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TIUB-NANO KARBON DINDING BERLAPIS SEBAGAI MEMBRAN 

KERTAS-BUCKY PENYEJATTELAPAN DAN PEMANGKIN UNTUK 

TINDAK BALAS ETERIFIKASI 

 

ABSTRAK 

 

Membran asimetrik disediakan terlebih dahulu daripada pembentukan berstruktur 

tiub-nano karbon dinding berlapis kertas-bucky (TNKDB-KB) sebagai lapisan pra-

memilih dan kemudiannya struktur tersebut disalut dengan selapis polivinil alkohol 

(PVA) yang nipis. Membran asimetrik tersebut digunakan dalam proses 

penyejattelapan untuk penyahidratan campuran berbilang komponen yang diperolehi 

daripada tindak balas eterifikasi. Keputusan penyejattelapan menunjukkan bahawa 

membran asimetrik mempamerkan masing-masing dua dan empat kali ganda 

peningkatan bagi fluks telapan air dan faktor pemisahan. Kesan ini adalah 

disebabkan kumpulan hidrofilik pada MWCNTs yang telah ditulenkan dan saluran-

nano pada lapisan pra-memilih, yang memihak kepada penyerapan molekul air. 

Model larutan-resapan bagi Rautenbach adalah memadai bagi menerangkan proses 

penyejattelapan. Dalam kajian proses tindak balas eterifikasi, pemangkin MWCNTs 

yang telah disulfonasikan mempunyai tapak asid Lewis telah disediakan melalui 

proses pensulfuran dengan asid sulfurik. Prestasi bermangkin oleh pemangkin 

pensulfuran MWCNTs telah dikaji dalam proses tindak balas eterifikasi bagi tert-

butil alkohol (TBA) dan etanol. Kesan pembolehubah proses (suhu tindak balas, 

masa tindak balas, nisbah molar etanol kepada TBA, bebanan pemangkin) terhadap 

penukaran TBA, kememilihan etil tert-butil eter (ETBE) and hasil ETBE telah dikaji 

melalui dua pendekatan berbeza: pendekatan konvensional dan pendekatan 
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metodologi permukaan sambutan (RSM). Bagi pendekatan konvensional, keadaan 

tindak balas optimum terdiri daripada masa tindak balas selama 4 j pada suhu 140 oC, 

nisbah molar etanol kepada TBA 2:1 dan 3 % berat bebanan pemangkin. Optimum  

penukaran TBA, kememilihan ETBE dan hasil ETBE masing-masing ialah 64 %, 68 % 

dan 44 %. Sebaliknya, keputusan yang diperolehi daripada pendekatan RSM 

menunjukkan bahawa pembolehubah-pembolehubah individu dan interaksi-interaksi 

mereka memberikan kesan ketara kepada tindak balas eterifikasi. Tindak balas 

selama 4 j pada 146 °C, nisbah molar bagi etanol kepada TBA 2.17:1 dan 3.26 % 

berat bebanan pemangkin memberikan penukaran TBA yang optimum sebanyak 

72 %. Tambahan pula, optimum kememilihan dan hasil ETBE masing-masing ialah 

60 % and 43 %. Kedua-dua pendekatan mempunyai pembolehubah-pembolehubah 

proses optimum yang seakan-akan sama. Walau bagaimanapun, pendekatan RSM 

dapat memberi pembolehubah-pembolehubah proses optimum yang lebih tepat dan 

khusus kerana nilai-nilainya dianggarkan daripada persamaan-persamaan model. 

Satu mekanisma eterifikasi telah dicadangkan bagi menerangkan tindak balas 

eterifikasi. Pemangkin pensulfuran MWCNTs menunjukkan penurunan prestasi 

bermangkin yang tidak ketara selepas empat eksperimen yang dilakukan secara 

berturut-turut dan mudah dipulihkan selepas penjanaan semula. Selepas itu, 

campuran tindak balas optimum digunakan sebagai larutan suapan bagi 

penyahhidratan air menggunakan membran asimetrik baru. Jumlah fluks penyerapan 

lebih kurang 7 g/m2∙j dan faktor pemisahan lebih kurang 400 telah diperolehi.   
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MULTI-WALLED CARBON NANOTUBES AS PERVAPORATION 

BUCKYPAPER MEMBRANES AND CATALYSTS FOR ETHERIFICATION 

REACTION 

 

ABSTRACT 

 

Asymmetric membranes were prepared by first forming multi-walled carbon 

nanotube-buckypaper (MWCNT-BP) structures as the pre-selective layer followed 

by coating the structures with a thin layer of polyvinyl alcohol (PVA) to form novel 

MWCNT-BP/PVA asymmetric membranes. The resultant asymmetric membranes 

were applied in the pervaporation process for dehydration of multi-component 

mixture obtained from an etherification reaction process. The pervaporation results 

revealed that the asymmetric membranes exhibited two- and four-fold enhancements 

of the water permeation flux and separation factor, respectively, compared to the 

pure PVA membrane. This effect was observed due to the hydrophilic group on the 

purified MWCNTs and the nanochannels of the pre-selective layer, which favour the 

permeation of water molecules. A solution-diffusion model of Rautenbach was 

adequately in describing the pervaporation process. In the etherification reaction 

process study, sulfonated MWCNTs catalyst containing Lewis acid sites was 

prepared via sulfonation process with sulfuric acid. The catalytic performances of 

sulfonated MWCNTs catalyst were investigated in the etherification reaction process 

of tert-butyl alcohol (TBA) with ethanol. The effect of process variables (reaction 

temperature, reaction time, molar ratio of ethanol to TBA, catalyst loading) on the 

conversion of TBA, selectivity of ethyl tert-butyl ether (ETBE) and yield of ETBE 

were investigated using two different approaches: conventional approach and 
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