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Abstract
Improving the communication of Internet of Things (IoT) network is a challenging task as it connects a wide-range of

heterogeneous mobile devices. With an extended support from cloud network, the mobile IoT devices demand flexibility

and scalability in communication. Increase in density of communicating devices and user request, traffic handling and

delay-less service are unenviable. This manuscript introduces genetic algorithm based adaptive offloading (GA-OA) for

effective traffic handling in IoT-infrastructure-cloud environment. The process of offloading is designed to mitigate

unnecessary delays in request process and to improve the success rate of the IoT requests. The fitness process of GA is

distributed among the gateways and infrastructure to handle requests satisfying different communication metrics. The

process of GA balances between the optimal and sub-optimal solutions generated to improve the rate of request response.

Experimental results prove the consistency of the proposed GA-OA by improving request success ratio, achieving lesser

complexity, delay and processing time.
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1 Introduction

Internet of things (IoT) is development in wireless tech-

nology that facilitates smart device communication

between the real-world ‘‘things’’. The real-world entities

are connected to the communicating equipment or device

through internet. The real-world entities called ‘‘things’’

possess smart computing and communicating abilities

aided by the built-in hardware and software. The hardware-

software combo includes actuating and sensing units,

human-interacting units, middleware, graphical user inter-

face, and storage and power source. IoT devices support

anywhere anytime access to distributed information,

applications and services by establishing communication

with a common network (like internet). Internet service

providers (ISP) are the listening agents for serving IoT

requests and application demands by adapting a wide-range

of communication technologies such as wireless LANs,

Wi-Fi and LTE. IoT technology is scalable, flexible and

adaptable to support the dynamicity of the end-user devi-

ces. These features of IoT are reliable for both fixed and

ad-hoc infrastructures [1, 2]. Information handling and

forwarding are the vital tasks of in an IoT environment,

demanding the co-operative working of the other devices.

The rate of information handled by the IoT devices and the

network relies on the density of users and requests insti-

gated [3].

The existing infrastructure support of IoT devices lacks

efficiency in handling co-operative and flexible communi-

cations. The density of the users and scalability of the

network are the two influencing factors that requires
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external network support for balancing request handling

and resource allocation problems. Resource allocation is

successful if the request is of the IoT user is responded with

a proper in-time response. To achieve maximum profit in

service efficiency, scalable architecture such as cloud

orchestration serves as a support for IoT network. Cloud-

integrated IoT architecture achieves improved resource

allocation, access and sharing surviving user demands. The

features and facilities of cloud are adopted by the IoT

devices to manage their communication demands. Besides,

this orchestration provides infrastructure related services in

a heterogeneous manner with scalability [4–6].

Traffic handling and congestion are the prime factors

that are to be optimized in this orchestration process.

Unhandled traffic regulation results in service drop-outs,

defacing the network performance. Communication

defacing process instigates in infrastructure and gateway

storage present in the IoT-Cloud architecture. Unhandled

congestion results in response loss and increase in retrieval

time. To smooth congestion, the gateways and other

infrastructure require additional queuing and processing

time that reflects in service delays of the IoT users. The

existing challenges in IoT are addressed by process virtu-

alization, distributed access and process synchronization.

The process of request offloading is recommended in a

congested scenario for preventing unnecessary request loss

and communication failures. The features of IoT commu-

nications are synchronized with the cloud services to pro-

vide better service reliability. The contrary adjustments

between IoT users and processing gateways/infrastructure

need to be well addressed to minimize the impact of con-

gestion over the communication [7, 8]. The contributions

of the work are as follows:

(1) Designing an adaptive request offloading method for

user concentric IoT environment to improve the rate

of processing and service response.

(2) Applying genetic concepts for un-biasing sub-opti-

mal and optimal solutions during offloading so as to

improve the success rate of request handling.

(3) Presenting a comparative analysis for verifying the

reliability of the proposed method through conven-

tional metrics considered.

The organization of the paper is as follows: Sect. 2

provides the description of the works related to the con-

ceptual analysis and followed the proposed genetic based

adaptive offloading in Sect. 3. The performance analysis of

the proposed method with a comparative study is presented

in Sect. 4. Section 5 provides a concluding discussion for

the proposed method.

2 Related work

The authors in [9] introduced a delay minimization

framework for IoT-fog-cloud applications. This method

incorporates collaboration and offloading rules for mini-

mizing service response time. The rules are constructed

with the consideration of request types and storage size for

minimizing delay. This framework is adaptable to any

network architecture despite of the density of users and

processing servers.

A computation offloading based on game-theoretic

approach [10] is introduced for minimizing the operation

cost and to improve the user benefits. The offloading pro-

cess improves the rate of fog and cloud resource allocation

to the IoT users. The satisfaction of the users is improved

through a self-achievable quality of experience maxi-

mization process. User benefits are improved in terms of

energy and delay through optimized power exploitation.

Collaborative offloading scheme is presented in [11] for

achieving energy conservation in wireless networks inte-

grated IoT devices. In this scheme, energy efficient com-

putation offloading process is distributed among mobile

devices, cloud servers and edge computing devices. Using

the conventional multiple access communication technol-

ogy, this scheme achieves better energy efficiency in IoT

devices.

An edge-computing offloading is exclusively proposed

for dense IoT networks by Guo et al. [12]. This offloading

process operates in a greedy manner in two-tiers to dis-

seminate incoming tasks among local and mobile-edges.

This offloading process is suitable for dense IoT network as

it minimizes processing time, energy consumption and

computation overhead.

Stabilized green crosshaul orchestration (SGCO) [13] is

a joint offloading optimization introduced for service

concentrated IoT network. The joint offloading process is

targeted to improve energy efficiency and network stability

along with latency minimization. This offloading process

makes use of Lyapunoy-theory based drift and penalty

policy to determine the rate of data processing to achieve

energy efficiency.

A light weight request and admission framework [14] is

designed to improve the scalability in integrating different

network architectures. This framework best suits for cloud-

edge computing and IoT integrated architecture. This

framework facilitates selective offloading by operating at

the IoT and cloud layers independently. The experimental

analysis of the framework proves its consistency by

improving energy efficiency and minimizing latency of IoT

communication devices.

The authors in [15] analyzed the modeling and

deployment of heterogeneous mobile cloud with offloading
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and non-offloading devices. The outage analysis of the

cloud system with its support for remote systems and other

network are analyzed through a stochastic offloading

method. The analysis concludes that proper placement of

cloudlets and distribution of offloading process minimizes

the rate of outage in IoT communications.

The authors in [16] integrated k-means algorithm and

decision offloading for improving the performance of IoT

device communications. K-means algorithm segregates the

network to position edge servers to balance computation

offloading. The distributed edge servers are used to make

decisions at the time of offloading. This method minimizes

the latency and operation cost of the devices through

decision based offloading.

Aura [17] is an IoT based cloud model that delivers ad-

hoc and flexible computing for offloading the tasks of IoT

users. With the help of localized IoT devices, aura provides

migration, initialization and processing features of the tasks

from distributed locations. This model improves the task

handling capacity with lesser energy and cost factors.

The authors in [18] designed a proactive decision

making process for improving the device-to-device com-

munication reliability. The decision making process oper-

ates in a cooperative manner considering different

optimization metrics to minimize complexity in process-

ing. This cluster-based cooperative decision making pro-

cess minimizes the failure cost of the devices with

minimum cluster-head changes.

A clustering based IoT service classification is designed

in [19] for improving the efficiency in platform integration.

The classification is preceded by an expectation maxi-

mization algorithm for improving the integration process.

The platform integration is facilitated by estimating the

similarities between platform and services.

A proactive caching technique is introduced in [20] for

task distribution in edge nodes. The task distribution pro-

cess among edge nodes connected to fog network is

facilitated using popularity of the process. The user nodes

are calibrated using one-to-one game model for task dis-

tribution from the cloudlets. The game modeling follows

queuing and offloading process simultaneously for mini-

mizing latency and delay.

For improving the efficiency of IoT services forwarded

by peer-to-peer (P2P) communication networks, an effi-

cient data relaying method is proposed in [21]. This

method pre-estimates the connectivity between P2P nodes

and IoT service providers using Bayesian classifier.

Simultaneously, the data relaying process is monitored by

the classifier to ensure the successful data delivery at the

sink node. This method handles higher traffic minimizing

delay and improves the transmission count.

Loadbot [22] is an agent based load balancing

scheme designed for IoT networks. This agent based

scheme pre-estimates the network load and the available

users to disseminate incoming network traffic. A deep

learning method is used to disseminate load over the

available users for improving the communication effi-

ciency. This scheme minimizes delay despite the density of

sensor and learning iterate.

The existing methods concentrate in smoothing traffic

without considering the maximum service possibility for

the increasing request demands. In [22], load is handled

with the prior knowledge of the user irrespective of the

request classification. Contrarily, the offloading proposed

in [12] requires a two-level processing for offloading the

traffic. This requires additional processing complexity

wherein the success rate achieved is less. Different from

the above methods and the particular issues highlighted, the

proposed GA-OA method, considers the classification of

message along with the communication attributes. With the

knowledge of the request message and the external influ-

encing factors, the genetic process results in optimal

solution for improving the service efficiency of IoT users.

3 Genetic algorithm based adaptive
offloading for dense IoT

The proposed adaptive offloading process is designed to

minimize gateway overloading due to increasing IoT user

demands. The process is induced by genetic approach

where offloading and request servicing are performed

simultaneously to achieve maximum success rate. The

architecture of a typical IoT environment is illustrated in

Fig. 1.

The architecture is divided into three parts: IoT devices,

Infrastructure and cloud. This architecture is presented as a

general process by which the same is adapted in the pro-

posed method. The proposed GA-AO is performed in an

environment as illustrated in Fig. 1.

3.1 IoT device

IoT devices are smart storage and computational enabled

communicating components. They possess built—in radio

units for transmitting and receiving information. The

devices are mobile and fixed depending upon the applica-

tion it is used. The IoT devices possess two types of

communication: device-to- device and device-to-infras-

tructure. IoT access cloud using the infrastructure units

deployed.

3.2 Infrastructure

The infrastructure part consists of base station, access –

points and other forwarding wireless routers. The
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infrastructure facilitates inward and outward communica-

tion between IoT and cloud components. Infrastructures are

both ad-hoc and fixed to supports IoT communication

flexibility.

3.3 Cloud

The cloud part of the architecture is packed with dedicated

servers that are distributed and centralized. Servers provide

access to applications and services as required by the IoT

devices. The cloud endorses both local and distributed

storage information access and retrieval.

3.4 Gateway

Cloud gateways streamline the IoT traffic to the servers.

Request forwarding and response reply are maintained by

the gateways. Gateways are also called load-balancers that

aid seamless communication and in-time response to both

the connected end devices.

4 Methodology

The process of traffic handling and request processing is

carried out in both infrastructure and gateway part of the

architecture. The notations used in the methodology is

given in Table 1.

The density of the requests observed at a time ti is

estimated using Eq. (1)

qr ¼
Xk

j¼1

Ln jð Þ
tj

ð1Þ

where,

X
Ln ¼

ar jð Þ � ti
ps jð Þ

ð2Þ

Subs (2) in (1), we get

qr ¼
Xk

j¼1

ar jð Þ
ps jð Þ

ð3Þ

Fig. 1 IoT-infrastructure-cloud architecture

Table 1 Notation and description

Notation Description

ar Arrival rate of the requests

sr Service rate of the requests

Ln Request load from n IoT users

ps Processing rate of the server

tp Time for processing a request

tq Queuing time of a request

tres Response time

qr Density of the requests

ti Request initialization time

tmax Maximum time of a request

c Capacity of the wireless link

gs Storage capacity of the gateway infrastructure

to Offloading time
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Considering Eq. (3) as the density of requests that is to

be serviced, the objective of the proposed offloading pro-

cess is defined as follows:

max
Xk

j¼1

ar jð Þ8
sr

qr
¼ 1 ð4Þ

Such that

min
Xk

j¼1

tres jð Þ ð5Þ

In Eq. (4), the offloading process is defined such that the

ratio between request service rate and density of the

requests in the cloud layer must be 1. This means that all

the received requests are processed without loss; this is an

ideal condition for offloading. The service ratio relies on

the response time of each request. If the response time is

less, high is the number of requests serviced.

Where tres ¼ ti þ 2 tq þ tp
� �

.

The process of offloading occurs when ar [ sr or

ar � tið Þ[ ps � tp
� �

. In this case, the time taken for pro-

cessing a request increases or the request is lost.

These conditions degrade the performance of the net-

work and henceforth Eq. (4) subject to Eq. (5) to be

achieved.

There are two cases that are to be considered at the time

of request processing: (1) Overloaded requests and (2)

underflow storage. These two cases are balanced in a

optimal manner by generating possible solution using

genetic implication. The process of genetic optimization

includes four stages: population initialization, estimated of

fitness function, chromosome selection and genetic opera-

tor exploitation. Request load and density are different as

the density represents the total requests experienced in the

cloud for service. On the other hand, the load factor rep-

resents the number of requests originating from the IoT

devices. In other words, the density represents the filtered

requests from the available load of the IoT devices.

Therefore, these two factors are estimated separately.

5 Population initialization

The initial population of the GA is assorted with n and it’s

corresponding tmax. Each of the n is mapped with its tmax

and the sequence of processing. The sequence for pro-

cessing is ordered in the first come first serve basis let

G Lnð Þ be the genetic function that is represented as

G Lnð Þ ¼ n; tmax; seqf g. The three tuples n; tmax; seqð Þ are

the population variables that are subjected to change with

respect to the c of the wireless link. The first process of GA

is illustrated as in Fig. 2.

5.1 Fitness evaluation

Let F Gð Þ represent the fitness of an initial genetic popu-

lation G. The metrics considered for evaluating the fitness

are: c; tmax and gs. The tmax metric is satisfied by serving

request with tres\tmax. The fitness of each metric is inde-

pendently assessed; Let f1; f2and f3 represented the local

fitness of c; gsand tmax respectively. The local fitness of f3
is satisfied only if f1 [ f2 ¼ 1. This constraint for the

considered metrics and their evalution is explained as

follows:

The ideal number of n flowing at tiand tp requires c as

using Eq. (6)

c ¼ ar � ti; for request
ps � tp; for response

�
ð6Þ

If n*ar � tið Þ[ c, then the wireless links is said to be

congested. If this case is true, f1 6¼ 0 and f1 6¼ 1 (i.e.)

0\f1\1. Similarly, the storage of the gateway/infras-

tructure is estimated for its acceptance rate. The storage

occupancy of a gateway is estimated using Eq. (7)

g�s ¼ gs �
ar � ti
n

� �
� gs

h i
ð7Þ

There are two possible outcomes for g�s (i.e.) if g�s [ n,

then the storage is underflow and hence it can accept fur-

ther requests. Therefore, from (6), even if n*ar � tið Þ[ c,

the gateway is capable of accepting the request and f1 ¼ 1.

Contrarily, if g�s\n, the storage is overloaded and it cannot

accepts further requests. In this case, if tq [ tmax, the

request is left unserviced and obviously, f1 ¼ 1. The local

fitness of gs(i.e.)f2 ¼ 1, if g�s [ n provided n*ar � tið Þ� gs.

In other cases, f2 ¼ 0. The union of the local fitness is thus

represented as

f1 [ f2 ¼
1; if g� [ n&& n � cð Þ� gs

0; otherwise

�
ð8Þ

Fig. 2 Population initialization
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Considering the optimal case when f1 ¼ f2 ¼ 1, the tmax

local fitness is estimated. The first two local fitness in

contrary with tmax must be maximum (i.e.)f1 [ f2 \ f3 ¼ 1,

is the ideal condition. For all ðf1 [ f2Þ ¼ 1; tmax may vary

depending upon the availability of queuing space. There-

fore, the two cases of overload and underflow is assessed

for determining the third fitness. The two cases discuss the

state of the requests with respect to time such that the

response time is greater or less than the maximum time

observed. In those cases, the process of offloading is

elaborated in the following explanation.

Case 1: If tres [ tmax; then the request is dropped with a

delay of ðti þ tqÞ as it is not processed yet. In this

case,f3 ¼ 0 and therefore offloading requests is required

and the t0 2 ti; tmax½ �. If t0 ¼ tmax, then f3 ¼ 0 and this

request need not to be offloading.

Case 2: If tres\tmax, f3 ¼ 1 if ðti þ 2tqÞ\tp and there-

fore, the maximum response time is ti þ tp þ 2tq. Con-

trarily, if ðti þ 2tqÞ\tp, then f3 6¼ 0 and f3 6¼ 1 (i.e.)

0\f3\1. In this case, the resulting fitness solution is sub

optimal. The next generation of chromosomes selection is

designed to meet the above condition to confine tp¤tmax.

The process of optimal and sub- optimal fitness evaluation

is illustrated in Fig. 3

5.2 Chromosome selection

For the available n messages, the gateways placed are

selected counting the gs: If gs [ n; then the next n� xð Þ
messages offloading to the free gateways. Contrarily, if no

gateway is available, then sub- optimal solution results. In

an sub-optimal solution, the chromosome (represented as

the mapping is operated to find additional result. The set of

genetic operator implication is instigated in this process.

For an sub-optimal solution to be solved, the possible

estimation is achieved by genetic cross over and mutation

operators.

5.3 Genetic operator exploitation

In this phase, the possible outcomes for resolving sub-op-

timality achieved in fitness evolution. The possibilities for

sub optimality are: (1) g�s\n (ii)tp [ tmax. The sub-optimal

solution is resolved to extract possible outcomes to derive

solutions that are optimal for performing offloading pro-

cess. The offloading process is time-dependent and hence

the underflow and overflow of the neighbors are resolved

using the evolution of genetic operators. These genetic

operators suggest time-dependent solutions for offloading

resulting in responsive requests. This helps to retain the

profitability of the process and the solutions confined

within tmax are the balanced solutions.

These two sub-optimal results are either partially

addressed or open to failure. The above two cases are

addressed as follows

(1) g�s\n: If the neighboring gateway is free then the

excess requests are offloaded.

If the neighbor is overloaded, alternate is selected such

that t0 2 ti; tmax½ � and tp [ tmax. In this case response delay

is estimated as in Eq. (9)

tres ¼ ti þ 2tq þ tp þ t0; tp\tmax ð9Þ

The final solution generated as per Figs. 4 or 5 will

satisfy Eq. (5) provided sr
ps
¼ 1. sr

ps
Will be high as the n in c

is not met its end (i.e.) the number of requests is always

busy in the observed wireless link.

(2) tp [ tmax

If the above condition is true, the requests until

tq þ tp
� �

\tmax can be processed without drop/unallocated

service. This means, a maximum of the request is pro-

cessed by classifying their processing time and hence

success ratio is improved. The process with respect to time

factor is illustrated in Fig. 6. The case 1 and case 2 of the

process is explained in the GA process that explains the

type of operator implication and generated chromosomes.

The generated chromosomes are adaptable to the time

Fig. 3 Fitness evaluation Fig. 4 Offloading process when neighbor is underflow
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factor of the devices to ensure the available requests are

serviced before the maximum time.

As a result of genetic process, optimal solution results in

mapping all qs to the resource available and the appropriate
response is given by the cloud source. In the non-optimal

output of the genetic process, the requests n� xð Þ are

served with the constraint tq þ tp
� �

\tmax achieving higher

success ratio.

6 Results and discussion

The proposed GA-AO for request handling in IoT is

modeled using Opportunistic Network Environment (ONE)

simulator. This simulation is supported by an open-cloud

model that owns a local and distributed repository for

processing messages. The simulation requirements and its

values are presented in Table 2.

The proposed GA-AO is compared with the existing

Loadbot [22] and game-theoretic greedy approximation

offloading algorithm (GT-GAOA) [12] for the metrics:

average delay, processing time, response complexity and

success ratio.

6.1 Average delay analysis

Figure 7 illustrates the average delay observed in the

existing methods and the proposed GA-AO. In the pro-

posed GA-AO, the processing time of the incoming request

traffic is analyzed forehand with the knowledge of tmaz. The

requests, whose processing time is greater than the maxi-

mum time, are offloaded to the neighboring gateways.

Therefore, the requests are prevented from being queued or

dropped; the additional wait time or re-servicing time is

denied for the qr in c. Besides, the sub-optimal results are

resolved through genetic operator exploitation with the

help of local fitness evaluation. These two processes are

advantageous in minimizing the delay in the proposed

offloading process. Compared to the existing Loadbot and

GT-GAOA, the proposed method minimizes delay by 9.4%

and 8.25% respectively.

6.2 Processing time analysis

The processing time of the requests with increasing gate-

way density is illustrated in Fig. 8. In the proposed GA-

AO, the requests are processed by considering two differ-

ent cases: the overloaded and underflow gateway process.

Fig. 5 Offloading process when neighbor is overloaded

Fig. 6 Offloading process when tq þ tp
� �

\tmax

Table 2 Simulation configura-

tion and values
Parameter Value

IoT devices 200

Gateways 16

Request size 64 Kb

Request/s 10

tmax 12 s

Bandwidth 1 Mbps

gs 24

ps 300 messages/s

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0 50 100 150 200

A
vg

.D
el

ay
 (s

)

No. of IoT Devices

Loadbot
GT-GAOA

GA-AO

Fig. 7 Average delay comparisons
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Even if n*ar � tið Þ[ c, the fitness derivative of g�s\n

decides the request service. The request is processed for all

tp\tmax and also the genetic operator exploitation process

optimizes the number of sub-optimal results by offloading

the requests among the available neighbors, with a flexi-

bility of tp þ tq
� �

\tmax. Therefore, the processing time of

the requests are confined within tmax, where, Eq. (5) is

satisfied. Henceforth, the processing time of the request

irrespective of the delay is less in the proposed GA-OA.

The proposed method minimizes processing time by

21.11% and 12.13% compared to Loadbot and GT-GAOA

correspondingly.

6.3 Response complexity

The comparisons of response complexity of the existing

Loadbot and GT-GAOA are compared with the proposed

GA-OA in Fig. 9. The number of non-optimal solutions of

request processing increases the complexity of request

processing in IoT systems. The genetic operator exploita-

tion phase of the proposed offloading method minimizes

the number of non-optimal solutions by confining response

to tmax. The number of un-attended requests from the IoT

devices is less by assigning requests for processing based

on response time, capacity and gateway storage. A set of

local fitness estimates the favorable conditions of a mes-

sage and detects the presence of non-optimal solutions at

the time of fitness evaluation. The final requests processing

solutions are segregated based on the fitness. The operator

exploitation part ensures maximum requests are processed.

Therefore, the number of requests that are to be re-serviced

is less in the proposed GA-OA method. This minimizes the

complexity in response by 38.1% and 38.18% compared to

Loadbot and GT-GAOA respectively.

6.4 Success ratio

Figure 10 illustrates the comparisons of success ratio

between the existing Loadbot and GT-GAOA and the

proposed GA-OA. The chance for improving the request

service rate in the proposed method is high. The genetic

operator exploitation differentiates the non-optimal solu-

tions that are independently concentrated to provide

response for the delayed requests. The requests satisfying

tp þ tq
� �

\tmax are classified to improve the success rate

along with the conventional requests that satisfy

min
Pk

j¼1

tres jð Þ. Therefore, the rate of success is improved by

45% and 33% compared to the existing Loadbot and GT-

GAOA respectively. Table 3 presents the experimental

values of the proposed and existing method as in

comparison.
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Fig. 10 Success ratio comparisons

Table 3 Experimental value comparisons

Metrics Loadbot GT-GAOA GA-AO

Avg. delay (s) 0.319 0.315 0.289

Processing time (ms) 2350 2110 1854

Response complexity 105,000 275,000 65,000

Success ratio (%) 30 42 75
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7 Conclusion

In this manuscript, a genetic algorithm based adaptive

offloading method is proposed to improve the communi-

cation efficiency of IoT network devices. The genetic

process is distributed among the infrastructure and gate-

ways to effectively handle the requests. The process of

genetic algorithm flow estimates the local fitness consid-

ering the capacity, gateway storage and maximum time of

the request to achieve fair optimization. The fair opti-

mization in request processing is achieved by minimizing

processing time, delay and processing complexity. The

consistency of the proposed method is proved by achieving

higher success rate. The offloading process is adaptive to

distribute traffic requests among the neighbors by classi-

fying them based on response time. In the future, adaptive

offloading method is planned to be enhanced with intelli-

gent learning algorithms for extending the flexibility and

scalability features in a heterogeneous network.
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