
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4123–4133
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4123

Neural Reranking for Dependency Parsing: An Evaluation

Bich-Ngoc Do♦, Ines Rehbein♣

Leibniz ScienceCampus♦, Data and Web Science Group♣

Universität Heidelberg, Heidelberg, Germany♦

Universität Mannheim, Mannheim, Germany♣

do@cl.uni-heidelberg.de, ines@informatik.uni-mannheim.de

Abstract

Recent work has shown that neural rerankers
can improve results for dependency parsing
over the top k trees produced by a base parser.
However, all neural rerankers so far have
been evaluated on English and Chinese only,
both languages with a configurational word
order and poor morphology. In the paper,
we re-assess the potential of successful neu-
ral reranking models from the literature on
English and on two morphologically rich(er)
languages, German and Czech. In addition,
we introduce a new variation of a discrimina-
tive reranker based on graph convolutional net-
works (GCNs). We show that the GCN not
only outperforms previous models on English
but is the only model that is able to improve re-
sults over the baselines on German and Czech.
We explain the differences in reranking perfor-
mance based on an analysis of a) the gold tree
ratio and b) the variety in the k-best lists.

1 Introduction

Neural models for dependency parsing have been
a tremendous success, pushing state-of-the-art re-
sults for English on the WSJ benchmarking dataset
to over 94% LAS (Dozat and Manning, 2017).
Most state-of-the-art parsers, however, are local
and greedy and are thus expected to have problems
finding the best global parse tree. This suggests
that combining greedy, local parsing models with
some mechanism that adds a global view on the
data might increase parsing accuracies even further.

In this work, we look into incorporating global
information for dependency parsing via reranking.
Different model architectures have been proposed
for neural reranking of dependency parse trees (Le
and Zuidema, 2014; Zhu et al., 2015; Zhou et al.,
2016). Despite achieving modest or even substan-
tial improvements over the baseline parser, how-
ever, all the systems above only report performance

on English and Chinese data, both morphologically
poor languages with a configurational word order
and mostly projective tree structures.

In the paper, we thus try to reproduce results
for different reranking models from the literature
on English data and compare them to results for
German and Czech, two morphologically rich(er)
languages (MRLs) with a high percentage of non-
projective structures. In addition, we present a new
discriminative reranking model based on graph con-
volutional networks (GCNs). Our GCN reranker
outperforms the other rerankers on English and
is also the only model able to obtain small im-
provements over the baseline parser on German
and Czech while the other rerankers fail to beat the
baselines. The improvements, however, are not sig-
nificant and raise the question what makes neural
reranking of MRLs more difficult than reranking
English or Chinese.

We analyze the differences in performance on
the three languages and show that the reasons for
this failure are due to the composition and quality
of the k-best lists. In particular, we show that the
gold tree ratio in the English k-best list is much
higher than for German and Czech, and that the
trees in the English k-best list show a higher variety,
thus making it easier for the reranker to distinguish
between high- and low-quality trees.

The paper is structured as follows. In §2, we
review related work on reranking for neural depen-
dency parsing. The different reranking models are
described in detail in §3. In §4, we first reproduce
reranking results for English and evaluate our new
reranker on the English data. Then we test the dif-
ferent models on the two morphologically rich(er)
languages and present the results of our evaluation
and our analysis, before we conclude in §5.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MAnnheim DOCument Server

https://core.ac.uk/display/328826027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


4124

2 Related Work

Reranking is a popular technique to improve pars-
ing performance of the output of a base parser.
First, the top k candidate trees are generated by
the base parser, then these trees are reranked us-
ing additional features not accessible to the base
parser. This adds a more global and complete view
of the trees, in contrast to the local and incomplete
features used by the parser.

Discriminative rerankers have been a success
story in constituency parsing (Collins and Koo,
2005; Charniak and Johnson, 2005). A disad-
vantage of the traditional feature-rich rerankers is
that the large number of potentially sparse features
makes them prone to overfitting, and also reduces
the efficiency of the systems. Neural rerankers of-
fer a solution to that problem by learning dense,
low-dimensional feature representations that are
better at generalization, and so reduce the risk of
overfitting.

Neural reranking The first neural reranker has
been presented by Socher et al. (2013) for con-
stituency parsing, based on a recursive neural net-
work which processes the nodes in the parse tree
bottom-up and learns dense feature presentations
for the whole tree. This approach was adapted for
dependency parsing by Le and Zuidema (2014).
Zhu et al. (2015) improve on previous work by
proposing a recursive convolutional neural network
(RCNN) architecture for reranking which can cap-
ture syntactic and semantic properties of words and
phrases in the parse trees (see §3 for a more detailed
description of the two models).

k-best vs. forest reranking There exist two dif-
ferent approaches to reranking for parsing: k-best
reranking and forest reranking. In k-best reranking,
the complete parse tree is encoded and presented to
the reranker. A disadvantage of k-best reranking is
the limited scope of the k-best list which provides
an upper bound for reranking performance. In con-
trast, a packed parse forest is a compact represen-
tation of exponentially many trees of which each
node represents a deductive step. Forest reranking
(Huang, 2008; Hayashi et al., 2013) approximately
decodes the highest scored tree with both local and
non-local features in a parse forest with cube prun-
ing (Huang and Chiang, 2005).

In our work, we focus on neural reranking of a
k-best list of parses generated by a base parsing
system as we could not find any available parsers

that are both non-projective and produce packed
parse forests as output.

3 Neural Reranking Models for
Dependency Parsing

In this section, we look into reranking for depen-
dency parsing and compare two different types
of models: the generative inside-outside recur-
sive neural network (IORNN) reranker (Le and
Zuidema, 2014) and the discriminative reranker
based on recurrent convolutional neural networks
(RCNNs) (Zhu et al., 2015). In addition, we pro-
pose a new reranking model for dependency pars-
ing that employs graph convolutional networks
(GCNs) to encode the trees.

3.1 Generative models

A generative reranking model scores a dependency
structure by estimating its generation probability.
The probability of generating a fragment of a de-
pendency tree (e.g., a node) D depends on its de-
pendency context CD. The amount of information
used in CD is called the order of the generative
model. Ideally, we want to generate a dependency
subtree D based on ∞-order context C∞

D which
includes all ancestors of D, their siblings, and all
siblings of D. As the∞-order counting model is
impracticable due to data sparsity, Le and Zuidema
(2014) propose the IORNN model to encode the
context to generate each node in a dense vector.

IORNN The IORNN extends the idea of recur-
sive neural networks (Socher et al., 2010) for con-
stituent parsing where the inner representation of a
node is computed bottom up. It also adds a second
vector to each node, an outer representation, which
is computed top down. The inner representation
represents the content of the subtree at the current
node, while the outer representation represents the
context used to generate that node. The model is
further adapted to∞-order dependency trees with
partial outer representations that represent the par-
tial context while generating dependents from left
to right. For details on how to compute these repre-
sentations, please refer to Le and Zuidema (2014).

Training The IORNN is trained to maximize the
probability of generating each word w given its
partial outer representation ōw:

L(Θ) =
1

m

∑
T∈D

∑
w∈T

logP (w|ōw) (1)



4125

where D is the set of dependency trees, and m is
the total number of words.

3.2 Discriminative models
In contrast to generative models, a discriminative
reranker learns to distinguish the correct parse tree
of a sentence from the incorrect ones. Since the
tree space is huge, one cannot generate all possible
trees to train the model, but can only use a subset
of the trees generated by the base parser. Therefore,
a discriminative reranker is only optimized for one
specific parser and can easily overfit the error types
of the k-best list. The common idea of all mod-
els in this section is to encode the structure of a
dependency tree via its node and/or edge represen-
tations. Node representations are computed either
recursively bottom-up (RCNN) or in a step-by-step
recurrent manner (GCN).

RCNN A RCNN recursively encodes each sub-
tree with regards to its children using a convolu-
tional layer. At each dependency node h, a RCNN
module computes its hidden representation h and a
plausibility score s(h) based on the representation
of its children. For details, see Zhu et al. (2015).

Given a sentence x and its dependency tree y, the
score of y is computed by summing up the scores
of all inner nodes h:

s(x, y,Θ) =
∑
h∈y

s(h) (2)

The network then outputs the predicted tree ŷ
from the input list gen(x) with the highest score:

ŷ = argmaxy∈gen(x)s(x, y,Θ) (3)

The bottom-up fashion used in the RCNN can
cause disproportion between the tree structure and
its representation due to the order in the recursive
computation. Consider two trees that only differ in
one edge. Their node representations will be more
similar if the edge appears higher up in the tree and
less so if the edge is closer to the lower level, since
the difference spreads to the upper level. Thus, we
believe that a discriminative reranker can benefit
from a model that considers nodes in a tree more
equally, as done in our GCN model below.

GCN GCNs have been used to encode nodes in
a graph with (syntactic) information from their
neighbors. By stacking several layers of GCNs,
the learned representation can capture informa-
tion about directly connected nodes (with only one

layer), or nodes that are K hops away (with K
layers). We adapt the syntactic gated GCNs for se-
mantic role labeling from Marcheggiani and Titov
(2017) to encode the parse trees in our experiments.
To our best knowledge, this is the first time GCNs
are used for reranking in dependency parsing.

Let the hidden representation of node v after K
GCN layers be h

(K)
v . The plausibility score of each

tree is the sum of the scores of all nodes in the tree:

s(x, y,Θ) =
∑
v∈y

v · h(K)
v (4)

Training Given an input sentence x, the input
to the reranker is the corresponding correct parse
tree y and a list of trees generated by a base
parser gen(x). As in conventional ranking systems,
all discriminative rerankers can be trained with a
margin-based hinge loss so that the score of the
correct tree is higher than the score of the incorrect
one with a margin of at least m:

L(y, t) = max(0, s(x, t,Θ) +m− s(x, y,Θ))

t ∈ gen(x) \ {y}
(5)

Zhu et al. (2015) use a structured margin m =
κ∆(y, t), which is computed by counting the num-
ber of incorrect edges of t with respect to y. κ is a
discount hyperparameter indicating the importance
of ∆ to the loss. In addition, the tree predicted by
the model ŷ (i.e., the highest scored tree) (3) is used
to calculate the final loss. Alternatively, the loss of
the predicted tree can be replaced by the average
loss over all trees in the list.

3.3 Mixture reranking models

None of the models above does consider the scores
from the base parser when ranking trees. Therefore,
it seems plausible to try combining the advantages
from both models, base parser and reranker, to
produce a better final model. The most common
way to do so is to consider the base parser and
the reranker as a mixture model. The score of any
reranking model sr can be combined with the score
of the base parser sb using a linear combination:

s(x, y) = αsr(x, y,Θ) + (1− α)sb(x, y) (6)

where α ∈ [0, 1] is a parameter.



4126

4 Evaluating Neural Rerankers for
Dependency Parsing

We are now providing a systematic evaluation of
different neural reranking models used to rank the
k-best lists generated by different parsers. In our
first experiments, we try to reproduce the results
for the available rerankers (IORNN, RCNN) on
English. After that, we compare the performance
of the rerankers on German and Czech data. Unless
stated otherwise, results are compared based on
UAS and LAS including punctuation.

4.1 Data

English Following Zhu et al. (2015), we use the
Penn Treebank (PTB) with standard splits: sec-
tions 2-21 for training, section 22 for development
and section 23 for testing. Their reranking mod-
els are applied to unlabeled trees. The authors
used the linear incremental parser from Huang and
Sagae (2010) to produce k-best lists and achieved
slight improvements due to differences in optimiza-
tion. In contrast, we obtained the data and pre-
trained model from the public repository.1 Al-
though not emphasized in their paper, Zhu et al.
(2015) obtained the top k parses from the forests (a
by-product of dynamic programming) rather than
by using beam search. This is very important for
reranking because the forest encodes exponentially
many trees and so the k-best list extracted from the
parse forest has a higher upper bound (Huang and
Sagae, 2010).

Following previous work, we refer to the greedy,
one-best results from the base parser as the base-
line. Oracle worst and best are the lower and upper
bound accuracies of the trees in the k-best list, re-
spectively. Top tree results are calculated on the
highest scored trees by the base parser in the list.

Table 1 shows that both our baseline and upper
bound results are lower than those from Zhu et al.
(2015). Extracting the top trees from the parse for-
est results in a much higher upper bound (+3.97%,
development set) compared to using beam search
(+1.46%, although not shown here). The maximum
gain of our k-best list at k = 64 using the forest is
about 1% lower than in Zhu et al. (2015).

German We use the German dataset from the
SPMRL 2014 Shared Task (Seddah et al., 2014)
which contains 50,000 sentences of newspaper text.

1https://github.com/lianghuang3/
lineardpparser

UAS w/ punct. UAS w/o punct.

Dataset Dev Test Dev Test

Zhu et al. (2015)
Baseline 92.45 92.35
k = 64

Oracle worst 73.30
Oracle best 97.34

Huang and Sagae (2010)
Baseline 91.34 91.45 92.09 92.05
k = 10, forest

Top tree 91.34 91.45 92.09 92.05
Oracle worst 79.68 79.56 80.21 80.19
Oracle best 95.31 95.33 95.99 95.82
k = 64, forest

Top tree 91.34 91.45 92.09 92.05
Oracle worst 70.62 70.72 71.26 71.51
Oracle best 96.06 96.15 96.65 96.55

Table 1: Accuracy for k-best list from PTB. Top: accu-
racies reported in Zhu et al. (2015). Bottom: our k-best
lists extracted with Huang and Sagae (2010)’s model
using the parse forests.

We follow the original train/dev/test splits and use
the predicted POS and morphological tags pro-
vided by the shared task organizers. The top k
parses are produced using the graph-based parser
in the MATE tools (Bohnet, 2010),2 a non-neural
model that employs second order, approximate non-
projective parsing (McDonald and Pereira, 2006).
The algorithm first finds the highest scored projec-
tive tree with exact inference, then rearranges the
edges one at a time as long as the overall score im-
proves and the parse tree does not violate the tree
constraint. This algorithm also creates a list of k-
best trees through its search process. We also tried
to generate the k-best lists with a transition-based
parser by adding a beam search decoder, but the
beam failed to improve the parsing upper bound.

Czech We use the Czech Universal Dependen-
cies (UD) Treebank,3 based on the Prague Depen-
dency Treebank 3.0 (Bejček et al., 2013). We use
the original train/dev/test split and use MarMoT
(Mueller et al., 2013) to predict UD POS tags by 5-
way jackknifing. The k-best lists are created using
the same parser as for German.

The properties of the k-best lists extracted from
the German and Czech data are shown in table 2.
Extracting the top k parses results in scores lower
than the baseline when using the top trees as output,
as the reranking scores do not always correlate with
the quality of the trees.

2https://code.google.com/p/mate-tools
3https://universaldependencies.org/

https://github.com/lianghuang3/lineardpparser
https://github.com/lianghuang3/lineardpparser
https://code.google.com/p/mate-tools
https://universaldependencies.org/


4127

Dataset Dev Test

UAS LAS UAS LAS

German
Baseline 92.91 91.04 90.19 87.90
k = 50

Top tree 91.75 90.04 88.36 86.28
Oracle worst 81.20 79.48 79.04 77.12
Oracle best 96.40 95.08 93.51 91.71

Czech
Baseline 92.22 89.30 91.87 88.85
k = 50

Top tree 91.02 88.28 90.74 87.93
Oracle worst 82.24 79.68 81.98 79.32
Oracle best 95.04 92.71 94.70 92.29

Table 2: k-best list accuracies for the German SPMRL
and Czech UD datasets.

Pre-trained word embeddings In all experi-
ments on English, we use the 50-dimensional
GloVe word embeddings (Pennington et al., 2014)
trained on Wikipedia 2014 and Gigaword 5. For
German, we train 100-dimensional dependency-
based word embeddings (Levy and Goldberg, 2014)
on the SdeWaC corpus (Faaß and Eckart, 2013)
with a cutoff frequency of 20 for both words and
contexts and set the number of negative samples
to 15. In experiments on Czech, we reduce the
number of dimensions of the word vectors from
fastText (Bojanowski et al., 2017) to 100 using
PCA (Raunak et al., 2019).

4.2 Reproducing reranking results for PTB

This section is dedicated to the reproduction of
the published results for the IORNN and RCNN
rerankers on the English PTB. All results are from
one run since we observe little variation between
different runs4 (and even between different settings
the results hardly vary).

IORNN The results from Le and Zuidema (2014)
can be reproduced with 93.01% UAS using the data
and instructions from the public repository5. We
are able to replicate this trend on our unlabeled
English data described in §4.1, i.e., the reranking
results are better than the baseline. The IORNN

4For instance, the standard deviations of 5 runs on the
development and test sets are σdev = 0.05, σtest = 0.07 (%)
when running the best GCN model setting on the English data.

5https://github.com/lephong/
iornn-depparse

Model UAS LAS

Le and Zuidema (2014)
Baseline 91.99 89.97
Oracle best (k = 10) 96.24 93.73
Reranker (k = 6) 92.83 90.76
Mixture (k = 9) 93.08 91.02

Reproduction on our data
Baseline 91.45
Oracle best (k = 10) 95.33
Reranker (k = 10) 91.70
Mixture (k = 10) 92.06

Table 3: IORNN reranker results on the PTB test set

mixture model achieves 92.06% UAS on the test
set, which is lower than the reproduced results on
the paper’s original data. Our baseline, however,
is also lower due to the use of different data con-
version rules for the conversion from constituency
trees to dependencies, and the use of different base
parsers. Note that Le and Zuidema (2014) also
optimize the results on k while we keep k fixed
in our experiments to make the results comparable
between the different models. In addition, the au-
thors do a logarithmic scaling for the score of the
reranker in the mixture model combination (equa-
tion 6) and we use this function as it is.6,7

Table 3 summarizes the results from our repro-
duction study.

RCNN Since the code is not publicly available,
we re-implemented the RCNN model following the
description in the paper (Zhu et al., 2015). How-
ever, we were not able to reproduce the results on
the 10-best list extracted from the parse forest. The
authors report 93.83% (+1.48) UAS without punc-
tuation using the mixture reranker with k = 64,
and the same trend sets for all k. All our attempts
to get better results than the base parser fail. Even
when combining the reranking score with the score
from the base parser, results do not improve over
the baseline.

We run an ablation study to investigate the effect
of different hyperparameters on the model’s perfor-
mance. We achieve best scores (UAS 90.65% and
90.29%) on both development and test set when
removing L2 and structured margin and replacing

6The IORNN code does not output the reranking scores to
train a mixture model separately.

7Applying a scaling to either score only affects the range
of the combination parameter α, not the final results.

https://github.com/lephong/iornn-depparse
https://github.com/lephong/iornn-depparse


4128

ktrain keval UAS

10 10 91.50
64 10 91.86

10 64 90.82
64 64 91.62

Table 4: Accuracies of the RCNN-shared (+BiLSTMs)
model on the PTB development set with regard to the
size of the k-best list

the largest margin with the average margin. How-
ever, one thing we noted during training is that
the learning curves indicate severe overfitting. In
conclusion, despite our efforts we were not able to
reproduce the RCNN results from Zhu et al. (2015).

RCNN-shared As the learning curves for the
RCNN models show severe overfitting, we pro-
pose to simplify the original model. The original
RCNN has a large number of parameters, due to
its use of different weight matrices and vectors for
the POS tags of the current head-child pair. In the
simplified model, we replace those matrices W(h,c)

and vectors v(h,c) with a shared matrix W and vec-
tor v. Word embeddings and POS embeddings
(randomly initialized) are concatenated as the in-
put to the RCNN. Following common practice, we
also test a model where we place several BiLSTM
layers before the RCNNs to learn better representa-
tions from the input embeddings (+BiLSTMs). By
switching from RCNN to the RCNN-shared model,
we are now able to beat the baseline, even though
by only a small margin (UAS 90.65% and 90.29%
on the dev and test sets respectively).

We also study the effect of k to the model’s per-
formance (table 4). Training the reranker on a
larger k-best list8 improves the UAS by 0.36% on
the development set, which shows that the model
learns better with more negative examples. In-
creasing k at test time, on the other hand, hurts
performance because the longer list now contains
more low quality trees. The drop caused by using
a longer list at test time is also smaller (0.20% vs
0.68%) when the model is trained with more trees.

4.3 Reranking with GCNs

We now present results for our new GCN reranking
model on the English data. The best GCN model

8In practice, we do not train on the whole k-best trees
when k is large, but down-sample k in each batch to keep the
training time efficient. See the appendix for details.

Model UAS

Baseline 91.45

IORNN (ktrain = 10)
Reranker (ktest = 10) 91.70

Mixture (α = 0.015) 92.06

RCNN (ktrain = 10)
Reranker (ktest = 10) 90.29

Mixture (α = 0.005) 91.53
With oracle 92.34

RCNN-shared (+BiLSTMs, ktrain = 64)
Reranker (ktest = 10) 91.75

Mixture (α = 0.05) 91.92
With oracle 94.37

Reranker (ktest = 64) 91.43
Mixture (α = 0.01) 92.21
With oracle 93.56

GCN (ktrain = 64)
Reranker (ktest = 10) 92.23

Mixture (α = 1.0) 92.23
With oracle 95.25

Reranker (ktest = 64) 92.11
Mixture (α = 0.01) 92.48
With oracle 94.69

Table 5: Results for different rerankers (PTB test set).

(using 1 BiLSTM layer and 3 GCN layers) trained
on k = 64 parse trees significantly outperforms the
RCNN-shared model9 with 92.40% UAS on the
development set, compared to 91.86% for RCNN-
shared (p < .001), an increase of +0.54%.

The best results for the different reranking mod-
els on the PTB test set are summarized in table 5.
We include in the table the results for reranking
the top parse trees of different sizes (k = 10, 64).
Reranker is the ranked list produced by the rerank-
ing model only. Mixture is the result for combining
the output score given by the rerankers and the
score of the base parser as described in §3.3. Fol-
lowing Zhu et al. (2015), we do not use the exact
linear equation (6), but do logarithmic scaling of
the base parser’s score. The parameter α is op-
timized based on the results on the development
set, which has the same k as the test set. Since
the correct tree is not always in the k-best list, we
also show an upper bound performance for our

9We did not do a hyperparameter optimization, but in-
creased the number of parameters in the best RCNN-shared
models and observed no significant improvement.



4129

Model
UAS

w/o punct.
∆

Zhu et al. (2015)
Baseline 92.35
Mixture reranker 93.83 +1.48
With oracle 94.16

Ours (Mixture GCNs)
Baseline 92.05
Mixture reranker 93.06 +1.01
With oracle 94.99

Table 6: Reproduction of reranking results on the PTB
test set for the GCN reranker (k = 64).

rerankers where we manually add the gold trees to
the input list (with oracle). Note that with oracle
is the result from the reranker, not from the mix-
ture reranking model because the correct tree does
not have a score from the base parser if it is not
included in the k-best list.

Combining the score from both the reranker
and the base parser consistently improves over the
reranking score alone (except for the GCN reranker
ktest = 10), which confirms our hypothesis that
the parser and the reranker complement each other
by looking at different scoring criteria. Although
the accuracy drops when reranking longer lists, the
mixture scores are always higher. Compared to
the RCNN-shared models, the GCN models benefit
less from the mixture models, maybe because the

Model UAS LAS

Baseline 90.19 87.90
Top tree 88.36 86.28

IORNN (ktrain = 10)
Reranker (ktest = 10) 89.32 87.16

Mixture (α = 0.91) 89.47 87.41

RCNN-shared (ktrain = 50)
Reranker (ktest = 50) 89.50 86.12

Mixture (α = 0.1) 90.12 87.87
With oracle 92.76 90.06

GCN (ktrain = 50)
Reranker (ktest = 50) 89.96 87.50

Mixture (α = 0.11) 90.33 88.21
With oracle 94.29 92.85

Table 7: Performance of different rerankers on the Ger-
man SPMRL test set.

GCNs rank trees more similar to the base parser.
The upper bound performance (with oracle)

shows that we can still improve results with a better
k-best list. Interestingly, although we achieve mod-
est improvements compared to Zhu et al. (2015),
our upper bound is higher than theirs. A compar-
ison of results with the original RCNN paper on
their data is given in table 6.

4.4 Neural Reranking for MRLs

We now evaluate the reranking models that have
proved to be effective for English (IORNN, RCNN-
shared (+BiLSTMs) and GCNs) on German and
Czech data. Note that the RCNN model only ranks
unlabeled trees while the other two models also
consider the dependency labels, which is particu-
larly important for non-configurational languages.
All models are trained with the same hyperparame-
ter settings as for English. The mixture scores are
combined using equation 6 except that we optimize
the IORNN mixture model using the original tool
provided by the authors.

The results for the different reranking models are
presented in table 7 and 8. Neither the IORNN nor
the RCNN-shared reranker can surpass the base-
line. The GCN mixture model is the only model
that shows significant improvements over the other
models (p < .001) including the baseline, although
small (∼0.15-0.3% LAS).

Taking a closer look at different grammatical
functions in the output, we can see a clear differ-

Model UAS LAS

Baseline 91.87 88.85
Top tree 91.02 88.28

IORNN (ktrain = 10)
Reranker (ktest = 10) 91.07 87.97

Mixture (α = 0.94) 91.42 88.54

RCNN-shared (ktrain = 50)
Reranker (ktest = 50) 90.68 86.63

Mixture (α = 0.07) 91.79 88.80
With oracle 93.28 89.99

GCN (ktrain = 50)
Reranker (ktest = 50) 91.12 87.84

Mixture (α = 0.09) 91.89 89.01
With oracle 94.47 92.42

Table 8: Performance of different rerankers on the
Czech UD test set.



4130

German Czech

Label Baseline ∆GCNs Baseline ∆GCNs

nsubj 89.20 1.48 91.50 0.46
obj 82.84 1.91 90.10 0.54
iobj 67.25 1.15 60.92 2.22
conj 81.78 0.72 74.15 1.23

Table 9: Labeled F1 differences between the baseline
and the GCN mixture model for selected dependency
types from the German and Czech test sets.

ence between the reranking results and the baseline
(table 9). Although the overall accuracy is similar,
our reranking results show a better performance for
core arguments (nsubj: subject, obj: direct object,
iobj: indirect object) and conjunctions (conj).

4.5 Analysis

Through our experiments, we have shown that neu-
ral reranking models, which have demonstrated
their effectiveness on English data, fail to improve
baseline parsing results when applied to German
and Czech. This brings us to the question whether
this failure is due to the differences between the
languages or simply due to the lower quality in the
German and Czech k-best lists that are input to the
rerankers. It is conceivable that language-specific
properties such as the freer word order and richer
morphology in German and Czech might make it
harder for our models to learn a good representa-
tion capturing the quality of a specific parse tree.
However, when we add the correct parse tree to the
k-best list (with oracle results in table 5, 7 and 8),
the accuracy goes up to 94% for English, German
and Czech, which effectively eliminates the first
reason.

This points to the method used to obtain the k-

0 20 40 60
88

89

90

91

92

Gold tree ratio (%)

U
A
S

English mixture
German mixture
Czech mixture

Figure 1: UAS for the GCN reranking mixture model
with respect to the gold tree ratio in the k-best lists.

best list as the main factor responsible for the low
results for German and Czech. Beam search, al-
though being straightforward to implement, fails to
create high quality k-best lists for the base parsers
used for both languages (§4.1). While several pro-
jective parsers support k-best parsing (Huang and
Sagae, 2010; McDonald and Pereira, 2006), there
is, to the best of our knowledge, no out-of-the-
box parsing system that implements an effective
non-projective k-best parsing algorithm (as, for ex-
ample, Hall (2007)’s algorithm).

Gold tree ratio Clearly, the (upper bound) tree
accuracy in the k-best list determines the rerank-
ing performance. In all datasets, we observe that
the accuracy decreases when sentence length in-
creases. Overall, the (unlabeled) tree accuracy in
the English k-best list is ∼5% higher than in the
German data, but is behind that in the Czech data.
This, however, is not caused by a larger amount of
long sentences in the German data. For sentences
of same length, the top k trees from the PTB con-
tain more gold trees than those from the German
SPMRL and Czech UD datasets.

We further study the effect of the gold tree ratio
for reranking by removing the gold trees from the k-
best list to reduce the ratio to a certain level. Figure
1 shows that the gold tree ratio strongly correlates
with the reranking results.

k-best list variation We measure the variation
between the trees in the k-best lists by calculating
the standard deviation of their UAS. Figure 2 il-
lustrates the UAS standard deviation distribution
in the data for the three languages for k = 10. In
each dataset, the tree UAS variation in the English
data is the highest, followed by German and then
Czech, which shows that the re-arranging method
used to generate German and Czech k-best trees
tends to return more similar trees. We hypothesize

train dev test

0

20

40

Figure 2: Tree UAS standard deviation of 10-best lists.
From left to right: English, German, Czech.



4131

that reranking benefits from diversity, especially if
the data contains hard negative examples (incorrect
trees that are very similar to the correct one). The
gap between reranker performance and with oracle
results shows that the reranker is able to detect the
correct tree among the incorrect ones because they
are very different from each other.

Reranking models Among the neural rerankers,
the RCNNs are prone to error propagation from
the lower levels, and the IORNNs are sensitive
to the order of the child nodes. Both models did
not work very well when moving to German and
Czech compared to the GCNs, which disregard the
top-down or left-to-right order.

In practice, parser output reranking is not a very
cost effective way to improve parsing performance,
unless we have a fast way to generate high quality
output trees. However, the small improvement in
core arguments might be useful for downstream
applications that require high quality prediction of
core arguments.

5 Conclusion

We have evaluated recent neural techniques for
reranking dependency parser output for English,
German and Czech and presented a novel rerank-
ing model, based on graph convolutional networks
(GCNs). We were able to reproduce results for
English, using existing rerankers, and showed that
our novel GCN-based reranker even outperformed
them. However, none of the rerankers works well
on the two morphologically rich(er) languages.

Our analysis gave some insights into this issue.
We showed that the failure of the rerankers to im-
prove results for German and Czech over the base-
line is due to the lower quality of the k-best lists.
Here the gold tree ratio in the k-best list plays an
important role, as the discriminative rerankers are
very well able to distinguish the gold trees from
other trees in the list, but their performance drops
notably when we remove the gold trees from the
list. In addition, we observe a higher diversity in
the English k-best list, as compared to German
and Czech, which helps the rerankers to learn the
differences between high- and low-quality trees.

We conclude that the prerequisite for improv-
ing dependency parsing with neural reranking is
a diverse k-best list with a high gold-tree ratio.
The latter is much harder to achieve for MRLs
where the freer word order and high amount of

non-projectivity result in a larger number of tree
candidates, reflected by a lower gold tree ratio.

Acknowledgments

This work was supported by the Leibniz Science
Campus “Empirical Linguistics and Computational
Modeling”, funded by the Leibniz Association un-
der grant no. SAS-2015-IDS-LWC and by the Min-
istry of Science, Research, and Art (MWK) of the
state of Baden-Württemberg.

References
Eduard Bejček, Eva Hajičová, Jan Hajič, Pavlı́na

Jı́nová, Václava Kettnerová, Veronika Kolářová,
Marie Mikulová, Jiřı́ Mı́rovský, Anna Nedoluzhko,
Jarmila Panevová, Lucie Poláková, Magda
Ševčı́ková, Jan Štěpánek, and Šárka Zikánová.
2013. Prague dependency treebank 3.0. LIN-
DAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 89–97, Bei-
jing, China. Coling 2010 Organizing Committee.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 173–180, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural language parsing. Computa-
tional Linguistics, 31(1):25–70.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In The 5th International Conference on Learn-
ing Representations, Toulon, France.

Gertrud Faaß and Kerstin Eckart. 2013. SdeWaC -
A corpus of parsable sentences from the web. In
Language Processing and Knowledge in the Web:
25th International Conference, GSCL 2013, Darm-
stadt, Germany, September 25-27, 2013. Proceed-
ings, pages 61–68, Berlin, Heidelberg. Springer.

Keith Hall. 2007. K-best spanning tree parsing. In Pro-
ceedings of the 45th Annual Meeting of the Associ-
ation of Computational Linguistics, pages 392–399,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
https://www.aclweb.org/anthology/C10-1011
https://www.aclweb.org/anthology/C10-1011
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.1162/0891201053630273
https://doi.org/10.1162/0891201053630273
https://openreview.net/pdf?id=Hk95PK9le
https://openreview.net/pdf?id=Hk95PK9le
https://www.aclweb.org/anthology/P07-1050


4132

Katsuhiko Hayashi, Shuhei Kondo, and Yuji Mat-
sumoto. 2013. Efficient stacked dependency parsing
by forest reranking. Transactions of the Association
for Computational Linguistics, 1:139–150.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proceedings of
ACL-08: HLT, pages 586–594, Columbus, Ohio. As-
sociation for Computational Linguistics.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the Ninth International
Workshop on Parsing Technology, pages 53–64, Van-
couver, British Columbia. Association for Computa-
tional Linguistics.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1077–
1086, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Phong Le and Willem Zuidema. 2014. The inside-
outside recursive neural network model for depen-
dency parsing. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 729–739, Doha, Qatar.
Association for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 302–308, Baltimore, Maryland. Association
for Computational Linguistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In 11th Conference of the European Chapter
of the Association for Computational Linguistics.

Thomas Mueller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morphologi-
cal tagging. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, pages 322–332, Seattle, Washington, USA. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Vikas Raunak, Vivek Gupta, and Florian Metze. 2019.
Effective dimensionality reduction for word em-
beddings. In Proceedings of the 4th Workshop
on Representation Learning for NLP (RepL4NLP-
2019), pages 235–243, Florence, Italy. Association
for Computational Linguistics.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014.
Introducing the SPMRL 2014 shared task on pars-
ing morphologically-rich languages. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 103–
109, Dublin, Ireland. Dublin City University.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with compo-
sitional vector grammars. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
455–465, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Richard Socher, Christopher D. Manning, and An-
drew Y. Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive
neural networks. In Proceedings of the NIPS 2010
Deep Learning and Unsupervised Feature Learning
Workshop.

Hao Zhou, Yue Zhang, Shujian Huang, Junsheng Zhou,
Xin-Yu Dai, and Jiajun Chen. 2016. A search-based
dynamic reranking model for dependency parsing.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1393–1402, Berlin, Germany.
Association for Computational Linguistics.

Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing
Huang. 2015. A re-ranking model for dependency
parser with recursive convolutional neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1159–1168, Beijing, China. Association for Compu-
tational Linguistics.

A Appendix: Training Details for Neural
Network Rerankers

A.1 Down-sampling the k-best list

In order to maintain an efficient run-time for our
discriminative rerankers without scarifying the di-
versity we get from a longer k-best list, we apply
down-sampling for each training instance. Namely,
in each step, we use only 10 randomly selected
trees (when k > 10) in addition to the gold tree for
each sentence to back-propagate.

https://doi.org/10.1162/tacl_a_00216
https://doi.org/10.1162/tacl_a_00216
https://www.aclweb.org/anthology/P08-1067
https://www.aclweb.org/anthology/P08-1067
https://www.aclweb.org/anthology/W05-1506
https://www.aclweb.org/anthology/W05-1506
https://www.aclweb.org/anthology/P10-1110
https://www.aclweb.org/anthology/P10-1110
https://doi.org/10.3115/v1/D14-1081
https://doi.org/10.3115/v1/D14-1081
https://doi.org/10.3115/v1/D14-1081
https://www.aclweb.org/anthology/P14-2050
https://www.aclweb.org/anthology/P14-2050
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://www.aclweb.org/anthology/E06-1011
https://www.aclweb.org/anthology/E06-1011
https://www.aclweb.org/anthology/E06-1011
https://www.aclweb.org/anthology/D13-1032
https://www.aclweb.org/anthology/D13-1032
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/W19-4328
https://doi.org/10.18653/v1/W19-4328
https://www.aclweb.org/anthology/W14-6111
https://www.aclweb.org/anthology/W14-6111
https://www.aclweb.org/anthology/P13-1045
https://www.aclweb.org/anthology/P13-1045
https://doi.org/10.18653/v1/P16-1132
https://doi.org/10.18653/v1/P16-1132
https://www.aclweb.org/anthology/P15-1112
https://www.aclweb.org/anthology/P15-1112


4133

A.2 IORNN reranker
We use the code provided by Le and Zuidema
(2014)10 to train all IORNN rerankers with default
hyperparameters for English, German and Czech.
The default number of training epochs is set to 50.
Due to time limit, we could only train the model
for Czech which is the largest of our datasets up to
27 epochs, which took 15 days on a CPU. The pro-
gram processes a single sentence at a time rather
than batching or multithreading. For computing
the mixture score, we use the tool provided in the
repository instead of ours. The authors do loga-
rithmic scaling for the score of the reranker in the
mixture model combination:

s(x, y) = α log sr(x, y,Θ) + (1− α)sb(x, y)

A.3 RCNN, RCNN-shared and GCN
rerankers

For all discriminative rerankers, in the experiment
with the English data, we do logarithmic scaling for
the score of the base parser in the mixture model
combination:

s(x, y) = αsr(x, y,Θ) + (1− α) log sb(x, y)

In the experiments with German and Czech data,
we do not scale the score of the base parser and use
equation 6.

10https://github.com/lephong/
iornn-depparse

https://github.com/lephong/iornn-depparse
https://github.com/lephong/iornn-depparse

