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Abstract

The main aim of the current paper is to investigate the

mass and heat transportation of a Casson nanomaterial

generated by the inclination of the surface. The

magnetic field effect along with suction or injection

are considered. The working nanomaterial is taken into

consideration based on the concept of the Buongiorno

nanofluid theory, which explores the thermal efficien-

cies of liquid flows under movement of Brownian and

thermophoretic phenomena. The emergent system of

differential expressions is converted to dimensionless

form with the help of the appropriate transformations.

This system is numerically executed by the implementa-

tion of Keller–Box and Newton’s schemes. A good

agreement of results can be found with the previous data

in a limiting approach. The behavior of the physical

quantities under concern, including energy exchange,

Sherwood number, and wall shear stress are portrayed

through graphs and in tabular form. The Nusselt

number and Sherwood number are found to diminish

against the altered magnitudes of Brownian motion and

the inclination parameter. Moreover, the velocity profile

decreases with the growth of the inclination effect. In

the same vein, the buoyancy force and solutal buoyancy

effects show a direct relation with the velocity field. The
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outcomes have promising technological uses in liquid‐
based systems related to stretchable constituents.
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1 | INTRODUCTION

The boundary‐driven flow analysis over moving surfaces with combined effects of heat mass
transport has generated noticeable attention from many scholars due to its extensive variety of
uses in engineering and manufacturing, such as broadsheet production, hot rolling, exclusion of
malleable pieces, and metal sheets in bath. Sakiadis1 initiated the efforts to exploit the
boundary‐driven fluid flow over a constantly stirring surface. Moreover, Crane2 studied this
phenomenon for viscous fluid over a stretchable sheet. Mucoglu and Chen3 analyzed the
bouncy force in laminar forced convected flow toward an inclined surface and found that for
assisting flow, the skin friction and Nusselt number enhance with the growth of buoyancy
effect. The inner heat generation phenomenon in natural convected flow under magnetized
impact was executed by Chamkha and Khaled.4 They found that the wall shear stress reduces
with the wall suction effect. Alam et al5 described the numerical behavior of magnetized
convective flow generated by the inclination of the sheet. They concluded that the heat
generation boosted the velocity field. Ramesh et al6 investigated the momentum and heat
exchange of dusty liquid flow with the inclination of a moving surface and found an interesting
outcome—the dusty fluid velocity is enhanced, whereas, the velocity of clean diminishes with
the growth of the fluid interaction factor. Ali et al7 investigated the conjugate aspects of heat‐
mass transport in magnetized convected flow over an inclined surface. They used an analytical
approach for the solution. For further detailed literature on the inclination effect with different
geometries, please see Refs.8-12

Nowadays, nanofluids have attained great importance from recent researchers due to
their advanced thermal presentation and having impressive potential to the amount of heat
transfer deprived of pressure falls. A nanofluid is a combination of different nanoparticles,
including Al2O3, Cu, and CuO, in a base fluid such as, oil, water, ethylene, glycol etc. It is
verified by research that the thermal conductivity of the base liquid is considerably less than the
nanofluid of Choi and Eastman.13 The nanofluid is utilized as the working fluid instead of the
base fluid because of its higher thermal conductivity. In fact, a working liquid is used in various
engineering and industrial procedures. The heat/energy can be transferred from one place to
another by using this fluid. The nanofluid is the best option for this. Nanofluids are employed in
nanotechnology, hyperthermia cancer cure, microelectronics, medical procedures, and hybrid
power devices. Buongiorno14 studied the mechanism of nanofluids through Brownian and
thermophoresis factors. Murthy et al15 probed the free convection flow of nanofluids toward a
slanted sheet. They found that the heat and mass exchange rate reduces on prompting the
inclination effect. Rashad16 studied the unsteady flow of nanofluid toward a slanted sheet. He
found that the skin friction improved with enhancement in the Biot number. Usman et al17

studied the flow of a Casson nanofluid toward an inclined stretching cylinder. They considered
the Brownian motion and thermophoretic effects. Khan et al18 examined the flow of Jeffery
nanofluid toward an inclined stretching surface. They considered the Cattaneo–Christov model
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and solved it numerically by using the shooting technique. Ghadikolaei et al19 investigated the
flow of a Casson nanofluid toward a slanted sheet. For detailed knowledge, see Refs.20-30

In 1959, Casson executed the Casson fluid model. This model expresses the nature of shear
thinning materials, which are assumed to have zero viscosity at an infinite amount of shear and
immeasurable viscosity at a zero shear rate and yield stress through which no flow takes place.
Shear thinning conveys the reaction of a fluid substance viscosity (also known as resistance to flow)
when force is applied. A few materials like jam, tomato paste, broth, rigorous fruit liquids, and
human blood, etc. represent Casson fluid.31 These fluids with energy exchange are extensively used
in syrups, nails, processing of chocolate, foams, and several other food stuff.32 Reddy33 investigated
the flow of a Casson fluid toward an exponential slanted sheet. He found that the Casson factor
enhances the skin friction factor. Saeed et al34 studied the three‐dimensional flow of a Casson
nanofluid toward a slanted disk. They found that energy transportation shows a direct relation with
the radiation effect. Rawi et al35 discussed the flow of a Casson liquid toward a slanted sheet and
observed that the Casson impact creates reduction in the velocity field. Shehzad et al36 explored the
Casson fluid above a porous sheet and found a sequence of results. For the latest studies on the flow
of Casson fluid with different geometries, see Refs.37-39

Having all such practical values of Casson fluid flow under nanoparticles, our aim was to
study the flow of a magnetized Casson nanomaterial induced by the inclination of a moving
sheet. The numerical results that govern the physical model are elaborated through the
Keller–Box scheme. To the best of the author’s knowledge, there is no study in the literature on
the heat and mass exchange of magnetized Casson nanomaterial flow over an inclined surface
with the Keller–Box scheme. The Casson nanofluid is more helpful for cooling and friction
reducing agents as compared to Newtonian based nanofluid flow.40 The current problem model
is developed from the Khan and Pop model.41 The Keller–Box scheme has been extensively used
and it is more flexible and friendly to use as compared to other numerical techniques. It is much
quicker, more efficient, easier to program, and easier to practice.

2 | MODELING

A steady‐state flow of a Casson nanomaterial generated by the inclination of sheet having an
angle “α” with the vertical direction is assumed. The stretched and free‐stream velocities are
supposed to be of the forms u x ax( ) =w and ∞u x( ) = 0, respectively, in which “α” is the
constant and x, the co‐ordinate along the sheet (see Figure 1). The Brownian motion and
thermophoresis are also accounted for. The wall temperature is Tw, Cw denotes nanoparticle
concentration, and uw denotes the velocity on the wall, respectively. Moreover, the free stream
temperature is denoted by ∞T and ∞C exhibits the nanoparticle concentration as y keeps an eye
on infinity.

The flow equations for this study are given by31,35,41:
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where, in the directions x and y, the velocity constituents are u and v individually, g is the
gravitational acceleration, the strength of magnetic field is defined by B0, σ is the electrical
conductivity, viscosity is given by μ, the density of conventional fluid is given by ρf , density of
the nanoparticle is given by ρp, the thermal expansion factor is denoted by βt, the concentration
expansion constant is given by βc, DB denotes the Brownian dissemination factor, and DT

represents the thermophoresis dispersion factor, k denotes the thermal conductivity, the
symbolical representation of heat capacity of the nanoparticles is ρc( )p, ρc( )f denotes the heat
capacity of the conventional liquid, α k ρ* = /( c)f denotes the thermal diffusivity parameter, the
symbolic representation of the relation among current heat capacity of the nanoparticle and the
liquid is τ ρc ρc= ( ) /( )p f .

The boundary settings are

u u x ax v v T T C C y= ( ) = , = , = , = at = 0,w w w w

→ → → → → ∞∞ ∞ ∞u u x v T T C C y( ) = 0, 0, , as . (5)

The stream function ψ ψ x y= ( , ) is defined as:

∂

∂

∂

∂
u
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y
v

ψ

x
= , = − , (6)

where, Equation (1) is fulfilled. The similarity transformations are defined as:

u axf η v aν f η η y
a

ν
= ′( ), = − ( ), = ,

FIGURE 1 Physical geometry with co‐ordinate system [Color figure can be viewed at wileyonlinelibrary.com]
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Substituting Equation (7), Equation (1) is satisfied identically and expressions (2) to (4)
reduce to the following system:

β
f ff f λθ δφ α M K f(1 +

1
) ′′′ + ″ − ′ + ( + )cos − ( + ) ′ = 0,2′ (8)

θ fθ Nbφ θ Ntθ
1

Pr
″ + ′ + ′ ′ + ′ = 0,2⎜ ⎟

⎛
⎝

⎞
⎠ (9)

φ Lefφ Nt θ″ + ′ + ″ = 0.b (10)

Here,

∞

∞

∞

∞

∞

λ
Gr

δ
Gc

M
σB x

aρ
K

ν

ak
Le

ν

D

ν

α

Nb
τD C C

ν

Nt
τD T T

νT
Gr

gβ T T x

ν

u x x

ν

Gc
gβ C C x

ν
Nt

Nt

Nb

=
Re

, =
Re

, =
( )

, = , = , Pr = ,

=
( − )

,

=
( − )

, =
( − )

, Re =
( )

,

=
( − )

, = .

*
x

x

x

x B

B w

T w
x

t w
x

w

x
c w

b

2 2
0
2

3

2

3

2

(11)

Here, primes denote the differentiation with respect to η, M denotes the magnetic factor, ν
denotes the liquid kinematic viscosity, Prandtl number is denoted by Pr, the Lewis number is
denoted by Le, and the permeability parameter is represented by K .

The corresponding boundary settings are changed to

f η S f η θ η φ η η( ) = , ′( ) = 1, ( ) = 1, ( ) = 1, at = 0,

→ → → → ∞f η θ η φ η η′( ) 0, ( ) 0, ( ) 0, at . (12)

The physical quantities of concern are skin friction Cf , Nusselt number Nu, and Sherwood
number Sh demarcated as:
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∂
q D= −m B

C

y
at y= 0 are the shear stress, heat, and mass

fluxes at the surface, respectively. The associated expressions of the skin‐friction coefficient C ,f
the reduced Nusselt number θ− ′(0), and the reduced Sherwood number ϕ− ′(0) are defined as
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where u x x vRe = ( ) /x w is the local Reynolds number based on the stretching velocity.

3 | NUMERICAL PROCEDURES

The numerical structure of the Keller–Box technique for the formulated problem of Casson
liquid is explained for the finite‐difference technique, block‐elimination scheme, and Newton’s
method.42

3.1 | The finite difference method

Expressions (8) to (10) are modified into a system of the first‐order differential equations by the
implementation of conditions (12). Here, we use novel dependent variables such as
f η u η v η( ), ( ), ( ), g η p η q η( ), ( ), ( ), and s η( ). Also, φ η( ) and θ η( ) are substituted with q η( ) and
g η( ), respectively, that represent the fluid concentration and temperature, respectively.
Therefore, in the following, the first‐order expressions are:

f η u η u η v η g η p η q η s η′( ) = ( ), ′( ) = ( ), ′( ) = ( ), ′( ) = ( ), (15)
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FIGURE 2 Net rectangle of difference approximations
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s Lefs Nt p′ + + ′ = 0.b (18)

Equation (12) in expressions of variable η becomes

f η s u η g η q η η( ) = , ( ) = 1, ( ) = 1, ( ) = 1, at = 0,

→ → → → ∞u η g η q η η( ) 0, ( ) 0, ( ) 0, as . (19)

Figure 2 is taken in the x‐η plane and the mesh points are considered as under:

x x x k i I= 0, = + , = 1, 2, 3, …, ,i i
i

0 −1 (20)

≡ ∞η η η h j J η η= 0, = + , = 1, 2, 3, …, , ,j j j J0 −1 (21)

where Δη–spacing is hj and ki is the Δx–spacing. Here i and j are just used to show the co‐
ordinate position.

By the finite difference approach, the derivatives in x‐direction are set as:
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The η‐direction derivatives are substituted by using finite difference as:
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The difference Equations (15) to (18) are called approximate equations and are
inscribed by taking one net rectangle as shown in Figure 2. The finite difference
approximations of differential expressions (15) to (18) by using centered‐difference
derivatives are written for the center η( )j−1/2 of the section P1P2. This procedure is named
“centering about η( )j−1/2 ” defined as
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In terms of the dependent variable (η), the subjected boundary conditions (19) at x= xi,
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3.2 | Newton’s method
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TABLE 1 Comparison of θ− ′(0) and ϕ− ′(0) when M S K δ λ= = = = = 0, Le = Pr = 10 and α= 90° as
→ ∞β

Nb Nt

Khan and Pop41 Present results

θ− ′(0) ϕ− ′(0) θ− ′(0) ϕ− ′(0)

0.1 0.1 0.9524 2.1294 0.9524 2.1294

0.2 0.2 0.3654 2.5152 0.3654 2.5152

0.3 0.3 0.1355 2.6088 0.1355 2.6088

0.4 0.4 0.0495 2.6038 0.0495 2.6038

0.5 0.5 0.0179 2.5731 0.0179 2.5731
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(29)

where

β
β

γ M K= 1 +
1
, = + .*

⎛
⎝⎜

⎞
⎠⎟

TABLE 2 Values of θ− ′(0), ϕ− ′(0), and C (0)fx for multiple values of involved constraints

Nb Nt Pr Le M K β λ δ S α θ− ′(0) ϕ− ′(0) C (0)fx

0.1 0.1 6.5 5.0 0.5 1.0 5.0 1.0 1.0 0.5 45° 2.6559 1.3140 1.3697

0.5 0.1 6.5 5.0 0.5 1.0 5.0 1.0 1.0 0.5 45° 0.5634 3.4011 1.3755

0.1 0.5 6.5 5.0 0.5 1.0 5.0 1.0 1.0 0.5 45° 1.3936 −1.2192 1.1353

0.1 0.1 6.5 5.0 0.5 1.0 10.0 1.0 1.0 0.5 45° 2.6531 1.3001 1.4300

0.1 0.1 6.5 5.0 0.5 1.0 5.0 4.0 1.0 0.5 45° 2.6694 1.3521 1.0218

0.1 0.1 6.5 5.0 0.5 1.0 5.0 1.0 5.0 0.5 45° 2.6851 1.4121 0.6953

0.1 0.1 6.5 5.0 0.5 1.0 5.0 1.0 1.0 1.5 45° 6.4881 1.8501 2.0180

0.1 0.1 6.5 5.0 0.5 1.0 5.0 1.0 1.0 0.0 45° 1.0784 1.0507 1.0471

0.1 0.1 6.5 5.0 0.5 1.0 5.0 1.0 1.0 −1.5 45° 0.0252 0.0017 0.4203

0.1 0.1 6.5 5.0 0.5 1.0 5.0 1.0 1.0 0.5 60° 2.6521 1.3014 1.4556

0.1 0.1 6.5 5.0 0.5 1.0 5.0 1.0 1.0 0.5 90° 2.6447 1.2693 1.6665
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The boundary conditions are

δ f δ u δ g δ q δ u δ g δ q′ = 0, ′ = 0, ′ = 0, ′ = 0, ′ = 0, ′ = 0, ′ = 0.j j j0 0 0 0 (30)

3.3 | Block‐elimination method

In vector‐matrix form, differential equations of the system (28) can be defined by (Na, 1979)43

A δ r[ ][ ′] = [ ], (31)

where

A

A C

B A C

B A C

B C

δ

δ

δ

δ

δ

r

r

r

r

r

[ ] =

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

[ ′] =
.
.
. , [ ] =

[ ]

[ ]
.
.
.

.

′

′

′

′

J J J

J J j

j

j

j

1 1

2 2 2

−1 −1 −1

1

2

−1

1

2

−1

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

(32)

Generally, the block‐tridiagonal structure comprises constants or variables, but here, a
remarkable thing can be seen, that is, for the Keller–Box process, it contains block matrices. By
considering e = − ,j

h

2

j the matrices take the following form:

FIGURE 3 Variations of f η′( ) for distinct values of α
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(33)

where e = ,
h

1
−

2
1

A

e e

e e

e e

a a a

b b b b b

c c c c c

[ ] =

0 0 0 1 0 0 0
0 0 0 0 0

0 0 0 0 0
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( ) 0 0 ( ) ( ) 0 0

0 ( ) ( ) ( ) 0 ( ) ( )

0 ( ) ( ) ( ) 0 ( ) ( )
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(34)

FIGURE 4 Variations of f η′( ) for distinct values of β
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FIGURE 5 Variations of f η′( ) for distinct values of δ
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(38)

4 | RESULTS AND DISCUSSIONS

This section contains the discussions and elucidations of our results in graphical and numeric
forms. The Keller–Box method is applied to solve the ordinary differential system (Equations
(8)–(10)) with condition (12). The numerical result of the concerned physical factors such as
Brownian movement Nb, Casson constraint β, thermophoretic Nt, Lewis number Le, magnetic
parameter M , permeability parameter K , buoyancy parameter λ, Prandtl number Pr, solutal
buoyancy parameter δ, inclination parameter α, and suction constraint S are elaborated in
tabular and graphical form. In Table 1, with the lack of buoyancy constraints λ, the solutal

FIGURE 6 Variations of f η′( ) for distinct values of K
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buoyancy parameter δ with α= 90° when → ∞β results in θ− ′(0) and φ− ′(0) is matched with
the existing results.41 The outcomes showed excellent agreement. The effects of θ− ′(0), φ− ′(0),
and C (0)fx for distinct values of the arising constraints Nb Nt β M K λ δ α Le, , , , , , , , Pr, , and S are
mentioned in Table 2. It is evaluated that θ− ′(0) is retarded by decrement in Nb Nt K S, , , , and

FIGURE 7 Variations of f η′( ) for distinct values of λ

FIGURE 8 Variations of f η′( ) for distinct values of M
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increasing the values of Le M β, , , and α. On the other hand, θ− ′(0) rises by increasing the
values of λPr, , and S. Besides this, we noticed that ϕ− ′(0) increases with falling Nb δ, , and
increasing Le λ S, , . Whereas, ϕ− ′(0) drops by lowering the values of K S, , and increasing

M βPr, , , and γ . We further visualized that C (0)fx rises for the lesser Nb K, , and for big
Le M β δPr, , , , , and α. Moreover, it is found that C (0)fx decreases by lessening the values of δ S,

and by increasing λ.
Figure 3 shows that the velocity distribution f η′( ) decreases with increasing the inclination

parameter. This can be ascribed to the circumstances that inclination angle drops as the result
of buoyant force because of thermal diffusion with the influence of αcos . Accordingly, the
liquid driving force declines due to which velocity of the fluid drops. The nature of Casson

FIGURE 9 Variations of f η′( ) for distinct values of S

FIGURE 10 Variations of θ η( ) for distinct values of α
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constraint on velocity distribution, f η′( ), is presented in Figure 4. Velocity distribution is
retarded for emerging values of the Casson constraint. Physically, the enlarging Casson
constraint β corresponds to stronger viscosity, that is, reduction in yield stress. Therefore, the
momentum layer of thickness is reduced. Figure 5 indicates that the velocity outline increases

FIGURE 11 Variations of θ η( ) for distinct values of β

FIGURE 12 Variations of ϕ η( ) for distinct values of β
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by enhancing the solutal buoyancy factor. Physically, the length, concentration difference, and
kinematic viscosity of the liquid affect the factor δ. On the other hand, there is an opposite
relation between the viscosity and velocity of the fluid. Therefore, the viscosity of the fluid drops
on rising the magnitude of δ, and the concentration increases directly due to which the velocity
field upsurges. Finally, the factor δ shows a direct relation with the velocity outline. Figure 6
describes the velocity profile falls with increasing the permeability parameter K . The impacts of

FIGURE 13 Variations of θ η( ) for distinct values of K

FIGURE 14 Variations of ϕ η( ) for distinct values of K
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buoyancy factor are shown in Figure 7. Velocity distribution f η′( ) rises by improving the
buoyancy limit. Physically, the growing magnitude of the buoyancy forces decreases the viscous
force, which favors the fluid flow, which causes faster motion. The impressions of M are
described in Figure 8. The velocity shape falls with increasing the magnetic element M .

FIGURE 16 Variations of ϕ η( ) for distinct values of M

FIGURE 15 Variations of θ η( ) for distinct values of M
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Physically, an enhancement in M refers to improving the Lorentz force, which decreases the
velocity. The characterization S on the velocity f η′( ) is shown in Figure 9. It is evident that
f η′( ) decreases with increasing the suction constraint. Moreover, Figure 10 indicates the
variations of temperature profile for the inclination parameter. Temperature increases by

FIGURE 17 Variations of θ η( ) for distinct values of Nb

FIGURE 18 Variations of ϕ η( ) for distinct values of Nb
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enhancing the values of the inclination constraint. Variations of Casson constraint β on
temperature θ η( ) and concentration ϕ η( ) profiles are shown in Figures 11 and 12. A larger
Casson constraint β boosts up the temperature θ η( ) and concentration ϕ η( ) distributions.
Similar patterns are shown in Figures 13 and 14 for distinct K . Furthermore, Figures 15 and 16

FIGURE 19 Variations of θ η( ) for distinct values of Nt

FIGURE 20 Variations of ϕ η( ) for distinct values of Nt

ANWAR ET AL. | 21



depict temperature θ η( ) and concentration ϕ η( ) profiles increase for a larger magnetic
parameter M .

Figures 17 and 18 indicate the effect of Brownian movement on θ η( ) and ϕ η( ). We visualized
that the temperature distribution enlarges with an enhancement in Brownian motion. On the

FIGURE 21 Variations of ϕ η( ) for distinct values of Le

FIGURE 22 Variations of θ− ′(0) for distinct values of Nb and α
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other hand, the opposite effect is seen on the distribution of ϕ η( ). Physically, the enlargement in
Brownian constraint supports heating up the boundary‐layer, which makes nanoparticles travel
from the stretching sheet to the motionless liquid. Therefore, the concentration of the
nanoparticles is moderated. Figures 19 and 20 represent the nature of Nt on θ η( ), ẟ, and ϕ η( ).

FIGURE 23 Variations of ϕ− ′(0) for distinct values of Nb and α

FIGURE 24 Variations of C (0)fx for distinct values of Nb and α
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These figures show that both θ η( ) and ϕ η( ) increase for the incrementing values of the
thermophoresis constraint. Figure 21 elucidates the changes in ϕ η( ) profile for distinct Le. The
thickness layer retards by enhancing the values of Le. Figures 22 to 27 show that θ− ′(0) and
ϕ− ′(0) decrease by increasing the inclination values while C (0)fx increases by increasing the

inclination.

FIGURE 25 Variations of θ− ′(0) for distinct values of Nt and α

FIGURE 26 Variations of ϕ− ′(0) for distinct values of Nt and α
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5 | CONCLUSIONS

Heat mass transport analysis of Casson nanomaterial flow induced by the inclination of surface
under the existence of magnetic field is communicated in this study. We revealed that θ− ′(0)

decreases for the growing values of Nb Nt K, , , and rises for larger values of Le M β α λ, , , , Pr, ,

and S. Furthermore, it is evaluated that the reduced Sherwood number ϕ− ′(0) increases for
increasing values of Nb δ Le λ S, , , , . The values of C (0)fx increase for the weaker Nb K, and
higher values of Le M β δPr, , , , , and α correspond to decrement in this. On the other hand, by
increasing the values of Pr, the temperature profile drops because the thermal thickness of layer
decreases with enhancing the Pr.

NOMENCLATURE

g acceleration due to gravity
B0 uniform magnetic field strength
σ electrical conductivity
μ viscosity
ρf base‐fluid density
ρp nanoparticle density
β Casson constraint
βt thermal expansion coefficient
βc concentration expansion coefficient
DB Brownian diffusion coefficient
DT thermophoresis diffusion coefficient
k thermal conductivity
ρc( )p heat capacitance of the nanoparticles

FIGURE 27 Variations of C (0)fx for distinct values of Nt and α
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ρc( )f heat capacitance of the base fluid
α k ρc* = /( )f thermal diffusivity parameter
S suction parameter
M Hartmann number
ν kinematic viscosity
Pr Prandtl number
Le Lewis number
K permeability parameter
θ− ′(0) reduced Nusselt number
ϕ− ′(0) reduced Sherwood number

C (0)fx skin friction coefficient
u x x νRe = ( ( ) )/x w local Reynolds number

Nb Brownian motion parameter
Nt thermophoresis parameter
λ buoyancy parameter
δ solutal buoyancy parameter
α inclination parameter
τ ρc ρc= ( ) /( )p f ratio of effective heat capacity of nanoparticle and heat capacity of liquid
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