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Optimal inflow control in transport systems with uncertain demands -
A comparison of undersupply penalties

Kerstin Lux1,∗ and Simone Göttlich1,∗∗

1 University of Mannheim, 68131 Mannheim, Germany

We address the challenging task of setting up an optimal production plan taking into account uncertain demand. The transport
process is represented by the linear advection equation and the uncertain demand stream is captured by an Ornstein-Uhlenbeck
process (OUP). With a model predictive control approach, we determine the optimal inflow. We use two types of undersupply
penalties and compare the average undersupply as well as the number of undersupply cases in a numerical simulation.
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1 Stochastic optimal control problem

Accounting for uncertainty is crucial in the modeling of many real-world processes. One example is the increasing interest in
solutions accounting for large fluctuations in renewable energy generation (see e.g. [1]). Another source of uncertainty in the
production context arises in terms of the unknown demand for goods (see e.g. [2]). A reliable supply is crucial to avoid high
costs of short-term external purchase and for the company’s reputation. We focus on the optimal inflow control in transport
systems avoiding undersupply. We use the stochastic optimal control framework set up in [3].

1.1 Supply system and demand dynamics

We consider a supply system where goods are transported from left (x = 0) to right (x = 1) with a constant velocity λ, i.e.
goods feeded into the system need 1/λ time units to pass from left to right. Mathematically, this transportation process is
described by the linear advection equation with initial and boundary condition given by

zt + λzx = 0, x ∈ (0, 1), t ∈ [0, T ], z(x, 0) = 0, z(0, t) = u(t), t ∈ [0, T − 1/λ]., (1)

where u ∈ L2([0, T − 1/λ]) is the inflow control. We set u(0) = 0. The output of the system is y(t) = z(1, t). We aim at
determing the inflow control u(t) such that the resulting supply y(t) optimally matches the uncertain demand (Yt)t∈[0,T ].

The demand dynamics are described by an Ornstein-Uhlenbeck process (OUP) being the unique strong solution of

dYt = κ (µ(t)− Yt) dt+ σdWt, Y0 = y0. (2)

Wt is a one-dimensional Brownian motion, σ > 0, κ > 0 are constants, and y0 is the initial demand. The OUP is a popular
stochastic process in demand modeling (see e.g. [4] for electricty demand modeling). Its mean reverting property allows the
interpretation as random fluctuations around a given mean demand level µ(t) possibly obtained from historical demand data.
For further details and an extension of it including the possibility of jumps, please see [3].

The resulting stochastic optimal control (SOC) problem can be stated as

min
u∈L2([0,T−1/λ])

∫ T

1/λ

OF (Ys, t0, yt0 , y(s))ds subject to (1) and (2). (3)

Here, we assume u(t) to be Ft̂i
-measurable for t ∈ [t̂i, t̂i+1], where t̂i = i · ∆tup, i ∈ {0, 1, · · · , T−1/λ/∆tup}, and

∆tup ∈ [0, T − 1/λ] is the update frequency. Then, 0 = t̂0 < t̂1 < · · · < t̂n ≤ T − 1/λ specifies the grid of update times, where
the current demand at the market is observed. Accordingly, we subdivide our optimization horizon [0, T ] into subintervals
[t̂i, t̂i+1] and solve the SOC problem of type (3) thereon with updated state of the supply system and updated initial demand
(see control method CM2 in [3]).

1.2 Choice of cost function

Our focus is the choice of the cost function for the optimization. We will compare different types of undersupply penalties in
terms of different cost functions OF (Ys, t0, yt0 , y(s)). The first one is taken from [5]:

OFpenC(Ys, t0, yt0 , y(s)) =E
[
(Ys − y(s))2|Yt0 = yt0

]
︸ ︷︷ ︸

I

+α · E
[
(Ys − y(s))2|Ys > y(s) ∧ Yt0 = yt0

]
︸ ︷︷ ︸

II

. (4)
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2 of 2 Section 15: Uncertainty quantification

I is of tracking type and II represents a multiple α of the expected quadratic undersupply given the information of being in
an undersupply case. The multiple α gives the possibilty to control the intensity of penalization. For the effect of different
intensities on the optimal supply, we refer the reader to [5]. We formulate an alternative penalization of undersupply as
follows:

OFpenI(Ys, t0, yt0 , y(s)) =E
[
(Ys − y(s))2|Yt0 = yt0

]
︸ ︷︷ ︸

I

+α · E
[
(Ys − y(s))21Ys>y(s)|Yt0 = yt0

]
︸ ︷︷ ︸

III

. (5)

In contrast to (4), it might be of greater practical relevance for a producer to also account for the probability that an undersupply
occurs. Note that the difference between the two objective functions is determined by the latter probability P (Ys > y(s)):

(OFpenC −OFpenI)(Ys, t0, yt0 , y(s)) =α · E
[
(Ys − y(s))2|Ys > y(s) ∧ Yt0 = yt0

]
· (1− P (Ys > y(s))) ≥ 0.

We always have OFpenC(Ys, t0, yt0 , y(s)) ≥ OFpenI(Ys, t0, yt0 , y(s)) with equality if P (Ys > y(s)) = 1, i.e. undersupply is
penalized less for OFpenI. That goes along with two intuitive hypothesis numerically analyzed in the Section 2:

(H1) The average undersupply E
[
(y∗(s)− Ys)1Ys>y(s)|Yt0 = yt0

]
for OFpenI is higher than that for OFpenC.

(H2) The number of undersupply cases is expected to be higher for OFpenI.

2 Numerical results

With only a slight modification of the reformulation of equation (5) in [5], we again have a deterministic reformulation of
the SOC problem (3). We use the numerical procedure set up in [5] adapted to the alternative cost function OFpenI to test
our hypothesis (H1) and (H2) numerically. We take 103 Monte Carlo repetitions for the following parameter setting: T = 1,
λ = 4, µ(t) = 2 + 3 · sin(2πt), κ = 3, σ = 2, y0 = 1.

0.25 0.375 0.5 0.625 0.75 0.875 1

Time

0

50

100

150

200

250

300

350

(a) Number of undersupply cases

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

(b) Average undersupply

Fig. 1: Comparison of OFpenI with OFpenC

In Figure 1, we see that the number of undersupply cases is higher for OFpenI. The average undersupply (negative value)
resulting from OFpenI lies clearly below the one based on the optimization with respect to OFpenC. Both the binary measure
of undersupply as well as the quantitative height of the average undersupply show the higher undersupply penalization by
OFpenC, and numerically confirm our hypotheses (H1) and (H2). However, the increasing or decreasing tendency is the same
for both measures indicating that the use of either one is reasonable.
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