by standard metallographic grinding and polishing techniques to a 0.25 μm 

finish. The samples were then cleaned in ethanol and coated with a thin film of palladium before 

electron microscopy. 

The composition and make-up of the reaction products formed on N5 and N500 were found 

to be complex so most phase identification was made through interpreting semi-quantitative EDS 

analysis while considering the thermodynamic stability of relevant species. For scanning electron 

microscopy, an accelerating voltage of 20 kV was used when characterizing alloy coupons and 10 

kV was used when characterizing the bulk Al2O3-CaSO4 diffusion couples.  X-Ray diffraction with 

a copper source was used in addition to EDS analysis to characterize the reaction product formed 

in the CaSO4-Al2O3 diffusion couples. Additionally, bright-field and STEM transmission electron 

microscopy imaging using 200 kV accelerating voltage was done to characterize in greater detail 

the morphology and assemblage of the internal oxidation product in the field-exposed components. 

TEM samples were prepared by using focused ion beam milling to lift a thin sample for 

examination from the areas of interest in the mounted component cross-sections. 
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5.0  Characterization of Degradation Morphology Observed in Field Exposed Components 

Three N500 and two N5 components suspected to have been attacked by calcium-rich 

deposits were provided by GE Aviation for characterization. While we cannot report the area of 

operation and duration of service for these parts, we can say that they are similar for all five 

components. Fig. 5.1 presents low magnification optical microscopy images of cross-sections from 

each component which had extensive degradation. The images revealed that the extent of 

degradation was greater in the N500 components (#1-#3) than in the N5 components (#4 and #5). 

The maximum total thickness of the external and internal degradation product exceeded 800 μm 

for all three N500 components and largest attack depth was 2200 μm for component #3. The 

maximum thickness for the degradation product in the N5 components was 367 μm for component 

#4. Remnant deposit was found on components #1 and #5 during SEM imaging and EDS analysis 

measured the deposit to be greater than 90% CaSO4 with the remainder being MgSO4 or MgO. 

Further SEM and TEM characterization of the components was done to gather more detailed 

analysis of the assemblage of the corrosion products. 
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Figure 5-1. Cross-sectional optical images of field-exposed components. Components #1-3 are 

N500 and components #4 and #5 are N5. 
 

Cross-sectional SEM micrographs of the reaction product from N500 components #1, #2, 

and #3 are presented in Fig. 5.2. The assemblage of the reaction product is similar for all three 

components. The degradation consists of an internal oxidation zone beneath an external Ni-rich 

oxide scale. The IOZ consists of “dendrite-like” intrusions of coarse Al- and Cr-rich oxide 

precipitates and the entire external layer of Ni-rich oxide is intermixed with what appear to be 

precipitates rich in Al and Cr. This suggests that the external product was once part of the internal 

oxidation zone that had eventually fully oxidized. A fine distribution of CrS precipitates is present 

in the γ’ denuded zone ahead of the internal oxidation front in components #1 and #3 but is absent 

in component #2.  
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Figure 5-2. Cross-sectional SEM micrographs of components #1, #2, and #3. The top row of 

images shows the interface between the external NiO and the internal oxidation zone, the middle 

row of images shows the internal oxidation front and the bottom row shows high magnification 

images of the internal oxidation front. 

 

Cross-sectional SEM micrographs of the reaction product from N5 components #4 and #5 

are shown in Fig. 5.3. The assemblage of the reaction product in component #4 is similar, though 

less severe, to that observed in the N500 components. There is an external layer of Ni-rich oxide 

intermixed with Al- and Cr-rich oxide above an internal oxidation zone with coarse and irregular 

Al- and Cr-rich internal oxide precipitates. In component #5, the attack is much less severe. The 

external oxide product was found to be rich in Al, Cr, and Ni, which indicates Ni(Al, Cr)2O4 spinel 

formation. EDS analysis also detected 1-2 at% calcium in the external product which suggests that 

there is some reaction that takes place between the calcium-rich deposit and the thermally grown 
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oxides. In localized areas across the alloy surface, internal Al2O3 precipitates formed. A fine 

distribution of CrS precipitates is present in the γ’-denuded zone ahead of the oxidation front in 

component #5 but is absent in component #4. 

 

 

Figure 5-3. SEM micrographs of corrosion product formed on the N5 components #4 (left) and 

#5 (right). 

 

The nature of the degradation product raises questions regarding the initiation and 

propagation of the internal oxidation process and the role that sulfur enrichment in the alloy 

subsurface may play. The make-up of the internal oxide product and extent of sulfur enrichment 

was determined through SEM and TEM analysis of samples prepared by FIB lift-outs from 

locations in component #2. 

5.1  Make-Up of Internal Oxide Product 

The make-up of the internal oxide product was characterized at the base of the IOZ (near 

the interface between the IOZ and the external Ni-rich scale) and at the internal oxidation front. 

The location of the sample lifted from the base of the IOZ is shown in Fig. 5.4 and the area analyzed 
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by EDS is shown in Fig. 5.5. The base of the IOZ is comprised of γ-Ni that is highly depleted of 

solute elements and a mix of several oxides. EDS analysis shows the main oxide products to be 

NiO and NiAl2O4 spinel. Additionally, Ta2O5 was present mixed with the NiAl2O4 and WO3 

particles had formed at Ni-NiO interfaces. The location of the sample lifted from the internal 

oxidation front is shown in Fig. 5.6 and the area analyzed by EDS is shown in Fig. 5.7. EDS 

analysis identified Al2O3, Cr2O3, Ta2O5 and γ-Ni islands. NiO and WO3 were not observed near 

the internal oxidation front.  

 

 

Figure 5-4. SEM image marking the location where the FIB lift-out was taken near the base of 

the IOZ (red box). 
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Figure 5-5. High magnification of an area near the base of the IOZ. EDS mapping was done in 

the blue box. 

 

 

Figure 5-6. SEM image marking the location where the FIB lift-out was taken near the internal 

oxidation front (red box). 
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Figure 5-7. High magnification of an area near the internal oxidation front. EDS mapping was 

done in the blue box. 

 

The make-up of the internal oxidation product as a function of depth in the IOZ is consistent 

with what would be expected for internal oxidation of N5 and N500 based on the relative 

thermodynamic stability of the oxides in the alloy presented in Fig. 5.8. This phase constitution is 

also consistent with what is observed for oxidation of dilute Ni-Al alloys [35]. 
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Figure 5-8. Relative stability of relevant oxide phases. Thermodynamic data from [70] 

 

Near the internal oxidation front, the 𝑃𝑂2
 is relatively low and only sufficient to form Al2O3, 

Ta2O5, and Cr2O3. Near the base of the internal oxidation front, the 𝑃𝑂2
 is higher and sufficient to 

form WO3, NiO and Ni(Al, Cr)2O4 spinel. 

5.2  Presence of Sulfur Near the Internal Oxidation Front 

The N500 components 1-3 all exhibited a very similar morphology of internal oxidation, 

but only components 1 and 3 had a fine distribution of CrS particles ahead of the internal oxidation 

product. The absence of CrS particles ahead of the internal oxidation front in component #2 raised 

questions about the role sulfur plays in the internal oxidation process. EELS analysis was done to 

determine if sulfur was present in the γ’-denuded zone ahead of the internal oxidation front in 

component #2. Micrographs of the area examined and the results of the EELS analysis from line 

scans 1 (γ-Ni) and 2 (Al2O3) are shown in Fig. 5.9. EELS show that there is no sulfur present in 
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the oxide precipitates but that there is indeed sulfur in solution in the γ-Ni at the internal oxidation 

front. Thus, though sulfur is present, it is ostensibly at a level that is insufficient to stabilize CrS 

formation at least in the region analyzed. 

 

 

Figure 5-9. EELS analysis detects sulfur in the γ’-denuded zone ahead of the internal oxidation 

front. 

5.3  Conclusions 

The assemblage of the degradation morphology found in field-exposed components was 

found to have three characteristic features. The first is an external Ni-rich oxide layer, the second 

is an internal oxidation zone of coarse and irregular Al- and Cr-rich oxide precipitates, and the 

third is the enrichment of sulfur at the internal oxidation front which often manifests as CrS 

precipitates. The morphology is quite similar to the typical internal oxidation morphology expected 

from the internal oxidation of aluminum in a nickel alloy in a high 𝑃𝑂2
 environment.  

The results of the field-exposed component characterization informed our decision to study 

how exposure environment, alloy composition, and subsurface sulfur enrichment in combination 
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with calcium-containing deposit-induced degradation can lead to internal oxidation in nickel-based 

superalloys. To determine how calcium-rich deposits might cause such degradation in aero-

engines components, the interactions that take place between CaO and CaSO4 deposits and alloys 

N5 and N500 at 900°C and 1150°C were studied. The results of this work are presented in chapter 

6. 
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6.0  Describing Interactions Between Single-Crystal 2nd Generation Superalloys and CaO 

or CaSO4 Deposits in Oxidizing Environments 

6.1  Experimental Procedure 

The interactions between single-crystal 2nd generation superalloys and calcium-rich 

deposits were investigated by exposing coupons of Rene N5 and N500 with CaO or CaSO4 

deposits. CaO-alloy interactions at 900°C and 1150°C were assessed by exposing coupons with 

2.5 ± 0.5 
𝑚𝑔

𝑐𝑚2 of CaO for 100 hours at 900°C or for 24 hours at 1150°C. CaSO4-alloy interactions 

were investigated by exposing coupons with 20 ± 1 
𝑚𝑔

𝑐𝑚2 of CaSO4 for 100 hours at 900°C or for 

0.5, 1, 8, or 24 hours at 1150°C.  The temperatures for the exposure were chosen as an 

approximation of the temperatures that components would experience during the takeoff (1150°C) 

and cruise (900°C) stages of a flight. All coupons were characterized after exposure by cross-

sectional imaging using electron microscopy and EDS analysis. Mounted cross-sections were 

prepared by standard metallographic techniques. 

6.2  Results and Discussion 

6.2.1  CaO-Alloy Interactions 

Figure 6.1 presents representative cross-sectional images of the reaction product formed 

on N5 and N500 with 2.5 ± 0.5 
𝑚𝑔

𝑐𝑚2
 of CaO for 100 h at 900°C and 24 h at 1150°C in air. The 
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alloys exposed at 900°C formed an adherent mixed oxide and calcium aluminate reaction product. 

Al2O3 was the primary phase formed at the scale-alloy interface and the bulk of the external 

reaction product consisted of mixed Ni, Co, Al, Cr oxides and bands of calcium aluminate. The 

outer portion of the product consisted of calcium chromate with embedded particles of (Ni, Co)O. 

Local areas where limited internal oxidation of aluminum occurred were present in both N5 and 

N500, though they were more common in N500. For the alloys exposed at 1150°C, a thin layer of 

Al2O3 was present at the scale-alloy interface, with thicker layers of calcium aluminates above. 

The assemblage of the Al2O3-CxAy layers matched the reaction product that was reported to form 

on Al2O3-forming NiCrAlY alloys by Gheno et al. [72]. The CxAy region consisted primarily of 

two phases of calcium aluminate; an innermost CaAl4O7 layer and an outermost CaAl2O4 layer. 

EDS measurements of the CxAy layers from the cross-section of alloy N5 are shown in Fig. 6.2. 

The remainder of the product consisted of dense (Ni, Co)O surrounding darker islands of calcium 

aluminate. No calcium chromate was observed in the CaO-induced reaction product formed at 

1150°C. 
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Figure 6-1. Reaction product formed on N5 and N500 with CaO deposit after 100 h at 900°C and 

24 h at 1150°C. 

 

 

Figure 6-2. EDS measurements of the CaxAlyO from the N5 coupon exposed at 1150°C for 24 

hours. 
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The mode CaO-induced degradation observed in these experiments is consistent with 

previously published results [72, 73, 85]. CaO deposits cause accelerated oxidation by reacting 

with Al2O3 and Cr2O3 during the transient stages of exposure to form non-protective calcium 

aluminates and calcium chromates. The failure to establish a protective oxide scale results in the 

broad-front oxidation of the alloy. Calcium and oxygen continue to diffuse through the reaction 

product where it reacts with Al2O3 to produce layers of calcium aluminate. 

While internal oxidation did occur locally in the coupons exposed at 900°C, broad-front 

breakaway internal oxidation similar to the attack observed in the field-exposed components was 

not observed in the present experiments nor has it been reported in the relevant literature. This 

suggests that, while CaO-alloy interactions can cause accelerated oxidation at high temperatures, 

the breakaway internal attack observed in field-exposed components is not likely to be caused by 

CaO deposits. 

6.2.2 CaSO4-Alloy Interactions 

A cross-sectional image of the reaction product formed on N5 and N500 exposed with 20 

± 1 
𝑚𝑔

𝑐𝑚2
 of CaSO4 deposit for 100 h at 900°C in air is shown in Fig. 6.3. Both alloys formed a 

continuous Al2O3-based scale; however, EDS measurements of the scale detected small amounts 

of calcium. This suggests that there is limited interaction between the thermally grown Al2O3 and 

the deposit. The lack of degradation at 900°C is attributed to this temperature being too low for 

significant interaction between the deposit and Al2O3 to take place due to low reaction kinetics 

[14]. 
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Figure 6-3. Reaction product formed on N5 (left) and N500 (right) exposed with 20 ± 1 
𝑚𝑔

𝑐𝑚2
 of 

CaSO4 for 100 h at 900°C. 

 

Cross-sectional images of the reaction product formed on N5 and N500 exposed with 20 ± 

1 
𝑚𝑔

𝑐𝑚2 of CaSO4 for 0.5, 1, 8, and 24 h at 1150°C in air are shown in Fig. 6.4. After 0.5 h of 

exposure, EDS analysis determined that an external layer of Ca- and Al-rich reaction product 

containing 1-2 at% S was present on the surface of both alloys. Several large NiO nodules had 

formed on the N500 coupon while the Ca- and Al-rich layer on N5 remained largely intact. 

Additionally, there was a distribution of CrS particles in the γ’-denuded zone similar to that 

observed in the field-exposed components. The formation of sulfides suggests that SO3 was 

released by the CaSO4 deposit as the CaSO4 was the only source of sulfur in the experiments. 

Figure 6.5 shows a higher magnification image of a NiO nodule on the surface of N500 after 0.5 

h of exposure. The Ca- and Al-rich layer remains on the surface of the NiO nodule. This proves 

that the alloy was able to initially form the Ca- and Al-rich product but not able to supply sufficient 

aluminum to maintain the growth of the external product. Consequently, external scale breakdown 

occurred and resulted in nickel oxidation. 

After 1 h of exposure, NiO nodules had formed on N5 which suggests that the incubation 

time for scale breakdown caused by CaSO4 deposit is longer in N5 than N500. Areas of external 
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Ca- and Al-rich product were still present on N500 at this time but the NiO nodules had continued 

to grow and were the dominant feature on the surface of the alloy. 

After 8 h of exposure, the NiO nodules on both alloys had coalesced to form a relatively 

uniform external nickel-rich reaction product. The product contained a significant amount of sulfur 

in addition to oxygen, which suggests duplex scale formation of NiO + NiSx. In most areas, a thin 

layer of Al2O3 was present at the base of the nickel-rich product. The distribution of CrS particles 

in the γ’-denuded zone was still present after 8 h and, occasionally, Ni3S2 was observed below the 

Al-rich oxide layer. The degradation morphology in the coupons exposed for 24 h was similar to 

that observed after 8 h. The depletion of Al and Cr from the alloy subsurface near the scale-alloy 

interface was measured by EDS after the 24-h exposure. In alloy N5, the aluminum concentration 

dropped from the nominal composition of 13.8 at% to 7.7 at% and the chromium concentration 

dropped from 8.1 at% to 4.5 at %. In alloy N500, the aluminum concentration dropped from the 

nominal composition of 13.9 at% to 6.5 at% and the chromium concentration dropped from 6.9 

at% to 3.7 at %.  
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Figure 6-4. Reaction product formed on N5 and N500 exposed with 20 
𝑚𝑔

𝑐𝑚2 of CaSO4 for 0.5, 1, 

8, and 24 h at 1150°C in air. 
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Figure 6-5. NiO nodule formed on N500 after 0.5 h of exposure at 1150°C with CaSO4 deposit. 

Growth of the external Ca- and Al-rich product could not be maintained and scale breakdown 

resulted in NiO formation. 

6.2.3 CaSO4-Al2O3 Interactions 

The degradation caused by CaSO4 was further assessed by placing 20 
𝑚𝑔

𝑐𝑚2 of CaSO4 on 

bulk Al2O3 and exposing the samples for 0.5, 8, and 24 h at 1150°C in air. Subsequent 

characterization of the reaction product by SEM and XRD showed that Ca4Al6O16S and CaAl2O4 

had formed by 0.5 h and that the layer continued to grow with exposure time. The assemblage of 

the product was determined by EDS analysis to be Ca4Al6O16S above CaAl2O4. Representative 

XRD spectra from the reaction product are shown in Fig 6-6 and micrographs of the coupons 

exposed for 0.5 h and 24 h are shown in Fig. 6-7. 
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Figure 6-6. XRD analysis of reaction product formed between CaSO4 and Al2O3 at 1150°C in 

air. The reaction product contains Ca4Al6O16S and CaAl2O4. 

 

 

Figure 6-7. Assembelage of the reaction product formed between CaSO4-Al2O3 coupons exposed 

for 0.5 h and 24 h at 1150°C in air as determined by EDS analysis. 
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Recording the thickness of the layer as a function of the square-root of time shows that the 

layer thickened according to diffusion-controlled parabolic kinetics with a rate constant of 𝑘𝑝 = 

4.6x10-11 
𝑐𝑚2

𝑠
 at 1150°C (Fig. 6.8). Additionally, the y-intercept value for the line of best fit for the 

data is negative. This indicates that there was an incubation stage prior to the formation of the 

reaction product. No enrichment of aluminum was detected in the CaSO4 deposit, which suggests 

that the product grew via the inward transport of Ca and O through the Ca4Al6O16S / CaAl2O4 

layer. 

 

 

 

Figure 6-8. Parabolic plot of Ca4Al6O16S / CaAl2O4 growth at 1150°C. 

  

The growth rate measured for the Ca4Al6O16S / CaAl2O4 structure at 1150°C can be 

compared to the growth of calcium aluminate at 1100°C measured by Gheno et al. [72] (𝑘𝑝 = 8x10-

13 
𝑐𝑚2

𝑠
) and, in turn, those two rate constants can be substituted into equation 6.1 to determine an 

effective activation energy. 
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ln (
𝑘2

𝑘1
) = −

𝑄

𝑅
(

1

𝑇2
−

1

𝑇1
) (6.1) 

 

Specifically, using k1 = 8x10-13 
𝑐𝑚2

𝑠
 at T1 = 1373K and k2 = 4.6x10-11 

𝑐𝑚2

𝑠
 at T2 = 1423K, equation 

6.1 gives an activation energy of 1316 
𝑘𝐽

𝑚𝑜𝑙
. This is an unrealistically large activation energy and 

thoroughly invalidates the calculation. Indeed, the activation energy for CaAl2O4 formation was 

reported by Mohamed et al. [79] to be 205 
𝑘𝐽

𝑚𝑜𝑙
. What this does verify is that the growth rate of the 

Ca4Al6O16S / CaAl2O4 product is high and not dictated by the CaAl2O4 growth. 

The solid-state synthesis of pure Ca4Al6O16S through the sintering of CaCO3, Al2O3, and 

CaSO4•2H2O powders in air was the subject of a recent publication from Khessaimi et al. [86]. 

These authors utilized differential thermal analysis and thermogravimetric analysis measured in 

conjunction with XRD and electron microscopy to describe the formation of calcium aluminates 

and Ca4Al6O16S as a function of sintering time and temperature. They found that CaAl2O4 can be 

formed by reaction between Al2O3 and CaO, with the latter produced by the thermal decomposition 

of CaCO3 and CaSO4, as shown in equation 6.2. Ca4Al6O16S was formed through the reaction 

between CaSO4 and CaAl2O4 as shown in equation 6.3. 

 

𝐶𝑎𝑂 + 𝐴𝑙2𝑂3  → 𝐶𝑎𝐴𝑙2𝑂4 (6.2) 

 

𝐶𝑎𝑆𝑂4 + 3𝐶𝑎𝐴𝑙2𝑂4  → 𝐶𝑎4𝐴𝑙6𝑂16𝑆 (6.3) 

 

However, for the case of the present research, the XRD and EDS analysis of the Ca4Al6O16S / 

CaAl2O4 product did not detect CaO. Because of this, it is most likely that the reaction proceeds 
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due to direct interaction between CaSO4 and Al2O3, as proposed in Fig 2.29 in section 2.3.2.2. 

Based on this information, schematics for the assemblage of the reaction product and an inferred 

diffusion path for the development of the product are shown in Figs. 6.9 and 6.10. The directions 

in the diffusion path shown in Fig. 6.10 reflect a predominance of Ca diffusion to form the CaAl2O4 

product. 

 

 

Figure 6-9. Assemblage of CaSO4-Al2O3 reaction product and deduced principal interfacial 

reaction and diffusing species. 
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Figure 6-10. Inferred diffusion path for the formation of CaSO4-Al2O3 reaction product. 

 

During the initial stages of exposure, CaSO4 reacts with Al2O3 to form Ca2+ and O2- and 

release SO3. CaAl2O4 is formed by reaction between Ca2+, O2-, and Al2O3. The generation of 

CaAl2O4 in contact with the CaSO4 deposit results in the formation of Ca4Al6O16S through the 

reaction CaSO4 + 3CaAl2O4 = Ca4Al6O16S. Additionally, as described by Stringer and Minchener 

[12], the SO3 released by the decomposition establishes a 𝑃𝑆2
 gradient across the reaction product 

sufficient to drive the inward diffusion of S2- through the reaction product. This would explain 

how nickel and chromium sulfides formed during the alloy exposures. 

6.3  Conclusions 

The experiments investigating the interactions between CaO deposit and N5 and N500 at 

900°C and 1150°C reveal that CaO-induced degradation takes place through the same mechanisms 
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previously described by Gheno et al. and Jung at both temperatures [72, 73]. During the initial 

stages of oxidation, CaO deposit reacted with Al- and Cr-rich oxides to form non-protective CxAy 

and CaxCryO which prevented the establishment of a protective oxide scale. This resulted in broad 

front base-alloy oxidation. While this accelerated oxidation is severe, the results from the current 

experiments and the published literature did not show any signs of breakaway internal oxidation 

during prolonged exposure. 

The experiments investigating the interactions between CaSO4 deposit and N5 and N500 

at 900°C and 1150°C revealed a significant difference in the extent of degradation between the 

two temperatures. At 900°C, both alloys formed an external Al2O3 scale. The presence of a small 

amount of Ca in the product indicated that there was reaction, though limited, between the deposit 

and the thermally grown oxides. At 1150°C, extensive oxidation and sulfidation was observed in 

both N5 and N500 due to the formation of fast growing Ca4Al6O16S / CaAl2O4 which eventually 

results in scale breakdown and base metal oxidation.  It is inferred from the results of the CaSO4-

Al2O3 diffusion couple at 1150°C that the development of the Ca4Al6O16S / CaAl2O4 reaction 

product began with the formation of an external CaAl2O4 layer on the surface of the alloy through 

direct interaction between CaSO4 and Al2O3. With CaSO4 in contact with CaAl2O4 the reaction 

CaSO4 + 3CaAl2O4 = Ca4Al6O16S takes place quite quickly as Ca4Al6O16S is detected by XRD 

after only 0.5 h of exposure. Additionally, this reaction involves the release of SO3 from the CaSO4 

which establishes sulfur potential across the reaction product that drives the inward diffusion of 

sulfur. The ingress of sulfur results in the formation of CrS particles and, eventually, Ni3S2 in the 

alloy subsurface. Shortly after Ca4Al6O16S / CaAl2O4 formation, the external product broke down 

locally and NiO nodules began to form. NiO nodule formation was observed after 0.5 h in N500 

and after 1 h in N5. After 8 h of exposure at 1150°C the NiO nodules on both alloys grew and 
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coalesced to form a relatively uniform external Ni-rich layer. After 24 h of exposure, the 

subsurface of the alloys were significantly depleted of aluminum and chromium and enriched with 

sulfur. 
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7.0 Development of the Bi-Thermal Replication Testing Procedure  

7.1 Introduction 

The isothermal experiments done on alloys N5 and N500 with CaO and CaSO4 deposits 

provided further insights into how deposit-alloy interactions take place in the high-pressure turbine 

environment. It is inferred that CaSO4-induced degradation, and the resulting subsurface depletion 

of Al and Cr and enrichment in S, make the alloy susceptible to internal oxidation. However, 

prolonged isothermal exposures at high temperatures do not result in the breakaway internal 

oxidation seen in the field-exposed parts. It was inferred that there is an important link between 

the conditions of the exposure and the kinetic competition between internal and external oxidation. 

Therefore, a new experiment was designed which applied what was learned about CaSO4-alloy 

interactions at 1150°C with knowledge of the high-pressure turbine environment to replicate the 

breakaway internal oxidation observed in the field-exposed parts. In this experiment, alloys were 

subjected to CaSO4-induced degradation then subsequently exposed to conditions representative 

of a high-pressure turbine which promote internal oxidation. The development of the experimental 

procedure was based on the thermodynamic and kinetic aspects of the selective oxidation of 

aluminum in nickel-based alloys. 
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7.2 High Pressure Turbine Exposure Conditions Which Promote Internal Oxidation 

The influence of subsurface Al and Cr depletion on the susceptibility of a nickel-based 

alloy to internal oxidation can be visualized by plotting the bulk composition of N500 and the 

composition of the γ’-denuded zone after 24 h of exposure with CaSO4 at 1150°C onto the oxide 

map for Ni-Cr-Al alloys at 1200°C (Fig. 7.1). Here it is seen that, even though the depleted zone 

composition lies in the region for internal oxidation, breakaway internal oxidation did not occur 

during the 1150°C exposure with CaSO4. The reason for this is that the oxide map predicts 

behavior based on the bulk alloy composition. For the exposures with CaSO4 deposit, the supply 

of aluminum to the oxidation front from the unaffected aluminum-rich bulk was sufficient to form 

protective Al2O3 during prolonged exposure at 1150°C. Therefore, the approach taken to replicate 

the internal oxidation-sulfidation observed in the components of interest was to expose the 

subsurface-depleted alloy to conditions that are more favorable to internal oxidation in the kinetic 

competition between internal and external oxidation of aluminum. 
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Figure 7-1. The “oxide map” for Ni-Cr-Al at 1200°C with bulk composition of N500 and 

subsurface composition after 8 h of exposure in air at 1150°C with 20 ± 1 mg/cm^2  of CaSO4. 

Adapted from [19]. 

 

Two environmental factors in the high-pressure turbine environment that influence the 

kinetic boundary between internal and external oxidation are temperature variation and the 

presence of steam in the atmosphere as presented in sections 2.2.3.2 and 2.2.3.3. For a brief review 

of the influence of temperature and steam on 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 recall equation 2.21.  

 

𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ = [

𝜋𝑔∗

3
𝑁𝑂

(𝑆) 𝐷𝑂𝑉𝑚

𝐷𝐴𝑙𝑉𝑜𝑥
] (2.21) 

 

Both temperature and the presence of steam influence 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

. When temperature 

increases, the values of both 𝐷𝑂 and 𝐷𝐴𝑙 increase but, due to the difference in activation energy for 

interstitial oxygen diffusion and substitutional aluminum diffusion in nickel, 
𝐷𝑂

𝐷𝐴𝑙
 and hence 
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𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 increase with decreasing temperature [19]. With regard to steam, recent research shows 

that its presence during high temperature oxidation can increase 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 in Ni-Cr-Al alloys by 

affecting the thermodynamic driving forces for the nucleation of Al2O3 precipitates resulting in an 

increase of g*, the critical volume fraction of oxide precipitates needed to establish a continuous 

scale [55]. 

The temperature of high-pressure turbine components during a flight is highly variable. 

During takeoff and climb, components can briefly see temperatures as high as 1200°C. In the 

subsequent cruise stage, components are exposed for longer times at intermediate temperatures 

typically between 600°C and 900°C [87]. This means that the beginning of the thermal cycle for a 

flight may expose components with CaSO4 deposits to temperatures high enough to cause 

significant degradation. Following this initial high-temperature exposure, the subsurface-depleted 

alloy would then see a longer exposure at a lower temperature in the presence of steam generated 

by the combustion of jet fuel. Internal oxidation in the subsurface-depleted alloy is more kinetically 

favorable during the cruise stage of the thermal cycle due to lower exposure temperature and could 

initiate should external scale breakdown occur. This insight led to the development of a two-stage 

“bi-thermal” test procedure for coupons with CaSO4 deposits in the presence of steam. 

The test procedure begins with an 8-h “initiation stage” exposure at 1150°C (2100°F) and 

is followed immediately by a 96-h exposure at 871°C (1600°F). The atmosphere for the test is air 

+ 30% steam. A schematic diagram of the exposure conditions is presented in Fig. 7.2. 
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Figure 7-2. Bi-thermal replication testing procedure. 

7.3  Results of the Bi-Thermal Replication Testing Procedure 

Cross-sectional images of N5 and N500 coupons after the bi-thermal experiment are shown 

in Fig. 7.3. This figure also contains images from field-exposed component #3 (N500) for the sake 

of comparison. The morphology of the reaction product present in the coupons from the bi-thermal 

test and in component #3 consists of three characteristic features. The first is a thick external layer 

comprised of mixed oxides (primarily NiO) and, in the coupons from the bi-thermal tests, calcium 

aluminate. The second characteristic feature is a thick internal oxidation zone containing coarse 

Al- and Cr-rich  oxide precipitates. The third characteristic feature is a distribution of fine CrS 

precipitates in the γ’-denuded zone ahead of the internal oxidation front. The similarities between 

the degradation in the coupons exposed to the bi-thermal test and the field-exposed components 

indicate that the new test procedure accurately reproduces the mode of degradation seen in the 

field-exposed components. 
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Figure 7-3. Cross-sectional images of N5 and N500 coupons exposed to bi-thermal test and of 

N500 component #3. 
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7.4  Evolution of the Corrosion Product During Bi-Thermal Testing 

A time study was conducted to determine how the degradation develops during the bi-

thermal exposure. This was done by conducting additional experiments and stopping the test at 

three different points during the bi-thermal exposure. Figure 7.4 displays the results of these 

experiments where N5 and N500 coupons were removed: a.) after the 8-h 1150°C initiation stage; 

b.) after 1 h at the propagation-stage temperature of at 871°C; and c.) after the full 96-h duration 

of the 871°C propagation stage. After the 8-hour initiation stage, CaSO4-induced degradation as 

described in section 6.2.2 has caused the subsurface depletion of Al and Cr and enrichment of S in 

the alloy subsurface. After 1 h at the propagation-stage temperature of 871°C, there are areas on 

the alloy where the external product was NiO + NiSx and internal oxide precipitates rich in Al and 

Cr had formed in the alloy subsurface. CrS precipitates were present ahead of the internal oxidation 

front. After the full 96-h propagation stage, the degradation matched that found observed in Fig 

7.3. 
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Figure 7-4. Cross-sectional images of coupons removed a.) after the 8-h initiation stage b.) after 

1 h of the 871°C propagation stage exposure and c.) after 96 h of the 871°C propagation stage 

exposure. 
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The results of this experiment prove that alloys attacked by CaSO4 at high temperature 

become susceptible to internal oxidation at lower temperatures in a steam-containing atmosphere; 

however, the individual influence of the thermal profile, steam content, and subsurface sulfur 

enrichment is not provided by these results. To gain a deeper understanding of the mechanisms by 

which CaSO4-induced internal oxidation take place, further experiments were carried out to isolate 

the influence of thermal profile, water vapor, and subsurface sulfur enrichment on the mode of 

degradation in alloy N500. 

7.5  Influence of Thermal Profile and Water Vapor on the Mode of Degradation 

The influence of thermal profile was isolated by comparing the degradation from the bi-

thermal exposure in air + 30% steam (cf. Fig. 7.3) to a 104-h isothermal exposure at 1150°C in air 

+ 30% steam. The initial CaSO4 deposit mass was 20 
𝑚𝑔

𝑐𝑚2 in both experiments. A cross-sectional 

micrograph of the coupon from the isothermal exposure is shown in Fig. 7.5. No internal oxidation 

was observed. Most of the external reaction product spalled on cooling but, in regions where the 

product was retained, continuous Al2O3 was observed. Thus, it is inferred that, even in the presence 

of steam in the atmosphere, internal oxidation is kinetically unfavorable in the subsurface depleted 

alloy at 1150°C. The most likely reason for this is that diffusion of aluminum from the aluminum-

rich bulk of the alloy is large enough at 1150°C to establish and maintain an Al2O3 scale that 

prevents internal oxidation in the steam containing atmosphere.  
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Figure 7-5. Cross-sectional micrograph isothermal 1150°C exposure in air + 30% steam. 

 

The influence of steam was isolated by comparing a bi-thermal exposure in air + 30% 

steam to an identical exposure in bottled air. The thermal profile for the exposures is the same as 

described in Fig. 7.2 but now with an 871°C propagation-stage duration of 60 h. Cross-sectional 

micrographs of coupons after the experiments are shown in Fig. 7.6. The coupon exposed to air + 

30% steam exhibits typical CaSO4-induced breakaway internal oxidation. The coupon exposed to 

air formed an external mixed oxide and calcium aluminate layer typical of CaSO4-induced 

degradation at 1150°C; however, Ni- and Al-rich oxide (likely spinel) is present at the scale-alloy 

interface and there is no significant internal oxidation. Jung [73] reported that the presence of 

steam during high temperature exposure of nickel-based alloys with calcium-rich deposits 

accelerated the depletion of aluminum from the subsurface of the alloy. In this thesis, an 

experiment was conducted where the 8-h 1150°C initiation stage exposure was done in air 

followed by a 60-h 871°C propagation stage exposure in air + 30% steam. The same internal 

oxidation zone morphology as formed during the experiments conducted entirely in air + 30% 

steam develops. This suggests that the subsurface depletion caused by CaSO4-induced degradation 
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at 1150°C in air is sufficient to make the alloys susceptible to internal oxidation during the 

propagation stage. 

 

 

Figure 7-6. Cross-sectional image of the coupons exposed to bi-thermal exposure in air + 30% 

steam (left) and in bottled air (right). 

 

The results of these experiments prove that both a lower temperature “propagation stage” 

temperature and the presence of steam in the atmosphere during the propagation stage are 

necessary for breakaway internal oxidation to occur in N5 and N500 subjected to CaSO4-induced 

degradation at 1150°C. This supports the assertion that the kinetic competition between internal 

and external oxidation dictates the subsequent oxidation behavior of alloys attacked by CaSO4 

deposits. 

7.6  Influence of Subsurface Sulfur Enrichment on the Mode of Degradation 

The influence of subsurface sulfur enrichment on the oxidation behavior of subsurface 

depleted N5 and N500 was investigated using two experiments. The first was comparing the bi-
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thermal experiment in air + 30% steam with CaSO4 deposit from Fig 7.6 to a test with the same 

exposure conditions but with 8.25 
𝑚𝑔

𝑐𝑚2 of CaO deposit (8.25 
𝑚𝑔

𝑐𝑚2 deposit of CaO has the same 

number of moles as the 20 
𝑚𝑔

𝑐𝑚2 CaSO4 deposit used). The experiment was an 8-h initiation stage at 

1150°C followed by a 60-h propagation stage exposure at 871°C in air + 30% steam. The results 

of the test with CaO are shown in Fig. 7.7. The coupon exposed with CaO did not exhibit internal 

oxidation and the structure of the external product had no significant differences from that reported 

in Fig. 6.1. The external product formed on the coupon with CaO deposit appeared to be well 

adhered to the alloy while the external product formed with CaSO4 was highly defective due to 

significant porosity and apparent delamination of the product. 

 

 

Figure 7-7. Cross-section of N500 after bi-thermal exposure in air + 30% steam with CaO 

deposit (cf. Fig. 7.6 (Left)). 
 

The detrimental influence of sulfur enrichment is likely tied to the effect of sulfur on 

external scale adherence. From the time study done to determine how internal oxidation initiates 

during the bi-thermal exposure with CaSO4 in section 7.4, it was determined that the internal 

oxidation initiates locally where non-protective external NiO+NiSx was present. There is a large 

body of research that definitively shows that sulfur impurities in Ni-based alloys segregate to the 



99 

scale-alloy interface during oxidation. This segregation results in the promotion of void formation 

and porosity at the scale-alloy interface and poor scale adherence which increases susceptibility to 

scale spallation [88–93]. 

It is possible that the scale breakdown during bi-thermal testing in air + 30 % steam with 

CaSO4 deposit occurs due to spallation caused by the accumulation of stresses in the poorly 

adherent scale. This could occur during the bi-thermal experiments due a combination of growth 

stresses and thermal stresses. When external scales grow thick, as they do during CaSO4-induced 

degradation at 1150°C, the compressive strain energy in the product increases [94]. Upon cooling 

from 1150°C to the propagation-stage temperature of 871°C, additional compressive stress is 

generated in the product due to a mismatch in the coefficient of thermal expansion for the scale 

and the underlying alloy [95]. Should the stress exceed the toughness of the interface, cracking or 

spallation will occur and create initiation sites for internal attack during the propagation stage. This 

would also explain why no internal attack occurred in the coupon exposed with CaO. While there 

is significant subsurface depletion of Al caused by CaO-induced degradation, the external product 

is quite adherent due to the absence of sulfur and there is a smaller possibility for scale breakdown 

to allow for internal oxidation. 

Additional insight into the influence of sulfur on the mode of degradation during bi-thermal 

exposure was gained by comparing a control bi-thermal test with CaSO4 deposit to one where the 

alloy was de-sulfurized after the 8-h initiation stage. The test began when N500 coupons with 20 

𝑚𝑔

𝑐𝑚2 of CaSO4 deposit were exposed for 8 h at 1150°C in air + 30% steam. After this initiation 

stage, the coupons were removed from the furnace and the surface of the coupons were grit blasted 

with silica to remove any external oxide scale on the coupons. Descaling was done to ensure that 

the surface of the coupon to be de-sulfurized was exposed to the reducing gas during the de-
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sulfurization treatment. The control coupon underwent the same de-scaling procedure to match the 

surface preparation of the de-sulfurized coupon prior to the propagation-stage exposure. The 

coupon to be de-sulfurized was exposed in a reducing atmosphere of Ar + 5% H2 at 1000°C for 24 

h. After this de-sulfurization treatment, both alloys were exposed for 60 h at 871°C in air + 30% 

steam. The results from this set of experiments are shown in Fig. 7.8. The corrosion product formed 

on the control coupon consisted an external layer of NiO above internal intrusions of Al- and Cr- 

rich oxides with a morphology similar to that observed in standard bi-thermal tests. NiO was also 

formed on the de-sulfurized coupon but an Al-rich scale was present at the scale-alloy interface. 

No internal oxidation was observed in the de-sulfurized coupon. 

 

 

Figure 7-8. Cross-sectional micrographs of control bi-thermal test coupon (left) and the coupon 

which was de-sulfidized prior to the propagation stage (right). 

 

The results of this experiment suggest that CrS formation and sulfur enrichment in the 

subsurface are detrimental to the establishment of a protective Al2O3 scale even when the 

subsurface depleted alloy is exposed to the oxidizing environment. Several researchers have 

reported that the enrichment of sulfur at the oxidation front can indeed promote coarse internal 

oxide morphologies similar to those observed in the current bi-thermal experiments [96–98]. The 
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formation of CrS particles ahead of the oxidation front is likely to be detrimental to the 

establishment of Al2O3 because the sulfide formation removes Cr, an element that known to be 

very beneficial in decreasing 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 as described in section 2.2.3.1, from the alloy near the 

oxidation front. The depletion of Cr from the oxidation front is also a self-sustaining process during 

internal oxidation-sulfidation. During oxidation-sulfidation, sulfur is continuously forced deeper 

into the alloy ahead of the oxidation front due to the oxidation of CrS precipitates as described by 

Spengler et al. [98] and Meijering [99]. Because CrS is less thermodynamically stable than Cr2O3, 

as the 𝑃𝑂2
 ahead of the internal oxidation front increases, CrS becomes unstable. The precipitates 

oxidize and release the tied-up sulfur. The freed sulfur then diffuses deeper into the alloy where 

the sulfur and oxygen activity are low and the chromium activity is high. This allows new CrS 

particles to form ahead of the internal oxidation front which maintains the depletion of chromium 

at the oxidation front. 

7.7  Conclusions 

The bi-thermal testing procedure in air + 30% steam with CaSO4 deposit was shown to be 

very effective in reproducing the severe internal oxidation observed in the field-exposed 

components examined in this study. It appears that the key to achieving reproduction of the 

degradation observed in the field-exposed components at the lab scale was more accurately 

simulating the thermal profile and atmosphere that high pressure turbine components are exposed 

to during flight. Characterizing the development of the internal oxidation product helped us 

identify three criteria that must be met for breakaway internal oxidation to occur in alloys N5 and 

N500. 
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The first criterion for causing internal oxidation in alloys N5 and N500 is that subsurface 

depletion of Al and Cr as well as subsurface enrichment of S are necessary for internal oxidation 

to occur during testing. This critical depletion was attained through CaSO4-induced degradation 

during the initial 1150°C exposure. The second criterion is that external scale breakdown must 

occur to allow oxygen to permeate into the alloy. Early in the 871°C propagation stage exposure 

it was observed that internal oxide precipitates only formed in areas where there was no evidence 

of an external Al-rich oxide layer. During bi-thermal testing, scale breakdown most likely occurs 

due to stress buildup upon cooling to 871°C. The final criterion is that the environmental 

conditions must favor internal oxidation in the exposed subsurface-depleted alloys. The 

experiments in this chapter showed that both a lower exposure temperature and the presence of 

30% steam in the atmosphere are necessary for internal oxidation to occur in the alloy. 
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8.0  Factors Affecting the Susceptibility of Superalloys to Breakaway Internal Oxidation-

Sulfidation 

8.1  Design of Systematic Experiments 

Three sets of experiments were completed to systematically address how the: 1.) 1150°C 

initiation-stage duration; 2.) initial CaSO4 deposit mass; and 3.) propagation-stage temperature 

influence the susceptibility of Rene N5 and N500 to breakaway internal oxidation. 

The influence of the 1150°C initiation-stage duration on the susceptibility of N5 and N500 

to internal oxidation was investigated by linking the susceptibility to internal oxidation to the 

extent of subsurface aluminum depletion and sulfur enrichment caused by CaSO4-induced 

degradation. To accomplish this, the subsurface regions of the N5 and N500 coupons exposed with 

20
𝑚𝑔

𝑐𝑚2  of CaSO4 for 0.5, 1, 8, and 24 h at 1150°C in air from Fig. 6.4 in section 6.2.2 and were 

characterized in greater detail. The extent of subsurface aluminum depletion was measured by 

EDS analysis and the extent of subsurface sulfur enrichment was quantified using image analysis 

to measure the volume fraction of CrS particles in the γ’-denuded zone. Following this, a series of 

bi-thermal experiments in air + 30% steam were conducted on N5 and N500 coupons with 1150°C 

initiation-stage durations of 0.5, 1, 8, or 24 h followed by a 60-h propagation stage at 871°C. A 

schematic summarizing the conditions of the bi-thermal tests is given in Fig. 8.1. 
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Figure 8-1. Experiments used to determine the effect of 1150°C initiation-stage duration on the 

mode of CaSO4-induced internal attack. 

 

The influence of initial deposit mass on the susceptibility of the alloys to breakaway 

internal oxidation was investigated by exposing N500 coupons with 5, 10, 20, or 40
𝑚𝑔

𝑐𝑚2 of CaSO4 

to a bi-thermal exposure in air + 30% steam with an initiation stage duration of 1 or 8 h at 1150°C 

followed by a 96-h propagation-stage exposure at 925°C. A schematic summarizing the conditions 

used for this set of experiments is shown in Fig. 8.2. 
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Figure 8-2. Experiments used to evaluate influence of CaSO4 deposit mass on alloy susceptibility 

to breakaway internal oxidation. 

 

The influence of the propagation-stage temperature on the rate of degradation during the 

propagation stage was investigated by conducting a series of exposures having an 8-h initiation 

stage at 1150°C followed by a 96-h propagation stage at a temperature of 704, 816, 925, 1038 or 

1150°C. The atmosphere for the tests was air + 30% steam and the initial deposit mass was 20 
𝑚𝑔

𝑐𝑚2 

of CaSO4. The severity of the attack as a function of the propagation-stage temperature was 

quantified by measuring the maximum sound metal attack in each coupon. The sound metal attack 

is defined in this paper as the depth of the degradation from the original coupon surface (three 

cross-sections per coupon were examined). Accurate measurements were made possible by leaving 

a portion of the alloy surface free of deposit to retain the original surface of the coupon. The 

thermal profiles for these experiments are shown in Fig. 8.3. 
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Figure 8-3. Experiments used to determine the effect of propagation stage temperature on the 

mode and extent of degradation. Initial CaSO4 deposit mass is 20 
𝑚𝑔

𝑐𝑚2 and the atmosphere is air + 

30% steam. 

8.2  Influence of 1150°C Initiation Stage Duration on the Susceptibility of N5 and N500 to 

Internal Attack 

Cross-sectional SEM images of N5 and N500 exposed to the conditions outlined in Fig 8.1 

are shown in Fig. 8.4. The plots in Fig. 8.5 show the measurements of: 1) the depth of the γ -

denuded zone; 2) the concentration of aluminum near the scale-alloy interface; and 3) the extent 

of subsurface sulfidation for each exposure time. Three areas per sample where external product 

remained intact were chosen for analysis. Taking measurements of the alloy subsurface with intact 

external scale was done because it would yield more consistent data regarding the conditions of 

the subsurface prior to the propagation stage. In areas where the external product had broken down, 
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measuring denuded zone depth and composition became difficult due to rapid degradation in the 

subsurface. 

The measurements of the aluminum concentration near the scale-alloy interface reveal that 

it decreases rapidly from the bulk value of 13.9 at% to about 6.5 at% in both alloys after only 0.5 

h of exposure at 1150°C. The interfacial aluminum content remains relatively constant with 

exposure time up to 24 h around a value of roughly 7 at% aside from an outlying value of 2.1 at% 

for the 8 h N5 sample. Plotting the γ’-denuded zone depth versus the square root of time confirms 

that the depth increases with diffusion-controlled kinetics because the line that the data points is 

linear. This implies that the CaSO4 deposit maintains good adherence with the growing reaction 

product up to 24 h of exposure and that Al consumption rate is controlled by Al diffusion through 

the denuded zone with fixed boundary conditions at the scale-denuded zone interface and the 

denuded zone-base alloy interface. From this information, a kinetic analysis can be done to 

quantify the rate of Al consumption from the alloy subsurface. This rate can then be compared to 

the rate of Al consumption required to form Ca4Al6O16S / CaAl2O4 in the CaSO4-Al2O3 diffusion 

couple from section 6.2.3 in order to determine if the rate of aluminum consumption from the alloy 

during CaSO4-induced degradation at 1150°C is consistent with the aluminum consumption 

required to form Ca4Al6O16S / CaAl2O4 in the more well behaved CaSO4-Al2O3 diffusion couple. 
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Figure 8-4. Images of the subsurface depletion zone that develops in alloys N5 and N500 during 

CaSO4-induced degradation in air at 1150°C. 

 



109 

 

Figure 8-5.Charts showing the depth of the γ’ denuded zone (top left and right), the 

concentration of aluminum near the scale-alloy interface (bottom left), and the area of CrS 

particles formed in the γ’-denuded zone (bottom right) with increasing exposure time at 1150°C 

in air + 30% steam with 20
𝑚𝑔

𝑐𝑚2 of CaSO4 deposit. 

 

The Al concentration at the scale-denuded zone interface is fixed by the equilibrium 

between the scale and the denuded zone which was measured to be roughly 7 at%. The 

concentration at the denuded zone-base alloy interface is the solubility limit for Al in the γ-phase 

at 1150°C. CALPHAD (CALculation of PHAse Diagrams) computations for alloys with the 

composition of N5 and N500 predict this value to be 9.9 at% in both alloys. The depth and rate of 

denuded zone growth can be modeled by equation 8.1 as presented by Carter et al. [100] where 

𝑁𝐴𝑙
𝛾

 is the Al concentration at the γ-γ + γ’ interface, 𝑁𝐴𝑙
𝑜  is the Al concentration in the bulk alloy, 

and 𝑁𝐴𝑙
𝑖  is the Al concentration at the scale-alloy interface. The quantities u and α are given in 
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equations 8.2 and 8.3 where kc is a corrosion constant that measures the aluminum consumption 

rate, Xd is the denuded zone depth, and Vi is the molar volume of phase “i”. The value of kc can 

be converted to a kp that represents the growth rate constant of an Al2O3 scale required to form a 

denuded zone of depth Xd in time t using equation 8.4. This kp will be called 𝑘𝑝
𝐷𝑍. Fig. 8.6 is a 

schematic showing the concentration profile for Al in the alloy subsurface with the variables for 

the analysis. The result of this analysis yields a value of 6.2x10-10 
𝑐𝑚2

𝑠
 for the 𝑘𝑝

𝐷𝑍 of an Al2O3 scale 

required to form a 40.3 μm γ’-denuded zone in 24 h. 

 

𝑁𝐴𝑙
𝛾

− 𝑁𝐴𝑙
𝑖

𝑁𝐴𝑙
𝑜 − 𝑁𝐴𝑙

𝛾 = √𝜋 𝛼 𝑒𝑥𝑝(𝛼2) [𝑒𝑟𝑓(𝛼) − 𝑒𝑟𝑓(𝑢)] (8.1) 

 

𝑢 = √
𝑘𝑐

4𝐷𝐴𝑙
 (8.2) 

 

𝛼 =
𝑋𝑑

2√𝐷𝐴𝑙𝑡
 (8.3) 

 

𝑘𝑝
𝐷𝑍 = 𝑘𝑐 (

𝑉𝐴𝑙2𝑂3

2𝑉𝐴𝑙
)

2

 (8.4) 
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Figure 8-6. Schematic diagram used for the kinetic analysis to quantify the rate of Al 

consumption required to form the γ’-denuded zone. 
 

To compare the value of 6.2x10-10 
𝑐𝑚2

𝑠
 for the 𝑘𝑝

𝐷𝑍 of an Al2O3 scale required to form a 

40.3 μm γ’-denuded zone in 24 h to the aluminum consumption rate required to form the 

Ca4Al6O16S / CaAl2O4 product in the CaSO4-Al2O3 diffusion couple at 1150°C, the rate constant 

for Ca4Al6O16S / CaAl2O4 growth (4.6x10-11 
𝑐𝑚2

𝑠
) must be converted to an equivalent rate constant 

for Al2O3 growth. For this analysis, The Ca4Al6O16S / CaAl2O4 thickness is approximated to be 

entirely Ca4Al6O16S because the EDS and XRD analysis show the CaAl2O4 layer to be thin. 

Because there are 3 units of Al2O3 in each unit of Ca4Al6O16S, the equivalent rate constant for 

Al2O3 growth from the diffusion couple (𝑘𝑝
𝐷𝐶) is given by equation 8.5 and yields 𝑘𝑝

𝐷𝐶 = 1.5x10-11 

𝑐𝑚2

𝑠
.  

 

𝑘𝑝
𝐷𝐶 = 4.6 × 10−11  (

3𝑉𝐴𝑙2𝑂3

𝑉𝐶𝑎4𝐴𝑙6𝑂16𝑆
) (8.5) 
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𝑘𝑝
𝐷𝑍

𝑘𝑝
𝐷𝐶 = 41 which means that the aluminum consumption from the alloy during CaSO4-

induced degradation is greater than the aluminum consumption required to form Ca4Al6O16S / 

CaAl2O4 at 1150°C in the CaSO4-Al2O3 diffusion couple. This is reasonable because it can be seen 

from figure 8.4 that reaction product that forms on the alloys is poorly adherent and contains 

porosity. These defects would reasonably accelerate the consumption of aluminum from the alloy. 

However, this analysis only provides an estimation of the Al consumption. Due to assumptions in 

the analysis, the exact degree to which Al consumption from the alloy is greater than the Al 

consumption required to form Ca4Al6O16S / CaAl2O4 in the CaSO4-Al2O3 diffusion couple is 

unknown. In any case, as the 1150°C initiation stage duration increases, the extent of depletion in 

the denuded zone increases. Because of this it is reasonable to expect that the susceptibility of the 

alloys to internal oxidation during bi-thermal testing with CaSO4 deposit should increase with 

increasing initiation stage duration.  

Figure 8.7 shows cross-sectional images of the corrosion product formed on alloys N5 and 

N500 after bi-thermal tests in air + 30% steam with 20 
𝑚𝑔

𝑐𝑚2 of CaSO4 deposit using a fixed 

propagation stage of 60 h at 871°C. The 1150°C initiation-stage duration for these experiments 

was 0.5, 1, 8, or 24 h. Significant internal oxidation occurred for initiation-stage durations of 0.5, 

1, and 8 h in alloy N500 and only after the 8-h initiation stage in N5. No internal oxidation occurred 

in the samples subjected to a 24-h initiation stage. 

In alloy N500, the internal oxidation presented as localized pits for the 0.5- and 1-h 

initiation-stage exposures but was more uniform for the 8-h exposure where about 80% of the 

surface in the cross-section exhibited internal attack to a similar depth. The maximum attack depth 

was relatively low for the 0.5-h initiation stage but then similarly deep for the 1-h and 8-h 

initiation-stages. In alloy N5, several NiO nodules formed along the alloy surface for the 0.5- and 
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1-h initiation-stage exposures; however, Al-rich subscale had formed below the nodules, which 

must have prevented internal oxidation during the propagation stage. Like in N500, the depth of 

internal oxidation zone formed in the N5 coupons exposed with the 8-h initiation stage was 

relatively uniform across the surface of the alloy. The influence of alloy composition on 

susceptibility to internal oxidation will be covered in chapter 9. The following paragraphs will 

focus on the influence of 1150°C initiation-stage duration on the extent of degradation in N500. 
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Figure 8-7. Corrosion product developed on coupons subjected to bi-thermal exposure in air + 

30% steam with initiation stage durations of 0.5, 1, 8, or 24 h. 
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In alloy N500, the transition in the attack morphology from localized pits for coupons 

subjected to an initiation-stage exposure of 0.5 or 1 h to more uniform degradation for the coupon 

with an 8-h initiation-stage suggests that the number of initiation sites for internal oxidation 

increases with initiation time up to at least 8 h and then, for some reason, the alloy becomes less 

susceptible to degradation as the initiation-stage duration increases to 24 h. In chapter 7 we inferred 

that two important factors related to the alloy’s susceptibility to internal oxidation after the 

initiation stage are the propensity for external scale spallation and the extent of Al and Cr depletion 

in the alloy subsurface. Unfortunately, how the results of the subsurface analysis are linked 

quantitatively to the propensity for scale spallation and extent of depletion remains unclear. 

However, qualitative inferences for the behavior can be made from these observations. 

The results of the subsurface analysis suggest that the propensity for scale spallation should 

remain high with increasing initiation time. It is well known that impurities of S in the alloy 

subsurface segregate to and embrittle the scale-alloy interface and increase the tendency for scale 

spallation [88–93]. Because the volume fraction of CrS in the γ’-denuded zone increases with 

exposure time, the alloy subsurface likely remains enriched in S throughout the initiation stage up 

to 24 h. Therefore, the scale is likely to spall when growth or thermal stresses develop in the scale, 

particularly upon cooling to the propagation stage temperature. In fact, the strain energy in the 

reaction product should increase with initiation stage duration due to the thickening of the product. 

With respect to the subsurface depletion of Al, because the depletion zone thickens with time, the 

alloy subsurface should become more susceptible to degradation with initiation stage duration. 

The increase in susceptibility to internal oxidation for initiation times between 0 and 8 h is 

consistent with these observations but the absence of internal oxidation after the 24-h initiation 

stage is an unexpected result. A second identical 24 h initiation stage experiment with two coupons 
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of N5 and N500 was completed with the same results; the alloys were less susceptible to 

CaSO4induced internal oxidation in air + 30% steam with a 24 h 1150°C initiation-stage duration 

compared to an 8h 1150°C initiation-stage duration. Because the depth of Al depletion was greatest 

after 24 hours, it was inferred that the low susceptibility to internal attack after 24 h is more closely 

linked to the probability of scale breakdown than the susceptibility of the subsurface to internal 

oxidation. To test this, an additional experiment on alloy N500 was done where the alloy was 

subjected to a 24-h exposure at 1150°C in air + 30% steam with CaSO4 deposit. Following the 24 

h initiation-stage, the surface of the coupon was grit blasted to remove any external oxide product. 

The bare and subsurface depleted alloy was then subjected to the 60-h propagation stage exposure 

at 871°C in air + 30% steam. Cross-sectional analysis shows that internal oxidation occurred in 

the coupon. The result of this experiment is shown in Fig. 8.8. 

 

 

Figure 8-8. Internal attack observed in a sample subjected to bi-thermal testing with a 24 h 

initiation stage at 1150°C followed by de-scaling prior to being exposed for 60 h at 871°C in air 

+30% steam. 
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This result shows the subsurface of N500 after a 24-h initiation-stage exposure has, indeed, 

been sufficiently depleted to undergo internal oxidation should the subsurface be exposed to the 

environment but, evidently, scale cracking or spallation did not occur on cooling to the propagation 

stage temperature. The reason for this behavior is unknown, but it is possible that the growth strain 

during the prolonged initiation stage became large enough to cause crack formation in the scale 

during the high temperature initiation stage when external Al2O3 formation is favorable. If this 

occurred, the alloy would be able to re-establish Al-rich oxide product with less accumulated 

growth strain; therefore, the external product would be protective upon cooling to 871°C. This is 

only speculation however and requires further study that is beyond the scope of this thesis. 

8.3  Influence of Deposit Mass on the Susceptibility N500 to Internal Attack 

The influence of deposit mass was investigated by conducting the set of bi-thermal tests 

from Fig 8.2. Cross-sectional images from the coupons are shown in Fig 8.9. For the bi-thermal 

tests with the 1-h initiation stage, all four deposit masses caused localized internal oxidation with 

similar morphology and depth. For the set of bi-thermal tests with the 8-h initiation stage, the 

coupons with 10, 20, and 40 
𝑚𝑔

𝑐𝑚2
 of CaSO4 deposit yielded similar internal oxidation attack while 

no internal oxidation occurred in the coupon with 5 
𝑚𝑔

𝑐𝑚2
 of deposit. 

The results indicated that a certain amount of deposit is needed to cause breakaway internal 

oxidation, but, for every mass above that critical amount, there was variability. For the samples 

exposed to an initiation stage of 8 h, only ≈50% of the coupon surface in cross-section underwent 

internal oxidation for deposit amounts of 10 and 40 
𝑚𝑔

𝑐𝑚2 of CaSO4 while the entire cross-section 
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examined for the coupon with 20 
𝑚𝑔

𝑐𝑚2
 of CaSO4 underwent internal oxidation. Due to the localized 

nature of the degradation, this set of experiments is not sufficient to conclude if there is a 

significant effect of deposit mass on the fraction of the surface attacked during bi-thermal 

exposure. 
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Figure 8-9. Cross-sectional images of N500 subjected to bi-thermal exposure in air + 30% steam. 

The 1150°C initiation-stage duration was 1 or 8 h and the subsequent 96-h propagation stage 

temperature of 925°C. 
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Based on the similarity of the morphology and depth of the internal attack observed for 

both initiation-stage durations, it was inferred that the initial CaSO4 deposit mass, when sufficient, 

does not significantly affect the mode of degradation during bi-thermal testing. This is a logical 

conclusion because CaSO4-induced degradation takes place through solid state reactions between 

the deposit and thermally grown oxides at the deposit-alloy interface; therefore, any amount of 

built-up deposit not in contact with the alloy cannot affect the reaction. However, the results for 

the 1- and 8-h coupons exposed with 5 
𝑚𝑔

𝑐𝑚2
 of CaSO4 do show that there is a relationship between 

the deposit mass and the duration of the initiation stage. Internal oxidation was present in the 

coupon having a 1-h initiation-stage but not in the coupon exposed with an 8-h initiation stage. 

The most likely reason for this is that 5 
𝑚𝑔

𝑐𝑚2 of deposit is fully consumed before the end of the 8-h 

initiation stage so the accelerated consumption of Al ceases prior to the temperature dropping to 

925°C for the propagation stage. Presumably, without the continued formation of CaAl2O4 

accelerating the consumption of Al from the alloy subsurface, an Al2O3 scale is able to establish 

which allows more Al to accumulate in the subsurface and better protects the alloy from internal 

oxidation.  

8.4  Influence of Propagation Stage Temperature on the Susceptibility of N5 and N500 to 

Internal Attack 

Figures 8.10 and 8.11 present representative cross-sectional images of N5 and N500 from 

the set of bi-thermal exposures in air + 30% steam outlined in Fig. 8.3, i.e., 96-h propagation-stage 

temperatures of 704, 816, 925, 1038, and 1150°C. Each coupon was cross-sectioned three times 
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to ensure that an accurate and representative assessment of the reaction product could be made. 

Apart from the 1150°C exposure (which represents an isothermal exposure), the general 

morphology of the corrosion products observed in both alloys is found to have two distinct regions. 

The outermost part of the reaction product is an external layer comprised of a mix of oxides and 

calcium aluminates. This region has the characteristics of the product formed during the 1150°C 

initiation stage. Below the external layer is the internal oxidation zone that developed during the 

propagation stage. It was observed that the inner-layer morphology varies with propagation-stage 

temperature. At 704°C a broad front of what is presumed to be nickel-aluminum spinel formation 

developed with no evidence of enhanced internal oxidation. The coupons exposed with 

propagation-stage temperatures of 816°C and 925°C exhibited extensive internal oxidation with 

the characteristic morphology of CaSO4-induced internal oxidation observed in lab-scale tests and 

field-exposed components (e.g., Fig. 7.3). At a propagation-stage temperature of 1038°C there was 

also extensive internal oxidation; however, the morphology of the IOZ was significantly different 

from that formed at 816°C and 925°C. At 1038°C, the internal oxidation zone is stratified 

horizontally with alternating layers of mixed aluminum-rich oxide and highly depleted γ-Ni with 

discontinuous internal oxide precipitates. Finally, when the propagation stage temperature was 

1150°C, in regions where the external product had not spalled, Al2O3 scale was observed at the 

oxidation front and there was no evidence of internal oxidation. 
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Figure 8-10. Cross-sectional images of CaSO4-induced corrosion morphology developed in alloy 

N5 after bi-thermal exposure with a propagation stage temperature of 704, 816, 925, 1038, and 

1150°C. 
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Figure 8-11. Cross-sectional images of CaSO4-induced corrosion morphology developed in alloy 

N500 after bi-thermal exposure with a propagation stage temperature of 704, 816, 925, 1038, and 

1150°C. 
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The maximum sound metal attack, measured as the depth of oxidation from the original 

metal surface, was recorded for each propagation-stage temperature in both alloys. For N5, the 

maximum sound metal attack depth for each propagation-stage temperature was 105.6 μm for 

704°C, 205.4 μm for 816°C, 401.4 μm for 925°C, 434.0 μm for 1038°C, and 120.2 μm for 1150°C. 

For N500, the maximum sound metal attack depth for each propagation stage temperature was 

145.5 μm for 704°C, 323.5 μm for 816°C, 492.0 μm for 925°C, 617.9 μm for 1038°C, and 258.8 

μm for 1150°C. These results are summarized in Fig. 8.12. The maximum sound metal attack is 

seen to increase with propagation-stage temperature between 704-1038°C and then decrease as the 

temperature increases from 1038°C to 1150°C. Additionally, the maximum internal zone thickness 

for N5 was measured to be 193 μm at 816°C, 484 μm at 925°C, and 621 μm at 1038°C. The 

maximum internal zone thickness for N500 was measured to be 393 μm for 816°C, 598 μm for 

925°C, and 886 μm for 1038°C. 

 

 

Figure 8-12. Maximum metal recession as a function of propagation stage temperature. 
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The trend for the maximum metal recession depth as a function of temperature can be 

explained by considering the kinetic competition between internal aluminum oxidation and the 

establishment of an Al2O3 scale. We know from section 2.2.2 and equation 2.13 that the rate of 

internal oxidation increases with increasing temperature due to increasing 𝐷𝑂. However, as 

reviewed in section 2.2.3 and in equation 2.21, 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 is proportional 
𝐷𝑂

𝐷𝐴𝑙
 which decreases 

with increasing temperature. Therefore, it is expected that the rate of internal oxidation should 

increase with propagation-stage temperature until a critical temperature is reached at which Al2O3 

formation is kinetically favored. This “critical” propagation stage temperature is evidently near 

1038°C in alloys N5 and N500 under these experimental conditions. 

A kinetic analysis was done using measurements of the maximum depth of sound metal 

attack in alloys N5 and N500 to develop expressions for the rate of sound metal attack in the alloys 

as a function propagation stage temperature between 816°C and 1038°C (the temperatures where 

internal oxidation occurred) after an 8-h 1150°C initiation stage. The maximum sound metal attack 

depth was used to calculate a parabolic rate constant for the maximum sound metal attack (ka) for 

N5 and N500 for propagation stage temperatures of 816°C, 925°C, and 1038°C. Plotting ln(ka) 

versus (1/T) (Fig. 8.13) allows an expressions of ka values for N5 and N500 to be derived. These 

expressions are shown in equations 8.6 and 8.7. It is unknown how these expressions would change 

with varying 1150°C initiation stage duration. 
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Figure 8-13. Plot of ln(ka) vs (1/T) where ka is the parabolic rate constant for maximum sound 

metal attack. 
 

𝑘𝑎
𝑁5 (

𝑐𝑚2

𝑠
) = 1.158 × 10−5 𝑒𝑥𝑝 (

−81.42
𝑘𝐽

𝑚𝑜𝑙
𝑅𝑇

) (8.6) 

 

𝑘𝑎
𝑁500 (

𝑐𝑚2

𝑠
) = 6.879 × 10−6 𝑒𝑥𝑝 (

−69.57
𝑘𝐽

𝑚𝑜𝑙
𝑅𝑇

) (8.7) 

 

A second kinetic analysis was done to compare the internal oxidation rate of N5 and N500 

during CaSO4-induced internal oxidation in bi-thermal testing to the internal oxidation rate of Ni-

8Al (at%) from the literature [101]. Similarly to the previous analysis with the maximum sound 

metal attack depth, the maximum internal oxidation zone thickness measurements from the bi-

thermal testing were used to calculate the rate constant (𝑘𝑝
𝐼𝑂𝑍) for internal oxidation at 816°C, 

925°C, and 1038°C. These values were then compared to the values of the internal oxidation rate 
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constants at 800°C, 1000°C, and 1100°C for Ni-8Al calculated from the data of Martinez-Villafane 

et al. [101] using a plot of ln(𝑘𝑝
𝐼𝑂𝑍) versus (1/T). This plot is shown in Fig. 8.14. It is clear that the 

CaSO4-induced internal oxidation rate of N5 and N500 is much greater than that of Ni-8Al 

undergoing internal oxidation in air. Additionally, the activation energies for the CaSO4-induced 

internal oxidation rates of N5 and N500 are much lower than that for the internal oxidation of Ni-

8Al in air. 

 

 

Figure 8-14. plot of ln(𝑘𝑝
𝐼𝑂𝑍) versus (1/T) for the internal oxidation thickness of N5 and N500 

formed during CaSO4-induced internal oxidiaton and Ni-8Al (at%) from the literature [101]. 

 

It is known from equation 2.13 that internal oxidation rate and, therefore, the activation 

energy for internal oxidation, is largely dependent on the oxygen diffusivity in the alloy. It is 

possible that the CaSO4-induced internal oxidation rate is larger than the internal oxidation rate of 

dilute Ni-Al alloys in air due to the microstructure of the internal oxidation precipitates formed 

during CaSO4-induced internal oxidation. It is well known that, during the internal oxidation of 
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Ni-Al in air, the boundaries between the rod-like oxide precipitates and the metal matrix act as fast 

diffusion paths for oxygen resulting in an increase in the effective oxygen diffusivity in the alloy 

[35, 101, 102]. The TEM analysis of the internal oxidation product formed by CaSO4-induced 

degradation revealed that the internal oxidation product was very fine grained (cf. Figs. 5.5 and 

5.7). This fine structure could possibly result in an increase in the volume of short circuit diffusion 

paths available for oxygen diffusion into the alloy. This may explain the larger oxidation rate and 

lower activation for CaSO4-induced internal oxidation compared to the internal oxidation of dilute 

Ni-Al alloys in air. 

The transition between the dendrite-like internal oxidation morphology observed at 

propagation-stage temperatures between 816°C and 925°C and the stratified morphology observed 

at 1038°C is also likely a result of the kinetic competition between internal and external oxidation. 

Higher magnification images of the internal oxidation fronts from N500 coupons exposed with a 

propagation-stage temperature of 871°C and 1038°C are presented in Fig. 8.15 to highlight the 

difference in morphology. 

 

 

Figure 8-15. Higher magnification images of the internal oxidation front for N500 coupons 

exposed to bi-thermal exposures with a propagation stage temperature of 871°C and 1038°C. 
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Internal oxide-band formation parallel to the alloy surface has been reported and reviewed 

before in Ag- and Cu-based alloys [103, 104]. Bosch et al. [105] observed that the internal 

oxidation zone in Ag-Mg consisted of a thick precipitate-free zone below the alloy surface and 

above a continuous or semi-continuous network of magnesium oxide bands. The authors 

rationalized this morphology by proposing that reaction between Mg and O does not occur at a 

sharp interface where the activity product 𝑎𝑀𝑔𝑎𝑂 for MgO formation is satisfied; rather, a thick 

region supersaturated with Mg and O develops and, when the supersaturation reaches a critical 

level, MgO nucleates and grows rapidly to form internal films to relieve the supersaturation. It is 

postulated that the formation of the Al-rich oxide bands in the present study develops by a different 

method because there were no signs of oxygen or aluminum supersaturation in the coupons. This 

is evident by the formation of internal oxide precipitates between the oxide bands and the presence 

of a γ’-denuded zone ahead of the internal oxidation front. 

We propose a non-equilibrium mechanism for the observed oxide band formation which is 

dependent on the kinetic boundary between internal oxidation and Al2O3 scale formation. Our 

proposed mechanism for this process is shown in Fig. 8.16. 

 



130 

 

Figure 8-16. Proposed mechanism for oxide band formation at a propagation stage temperature 

of 1038°C. 
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After an oxide band has formed at the internal oxidation front, the alloy is unable to supply 

the flux of aluminum required to maintain the growth of the oxide layer i.e. 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 from 

equation 2.23 is not satisfied. Consequently, scale breakdown occurs and oxygen penetrates the 

layer to form internal oxide precipitates beneath the layer. After a given period, the internal 

oxidation front advances into the alloy and reaches a point where the concentration of aluminum 

is high enough to satisfy 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 (equation 2.21) and a new Al-rich oxide layer forms. As time 

continues and Al is consumed to supply this layer, the concentration of Al in the sub-scale region 

drops below 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 and the process begins again. This mechanism would only be possible at 

temperatures very close to the critical temperature between internal oxidation and external scaling 

where the difference between 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 and 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 becomes very small. Figure 8.17 shows 

a plot of the temperature dependent variables in the equations that define 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 (equation 

2.21) and 𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

 (equation 2.23) to demonstrate the relationship between the two. As 

temperature increases, both 𝑁𝐴𝑙
∗  approach each other which would facilitate the transition between 

internal and external oxidation as described above. At lower propagation stage temperatures (i.e. 

between 816°C and 925°C) the difference between the two 𝑁𝐴𝑙
∗  is too great for the toggling to 

occur. At high propagation-stage temperatures, such as 1150°C, the subsurface concentration 

never drops below either 𝑁𝐴𝑙
∗  and no internal oxidation can initiate or propagate.  
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Figure 8-17. A schematic plot of the temperature dependent variables for 𝑁𝐴𝑙
∗ . Please note that 

the temperature values are artificial because none of the constants were included in the 

calculation. 

8.5  Conclusions 

The systematic experiments investigating the influence of the 1150°C initiation-stage 

duration on the susceptibility of N5 and N500 to internal oxidation show that the susceptibility to 

internal oxidation is likely linked to how resulting subsurface microstructural changes affect the 

propensity for spallation and extent of subsurface depletion. For alloy N500, the degradation 

became more severe with initiation time up to at least 8 h but no internal oxidation was observed 

in the 24-h coupon. The increased susceptibility between 0 and 8 h of initiation-stage duration was 

attributed to the extent of aluminum and chromium depletion increasing with initiation-stage 

duration and the Al-rich oxide product being susceptible to cracking and spalling on cooling due 

to scale embrittlement caused by S enrichment and the development of large growth and thermal 

stresses. The reason why susceptibility to attack is lower after a 24-h exposure requires further 
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study but, it was shown that the subsurface depleted alloy is still susceptible to internal oxidation 

if the external product is removed after the 24-h initiation stage. Speculatively, the susceptibility 

to internal attack could be decreased by stress relaxation in the scale via cracking before cooling 

to 871°C. In this case, the alloy could re-establish an Al2O3 scale containing less accumulated 

strain energy that is less likely to spall on cooling. 

With regard to the influence of CaSO4 deposit mass, it was determined that the initial 

CaSO4 deposit mass has little effect on the rate and mode of CaSO4-induced internal oxidation. 

Because CaSO4-induced degradation is a solid-state mode of attack, built-up CaSO4 above the 

CaSO4-reaction product interface cannot cause reaction. However, there is a critical amount of 

deposit necessary to cause degradation. In the N500 coupons exposed for a 1- or 8-h 1150°C 

initiation stage with 5 
𝑚𝑔

𝑐𝑚2 of CaSO4, no internal oxidation occurred in the 8-h coupon while it did 

occur in the 1-h coupon. Because deposit mass does not affect the rate or mode of degradation, the 

most likely explanation for this observation is that 5 
𝑚𝑔

𝑐𝑚2 deposit was fully consumed before the 

end of the 8-h initiation stage which would end the accelerated consumption of Al from the alloy 

subsurface. This would allow the formation of a thicker and slower growing Al2O3 scale and lower 

the extent of depletion of Al in the subsurface. 

The last topic addressed in this chapter was determining how propagation-stage 

temperature influenced the oxidation behavior of N5 and N500. The results showed that the mode 

and rate of degradation during the propagation-stage is directly linked to the kinetic competition 

between internal and external oxidation of aluminum. At 704°C, no internal oxidation occurred 

and the overall depth of attack was low. This was attributed to the temperature being too low for 

significant internal oxidation to occur. Internal oxidation was observed for propagation-stage 

temperatures between 816°C and 1038°C and the maximum attack depth increased with 
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temperature. In this temperature range, there is sufficient thermal activation for the inward 

diffusion of oxygen to cause significant internal oxidation while the diffusion of aluminum to the 

oxidation front is insufficient to form a protective Al2O3 scale. For the isothermal exposure at 

1150°C, no internal oxidation occurred and the maximum attack depth in both alloys was much 

lower than the coupons exposed between 816° and 1038°C. Comparing influence of temperature 

on the rate of internal oxidation and on 𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ

 reveals that the degradation should increase 

with propagation stage temperature until a critical temperature is reached at which Al2 O3 can be 

established. 
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9.0  Influence of Alloy Composition on Susceptibility of Nickel-Based Superalloys to 

CaSO4-Induced Internal Oxidation 

The examination of field-exposed components and the results of lab-scale bi-thermal 

experiments have consistently shown that alloy N5 is more resistant to CaSO4-induced internal 

oxidation attack than alloy N500 (see Fig 8.12). Developing an understanding of the reasons why 

N5 is more resistant than N500 was important because such an understanding could improve the 

alloy design and selection process for high-pressure turbine components that may be subjected to 

CaSO4-induced attack. Comparing the composition of the two alloys, as well as an alloy called 

N500(Hi Cr) with the base composition of N500 but with the higher Cr content of N5, in Table 

9.1 shows significant differences in the Cr, W, Re, and Y concentration between N5 and N500.  

Table 9-1. Composition of alloys N5 and N500. 

 

 

 

The differences of the Cr and Re contents between the alloys were of the greatest interest 

for further study regarding their influence on degradation resistance. The strong link between Cr 

content and the oxidation behavior of Al2O3-forming nickel-based alloys is well established (see 

section 2.2.3.1) while the influence of Re on the oxidation behavior of superalloys is poorly 

understood and of interest to engine manufacturers due to the desire to reduce the use of the 

expensive element Re [106]. With regard to W and Y, it is possible that the higher content of these 
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elements in N500 may play a role in causing poorer resistance to CaSO4-induced degradation; 

however, this is postulated to be rather unlikely. Indeed, refractory alloying elements, including 

W, can have a deleterious effect on the oxidation behavior of Al2O3-forming alloys in two ways 

[107]. The first is that adding a large amount of refractory elements to an alloy may significantly 

slow the diffusivity of aluminum in the alloy. The second is that refractory oxides generally are 

non-protective and can therefore be detrimental to the integrity of an external scale if incorporated 

into the product during oxidation. However, a recent publication investigated the influence of W 

on the oxidation rate of superalloys and showed that a difference of 0.4 at% W would likely have 

little, if any, effect on the oxidation behavior of N5 and N500 [108]. A higher concentration of the 

reactive element yttrium in N500 may be detrimental to the oxidation behavior if the alloy was 

over-doped. Over-doping with Y can result in the formation of oversized Y2O3 oxide pegs at the 

scale-alloy interface which act as stress concentration points during thermal cycling and can lead 

to scale spallation [109, 110]. However, no such oversized pegs were observed in any N5 and 

N500 coupons examined in this research, so it is unlikely that either of the alloys are over-doped 

with Y. 

9.1  Experimental Procedure 

The influence of Cr and Re contents on the CaSO4-induced degradation resistance of N5 

and N500 was investigated with two sets of experiments using model alloys. The first set of 

experiments provided insights into the role of both Cr and Re. To accomplish this, coupons of the 

model alloy N500(Hi Cr) were produced and exposed to a bi-thermal exposure with conditions 
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shown in Fig 9.1. The resulting cross-sectional images were compared to N5 and N500 coupons 

previously exposed under the same experimental conditions (see Fig. 7.3). 

 

 

Figure 9-1. Conditions of the bi-thermal exposure conducted to evaluate the influence of Cr and 

Re content on CaSO4-induced corrosion resistance of 2nd generation superalloys. 

 

The second set of experiments isolated the influence of Re on the internal oxidation 

behavior of nickel-based alloys by exposing model NiCrAlRe alloys in air at 1000°C for 24 h. 

Single-phase γ-Ni alloys with the composition Ni-6.5Al-3.5Cr-0, 1, 3Re at% were cast by argon-

arc melting 99.995% Ni, 99.999% Al, 99.95% Cr, and 99.9% Re pieces together. Each casting was 

re-melted three times to eliminate chemical segregation in the alloys. The base Ni-Al-Cr 

composition was chosen so that the alloys would internally oxidize during exposure in air at 

1000°C while maintaining an Al:Cr ratio similar to that of alloys N5 and N500. This composition 

facilitates the study of rhenium’s influence on the internal oxidation of nickel-based alloys under 

simplified conditions that remove the complexities of how the bi-thermal exposure with CaSO4 

deposit sensitizes the alloys to internal oxidation. 
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9.2  Results 

Cross-sectional images from N5, N500, and N500(Hi Cr) coupons exposed to the bi-

thermal exposure conditions in Fig. 9.1 are shown in Fig 9.2. The average internal-oxidation zone 

depth from 100 measurements in each coupon were 303 ± 57 μm for N5, 418 ± 42 μm for N500 

and 406 ± 58 μm for N500(Hi Cr). Additionally, higher magnification images of the internal oxide 

precipitates shown in Fig. 9.3 reveal that the internal oxide precipitates in N500 and N500(Hi Cr) 

have a similar “wispy” morphology while the precipitates were more globular in N5. Therefore, 

the addition of 1.2 at% Cr to alloy N500 does not have as significant an effect on the resistance to 

CaSO4-induced internal oxidation as Re. 
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Figure 9-2. Cross-sectional SEM micrographs of N500(Hi Cr), N5, and N500 exposed to the 

experiment shown in Fig. 9.1. The Cr, Al, and Re content of the alloys in at% are listed above 

the image of the coupons. 
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Figure 9-3. High magnification images of N500(Hi Cr), N5, and N500 which show internal 

oxide precipitate morphology. 

 

Stitched SEM images of the model Ni-6.5Al-3.5Cr-0, 1, 3Re alloys after  24 h of exposure 

at 1000°C in air are shown in Fig 9.4. The 0-Re alloy exhibited internal oxidation across the entire 

surface of the alloy. The 1-Re alloy exhibited internal oxidation over a majority of the alloy 

surface, but, in some areas, external Al2O3 scale was present. The 3-Re alloy had formed an 

external Al2O3 scale over nearly the entire alloy surface with only isolated NiO nodule formation 

and internal oxidation. Where formed, the internal oxidation zone depth is 65.9 ± 0.9 μm for the 

0-Re alloy, 70.7 ± 1.2 μm in the 1-Re alloy. The presence of grain boundaries appears to have a 

significant effect on the oxidation behavior of the alloys. In the 0-Re alloy, the depth of internal 

oxidation was less around grain boundaries and the areas which formed Al2O3 scale on the 1-Re 
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alloy are associated with areas where grain boundaries meet the surface of the alloy. This suggests 

that the more rapid supply of Al to the surface in these areas is enough to favor external oxidation 

over internal oxidation in the 1-Re alloy. The images of the degradation in Fig. 9.5 better show the 

assemblage of the product formed on the alloys and areas on the 1-Re and 3-Re alloys where 

external Al2O3 formed. More detailed examination of the internal oxidation zone in 0-Re and 1-

Re revealed that rhenium had little effect on the morphology and depth of the internal oxidation 

zone. The volume fraction of oxide precipitates in the bottom 40 μm of the IOZ measured by color 

threshold analysis was 29-32% in 0-Re and 28-34% in 1-Re. The internal oxide precipitate spacing 

was 0.99 
𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑒

𝜇𝑚
 in 0-Re and 0.96 

𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑒

𝜇𝑚
 for 1-Re. The assemblage of the IOZ in these alloys 

is similar to that described by Hindam and Whittle [35]. There is external NiO above an internal 

oxidation zone consisting of two regions of rod-like internal oxide precipitates. The first region of 

the IOZ is γ-Ni + NiAl2O4 and the second is γ-Ni + Al2O3. 
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Figure 9-4. Macroscopic images of Ni-6.5 Al-3.5 Cr-0, 1, or 3Re exposed for 24 h at 1000°C. 
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Figure 9-5. Higher magnification images of internal oxidation and areas with Al2O3 formation in 

the model Ni-Al-Cr-Re alloys. 

9.3  Discussion 

The beneficial effect of Re on the transition between internal and external oxidation must 

be linked to decreasing one or both of the 𝑁𝐴𝑙
∗  for the establishment (equation 2.21) and 

maintenance (equation 2.23) of an Al2O3 scale. Hints as to how Re is beneficial to this transition 

can be gained by considering how the addition of Re could affect the variables in these equations. 

 

𝑁𝐴𝑙
∗,𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ = [

𝜋𝑔∗

3
𝑁𝑂

(𝑆) 𝐷𝑂𝑉𝑚

𝐷𝐴𝑙𝑉𝑜𝑥
] (2.21) 

 

𝑁𝐴𝑙
∗,𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 =

𝑉𝑚

48
(

𝜋𝑘𝑝

𝐷𝐴𝑙
)

1 2⁄

(2.23) 
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Because the internal oxidation zone depth in the 0- and 1-Re alloys are very similar, it is 

unlikely that Re has a strong influence on the oxygen permeability (𝑁𝑂
(𝑆)

𝐷𝑂) in the model alloys. 

Additionally, the similarity in the volume fraction of oxide precipitates and oxide particle spacing 

in the IOZ means that it is unlikely that Re is significantly affecting g* (the critical volume fraction 

of oxide required to form a continuous Al2O3 scale). Eliminating, these variables leaves the 

possibility that the enhanced oxidation resistance in the 1- and 3-Re alloy is related to the effect of 

Re on growth rate of the Al2O3 scale formed on NiAlCrRe alloys (kp) or the diffusivity of 

aluminum in the alloys. 

Currently, there is a paucity of literature which investigates the effect of Re addition on the 

rate of Al2O3 scale growth. There have been studies that report the influence of rhenium on the 

Al2O3 scaling behavior in superalloys; however, they give an unclear picture. Specifically, some 

papers have reported that the addition of Re improves the oxidation resistance of superalloys by 

improving Al2O3 tenacity and lowering Al2O3 growth rate [111, 112] while another reports that Re 

increases the oxidation rate of Al2O3-forming superalloys by promoting the formation of spinel 

oxides on alloys with significant micro-segregation between the dendritic and inter-dendritic 

regions [113]. 

With respect to the effect of Re additions on DAl, a study published by Zeng et al. measured 

the influence of Re on the diffusivity of aluminum in nickel [114]. The authors added 1, 2, or 3 Re 

to Ni-5.3Al (wt%) and found that increasing Re results in an increase in the activation energy for 

Al diffusion but also an increase in the pre-exponential factor. This means that Re may boost Al 

diffusion at higher temperatures. According to these measurements (see equations 9.1-9.3), 𝐷𝐴𝑙
3𝑅𝑒 

becomes larger than 𝐷𝐴𝑙
1𝑅𝑒 at temperatures above 1085°C. 
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𝐷𝐴𝑙
1𝑅𝑒 (

𝑚2

𝑠
) = 1.4𝑥10−5 exp (−

230 𝑘𝐽 𝑚𝑜𝑙⁄

𝑅𝑇
) (9.1) 

 

𝐷𝐴𝑙
2𝑅𝑒 (

𝑚2

𝑠
) = 2.7𝑥10−5 exp (−

238 𝑘𝐽 𝑚𝑜𝑙⁄

𝑅𝑇
) (9.2) 

  

𝐷𝐴𝑙
3𝑅𝑒 (

𝑚2

𝑠
) = 1.4𝑥10−4 exp (−

256 𝑘𝐽 𝑚𝑜𝑙⁄

𝑅𝑇
) (9.3) 

9.4 Conclusions 

The effect of alloy composition on the CaSO4-induced degradation resistance of alloys N5 

and N500 was found to be most strongly affected by Re content, specifically, that the addition of 

Re in alloy N5 improves the degradation resistance of the alloy. This was proved by comparing 

the degradation caused by CaSO4-induced degradation during bi-thermal testing of N5, N500, to 

a model alloy, N500(Hi Cr). The results of this experiment showed that increasing the 

concentration of Cr in alloy N500 to match that of N5 did not significantly affect the depth and 

morphology of degradation that took place in the alloy. 

Model Ni-6.5Al-3.5Cr-0, 1, or 3Re (at%) alloys were made to further study the influence 

of Re on the internal oxidation behavior of nickel-based alloys during exposure in air at 1000°C 

for 24 h. The results of the experiment showed that the addition of Re to Ni-6.5Al-3.5Cr decreases 

𝑁𝐴𝑙
∗  required for Al2O3 scale formation. Because the depth and morphology of the internal 

oxidation zones formed in the 0-Re and 1-Re alloys were unaffected by rhenium content, the most 

likely variables that Re can affect to decrease 𝑁𝐴𝑙
∗  are the growth rate of Al2O3 scale (kp) and the 

diffusivity of aluminum in nickel-based alloys. A survey of the literature does not provide a 
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conclusive description for the effect of Re on the growth rate of Al2O3 scale on Ni-based alloys 

[111–113]. However, it is possible that the addition of Re to Ni-Al increases the diffusivity of Al 

in the alloy at high temperatures [114]. A more fundamental study on the effect of rhenium on the 

oxidation behavior of Ni-based alloys lies outside of the bounds of this research but the authors 

believe that such a study would be a valid research endeavor for the application of improving 

superalloy design. 

 



147 

10.0  Summary 

The goals of this research project were to provide the foundational understanding of CaO- 

and CaSO4-induced degradation in aviation gas-turbine engines and to develop a lab-scale test 

procedure which accurately replicates the degradation observed in field-exposed N5 and N500 

components. Characterizing the degradation observed in the field-exposed parts showed that N5 

and N500 components with CaSO4 deposit had experienced aggressive internal oxidation. 

Investigating the mode of degradation caused by CaO and CaSO4 deposits on N5 and N500 at 

900°C and 1150°C revealed that the most likely initiator for the degradation observed in the field-

exposed parts was CaSO4-induced degradation at 1150°C (roughly the maximum surface 

temperature that components reach during takeoff and climb). It was determined that CaSO4 

deposit can cause significant subsurface depletion of Al and Cr and enrichment in S through 

reaction between CaSO4 and Al2O3 to form Ca4Al6O16S / CaAl2O4. It was put forward that the 

subsurface-depleted alloys were susceptible to internal oxidation when exposed to conditions that 

are detrimental to Al2O3 establishment and maintenance. These principles were used to design a 

lab-scale experiment that successfully reproduced the degradation observed in the field-exposed 

components by better simulating the exposure conditions in gas-turbine engines during flight. 

The experimental procedure was developed while considering that, in service, the 

temperature of the components is variable and that there is steam present in the atmosphere due to 

the combustion process. During takeoff, the components can reach temperatures as high as 1150°C 

and then the temperature of the components decreases to temperatures between 600°C and 900°C 

during cruise [87]. Therefore, the experiment developed begins with an 8-h exposure at 1150°C 

and is followed by a 96-h exposure at 871°C. The atmosphere for the exposure is air + 30% steam. 
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With CaSO4 deposit, CaSO4-induced degradation will occur during the 1150°C exposure and 

cause the subsurface depletion of Al and Cr and enrichment in S. It is well known that it is more 

difficult to establish and maintain Al2O3 at lower temperatures [19, 50] in steam containing 

atmospheres [55]; therefore, internal oxidation initiates and propagates during the second stage of 

the exposure at 871°C. When the experiment was completed, internal oxidation matching that seen 

in the field-exposed components was observed. A time study was completed to observe the 

development of the reaction product and it was determined that the internal oxidation began early 

during the second stage of the bi-thermal exposure. After 1-h at 871°C localized areas of internal 

oxidation were observed where no external NiO + NiSx was present. This suggested that the 

external scale must be compromised during the second stage of the exposure to expose the depleted 

subsurface to the oxidizing environment. The remainder of the research project was dedicated to 

determining how exposure environment, subsurface S enrichment, extent of CaSO4-induced 

degradation with initiation time, propagation stage temperature, and alloy composition affect the 

mode of CaSO4-induced degradation during bi-thermal testing. 

It was determined that, for alloys N5 and N500, both a low temperature exposure after the 

initial 1150°C exposure and the presence of steam in the atmosphere are required for breakaway 

internal oxidation to occur. This is because a lower exposure temperature and the presence of steam 

in the atmosphere are conditions that are kinetically unfavorable to the establishment of Al2O3 

scale. The subsurface enrichment of sulfur was also found to be required for internal oxidation to 

occur in the alloys during bi-thermal testing. When alloys are de-sulfurized in Ar + 5% H2 after 

the initial 8-h exposure at 1150°C then subsequently subjected to the 871°C exposure in air + 30% 

steam, no internal oxidation is present. The influence sulfur is most likely tied to the removal of 
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Cr from the alloy subsurface due to the formation of CrS particles and the negative effect of S on 

the adherence of external oxide scales [88–93]. 

The systematic experiments done to investigate the effect of 1150°C initiation stage 

duration on the susceptibility of N5 and N500 to internal oxidation revealed that N5 is only 

susceptible to internal oxidation for an initiation stage duration of 8 h while the extent of internal 

oxidation observed in N500 increases with time up to 8 h. However, no internal oxidation was 

observed for an initiation stage duration of 24 h in either alloy. The increasing susceptibility to 

attack of N500 up to 8 h is most likely due to increased Al depletion with exposure time and 

increasing probability of scale spallation upon cooling to 871°C due to the accumulation of growth 

and thermal stresses in the external reaction product formed at 1150°C. The reason that N500 

became less susceptible to internal attack after a longer 24 h initiation stage requires further 

investigation, but one possible reason is that accumulated stresses in the reaction product are 

relaxed by cracking at 1150°C. The reestablished oxide would therefore be less likely to crack on 

cooling. 

The study on the effect of propagation stage temperature revealed that the mode and rate 

of degradation during the propagation stage is directly linked to the kinetics of internal oxidation 

and the transition between internal and external oxidation. At a propagation-stage temperature of 

704°C, the maximum attack depth was low and no internal oxidation was observed. For 

propagation stage temperatures of 816°C, 925°C, and 1038°C internal oxidation occurred and the 

maximum attack depth increased with temperature due to increasing DO in the alloy. However, 

because 
𝐷𝑂

𝐷𝐴𝑙
 decreases with increasing temperature due to a difference in activation energy for DO 

and DAl, for the isothermal exposure at 1150°C, no internal oxidation occurred because Al2O3 was 

be established and maintained at this high temperature. When comparing the maximum sound 
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metal attack in N5 and N500, for all temperatures, the maximum depth of attack in N5 was less 

than that of N500. 

When comparing the composition of N5 and N500, the difference in Cr and Re content 

were of greatest interest for further study on the effect of alloy composition on the resistance of 

the alloys to CaSO4-induced degradation. N5 has higher Cr and Re than N500. Experiments on a 

model alloy called N500(Hi Cr) with the composition of N500 but with the higher Cr content of 

N5 revealed that the difference in Cr content had little effect on the depth of attack and the 

morphology of the internal oxide precipitates. As such, the influence of Re became the primary 

focus. Model Ni-6.5Al-3.5Cr-0, 1, or 3Re alloys were cast to isolate the effect of Re on the internal 

oxidation behavior of NiAlCr. The base NiAlCr content chosen to be slightly subcritical (internally 

oxidizing) at 1000°C. When these alloys were exposed for 24 h at 1000°C in air, it was clear that 

the NiAlCrRe alloys were better able to establish and maintain Al2O3 with increasing Re content. 

The influence of Re on the oxidation behavior of Ni-based alloys is outside of the scope for this 

research but should be investigated further. 
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11.0  Future Work 

The process of discovering how CaSO4 deposits cause breakaway internal oxidation in 

nickel-based superalloys revealed two criteria that must be met for internal attack to occur. First, 

the alloy subsurface must be depleted of Al and Cr and enriched in S. Second, the subsurface 

depleted alloy must be exposed to an oxidizing environment where internal oxidation is kinetically 

favorable. Should these be valid assumptions, CaSO4-induced internal oxidation through bi-

thermal testing would only be a specific case of a more generalized mode of deposit-induced 

degradation. These assumptions were tested by conducting an experiment where the initiator for 

the subsurface depletion and S enrichment was type 1 hot corrosion caused by pure Na2SO4 deposit 

at 900°C (see section 2.3.1 for a review of type 1 hot corrosion).  

The bi-thermal exposure in air + 30% steam with 20
𝑚𝑔

𝑐𝑚2 of Na2SO4 deposit shown in Fig. 

11.1. The initiation stage exposure was 8 h at 900°C followed by a 60-h propagation stage exposure 

at 871°C. It should be noted that 871°C is below the melting point of Na2SO4. Therefore, it was 

assumed that the development of the corrosion product during the propagation stage would not be 

influenced by any remaining liquid Na2SO4. The results of the experiment are shown in Fig. 11.2. 
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Figure 11-1. Experimental conditions for bi-thermal exposure with Na2SO4 deposit. 

 

The reaction product formed shows the same three characteristic features that are present 

in the internal attack observed in the field-exposed components and in the bi-thermal exposures in 

air + 30% steam with CaSO4 deposit. There is an external layer of Ni-rich oxide, the internal 

oxidation zone contains coarse Al- and Cr-rich oxide precipitates, and a fine distribution of CrS 

precipitates are present in the γ’-denuded zone ahead of the internal oxidation front.  
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Figure 11-2. Reaction product formed from bi-thermal tests with Na2SO4 deposit. 

 

The commonality of the characteristic features between internal oxidation initiated by 

CaSO4-induced degradation at 1150°C and internal oxidation initiated by Na2SO4-induced 

degradation at 900°C shows that deposit-induced internal oxidation can be caused over a wide 

range of temperatures based on deposit composition. This means that components other than those 

that are exposed to the highest temperature in the gas-turbine environment with CaSO4 could be 

susceptible to aggressive internal oxidation. Based on this, there is a need to develop a more 

comprehensive understanding of how subsurface depletion behavior affects the subsequent 

oxidation behavior of an alloy that has undergone deposit-induced degradation. Conducting such 

a study would allow engineers and alloy designers to predict which high pressure turbine 

components would be susceptible to deposit-induced internal oxidation based on the alloy 

composition, surface temperature range, and anticipated deposit composition during service. 
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