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Today, China is the second-largest, fastest-growing economy in the world. This
study analyzes asymmetric and time-varying impact of world energy prices
(including world energy prices index, world coal prices, world crude oil prices and
world natural gas prices) on China’s CO2 emissions. We used a non-linear ARDL
(NARDL) model and wavelet analysis using monthly data from 1992 to 2017. The
results based on the NARDL estimate show that world energy prices have an
asymmetric impact on CO2 emissions. However, the results of wavelet pairwise
correlation and wavelet-transform coherence suggest that the relationship between
world energy prices and CO2 emissions differs over time and across sectors (i.e.
short-term, medium-term, long-term and very long-term). Evidence suggests that
ignoring fundamental non-linearities can lead to misleading outcomes. Such
empirical results are expected to have a high importance for the efficient design
and implementation of world energy prices and Chinese environmental policies.

Keywords: carbon emissions; world energy prices; NARDL; wavelet; China

1. Introduction

China’s growth as an economic force has become a key factor for regional and global
energy use and environmental impacts. Being the world’s largest CO2 emitter, China’s
carbon emissions received considerable scrutiny from national and foreign scientists
(Liu et al. 2015; Fatima et al. 2019; Wang and Jiang 2019). Climate change has been
driving CO2 emissions from human activities (Masood, Farooq, and Saeed 2015).
These emissions are primarily from China, which has had the world’s largest carbon
footprint since 2004, accounting for 28.5% of global CO2 emissions in 2018. The
country has become the third-largest oil consumer with the sixth-largest proven oil
reserves. Compared to the scale and composition of energy use, China accounts for
more than 29% of global CO2 emissions, while fossil fuel consumption is 13%. Due
to the steady growth in Chinese transportation and industry, energy demand is increas-
ing. While the share of other primary sectors including commercial and public sectors
in China’s energy demand is 15% and 4%, respectively. Owing to the ongoing indus-
trialization cycle, environmental and energy policies have significant impacts on global
CO2 emissions. The Chinese economy’s scale also represents energy demand in the
country (Fatima, Xia, and Ahad 2018, 2019; Fatima et al. 2018a, 2018b, 2019).
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China’s demand for energy is increasing more rapidly than any other nation in the
world. The rise in world energy pricing is mainly motivated by the increase in supply,
and China plays an important role in global energy prices and CO2 emissions.
Regardless of the rapid growth of the energy sector, China is the world’s biggest CO2

emitter (Bilgili, Mugaloglu, and Koçak 2018). A study by Wang and Su (2020)
reported that CO2 emissions in developed countries (China) increased faster than in
emerging countries. Chinese new work explored the relationship between energy usage
and carbon dioxide with linear econometric models. However, energy prices affect
China’s CO2 emissions tremendously.

Also, the relationship between energy prices and CO2 emissions was established
based solely on domestic energy prices in China (see Hammoudeh et al. 2015; Li,
Fang, and He 2019; Wang, Bai, and Xie 2019; Cheng et al. 2019). Any country’s eco-
nomic growth depends on energy (Wang, Bai, and Xie 2019) and a study coordinated
by Chai, Lu et al. (2016) found that world energy prices directly affect China’s envir-
onmental quality through Chinese manufacturing, transport and economic development.
Interactions between world energy prices and the Chinese energy consumption trend
should be more important than ever (Cong et al. 2008). Research by Long and Liang
(2018) found that shocks in global energy prices have direct effects on production
costs in any economy and significant effects due to changing the development environ-
ment (CO2). Before 1980, the local government established Chinese oil and petroleum
retail and wholesale prices, although, in 1998, China’s oil prices were strongly corre-
lated with world oil prices.

Due to China’s strong correlation with global energy prices, this study examines
the relationship between world energy and China’s CO2 emissions. This study contrib-
utes to energy–CO2 literature in various ways. First, we examine the relationship
between world energy prices (including the world energy price index, coal, crude oil
and gas prices) and China’s CO2 emissions (overall CO2 emissions, manufacturing and
transport sector emissions). Initially, we analyze the individually asymmetric effect on
CO2 emissions of energy prices and then combine it using a non-linear ARDL method.
Therefore, this research also has strategic consequences for some of China’s most
influential industries.

Second, the problem of asymmetries or non-linearities attracts attention from all
over the world due to the intricacy of economic systems regulating the mechanism of
data generation in energy prices and CO2 emission markets. Moreover, global financial
crises, new rules and regulations, and sudden policy changes create non-linearities
among data series. Examining the linear relationship between energy prices and CO2

emissions may be misleading. Considering the importance of non-linearities, this study
used the non-linear ARDL approach introduced by Shin, Yu, and Greenwood-Nimmo
(2014), which accommodates non-linearities among sequences, sudden splits and vola-
tility, and provides robust results in a non-linear system (Meo et al. 2018a). Using the
non-linear ARDL model, we can distinguish how CO2 emissions respond to positive
and negative changes in world energy prices. Third, conventional econometrics meth-
ods look only at time – but neglect the most relevant frequency domain information
such as short-, medium-, long- and very long-run (Power and Turvey 2010). Several
researchers found that time series non-linearity occurs due to information that is hid-
den in the frequency field (Huang et al. 2015). To analyze time and frequency domain
information at the energy price and CO2 nexus, wavelet-based analysis is a great
method, as energy prices and CO2 emissions exhibit time-varying relationships.
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Wavelet-based analysis works well in structural splits, unlike many other econometric
techniques. Wavelet analysis operates by decomposing time data into a two-dimen-
sional time-frequency sphere and can define the effect of regime changes and analyze
the short-run and long-run dynamics between energy price and CO2 emissions. Hence,
our research uses both non-linear-ARDL (NARDL) by Shin, Yu, and Greenwood-
Nimmo (2014) and a wavelet response approach to find: (1) is there any asymmetric
relationship between energy price and CO2 and to what extent? And (2) with time and
frequency information, is there a lead–lag relationship between energy price and CO2

and if so, how long is the lead/lag.
The study is structured as follows: Section 2 addresses the literature review.

Section 3 addresses the research data and methodology. Section 4 addresses the out-
comes. Section 5 provides conclusions and policy implications.

2. Literature review

2.1. CO2 emissions and energy prices

The previous literature analyzed many determinants of CO2 emissions, including eco-
nomic development, FDI inflows, human health, energy use, energy supply, urbaniza-
tion, globalization and energy prices (Fei et al. 2011; Bai and Yang 2012; Chang
2010; Feng, Sun, and Zhang 2009; Zhang and Yang 2013; Li, Li, and Lu 2017;
Fatima, Xia, and Ahad 2018; Alvarado et al. 2018; Azam, Khan, and Ozturk 2019;
Khan, Teng, and Khan 2019a, 2019b).

A review by Maji et al. (2017) showed that researchers focused on energy use and
CO2 emissions, ignoring the relationship between energy prices and CO2 emissions.
While some studies found contradictory results in the correlation between energy pri-
ces and CO2 emissions.

For example, Yang and Timmermans (2012), Payne (2012), Wang, Li, and Fang
(2018), Zhang and Zhang (2016), Winchester and Ledvina (2017), Maji et al. (2017)
showed that the rising price of oil has a negative impact on CO2 emissions. Although
few studies by Chai, Lu, et al. (2016), Nwani (2017) and Blazquez et al. (2017) found
that increasing energy prices lead to higher carbon dioxide emissions. This doesn’t
mean rising energy prices increased China’s CO2 emissions. We also found another
line of CO2 modeling literature (Salim and Rafiq 2012) and Blazquez et al. (2017)
found no important association between oil prices and CO2 emissions.

Subsequent energy demand channelizes the effect of oil prices on CO2 emissions
(Amano 1990; Martinsen, Krey, and Markewitz 2007; Fei and Rasiah 2014). Research
by Zhang, Broadstock, et al. (2014) analyzed the effect of energy prices on energy
demand in different sectors and found that higher prices influence most transport sec-
tors. Zafeiriou et al. (2014) argued that when energy costs increase, consumers see an
alternative to conventional energy supplies, and as traditional energy sources decline,
CO2 emissions slowly decrease. Owing to higher oil prices, energy demand also
depends on coal use, sector and other factors. Sun et al. (2018) explained that some
pulp and paper industries consume the largest resources and are the source of pollutant
emitters in the manufacturing sector (Table 1).

Li et al. (2018) discussed how the non-ferrous metal industry (NMI) absorbs vast
quantities of energy and is a catalyst for China’s high-carbon industry. Table 2 also
summarizes a few studies illustrating the relationship between CO2 and energy prices.
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2.2. Non-linear relationship of CO2 emissions and other determinants

Several researchers have therefore studied non-linear CO2 emission behavior in vari-
ous countries, including Hammoudeh et al. (2015) for the USA, Zaghdoudi (2018),
Ahmad et al. (2018), AhAtil et al. (2019) for China, Rahman and Ahmad (2019) for
Pakistan and Haug and Ucal (2019) for Turkey. These studies have confirmed the
asymmetric response of CO2 emissions due to positive and negative changes in
macroeconomic factors. After careful study of CO2 emissions literature, we found
that most research used standard time series and panel data approaches including
VECM threshold, ARDL bound testing cointegration, Granger causality, VECM,
Bootstrapped causality tests, FMOLS model, DOLS model, Multivariate conditional
volatility model, Engle and Granger method, two-way random effect model, gravity
model etc. All these techniques function effectively within a linear system, although
most series have a non-linear relationship. Research by Po and Huang (2008) found
that linear models do not tolerate or consider short-term fluctuations and effect sys-
temic breaks. Similarly, Anoruo (2011) found that macroeconomic variables have
non-linear properties, but linear models do not comply with them. Kahneman and
Tversky (1979) expressed earlier the value of non-linearity, arguing that non-linearity
is normal for human behavior.

Furthermore, Bildirici and Turkmen (2015) argued that non-linear econometric
models are more predictive than linear models. CO2 emissions were found to react
differently to positive and negative energy price changes. During cycles of rapid
economic growth, CO2 emissions typically remain high, while CO2 emissions are
comparatively small during times of economic recession or low renewable
energy prices.

However, financial crises, sudden policy shifts, domestic conflicts and financial
system dynamics produce regime-switching actions of energy prices. This can contrib-
ute to energy and CO2 emission non-linearities. Furthermore, new pricing strategies,
technical progress and regulatory changes often contribute to asymmetries between
energy prices and CO2 emissions (Hammoudeh et al. 2015).

Considering non-linearities between energy prices and CO2 emissions, therefore, is
an important problem. From the literature, we find different gaps, first of all, earlier
studies mostly examined the effect of energy consumption on CO2 emissions; other
researchers also examined the relationship between energy prices and CO2 emissions,
but considered only domestic energy prices. Second, earlier studies ignored the asym-
metric correlation between world energy prices and China’s CO2 emissions, given
China’s various major sectors.

Third, the relationship between energy prices and CO2 emissions changes over
time, but researchers ignored this correlation. Therefore, we considered the asymmetric
effect of world energy prices on China’s CO2 emissions in various sectors. For the
non-linear relationship, we used the NARDL model. To examine the time-varying rela-
tionship we used wavelet-based analysis. Time series contains information not only in
time, but also frequency domains. In addition to frequency analysis, time series in the
time and frequency domains are considered by wavelet methods. The wavelet analysis
examines the patterns, trends or seasonality produced by the transformation of time
series over time. Wavelet models are far similar to time series and data panel models.
Thus, wavelet analysis will inspect structural data breaks over time and frequency
through transformation and permanent cycles to estimate dependence between two var-
iables (Nie et al. 2019).

Journal of Environmental Planning and Management 5
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3. Data and methodology

This study analyzed the asymmetric/non-linear impact of world energy prices on
China’s environmental degradation. The world energy price includes world energy pri-
ces index, world crude oil, coal and natural gas prices. Also, this research analyzed the
individual effects on China’s environmental deterioration of world crude oil, coal and
natural gas prices. We have used a range of environmental pollution indicators, such
as CO2 emissions from the transportation industry and the manufacturing sector, to
monitor the robustness of the model. Consequently, the following are functional forms
of bivariate and multivariate primary models.

In Table 3, CO2, WEP, oil, coal, NG, CO2i and CO2t denote overall CO2 emissions
per capita, world energy prices index, world crude oil prices, world coal prices, world
natural gas prices, CO2 emissions from China’s manufacturing industry sector and CO2

emissions from China’s transport sector, respectively. This study uses monthly data rang-
ing from 1992 to 2017; world energy prices is an index; coal is the price of coal per
ton; crude oil is the crude oil price per barrel; natural gas refers to the price of natural
gas per MMBTU; CO2 emissions as per capita (CO2), CO2 emissions from China’s
transport as a percentage of total fuel combustion and CO2 emissions from China’s man-
ufacturing industries, also measured as a percentage of total fuel combustion; all the
data was downloaded from the Thomson Reuters Data Stream. To examine the long-run
relationship between the proposed variables, we used the following long-run equation

yt ¼ b0 þ b1 xtð Þ þ lt (1)

where yt refers to dependent variables (CO2, CO2i and CO2t) while xt denotes exogen-
ous variables (WEP, coal, oil and NG). After a careful review of literature on envir-
onmental studies, we found that most of the studies used linear econometric models
(Li and Yang 2016; Ozturk and Acaravci 2016; Al-Mulali and Ozturk 2016; Ahmad
and Du 2017; Alshehry and Belloumi 2017), while linear econometric models force
variables to be linear even when the variables are not linear in reality.

3.1. NARDL method

Conversely, there are a few recent studies that confirmed the non-linear/asymmetric
relationship between energy prices and CO2 emissions (Hammoudeh et al. 2015;

Table 3. Functional forms of all models.

CO2 ¼ f (WEP) M 1.1 to 1. 4 CO2t ¼ f (WEP) M 3.1. to 3.4
CO2 ¼ f (oil) CO2t ¼ f (oil)
CO2 ¼ f (coal) CO2t ¼ f (coal)
CO2 ¼ f (NG) CO2t ¼ f (NG)
CO2i ¼ f (WEP) M 2.1 to 2.4 CO2 ¼ f (WEP, oil, coal, NG) M 4
CO2i ¼ f (oil) CO2i ¼ f (WEP, oil, coal, NG) M 5
CO2i ¼ f (coal) CO2t ¼ f (WEP, oil, coal, NG) M 6
CO2i ¼ f (NG)

Note: M refers to the model number. CO2 refers to overall CO2 emissions. CO2i refers to CO2 emissions
from the industrial sector. CO2t refers to CO2 emissions from the transport sector. M 1.1 to 1.4, M 2.1 to
2.4, M 3.1 to 3.4, M4, M5, and M6 refers to the individual impact of world energy prices on overall CO2

emissions, CO2 emissions from the industrial sector, CO2 emissions from the transport sector, combined
effect of world energy prices on overall CO2 emissions, CO2 emissions from the industrial sector and CO2
emissions from the transport sector, respectively.
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Boufateh 2019). Given the importance of non-linearities, the current research employs
a non-linear ARDL method, which explores short-term fluctuations and sudden varia-
tions in the proposed variables and offers short-term and long-term non-linear inter-
action between them (Meo et al. 2018b). The non-linear ARDL model is an extension
of the traditional time series ARDL approach that produces short-run and long-run
relationships (Khan, Teng, and Khan 2019; Fareed et al. 2018). Compared to any other
cointegration-based approach, an important benefit of the NARDL model is that it can
relax stationary constraints and be employed when the variables are I(0) or I(1) and
I(0) or I(1) (Rasheed et al. 2019; Chang et al. 2019). The general form of the ARDL
method we have used is, therefore:

DAt ¼ d0 þ d1At�1 þ d2Bt�1 þ
Xk
i¼1

d3DAt�1 þ
Xk
i¼1

d4DBt�1 þ et (2)

In the above equation, we have: D difference operator, d1 and d2 as long-run and
d3 and d4 short-run parameters, while At refers to dependent variables (CO2, CO2i and
CO2t) and Bt denotes exogenous variables (WEP, coal, oil, NG). The optimal lags are
represented using AIC criteria with k: The run association between proposed variables
is examined as the absence of cointegration d1 ¼ d2 ¼ 0: Apart from conventional
cointegration and traditional cointegration, Granger and Yoon (2002) formed a new
concept of “Hidden Cointegration.” They argued that from the positive and negative
components of a series, cointegration can also be found. For hidden cointegration,
Schorderet (2003) endorsed an asymmetric regression model, but that only accommo-
dates a single component of a series for the cointegration.

However, from the foundation-based research, Shin, Yu, and Greenwood-Nimmo
(2014) formulated a non-linear autoregressive distributed lag model (NARDL) which
decomposed a series into its positive and negative changes and provides non-linear
relationships among the proposed variables. Asymmetric cointegration can be formu-
lated as follows:

At ¼ dþBþ
t þ d�B�

t þ lt (3)

In Equation (3) A denotes endogenous variables, dþ and d� are long-run coeffi-
cients and Bþ

t and B�
t are exogenous variables decomposed into positive and negative

shocks as follows:

Bt ¼ B0 þ Bþ
t þ B�

t (4)

Bþ
t and B�

t are the decomposed negative and positive components of an exogenous
variable and the equations (Equations (5)–(12)) are the partial sums of positive and
negative changes in WEP, oil, coal and NG, respectively

WEPþ ¼
Xt

i¼1

DWEPþi ¼
Xt

i¼1

maxðDWEPi, 0Þ (5)

WEP� ¼
Xt

i¼1

DWEP�i ¼
Xt

i¼1

minðDWEPi, 0Þ (6)

oilþ ¼
Xt

i¼1

Doilþi ¼
Xt

i¼1

maxðDoili, 0Þ (7)
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oil� ¼
Xt

i¼1

Doil�i ¼
Xt

i¼1

minðDoili, 0Þ (8)

coalþ ¼
Xt

i¼1

Dcoalþi ¼
Xt

i¼1

maxðDcoali, 0Þ (9)

coal� ¼
Xt

i¼1

Dcoal�i ¼
Xt

i¼1

minðDcoali, 0Þ (10)

NGþ ¼
Xt

i¼1

DNGþ
i ¼

Xt

i¼1

maxðDNGi, 0Þ (11)

NG� ¼
Xt

i¼1

DNG�
i ¼

Xt

i¼1

minðDNGi, 0Þ (12)

As the NARDL cointegrating approach is an extension of the traditional ARDL
cointegration model, it is demonstrated that if the positive and negative components of
exogenous variables (from Equations (5)–(12)) are put into the linear ARDL frame-
work shown in Equation (2), then the traditional ARDL approach can be converted
into the non-linear/asymmetric ARDL framework

DAt ¼ d0 þ d1At�1 þ d2B
þ
t�1 þ d3B

�
t�1 þ

Xk
i¼1

d4DAt�1 þ
Xk
k¼1

d5DB
þ
t�k þ

Xk
k¼1

d6DB
�
t�k þ et

(13)

3.2. The continuous wavelet transforms

The present study also employed wavelet-based analysis, including wavelet decomposition
based on discrete wavelet transform (DWT), wavelet correlation and continuous wavelet
transform (CWT). First, we employed wavelet decomposition based on DWT; with the
help of wavelet decomposition analysis, one can easily decompose any variable into differ-
ent periods such as short-term indicated by (D1 þ D2), medium-run indicated by (D3 þ
D4), the long-run period indicated by (D5 þ D6) and very long-run indicated by S6. The
wavelet decomposition analysis helps in variation checking within the series in different
periods. Meanwhile, wavelet correlation analysis helps in determining the correlation
between two series over the different periods, such as short-run, medium-run, long-run
and very long-run. The prime objective of using CWT is to examine the lead–lag relation-
ship between the world energy price index (and other forms of energy) and CO2 emissions
from China, as policymakers must devise policies related to energy prices and CO2 emis-
sions for the short-run, medium-run, long-run and very long-run. It is the beauty of CWT
analysis that decomposes the relationship between proposed variables into different time
frequencies and thus depicts the true co-movement among the proposed variables.

The continuous wavelet transform wx(u,s) is obtained by projecting a mother wave-
let W onto the examined time series x tð Þ 2 l2 (R), that is

wx u, sð Þ ¼
ð1
�1

xðtÞ 1ffiffi
s

p w
t�u

s

� �
dt (14)

here u refers to the time domain and s refers to its position in the frequency domain.
Therefore, the wavelet transforms by mapping the original series into a function of u
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and s, which gives us information simultaneously on time and frequency. For finding
the interaction between two-time series (e.g. how closely X and Y are interrelated by
linear transformation), this study applied a bivariate framework called wavelet coher-
ence. Following Torrence and Webster (1999), the wavelet coherence of two-time ser-
ies can be defined as follows:

R2
n sð Þ ¼ ISðs�1Wxy

n sð ÞÞI2
S s�1IWx

n sð Þ� �
I2:Sðs�1IWy

n sð ÞÞI2 (15)

where S is a smoothing operator, s is a wavelet scale, Wx
nðsÞ is the continuous trans-

formation of the time series X, Wy
nðsÞ is the continuous wavelet transform of the time

series Y, W xy
n ðsÞ is a cross wavelet transform of the two-time series X and Y.

4. Empirical results

In this study, we implement an alternative econometric framework to determine the
long-lasting and short-term asymmetrical impact on China’s CO2 emissions of world
energy prices (including the price index for the world, coal, crude oil and natural gas),
namely the non-linear autoregression model NARDL, recently advanced by Shin, Yu,
and Greenwood-Nimmo (2014).

Before estimating the relationship between world energy prices and CO2 emissions,
the order of integration of the time series variables must be estimated, because it is an
ARDL model’s key weakness that the ARDL method cannot be implemented where
there are any series stationary to I(2).

The well-known Augmented Dickey–Fuller (ADF) and Phillip–Perron (PP) unit-
root tests are used. The results of the descriptive statistics are given in (Table 4) while
the unit root test results given in (Table 5) indicate that none of the variables is sta-
tionary on I(2). It makes a model of non-linear autoregressive distributed lag
(NARDL). F-test values for both models (M 1.4, 2.4, 3.4, 4, 5 and 6) presented in
Table 6 are greater than the critical value of upper-bound, which confirms long-term
relationships between the purposed variables (Pesaran, Shin, and Smith 2001). Next,
we calculated short- and long-term asymmetric coefficients for all models (M 1.1 to
1.4, 2.1 to 2.4, 3.1 to 3.4, 4, 5 and 6) by decomposing world energy prices into posi-
tive and negative shocks. The NARDL strategy has the advantage that long-term asym-
metric CO2 emission responses are discriminated against due to positive and negative
changes in world energy prices. For Models 1.1 to 1.4, the dynamic estimate and

Table 4. Descriptive statistics.

CO2 CO2i CO2t WEP Coal Oil NG

Mean 4.645 32.442 7.335 91.810 58.954 61.491 3.973
Median 4.144 32.722 7.627 72.030 48.320 47.200 3.330
Maximum 7.577 37.318 9.203 249.610 195.190 167.700 13.630
Minimum 2.250 27.237 4.646 22.090 24.000 13.200 1.180
Std. Dev. 2.014 2.263 1.283 59.959 33.558 41.562 2.254
Skewness 0.332 –0.378 –0.623 0.713 1.177 0.722 1.501
Kurtosis 1.449 2.778 2.052 2.186 3.967 2.186 5.649
Jarque-Bera 36.173 7.912 31.197 34.289 82.417 34.973 203.848
Probability 0.000 0.0191 0.000 0.000 0.000 0.000 0.000
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short- and long-term asymmetric coefficients are listed in Tables 7 and 8. The esti-
mated long-term coefficients for WEP_POS and WEP_NEG are 0.013 and –0.007,
respectively. It can thus be inferred that a 1-unit increase in the world oil price index
leads to an increase of 0.013 units in CO2 emissions. Similarly, a 1-unit decrease in
the world energy price index leads to a CO2 rise of 0.007 units. The results of the
study confirmed the asymmetric relationship between the world energy pricing index
and total CO2 emissions, with a stronger effect of positive changes in WEP on CO2

emissions than negative changes in WEP.
These findings are consistent with the study by Zhang and Zhang (2016); they also

found that oil prices significantly affect China’s CO2 emissions. Nwani (2017) also
suggested that the oil prices in Ecuador are increasing CO2 emissions. The asymmetric

Table 5. Unit root tests.

Level 1st Difference
Order of
integrationVariable ADF PP ADF PP

CO2 –1.1467 –0.198 –4.22�� –4.21�� I(1)
CO2i –4.38��� –4.725��� –2.99 –4.72 I(0)
CO2t –3.01 –2.37 –2.182��� –5.12��� I(1)
WEP –1.376 –1.484 –4.68��� –4.67��� I(1)
Coal –1.74 –1.598 –6.49��� –6.86��� I(1)
Oil –1.36 –1.36 –4.55��� –4.54��� I(1)
NG –1.89 –1.75 –6.62��� –6.82��� I(1)

Note: ���,�� indicate statistical significance at 1%, 5% and 10% levels, respectively.

Table 6. Non-linear cointegration based on bounds testing approach.

Bivariate analysis F-test LB UB

Model 1.1 to 1. 4 overall CO2 emissions
CO2 ¼ f (WEP) 13.68� 4.87 5.86
CO2 ¼ f (coal) 7.67�� 4.19 5.06
CO2 ¼ f (oil) 6.100�� 4.87 5.85
CO2¼ f (NG) 10.38� 4.19 5.06
Model 2.1 to 2.4 CO2 emissions from the industrial sector
CO2 ¼ f (WEP) 6.95�� 4.19 5.06
CO2 ¼f (coal) 10.91� 4.87 5.87
CO2 ¼ f (oil) 6.44�� 4.19 5.06
CO2¼ f (NG) 6.19�� 4.87 5.87
Model 3.1 to 3.4 CO2 emissions from the transport sector
CO2 ¼ f (WEP) 6.79�� 4.19 5.06
CO2 ¼f (coal) 14.65� 4.87 5.87
CO2 ¼ f (oil) 6.71�� 4.19 5.06
CO2¼ f (NG) 6.51�� 4.19 5.06
Multivariate analysis
Model from M 4 to 6
CO2 ¼ f (WEP, coal, oil, NG) 16.71� 2.96 4.26
CO2i ¼ f (WEP, coal, oil, NG) 17.21� 2.54 3.91
CO2t ¼ f (WEP, coal, oil, NG) 15.47� 3.31 4.63

Note: LB: lower bound, UB: upper bound.�,�� indicate level of significance at 1%, 5% and 10%, respectively.
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relationship between coal, oil, natural gas and total CO2 emissions is then evaluated
individually. The estimated long-term coefficients for coal_POS and coal_NEG are
0.009 and –0.007, respectively. Therefore, it can be inferred that a 1-unit rise in world
coal prices leads to a 0.009 unit rise in CO2 emissions. Likewise, the 1-unit drop in
the coal energy price corresponds to an increase of 0.007 units in CO2. Whereas, the
estimated long-term coefficients for oil_POS and oil_NEG are 0.020 and –0.010,
respectively. It implies that a 1-unit increase or decrease in world oil price leads to an
increase in overall CO2 emissions by 0.020 and 0.010 units, respectively. For natural
gas prices, the approximate NG_POS and NG_NEG long-term coefficients are 0.167
and –0.212, respectively. This means that total CO2 emissions in China rise as a result
of positive or negative shifts in prices for gas. We found that world energy prices have
a non-linear impact on total CO2 emissions. These findings align with the study by
Lim, Lim, and Yoo (2014), Nwani (2017), Saboori, Rasoulinezhad, and Sung (2017)
and Ahmad et al. (2018). They also found that oil-dependent countries do not change

Table 7. Non-linear ARDL estimation results: dependent overall CO2 emissions per capita (M
1.1 to M 1.4).

Variable
CO2 ¼ f (WEP) CO2 ¼ f (coal) CO2 ¼ f (oil) CO2 ¼ f (NG)
Coefficient (Sig) Coefficient (Sig) Coefficient (Sig) Coefficient (Sig)

CO2 (-1) 1.311 (0.000)�
CO2 (-2) –0.882 (0.002)�
CO2 (-3) 0.583 (0.009)�
CO2 (-4) –0.906 (0.000)�
WEP_POS 0.009 (0.000)�
WEP_POS (-1) –0.005 (0.000)�
WEP_POS (-2) 0.008 (0.000)�
WEP_NEG –0.006 (0.000)�
C 2.088 (0.000)�
CO2 (-1) 1.242 (0.000)�
coal_POS 0.006 (0.004)�
coal_NEG 0.000 (0.928)
coal_NEG (-1) –0.005 (0.038)��
C 1.115 (0.003)�
@TREND 0.0607 (0.001)�
CO2 (-1) 1.285 (0.000)�
CO2 (-2) –0.881 (0.002)�
CO2 (-3) 0.609 (0.015)��
CO2 (-4) –0.903 (0.000)�
oil_POS 0.014 (0.000)�
oil_POS (-1) –0.008 (0.003)�
oil_POS (-2) 0.012 (0.000)�
oil_NEG –0.009 (0.000)�
C 2.076 (0.000)�
@TREND –0.001 (0.894)
CO2 (-1) 1.092 (0.000)�
NG_POS 0.067 (0.064)���
NG_NEG –0.060 (0.020)��
NG_NEG (-1) –0.066 (0.007)�
NG_NEG (-3) 0.080 (0.001)�
C 0.8264 (0.013)��
@TREND 0.005 (0.826)

Note: �,��,��� indicate level of significance at 1%, 5% and 10%.
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long-term demand for oil, which ultimately increases CO2. Today, China consumes
12% of world energy and Chinese oil consumption is higher than manufactured, which
has adverse effects on higher world energy prices. Fast growth accelerates fuel con-
sumption in China. The recent rise in global energy prices is partly a result of growing
energy use in China, which constantly increases CO2 emissions (Shalizi 2007).

However, for the robustness of the results, we took other CO2 emissions proxies,
including industrial CO2 emissions and transportation CO2 emissions, because of their
greater contribution to China’s total CO2 emissions.

The dynamic estimate and short- and long-term asymmetric coefficients for CO2

emissions from the industrial sector are stated in Tables 9 and 10 for Models 2.1 to
2.4, respectively.

The results of industrial CO2 emissions confirm the insignificant impact of positive
change in world energy prices on CO2 emissions. However, a negative change in
world energy prices (world energy prices index, coal, crude oil and natural gas) sig-
nificantly increases CO2 emissions. This means that the 1-unit increase in world

Table 8. Short-run and long-run asymmetric relationship (M 1.1 to M 1.4).

Variable
CO2 ¼ f (WEP) CO2 ¼ f (coal) CO2 ¼ f (oil) CO2 ¼ f (NG)
Coefficient (Sig) Coefficient (Sig) Coefficient (Sig) Coefficient (Sig)

Short run
D(WEP_POS) 0.009 (0.000)�
D(WEP_NEG) –0.006 (0.000)�
CointEq (-1) –0.893 (0.000)�

Log-run
WEP_POS 0.013 (0.000)�
WEP_NEG –0.007 (0.000)�
C 2.337 (0.000)�

Short run
D(coal_POS) 0.006 (0.004)�
D(coal_NEG) 0.201 (0.028)��
CointEq (-1) –0.613 (0.001)�

Log-run
coal_POS 0.009 (0.000)�
coal_NEG –0.007 (0.046)��
C 1.817 (0.000)�

Short run
D(oil_POS (-1)) –0.012 (0.000)�
D(oil_NEG) –0.009 (0.000)�

Log run
oil_POS 0.020 (0.000)�
oil_NEG –0.010 (0.000)�
C 2.333 (0.000)�

Short run
D(NG_POS) 0.067 (0.064)���
D(NG_NEG (-1)) –0.088 (0.001)�
CointEq (-1) –0.403 (0.001)�

Log-run
NG_POS 0.167 (0.028)��
NG_NEG –0.212 (0.005)�
C 2.050 (0.000)�

Note: �,��,��� indicate level of significance at 1%, 5% and 10%.
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energy prices (world energy prices index, coal, crude oil and natural gas prices) leads
to an increase in CO2 emissions of 0.026, 0.063, 0.037 and 1.65 units. It is also veri-
fied, therefore, that in the Chinese case, world energy prices have an asymmetric rela-
tionship with CO2 emissions from the industrial sector.

Chinese growth can lead to an increase in oil prices, which has a stronger impact
on its export competitors. These results are also consistent with the work by Fan et al.
(2007), Faria et al. (2009) and Ou, Zhang, and Wang (2012). Error correction terms
for Models 2.1 to 2.4 are 93%, 90%, 84% and 57%, respectively; this shows the speed
of adjustment of the models. China has become the world’s largest oil consumer, and
oil imports meet 50% of its oil demand and its imports of oil are continually increasing
(Fatima, Xia, and Ahad 2019). China’s energy demand is expected to double by 2030.
The result shows that as demand and consumption continue to grow, long-term rises in
world energy prices do not impact on industrial consumption in China. And declining
world energy prices boost Chinese energy consumption with increasing CO2 emissions.
The same pattern has been observed for Chinese coal, crude oil and gas consumption.

Table 9. Non-linear ARDL estimation results: dependent variable CO2 emissions from the
industrial sector (M 2.1 to M 2. 4).

Variable
CO2i ¼ f (WEP) CO2i ¼ f (coal) CO2i ¼ f (oil) CO2i ¼ f (NG)
Coefficient (Sig) Coefficient (Sig) Coefficient (Sig) Coefficient (Sig)

CO2i (-1) 0.522 (0.088)���
CO2i (-3) 0.429 (0.068)���
WEP_POS 0.014 (0.550)
WEP_NEG –0.024 (0.093)���
C 32.716 (0.035)��
@TREND –0.415 (0.388)

CO2i (-1) 0.735 (0.000)�
CO2i (-3) 0.436 (0.034)��
coal_POS 0.051 (0.029)��
coal_POS (-1) –0.052 (0.058)���
coal_NEG –0.090 (0.013)�
coal_NEG (-1) 0.033 (0.068)��
C 31.608 (0.009)�
@TREND –0.475 (0.113)

CO2i (-1) 0.546 (0.079)���
CO2i (-3) 0.451 (0.060)���
oil_POS 0.012 (0.732)
oil_NEG –0.031 (0.148)
C 28.755 (0.060)���
@TREND –0.287 (0.563)

CO2i (-1) –0.868 (0.034)��
CO2i (-2) 0.801 (0.028)��
NG_POS 2.820 (0.002)�
NG_POS (-2) –1.19 (0.015)�
NG_NEG –3.581 (0.002)�
NG_NEG (-2) 0.689 (0.027)��
C 140.880 (0.001)�
@TREND –3.742 (0.004)�

Note: �,��,��� indicate level of significance at 1%, 5% and 10%.
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Next, we looked at the asymmetric relationship between global energy prices and
CO2 emissions in China’s transport sector for a thorough analysis. The dynamic esti-
mate and short- and long-term asymmetric coefficients for CO2 emissions from the
transport sector are given in Tables 11 and 12 for Models 3.1 to 3.4, respectively.
These findings confirm that the 1-unit increase in WEP leads to a reduction in CO2

emissions by 0.017 units, while a negative change in WEP does not significantly affect
CO2 emissions. We also find that a 1-unit increase in the price of coal, crude oil and
natural gas has resulted in CO2 emission reductions, respectively, by –0.018, 0.029
and 0.51 units. Negative price changes in coal, crude oil and natural gas do not signifi-
cantly affect CO2 emissions. The speed of adjustment for Models 3.1 to 3.4 is 94%,
62%, 120%, 57%, respectively.

Ultimately, we apply multivariate analysis, as shown in Table 13, to the different
models, including total CO2 emissions and emissions from the manufacturing and
transport sectors in China. In Model 4, we explore the asymmetric impact of world
energy prices on overall CO2 emissions. In the long-run, we have found a positive
shock in WEP (WEP_POS) with a statistically significant negative coefficient (–0.060)
and a negative shock in WEP (WEP_NEG) with a negative coefficient (–0.09), mean-
ing that the 1-unit rise in world energy prices causes CO2 emissions to drop by 0.06

Table 10. Short-run and long-run asymmetric relationship (M 2.1 to M 2. 4).

Variable
CO2i ¼ f (WEP) CO2i ¼ f (coal) CO2i ¼ f (oil) CO2i ¼ f (NG)
Coefficient (Sig) Coefficient (Sig) Coefficient (Sig) Coefficient (Sig)

Short run
D(WEP_POS) 0.014 (0.550)
D(WEP_NEG) –0.024 (0.097)���
CointEq (-1) –0.937 (0.019)�

Log run
WEP_POS 0.015 (0.478)
WEP_NEG –0.026 (0.010)�

Short run
D(coal_POS) 0.051 (0.029)��
D(coal_NEG) –0.090 (0.013)�
CointEq (-1) –0.906 (0.004)�

Log run
coal_POS –0.001 (0.962)
coal_NEG –0.063 (0.026)��

Short run
D(oil_POS) 0.012 (0.732)
D(oil_NEG) –0.031 (0.148)
CointEq (-1) –0.842 (0.032)��

Log run
oil_POS 0.0149 (0.701)
oil_NEG –0.037 (0.026)��

Short run
D(NG_POS) 2.820 (0.002)�
D(NG_NEG) –3.581 (0.002)�
CointEq(-1) –0.570 (0.001)�

Log run
NG_POS –0.061 (0.556)
NG_NEG –1.653 (0.000)�

Note: �,��,��� indicate level of significance at 1%, 5% and 10%.
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units in the long term. If we reduce the world energy price by 1 unit, CO2 emissions
will rise by 0.09 units in the long term. Although that is true for coal prices, a 1-unit
rise in coal prices contributes to a reduction in CO2 emissions by 0.01 units. While a
1-unit negative coal price shock raises CO2 emissions by 0.509 units in the long term.
When we see the crude oil prices (oil) relationship it shows that crude oil positive
shock (CO_POS) having a positive coefficient (0.144) and is statistically significant. It
means that a 1-unit rise in crude oil energy prices would raise total CO2 emissions by
0.144 units. Although an inverse relationship occurs in the case of a negative shock, it
means with a 1-unit decrease in world crude oil prices, total CO2 emissions rise by
0.144 units. In the case of positive shock natural gas prices, we found that with a 1-
unit increase in world natural gas prices, CO2 emissions will decrease by 0.08 units in
the long run. While during the negative shock with a 1-unit decrease in natural gas pri-
ces, overall CO2 emissions will be increased by 1.186 units in the long run. For the
case of emissions from the industrial sector, we observed the asymmetric impact of
world energy prices on CO2 emissions. We find that the coefficients of WEP_POS,
WEP_NEG, coal_POS, coal_NEG, oil_POS, oil_NEG, NG_POS and NG_NEG
–2.818, –0.454, –0.121, –0.090, –0.969, –0.666, –1.303 and –0.393, respectively, show
a non-linear association between the variables to be used. Next in Model 6, we
checked the asymmetric impact of world energy prices on CO2 emissions from

Table 11. Non-linear ARDL estimation results: dependent variable CO2 emissions from the
transport sector (M 3.1 to M 3.4).

Variable
CO2t ¼ (WEP) CO2t ¼ (coal) CO2t ¼ (oil) CO2t ¼ (NG)
Coefficient (Sig) Coefficient (Sig) Coefficient (Sig) Coefficient (Sig)

CO2t (-1) 0.437(0.079)���
CO2t (-2) –0.380 (0.111)
WEP_POS –0.016 (0.035)��
WEP_NEG 0.003 (0.418)
C 3.976 (0.003)�
@TREND 0.390 (0.015)�
CO2t (-1) 0.371 (0.100)
coal_POS –0.011 (0.106)
coal_NEG –0.002 (0.709)
C 3.085 (0.007)�
@TREND 0.188 (0.042)��
CO2t (-1) 0.502 (0.020)��
CO2t (-2) –0.435 (0.046)��
CO2t (-3) –0.474 (0.041)��
oil_POS 0.007 (0.678)
oil_POS (-1) –0.035 (0.080)���
oil_POS (-2) –0.020 (0.283)
oil_NEG 0.007 (0.441)
oil_NEG (-1) 0.010 (0.329)
C 6.798 (0.000)�
@TREND 1.001 (0.000)�
CO2t (-1) 0.421 (0.035)��
NG_POS 0.103 (0.581)
NG_POS (-1) –0.399 (0.040)��
C 2.316 (0.018)�
@TREND 0.337 (0.020)��

Note: �,��,��� indicate level of significance at 1%, 5% and 10%.
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transport. Similarly, the long-run asymmetric outcomes confirmed for WEP_POS,
WEP_NEG, coal_POS, coal_NEG, oil_POS, oil_NEG, NG_POS and NG_NEG are
–0.518, –1.185, –0.962, –0.703, –1.518, –0.296 and –1.759, respectively.

4.1. Wavelet decomposition based on DWT

After analysis of the non-linear relationship between global energy prices and CO2

emissions, this study used wavelet analyses. Wavelet-based analysis accommodates
series stationary issues (Mishra et al. 2019). If series are not stationary, data need not
be processed to make the series stationary as required for other traditional cointegra-
tion-based econometric models. Figure 1 shows a multi-resolution analysis (MRA) of
China’s overall CO2 emissions, manufacturing, transport sector emissions and world
energy prices of order J¼ 6 using Daubechies’ (1992) least asymmetric (LA) wavelet
filter MODWT. The orthogonal components (D1 to D6) are provided in detail in
Figure 1 for the presentation of different regularity components of the actual series
and a fluid component (S6). The graphic analysis of the series shows that, in the short
run, all series have several differences, but in the long run, all series are stable, while

Table 12. Short-run and long-run asymmetric relationship (M 3.1 to M 3.4).

Variable
CO2t ¼ (WEP) CO2t ¼ (Coal) CO2t ¼ (CO) CO2t ¼ (NG)
Coefficient (Sig) Coefficient (Sig) Coefficient (Sig) Coefficient (Sig)

Short run
D(WEP_POS) –0.016 (0.035)��
D(WEP_NEG) 0.003 (0.418)
CointEq (-1) –0.943 (0.003)�

Log run
WEP_POS –0.017 (0.003)�
WEP_NEG 0.003 (0.397)

Short run
D(coal_POS) –0.011 (0.106)
D(coal_NEG) –0.002 (0.709)
CointEq (-1) –0.628 (0.008)�

Log run
coal_POS –0.018 (0.055)���
coal_NEG –0.004 (0.712)

Short run
D(oil_POS (-2)) 0.017 (0.213)
D(oil_NEG) 0.007 (0.441)
CointEq (-1) –1.245 (0.000)�

Log run
oil_POS –0.029 (0.000)�
oil_NEG –0.001 (0.803)

Short run
D(NG_POS) 0.103 (0.581)
D(NG_NEG) 0.089 (0.453)
CointEq (-1) –0.578 (0.005)�

Log run
NG_POS –0.511 (0.041)��
NG_NEG 0.154 (0.393)

Note: �,��,��� level of significant at 1%, 5% and 10%.
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total CO2 emissions have a lot of long-term stability relative to industrial and trans-
port emissions.

4.2. Wavelet pairwise and multiple correlations

This research also used a wavelet correlation between the proposed variables after
MODWT measured variation within variables at different frequencies. The wavelet
correlation approach will analyze the association between two series in different time
and frequency scales. This work also used a wavelet correlation between proposed var-
iables after MODWT measured variance at different frequencies within variables. The
wavelet correlation method analyzes the relationship between two series in different
time and frequency scales. This research also used a wavelet correlation between pro-
posed variables after MODWT measured variance within variables at different frequen-
cies. The wavelet correlation approach analyzes two series of relationships in a
different time and frequency scale. However, the results indicate that there is a poor
association between the short- and medium-term WEP and CO2 emissions, the very
long-term association is positive. However, coal prices have poor short-term correla-
tions and very long-term positive ones, although crude oil and gas prices have the
same relationship pattern as world energy prices. The third panel in Figure 2 indicates
the link between world energy prices and transport sector CO2 emissions. Ironically,
the findings shifted in the transport market.

Table 13. Non-linear ARDL estimation results: A multivariate analysis M 4 to M 6.

Variable

Overall CO2

emissions
CO2 emissions from
the industrial sector

CO2 emissions from
the transport sector

Coefficient (Sig) Coefficient (Sig) Coefficient (Sig)

CO2 (-1) –0.214 (0.000)� –0.033 (0.000)� –0.054 (0.000)�
WEP_POS –0.013 (0.050)�� –0.093 (0.023)�� –0.028 (0.032)��
WEP_NEG –0.021 (0.000)� –0.015 (0.015)� –0.064 (0.005)�
coal_POS –0.003 (0.031)�� –0.004 (0.001)� –0.052 (0.000)�
coal_NEG –0.109 (0.001)� –0.003 (0.000)� –0.038 (0.000)�
oil_POS 0.031 (0.003)� –0.032 (0.000)� –0.018 (0.003)�
oil_NEG –0.185 (0.000)� –0.022 (0.043)�� –0.082 (0.003)�
NG_POS –0.018 (0.000)� –0.043 (0.024)�� –0.016 (0.002)�
NG_NEG –0.254 (0.000)� –0.013 (0.000)� –0.095 (0.000)�
@TREND 0.005 (0.023)�� 0.005 (0.002)� 0.855 (0.001)�
Long-run asymmetric

relationship
WEP_POS –0.060 (0.030)�� –2.818 (0.023)�� –0.518 (0.000)�
WEP_NEG –0.098 (0.000)� –0.454 (0.002)� –1.185 (0.000)�
coal_POS –0.014 (0.000)� –0.121 (0.032)�� –0.962 (0.000)�
coal_NEG –0.509 (0.000)� –0.090 (0.002)� –0.703 (0.000)�
oil_POS 0.144 (0.000)� –0.969 (0.004)� –0.333 (0.000)�
oil_NEG –0.864 (0.000)� –0.666 (0.000)� –1.518 (0.000)�
NG_POS –0.084 (0.000)� –1.303 (0.000)� –0.296 (0.013)�
NG_NEG –1.186 (0.001)� –0.393 (0.000)� 1.759 (0.000)�

Note: we have only use long-run coefficients in dynamic and long-run asymmetric estimation in
multivariate analysis.�,��Level of significant at 1%, 5% and 10%.
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The findings show that there is a positive short-term correlation between the pro-
posed variables, but there is a negative correlation between world energy prices and
CO2 in the long run. We also enriched the wavelet correlation with wavelet multiple
correlation findings shown in Figure 3. We consider a strong link between world
energy prices and CO2 emissions over the medium to the very long-term.

4.3. Wavelet pairwise correlation

Figure 2 demonstrates the wavelet correlation between world energy prices and CO2 emis-
sions. Although “U” and “L” signify the upper and lower bound at 95% and the black
dotted line displays the correlation between world energy prices and CO2 emissions.

4.4. Wavelet-transform coherence

This research also used wavelet transform coherence (WTC) analysis to check the lea-
d–lag relationship between proposed variables. Based on the cyclic coin of influence
(COI) and the anti-cyclical relationship between proposed variables, WTC may provide
a proportional period of many time sequences in the present time–frequency space.
Figure 4 presents the WTC results for global energy prices and gross CO2 emissions
in China. Figure 4 shows a strong and important short-term (1993–1995) and medium-
term (2002–2003) link between world energy prices and CO2 emissions, although CO2

emissions are the leading variable. Figure 4b indicates that there is a negative and sig-
nificant short-term relationship between coal and CO2 emissions (1998–1999),
although CO2 emissions are a lagging variable. Moreover, the relationship between
these factors is very long term, and CO2 emissions are the leading variable. Figure 4c
shows the same relationship pattern between oil and CO2 emissions as world energy

Figure 1. MODWT decomposition on J¼ 6 wavelet levels. Note: D1 and D2 indicate short-run,
D3 and D4 medium run, D5 and D6 long-run and S6 very long-run.
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Figure 2. The wavelets correlation between world energy prices and CO2 emissions. Although
“U” and “L” signify the upper and lower bound at 95% and the black dotted line displays the
correlation between world energy prices and CO2 emissions.

Figure 3. The multiple wavelet correlation between world energy prices and CO2 emissions.
Although “U” and “L” signify the upper and lower bound at 95% and the black dotted line
displays the correlation between world energy prices and CO2 emissions.
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and CO2 emissions. However, we note important observations for world natural gas
prices and CO2 emissions in Figure 4d; in the short term, natural gas prices adversely
and substantially correlate with CO2 emissions, while CO2 performs as a lagging vari-
able. However, a medium-term positive relationship exists between NG and CO2, and
CO2 is a leading indicator.

Other CO2 emission indicators were also used to monitor robustness, such as emis-
sions from China’s manufacturing sector and transport sector, as these two sectors are

Figure 4. Wavelet coherence between CO2 emission (a), world energy prices index vs. CO2

emissions (b), crude oil vs. CO2 emissions (c), crude oil vs. CO2 emissions (d) and natural gas
vs. CO2 emissions. The color code for power ranges from blue (low coherence) to red (high
coherence). A point-wise significance test is performed against an almost process-independent
background spectrum. 95% confidence intervals for the null hypothesis that coherency is zero
are plotted as contours in black in the figure. The cone of influence is marked by black lines.
The horizontal axis represents sample periods (from 1992 to 2017), the vertical axis refers to the
period in various frequencies short-term to very long-term (2–4months to 64months).

Journal of Environmental Planning and Management 21



major CO2 contributors in China. Figure 5 reveals the WTC figures for world energy
and industrial CO2 emissions.

Figure 5a shows a negative association between WEP and CO2 emissions in short
and medium runs, and WEP is the leading indicator. For coal prices in Figure 5b, we
consider a negative correlation between these variables in short and medium terms,
and coal is a leading variable. In Figure 5c there is a negative short-run association

Figure 5. Wavelet coherence between CO2 emission (a), world energy prices index vs. CO2

emissions (b), crude oil vs. CO2 emissions (c), crude oil vs. CO2 emissions (d) and natural gas
vs. CO2 emissions. The color code for power ranges from blue (low coherence) to red (high
coherence). A point-wise significance test is performed against an almost process-independent
background spectrum. 95% confidence intervals for the null hypothesis that coherency is zero
are plotted as contours in black in the figure. The cone of influence is marked by black lines.
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between crude oil and CO2 emissions, and oil is the leading indicator. However,
Figure 5d indicates that there is a positive relationship between gas prices and CO2

emissions in the short and medium term, although CO2 emissions are a leading vari-
able. Figure 6a–d shows WTC results for world energy prices and transport CO2 emis-
sions. A negative link between global resources, coal, crude oil prices and CO2

emissions and world energy prices leads in the short run. Although natural gas prices
and CO2 emissions are positive in the very long-term, CO2 emissions are the lead-
ing variables.

Figure 6. Wavelet coherence between CO2 emission (a), world energy prices index vs. CO2

emissions (b), crude oil vs. CO2 emissions (c), crude oil vs. CO2 emissions, (d) and natural gas
vs. CO2 emissions. The color code for power ranges from blue (low coherence) to red (high
coherence). A point-wise significance test is performed against an almost process-independent
background spectrum. 95% confidence intervals for the null hypothesis that coherency is zero
are plotted as contours in black in the figure. The cone of influence is marked by black lines.
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5. Conclusion

This study analyzes the asymmetric and time-varying effect on China’s environmental
deterioration of world energy prices. World energy prices include the world energy
price index, world crude oil prices, world coal prices and world gas prices, and envir-
onmental pollution was calculated using global CO2 emissions, industrial CO2 emis-
sions and transport emissions. This research uses monthly data from 1992 to 2017.
Considering the significance of non-linearities and time and frequency domains, this
study used wavelet-based analyses (for time–frequency) and non-linear ARDL
(NARDL) approaches (for negative and positive changes) that consider short-term
instabilities and sudden changes and to provide short-run and long-run non-linear inter-
action between the variables proposed. The results based on NARDL modeling indi-
cated an asymmetric relationship between world energy prices (including the world
energy price index, coal, oil and natural gas prices) and long-term total CO2 emissions.
Positive changes in world energy prices have a greater impact on CO2 emissions com-
pared to a negative change. Either global energy prices are rising or dropping, China’s
total CO2 emissions are increasing in both circumstances. We find that significant
improvements in prices of global energy had no impact on CO2 emissions from the
industrial sector. Nevertheless, declines in world energy prices (including the world
energy price index, crude oil, coal, and natural gas prices) dramatically raise CO2

emissions. Nevertheless, in the case of transport sector CO2 emissions, we have
noticed that a positive shift in world energy prices has contributed to a decrease in
CO2 emissions, but a negative shift in world energy prices does not significantly affect
emissions. This research also uses a wavelet-based correlation technique to investigate
time-varying effects between aim variables. The results indicate a clear positive associ-
ation between world energy prices, total CO2 emissions and industrial CO2 emissions
in the very long-term. Nevertheless, global oil prices and transport-industry CO2 have
a long-term negative correlation. Moreover, wavelet multiple correlations indicate
strong overall.

This research also uses a wavelet-correlation technique to investigate time-between
aim variables. The results indicate a clear positive association between world energy
prices, total CO2 emissions and industrial CO2 emissions in the very long-term.
Nevertheless, global oil prices and transport-CO2 have a long-negative correlation.
However, wavelet multiple correlations indicate an overall positive association between
world energy prices and CO2 emissions in all cases (overall CO2 emissions from the
manufacturing sector and transport system). Moreover, one of the possible effects of
higher CO2 due to higher oil prices is moving to cheaper energy supply such as gas,
and fuel subsidy often absorbs price effects. Evidence suggests that ignoring inherent
non-linearities can lead to a misleading inference. Evidence of asymmetry and time
and frequency domain could be of major importance in making climate policy deci-
sions more efficient and forecasting China’s CO2 emissions. Finally, this study may
recommend that authorities adopt demand-side management policies considering
energy demand actions in both shorter and longer cycles to minimize CO2 emissions
in China. Decades of rapid growth have significantly increased China’s energy needs.
China is the world’s largest electricity user, the largest coal producer and consumer,
and the largest carbon dioxide emitter. Zeng et al. (2018) found that the Chinese
energy industry’s overall investment performance is relatively poor. During the past
half-century, non-renewable energy has largely fueled China’s massive manufacturing-
based economy.
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5.1. Policy implications

Based on the findings reviewed, it is recommended that China build energy efficiency
to gradually upgrade the energy sectors from conventional energy sources to improved
renewable energy production tools to help reduce CO2 emissions. Refining energy effi-
ciency and converting conventional energy production capacity from coal and other
traditional energy sources to renewable energy resources will increase energy sector
performance and help reduce CO2 emissions.

On the basis of outcomes of wavelet analysis, this study suggests that there is a dire
need to switch from conventional sources of energy such as non-renewable to renewable
energy/green energy/pollution-free energy gradually in the long run, such as solar
energy, wind power, hydroelectric energy etc. If China suddenly changes energy con-
sumption behavior toward renewable energy, China will face substantial economic loss;
therefore, a slow shifting is more beneficial. Green innovations can be the best climate-
efficient sources of green growth by (1) improving industrial productivity by increasing
renewable energy and reducing the negative ecological effects; (b) expanding new green
industries, such as renewable energy, clean cars and waste management and (c) leapfrog-
ging current technology to give rise to new industries. Besides, the research carried out
recently by Arain, Han, and Meo (2019) argued that we can obtain misleading results in
the presence of cross-sectional dependence. Therefore, it is suggested that researchers
perform panel studies considering the cross-sectional dependence issues.
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