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application thanks to their computational simplicity. Sadly, 
these operators are unsuccessful in mathematically 
capturing the presence of interdependencies between the 
evaluation criteria, which in turn may result in misleading 
aggregated scores and ranking of alternatives. In other 
words, they are only appropriate to be applied in a problem 
where the criteria are assumed to be independent of each 
other. However, such an assumption may not be true in 
many situations as, in reality, most of the criteria are 
intertwined through different degrees of interrelations.  

Fortunately, the Choquet integral [1], which is regarded 
as one of the non-additive operators, is free from such 
drawback; it has the ability to efficiently deal with the 
interrelated criteria when aggregating the performance 
scores [2]. Due to this interesting characteristic, of late, the 
application of Choquet integral is seen to be progressively 
extending across a wide array of MCDM problems, to name 
a few,  site selection, benchmarking, and risk assessment. 
The integral equipped with such ability as it utilizes the 
concept of fuzzy measure. To be precise, the usage of 
Choquet integral as an aggregation operator requires the 
prior identification of fuzzy measure values. These values 
represent the weight of every possible subset of the criteria, 
including the individual weight of every criterion [3].  

As a result, one will need to estimate 2𝑛 values of fuzzy
measure before applying the integral, where 𝑛 denotes the 
number of criteria involved in the analysis. For instance, if a 
MCDM problem considers the following three criteria, A , 
B, and C, then the weights of following subsets need to be 
estimated in advance: {ø}, {A}, {B}, {C}, {A,B}, {A,C}, 
{B,C}, and {A,B,C}.  

This estimation process, undoubtedly, can grow into a 
very complex undertaking, particularly when 𝑛 is too large 
[4]. Many forms of fuzzy measures were introduced in the 
past to deal with this complexity, and 𝜆0-measure is one of
them. Based on the literature, there exist a few techniques 
that can be used to estimate 𝜆0 -measure values.  Yet, all
these techniques need some initial data from the decision-
makers. In fact, to this date, none of the existing studies has 
attempted to develop an unsupervised technique, which is 
free from the need of initial data. This paper, therefore, 
aimed at developing one such technique, which able to 
estimate the complete set of 𝜆0-measure values by merely
utilizing the available decision matrix.  

The rest of this paper is organized as follows. Section II 
reviews the existing 𝜆0 -measure estimation techniques,
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I. INTRODUCTION 

In the context of decision science, an evaluation 
involving a finite set of alternatives based on pre-
determined criteria is usually treated as a multiple criteria 
decision making (MCDM) problem. The ultimate purpose 
of any standard MCDM analysis is to systematically 
compute the aggregated score of each available alternative 
so that they can be ranked accordingly from the most to the 
least preferred one.  As such, aggregation is reported as one 
crucial phase in MCDM. 

Suppose that 𝑥𝑖1 , 𝑥𝑖2 ,…, 𝑥𝑖𝑛  denotes the performance 
scores of an alternative 𝑖  with respect to  𝑛  number of 
evaluation criteria, then aggregation can be defined as a 
procedure of synthesizing these scores into a single, 
aggregated score. Note that the mathematical function that 
combines these scores is usually referred as an aggregation 
operator. The procedure, of course, is repeated to compute 
the aggregated score of every available alternative, thus 
enable the decision-makers to select the finest possible 
alternatives with better confidence.  

The available aggregation operators can be divided into 
two main categories, namely additive and non-additive 
operators. Needless to say, the additive operators such as 
simple weighted average, geometric mean, and ordered 
weighted average have received better attention for real 
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mainly in the context of initial data requirement.  Section III 
provides details on the steps involved in the proposed 
technique. Section IV demonstrates the usage of the 
proposed technique based on an undergraduate course 
evaluation problem. Section V concludes the contributions 
of the paper.  

II. LITERATURE REVIEW

Assume 𝐶 = 𝑐𝑗 = {𝑐1, 𝑐2, … , 𝑐𝑛}  is a finite set of
evaluation criteria considered in a decision problem, then 
according to Larbani et al. [5], the 𝜆0-measure value, 𝑔 of a
subset consisting of two criteria, 𝑗 and 𝑗 , can be computed
using (1), whereas the value of a subset comprising more 
than two criteria can be determined using (2). 

𝑔{𝑐𝑗 , 𝑐𝑗 ,} = 𝑔𝑗 +  𝑔𝑗 , + 𝜆𝑗𝑗 ,

where  𝑗 ≠ 𝑗 ,,  𝑔𝑗 =  𝑔{𝑐𝑗}, & 𝑔𝑗 , =  𝑔{𝑐𝑗} (1) 

𝑔{𝐴} = ∑ 𝑔𝑗

𝑐𝑗∈𝐶

+ ⋁ 𝜆𝑗𝑗 ,

𝑐𝑗,𝑐𝑗,∈𝐶,𝑗≠𝑗,

where 𝐴 denotes any subsets of 𝐶 consisting more 
than two criteria

(2) 

Note that equation (1) and (2) assure 𝜆0-measure to fulfill
the two basic properties required by any fuzzy measure, 
namely the boundary and monotonicity property, where: 

 boundary property means that the value of null
subset is zero and the value of the subset with the
presence of all criteria is one, i.e. 𝑔{∅} = 0   and
𝑔{𝐶} = 1, and

 monotonic property means that adding any new
criterion into a subset will not decrease the value of
the subset, i.e. ∀𝐴, 𝐵 ∈ 𝑃{𝐶}, if 𝐴 ⊆ 𝐵, then implies
𝑔{𝐴}  ≤ 𝑔{𝐵}.

The overall procedure of estimating 𝜆0-measure values,
as proposed in its original work, can be summarised as 
follows. In the 1st stage, the decision-makers, who are 
expected to be familiar with the decision problem at hand, 
are required to subjectively estimate the interdependency 
degree, 𝜆𝑗𝑗 ,  for each pair of different criteria, i and j. The
estimation is done by adhering to a predetermined scale that 
ranges from 0 to 1 where 0 implies “completely independent” 
and 1 denotes “completely interrelated”.   

In the 2nd stage, the fuzzy density of every criterion 
𝑔𝑗 , 𝑗 = 1, … , 𝑛 is determined by finding the solution for the
following system of inequalities (3).  

In the 3rd stage, the identified 𝜆𝑗𝑗 , and 𝑔𝑗  values are
precisely replaced into (1) and (2) in order to estimate the 
whole set of 𝜆0-measure values. The identified 𝜆0-measure
values and the available performance scores of each 
alternative can then be substituted into Choquet integral (4) 
to compute their final aggregated scores. With regards to (4), 
𝐴𝑗  refers to any the subsets of 𝐶  for 𝑗 = 1,2, … , 𝑛  and 𝑥𝑗

represents the performance score of the alternative with 
respect to criterion 𝑗 . Also, note that the permutation of 

criteria in 𝐴𝑛  parallel to the descending order of the
performance scores. For instance, if 𝑥(1) ≤ 𝑥2) ≤ ⋯ ≤ 𝑥(𝑛),
then 𝐴𝑛 = 𝑐(1), 𝑐(2), … , 𝑐(𝑛).

0 ≤ 𝑔𝑗 +  𝑔𝑗, + 𝜆𝑗𝑗, ≤ 1, for all 𝑐𝑗  & c𝑗,  in 𝐶 where
𝑗 ≠ 𝑗 ,

𝑔(𝐶) = ∑ 𝑔𝑗

𝑐𝑗∈𝐶

+ ⋁ 𝜆𝑗𝑗, = 1

𝑐𝑗,𝑐𝑗′∈𝐶,𝑗≠𝑗 ,

(3) 

𝑔𝑗 ≥ 0, 𝑗 = 1, … , 𝑛

𝐶ℎ𝑜𝑞𝑢𝑒𝑡𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑(𝑥𝑗

𝑛

− 𝑥𝑗−1) 𝑔(𝐴𝑛) (4)
𝑗=1

Note that the original λ0 -measure estimation technique 
fails to clearly reveal the complete relationship that presence 
across the criteria, and therefore the decision-makers may 
not be able to develop the best possible strategies to improve 
the performance of the targeted alternatives. Owing to this 
limitation, two revised techniques, namely the DEMATEL [6] 
and interpretive structural modeling (ISM) [7] based 
technique, were then introduced. However, all these 
available techniques still require some amount of initial data 
from the decision-makers. The type and amount of initial 
data required by each of these techniques are summarised in 
Table I. Meanwhile, Fig. 1 shows how the initial data 
requirement for each technique grows with an increasing 
number of decision criteria. Based on Table 1 and Fig. 1, it 
can be concluded that the initial data requirement for all the 
three techniques are still at a manageable level when 𝑛  is 
small, but it increases exponentially as 𝑛  becomes larger. 
This means the involved decision-makers may have a 
complication in providing consistent or precise initial data 
when the decision problem entails large 𝑛. It gets even more 
complex if the decision-makers are not familiar or ill-
informed about the problem that they are dealing with. 
Therefore, in such a situation, it will really be helpful if an 
unsupervised technique, which can derive the 𝜆0 -measure 
values solely based on the available decision matrix is 
developed. 

TABLE I. COMPARISON OF THE AVAILABLE ESTIMATION TECHNIQUES 

Technique Type of initial 
data required 

Amount of 
initial data 
required 

Original 
technique 

Interdependency degree of 
each pair of criteria 

𝑛(𝑛 − 1)/2 

DEMATEL 
based 
technique 

 Direct influence between
every two criteria

 Interdependency degree of
each pair of criteria

3𝑛(𝑛 − 1)/2 

ISM based 
technique 

 Contextual relationship
between every two criteria

 Interdependency degree of
each pair of criteria

2𝑛(𝑛 − 1)/2 
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Figure 1. Amount of initial data required vs. no. of criteria 

III. THE PROPOSED TECHNIQUE

The proposed technique is developed by integrating the 
CRITIC (Criteria Importance through Intercriteria 
Correlation) method with the original 𝜆0-measure estimation
technique. All in all, the execution of the proposed 
technique entails four important phases: (1) Applying 
CRITIC method, (2) identifying the inputs required for 
estimation, (3) estimating λ0 -measure values, and (4)
applying Choquet integral. 

In Phase 1, the CRITIC method is used mainly for the 
purpose of determining the objective weights of the 
evaluation criteria. The CRITIC method is suggested for this 
purpose as it has the ability to determine the weights by 
taking into consideration the contrast intensity and the 
conflicting character of the criteria. Say [𝑥𝑖𝑗] is a decision
matrix where 𝐴𝑙𝑡𝑖  = {𝑎1, 𝑎2, … , 𝑎𝑚} is a set of alternative
evaluated based on a predetermined set of criteria, 𝐶𝑗  = 𝐶 =
 {𝑐1, 𝑐2, … , 𝑐𝑛}. The steps involved in applying the CRITIC
method can then be summarized as follows: 
 Step 1- Translate the scores of each criterion within the

range of 0 to 1 using the following normalization
technique (5).

𝑥𝑖𝑗̅̅̅̅ =
𝑥𝑖𝑗−𝑥𝑗

𝑤𝑜𝑟𝑠𝑡

𝑥𝑗
𝑏𝑒𝑠𝑡− 𝑥𝑗

𝑤𝑜𝑟𝑠𝑡  (5) 

 Step 2- Calculate the standard deviation of each criterion,
𝑠𝑗 based on the normalized matrix.

 Step 3- Find the correlation coefficient of every pair of
criteria, 𝑟𝑗𝑗 , based on the normalized matrix to form the
correlation matrix, [𝑟𝑗𝑗,].

 Step 4- Calculate the amount of information contained
in criterion 𝑗 using equation (6).

𝐼𝑗 = 𝑠𝑗 ∑ (1 − 𝑟𝑗𝑗 ,
𝑛
𝑗′=1 )  (6) 

 Step 5- Determine the objective weight of criterion 𝑗
using equation (7).

𝑤𝑗 =
𝐼𝑗

∑ 𝐼𝑗
𝑛
𝑗=1

 (7) 

In phase 2, the inputs needed to estimate 𝜆0 -measure
values are determined. It is important to recall that the 
estimation actually requires two types of inputs. The first and 
perhaps the most crucial input is the degree of 
interdependency, 𝜆𝑗𝑗,  of every pair of criteria. The second
input is the fuzzy density of each criterion, where, according 
to Larbani et al. [5], these fuzzy densities can simply be 
determined by solving equation (3). However, Krishnan et al. 
[6] claimed that a more reliable set of fuzzy densities could
be determined if the decision-makers could provide some
additional information about the densities such as the
probable relative differences among them. As such, in this
proposed technique, the correlation coefficients and the
objective weights derived via the usage of the CRITIC
method, are utilized to determine the said two inputs,
respectively.

 Input 1- Degree of interdependency
A correlation coefficient lies between -1 and 1. The sign

and absolute value of a coefficient indicate the direction and 
intensity of the relationship, respectively.  The closer the 
value to -1 and 1, the more interrelated are the two variables 
or criteria. In fact, Carbunaru-Bacescu and Condruz-Bacescu 
[8] claimed that a correlation coefficient can be considered
as the degree of interdependency between two criteria.
Given this, in this technique, the following simple rules (8)
are used to transform 𝑟𝑗𝑗 , to the needed 𝜆𝑗𝑗, values.

If 𝑟𝑗𝑗, < 0, then 𝜆𝑗𝑗, = |𝑟𝑗𝑗,| and
If 𝑟𝑗𝑗, ≥ 0, then 𝜆𝑗𝑗 , = 𝑟𝑗𝑗 ,  (8) 

 Input 2- Fuzzy densities
The objective weights, 𝑤𝑗  and 𝜆𝑗𝑗 ,  values determined

earlier are then used to develop and solve the following 
system of inequalities (9) to identify the fuzzy density of 
each criterion, 𝑔𝑗.

0 ≤ 𝑔𝑗 + 𝑔𝑗 , + 𝜆𝑗𝑗 , ≤ 1, for all 𝑐𝑗 & c𝑗 , in 𝐶

𝑔(𝐶) = ∑ 𝑔𝑗

𝑐𝑗∈𝐶

+ ⋁ 𝜆𝑗𝑗 , = 1

𝑐𝑗 ,𝑐𝑗′∈𝐶,𝑗≠𝑗 ,
(9) 

𝑔𝑗 ≥ 0, 𝑗 = 1, … , 𝑛
*𝑔1:𝑔2:…:𝑔𝑛 = 𝑤1:𝑤2:…: 𝑤𝑗

It can be noticed that the proposed system of inequalities 
(9) somewhat varies from the original one (3) with the
presence of (*), where it ensures that the ratio of the
densities, 𝑔𝑗  complies with the ratio of the objective weights,
𝑤𝑗  determined via CRITIC method. For instance, if 𝑤1  = 0.1,
𝑤2   = 0.7, and 𝑤3   = 0.2, then (*) can be expressed as
follows: 𝑔2 = 7𝑔1 and 𝑔2 = 3.5𝑔3.

In phase 3, the identified inputs (i.e. 𝜆𝑖𝑗  and 𝑔1 ) are
substituted accordingly into (1) and (2) to estimate the whole 
set of 𝜆0 -measure values,   before applying them to the
Choquet integral operator in phase 4.  

0

50

100

150

200

250

2 3 4 5 6 7 8 9 101112

A
m

ou
nt

 o
f i

ni
tia

l d
at

a 

No. of criteria 

Original
technique

DEMATEL
based
technique

ISM based
technique

971

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 08,2020 at 02:00:56 UTC from IEEE Xplore.  Restrictions apply. 



IV. APPLICATION 

Similar to any other public universities in Malaysia, 
Universiti Malaysia Sabah has its own course evaluation 
system, popularly known as PK07. The system requires the 
students to rate their agreement or satisfaction over the 
course, based on a prefixed set of criteria. The rating is done 
using a 5-point Likert scale, where 1 and 5 implies “very 
unsatisfied” and “very satisfied”, respectively. The scorings 
resulted from this evaluation will be used as the indicators 
for improving the course content and delivery, apart from 
taking them into consideration for the lecturer’s 
performance appraisal.  The university has therefore made it 
mandatory for all university undergraduate students to fill 
out and submit the online PK07 form before sitting for their 
final examination.  However, in the current PK07 system, 
the ratings across all the criteria are aggregated by simply 
assuming that every criterion has an equal weightage, and 
also without capturing the interrelationships held by those 
criteria; thus, the final aggregated scores may not exactly 
reflect the lecturers’ actual performance. On that note, this 
section aimed at demonstrating the possibility of extending 
the proposed technique to the existing PK07 system, apart 
from illustrating the usage of the technique.  

Table 2 is an example of a decision matrix showing the 
average satisfaction ratings of five undergraduate courses 
with respect to four PK07 evaluation criteria, namely 
lecturer’s preparation (c1) 
delivery (c2), assessment (c3) and course learning outcomes 
(c4). Note that for the sake of simplicity, only four PK07 
criteria were retained in this example. The aggregated score 
of each course and its respective ranking was then computed 
based on the data in Table II using the proposed fuzzy 
measure estimation technique along with the Choquet 
integral operator. The overall calculation process involved 
and the results obtained are summarized in Table III-VIII.  

Table 3 shows the normalized decision matrix derived 
using equation (5), together with the standard deviation of 
each criterion. Meanwhile, Table IV presents the 
correlation among the involved criteria. The information 
content and objective weight of each criterion identified 
using (6) and (7) are summarized in Table V.  The 
objective weights are hinting that students care more on c2 
and c3 as compared to c1 and c2. This means that the 
lecturers will have to pay extra attention to refine their 
delivery technique and the design of assessments if they 
wish to significantly improve their student satisfaction in the 
future.   

TABLE II. DECISION MATRIX (COURSES VS CRITERIA) 𝑐1 𝑐2 𝑐3 𝑐4

Course A 3.90 4.60 3.75 4.64 
Course B 3.80 3.90 4.20 4.52 
Course C 3.75 4.52 4.48 4.00 
Course D 3.88 3.86 4.63 4.61 
Course E 3.67 4.60 3.98 4.64 

TABLE III. NORMALIZED DECISION MATRIX AND STANDARD DEVIATION 
OF EACH COURSE 

𝑐1 𝑐2 𝑐3 𝑐4

Course A 1.00 1.00 0.00 1.00 
Course B 0.57 0.05 0.51 0.81 
Course C 0.35 0.89 0.83 0.00 
Course D 0.91 0.00 1.00 0.95 
Course E 0.00 1.00 0.26 1.00 

𝑠𝑗 0.411 0.515 0.407 0.428 

TABLE  IV. CORRELATION MATRIX OF CRITERIA 

Criteria 𝑐1 𝑐2 𝑐3 𝑐4

𝑐1 1 -0.382 0.029 0.286 
𝑐2 -0.382 1 -0.601 -0.198
𝑐3 0.029 -0.601 1 -0.473
𝑐4 0.286 -0.198 -0.473 1 

TABLE V.  INFORMATION CONTENT AND OBJECTIVE WEIGHT OF 
EACH CRITERION 

Criteria 𝐼𝑗 𝑤𝑗

𝑐1 1.262 0.194 
𝑐2 2.155 0.331 
𝑐3 1.647 0.253 
𝑐4 1.449 0.222 

On the other hand, based on the values in Table 4, and 
also by adhering to the rules stated in (8), the following the 
interdependency degrees were determined: 𝜆12 =  0.382,
𝜆13 =  0.029, 𝜆14 =  0.286, 𝜆23 =  0.601, 𝜆24 =  0.198, and
𝜆34 = 0.473. The following system of inequalities was then
constructed based on the available 𝜆𝑖𝑗  values and objective
weights, 𝑤𝑗 , and it was solved with the help of  EXCEL
Solver to determine the fuzzy densities (in this case, the 
fuzzy densities are 𝑔1 = 0.077, 𝑔2 = 0.132, 𝑔3 = 0.101,
and  𝑔4 = 0.089.

𝑔1 + 𝑔2 + 0.382 ≤ 1

𝑔1 + 𝑔3 + 0.029 ≤ 1

𝑔1 + 𝑔4 + 0.286 ≤ 1

𝑔2 + 𝑔3 + 0.601 ≤ 1

𝑔2 + 𝑔4 + 0.198 ≤ 1

𝑔3 + 𝑔4 + 0.473 ≤ 1

𝑔1 + 𝑔2 + 𝑔3 + 𝑔4 + 0.601 = 1

𝑔1, 𝑔2, 𝑔3, 𝑔4 ≥ 0

𝑔2 = 1.706 ∗ 𝑔1

𝑔2 = 1.308 ∗ 𝑔3

𝑔2 = 1.491 ∗ 𝑔4

Table 6 depicts the 𝜆0-measure values for every possible
coalition of the criteria, which were estimated based on (2) 
and (3). It can be seen that the estimated values comply with 
the boundary and monotonicity condition. 
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TABLE  VI.  COMPLETE SET OF 𝜆0-MEASURE VALUES 

Subset Value, 𝑔 
{ø} 0 
{𝑐1} 0.077 
{𝑐2} 0.132 

*{𝑐1, 𝑐2} 0.591 
{𝑐3} 0.101 

{𝑐1,𝑐3} 0.208 
{𝑐2,𝑐3} 0.834 

**{𝑐1, 𝑐2,𝑐3} 0.911 
{𝑐4} 0.089 

{𝑐1,𝑐4} 0.452 
{𝑐2,𝑐4} 0.419 

{𝑐1, 𝑐2,𝑐4} 0.680 
{𝑐3,𝑐4} 0.663 

{𝑐1, 𝑐3,𝑐4} 0.740 
{𝑐2, 𝑐3,𝑐4} 0.922 

{𝑐1, 𝑐2, 𝑐3,𝑐4} 1 
Calculation for selected subsets of criteria:  
*𝑔1 + 𝑔2 + 𝜆12 = 0.077 + 0.132 + 0.382 = 0.591
**𝑔1 + 𝑔2 + 𝑔3 + 𝜆12 = 0.077 + 0.132 + 0.101 + 0.601+= 0.911

The estimated 𝜆0 -measure values together with the 
ratings in Table II were then replaced into the Choquet 
integral formula (4) to compute the aggregated score of each 
course. Based on the results in Table VII, C can be 
considered as the ‘most satisfying’ course with the 
aggregated score of 4.386, followed by D, E, A, and B. The 
same evaluation was also performed based on the 
objective weights derived through CRITIC method and a 
common additive operator, namely simple weighted 
average (SWA). A different set of ranking was then 
obtained, where Course E tops the list followed by A, C, 
D, and B. The key reason that has led to this difference is 
that the latter operator has failed to capture the 
interdependencies between criteria while aggregating the 
ratings, unlike the former one which was able to model the 
said interdependencies with the help of the estimated fuzzy 
measure values.   

TABLE VII. AGGREGATED SCORE AND RANKING OF EACH COURSE Course Aggregated score (ranking) 
using the proposed 
technique 
& Choquet integral operator 

Aggregated score 
(ranking) 
using SWA 
operator 

A 4.149 (4) 4.258 (2) 
B 4.120 (5) 4.094 (5) 
C 4.386 (1) 4.245 (3) 
D 4.361 (2) 4.225 (4) 
E 4.219 (3) 4.272 (1) 

V. CONCLUSION

This paper has made two important contributions. Firstly, 
from a theoretical viewpoint, we have presented a 

completely unsupervised technique to estimate 𝜆0 -measure
values. The technique enables the ill-informed decision 
makers to directly estimate the whole set of the fuzzy 
measure values based on the available decision matrix, 
without the need for any additional initial data from them.  

Meanwhile, from an application viewpoint, we have 
demonstrated the possibility of integrating the usage of the 
proposed technique into the PK07 system, a course 
evaluation system owned by UMS. Such integration will 
allow a more realistic aggregated score for each course is 
computed without disregarding the existing 
interdependencies among the evaluation criteria. It will also 
help to furnish information about the weights of criteria, and 
thus enable the lecturers to plan the right strategies to 
improve their scores in the future.  

However, the proposed technique has a drawback. It fails 
to characterize the exact causal relationships held by the 
criteria under consideration, unlike the existing DEMATEL 
and ISM based technique which clearly visualize such 
relationships through diagraphs. Future research may address 
this limitation by developing an unsupervised 𝜆0 -measure
estimation technique that can also deliver clear-cut 
information about the causal relationships as such 
information could lead to better decision-making. 
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