ENHANCEMENT OF PHOTOCATALYTIC PROCESS IN THE PETROLEUM WASTEWATER TREATMENT AT SOHAR OIL

REFINERY, OMAN

by

DHEEAA AL DEEN ATALLAH ALJUBOURY

Thesis submitted in fulfillment of the requirements

For the degree of

Doctor of Philosophy

August 2016

ACKNOWLEDGEMENTS

Alhamdulillah, thanks Almighty Allah, who gave me the opportunity to accomplish my studies.

I would like to express my deep appreciation and show my deepest gratitude to my supervisor, Dr. Puganeshwary Palaniandy, for all her guidance, encouragement and support. I am also very grateful to my co-supervisor Professor Dr. Hamidi Bin Abdul Aziz and my field supervisor Professor Dr. Shaik Feroz for providing me very valuable comments and feedback.

The assessment of technicians the assessment of technicians Ms. Shamsa Alsaadi and Mr. H.J. Varghese in Solar water research Lab, Caledonian College of Engineering, Oman, and also Mr. Salem Al-Marzoki and Mr. Saif Al-Beshry at Sohar oil refinery for allowing me to take samples. Gratitude is also extended to En. Harib Al-Mahrogy and En. Zewar Al-Bloshi Mrs. Safia Al-Harthy who encouraged and helped me with this project. Finally, I would like to thank my family for their wonderful support, devotion and patience throughout the course of this research.

Dheeaa al deen Attallah March 2016

TABLE OF CONTENTS

Ackno	owledgements	ii
Table	of Contents	iii
List of	f Tables	xi
List of	f Figures	XV
List of	f Abbreviations	xxii
List of	f Symbols	xxiv
Abstra	ak	XXV
Abstra	act	xxviii
CHAP	PTER ONE- INTROUDUCTION	
1.1	Background	1
1.2	Problem Statement	3
1.3	Research Objective	4
1.4	Scope of Study	5
1.5	Organization of The thesis	5
CHAF	PTER TWO- LITERATURE REVIEW	
2.1	Introduction	7
2.2	Wastewater and petroleum wastewater	8
	2.2.1 Petroleum wastewater generation in refineries	8
	2.2.2 Petroleum wastewater characteristics	10
2.3	Current petroleum wastewater treatment techniques	13
	2.3.1 Physical treatment	13
	2.3.1 (a) Membrane	14

		2.3.1 (b)	Coagulation/Flocculation	17
		2.3.1 (c)	Electro-Coagulation	19
		2.3.1 (d)	Adsorption	20
	2.3.2	Physo-che	emical treatment	20
	2.3.3	Chemical	treatment	22
	2.3.4	Biologica	l treatment	22
		2.3.4 (a)	Aerobic biological process	23
		2.3.4 (b)	Anaerobic biological process	23
		2.3.4 (c)	Aerated lagoons	24
		2.3.4 (d)	The activated sludge process	25
		2.3.4 (e)	Fixed-bed reactor	25
2.4	Advand	ced oxidation	on processes	25
	2.4.1	Principles	s of AOPs	26
	2.4.2	Use of Hy	/drogen peroxide	26
	2.4.3	Ozonation	1	28
	2.4.4	Photocata	lyst and Fenton	29
		2.4.4 (a)	The photocatalytic mechanism	29
		2.4.4 (b)	Photocatalyst of TiO ₂ , ZnO or TiO ₂ /ZnO	31
		2.4.4 (c)	Fenton, Photo-Fenton and Fenton-like oxidation	36
		2.4.4 (d)	Photocatalyst of TiO ₂ / Fenton and ZnO/ Fenton	41
2.5	Parame	eters affection	ng the Fenton and the photocatalytic process	43
	2.5.1	Effect of	Initial pH	43
	2.5.2	Effect of	catalyst dosage	45
	2.5.3	Effect of I	Fenton reagent dosages	46
	2.5.4	Effect of	the initial COD concentrations	49

	2.5.5	Effect of reaction time	50
2.6	Design	n, modeling and optimization by RSM	50
2.7	Summ	nary of literature review	51
CHA	PTER T	HREE – MATERIALS AND METHODS	
3.1	Introdu	action	53
3.2	The flo	owchart of overall research work	53
3.3	Sampli	ng	53
	3.3.1	Sampling station	53
	3.3.2	Sampling method	56
3.4	The che	emical materials	57
3.5	Instrum	nents	57
3.6	Experin	mental procedure of treatment processes used in this study	59
	3.6.1	Photocatalyst of TiO ₂ /ZnO/Fenton	59
	3.6.2	Photocatalyst of TiO ₂ /ZnO/Air	61
	3.6.3	Photocatalyst of TiO ₂ /Fenton	63
	3.6.4	Comparative of processes	64
		3.6.4 (a) Photocatalyst of TiO ₂	64
		3.6.4 (b) Photo-Fenton process	64
3.7	Chemic	cal analysis	65
	3.7.1	Analytical methods	65
	3.7.2	Analyses	66
		3.7.2 (a) The pH	66
		3.7.2 (b) COD	66
		3.7.2 (c) TOC	67

		3.7.2 (d)	Iron residual	67
		3.7.2 (e)	Solar ultraviolet radiation (UV)	67
3.8	Statistic	cal design a	pproach	68
	3.8.1	Data analy	vsis	68
	3.8.2	Design of	experiments	68
	3.8.3	Coded and	l actual factors	69
	3.8.4	Quadratic	model and experimental matrix	72
	3.8.5	The analy	sis of variance (ANOVA)	73
	3.8.6	Additiona	l statistical tests	74
	3.8.7	Three-dim	ensional plots and optimization process	74

CHAPTER FORE - RESULTS AND DISCUSSION

4.1	Introdu	action	75
4.2	Chara	cteristics of petroleum wastewater	75
4.3	Results	s of the photocatalyst of TiO ₂ /ZnO/Fenton process	77
	4.3.1	Effect of H ₂ O ₂ to Fe ²⁺ ratio	77
	4.3.2	Effect of pH	78
	4.3.3	Total iron residual	80
	4.3.4	Statistical design approach	81
	4.3.5	Summary of results of photocatalyst of TiO ₂ /ZnO/Fenton	96
4.4	Results	s of the photocatalyst of TiO ₂ /ZnO/Air process	96
	4.4.1	Effect of TiO ₂ and ZnO dosage	97
	4.4.2	Effect of air	97
	4.4.3	Effect of pH	99
	4.4.4	Effect of reaction time	102

	4.4.5	Statistical	design approach	103
	4.4.6	Summary	of results of photocatalyst of TiO2/ZnO/Air	111
4.5	Results	of the solar	photocatalyst of TiO ₂ /Fenton process	112
	4.5.1	Effect of I	H_2O_2 to Fe^{2+} ratio	112
	4.5.2	Effect of p	рН	114
	4.5.3	Total iron	residual	115
	4.5.4	Statistical	design approach	115
	4.5.5	Summary	of results of the solar photocatalyst of TiO ₂ /Fenton	125
4.6	Compa	rative these	processes with the TiO_2 alone and the photo-Fenton	126
	4.6.1	Results of	the solar photocatalyst of TiO ₂ process	126
		4.6.1 (a)	Effect of TiO ₂ dosage	126
		4.6.1 (b)	Effect of pH	129
		4.6.1 (c)	Effect of initial concentration of COD	130
		4.6.1 (d)	Effect of irradiation time	131
		4.6.1 (e)	Statistical design approach	132
		4.6.1 (f)	Summary of results of the solar photocatalyst of TiO_2	142
	4.6.2	Results of	the solar photo-Fenton process	142
		4.6.2 (a)	Effect of H ₂ O ₂ to Fe ²⁺ ratio	142
		4.6.2 (b)	Effect of H ₂ O ₂ dosage	143
		4.6.2 (c)	Effect of Fe ⁺² dosage	145
		4.6.2 (d)	Effect of pH	146
		4.6.2 (e)	Effect of irradiation time	147
		4.6.2 (f)	Statistical design approach	148
		4.6.2 (g)	Comparison the results with other works	162
		4.6.2 (h)	Evaluation of the solar photo-Fenton process	163

	4.6.3	Compa	ring the TiO ₂ /ZnO/Fenton process with other process	165
	4.6.4 Comparing the $TiO_2/ZnO/Air$ process with other process			170
	4.6.5	Comparing the TiO ₂ /Fenton/solar process with other process		
	4.7	Establi	shment of full petroleum wastewater treatment plant	174
		4.7.1	Proposed data for PWT plant	175
		4.7.2	Estimated cost for TiO ₂ /ZnO/Fenton and TiO ₂ /ZnO/air	181
	4.8	Summa	ary of results	181
CHAP	TER FI	(VE – (CONCLUSIONS AND RECOMMENATIONS	
5.1	Conclus	sions		183
5.2	Recom	mendatio	ons	184
Referen	ces			185

References

Appendices

List of Publications

LIST OF TABLES

- Table 2.1Characteristics of petroleum wastewater and minimum12standard discharge limits for refinery effluents reported by
various researchers
- Table 2.2Range of Catalyst loadings and optimum values for TiO2 to33treat the petroleum wastewater reported by various
researchersresearchers
- Table 2.3Overview of work done in the area of photocatalyst of TiO235applications to treat the petroleum wastewater reported by
various researchers
- Table 2.4Overview of work done in the area of ZnO/TiO2 application38in recent years
- Table 2.5Overview of work done in the area of Fenton, photo-Fenton41and Fenton-like applications to treat the petroleumwastewater reported by various researchers
- Table 2.6Overview of work done in the area of Fenton/TiO242application in recent years
- Table 3.1The chemical materials used in this work57
- Table 3.2The instruments used in this work58
- Table 3.3Analytical methods for conventional parameter (APHA, 662005)
- Table 3.4
 Central composite design (CCD) independent variables in
 70

the solar photocatalyst of $TiO_2/ZnO/Fenton$ process (new method)

- Table 3.5 Central composite design (CCD) independent variables in 71 the solar photocatalyst of TiO₂/ZnO/Air process (New method)
- Table 3.6Central composite design (CCD) independent variables in71the solar photocatalyst of TiO2/Fenton process (New
investigation)
- Table 3.7Central composite design (CCD) independent variables in72the solar photo-Fenton process
- Table 3.8Central composite design (CCD) independent variables in72the solar photocatalyst of TiO2 process
- Table 4.1Characteristics of the petroleum wastewater from SOR.76
- Table 4.2ANOVA results and adequacy of the quadratic models for83TOC and COD removal efficiency and RI by the solarphotocatalyst of TiO2/Fenton/ZnO process
- Table 4.3Maximum TOC and COD removal efficiencies for model94response and verification experiments under Optimum
conditions [TiO2 dosage (0.7 g/l), ZnO dosage (0.3 g/l), Fe⁺²
dosage (0.01 g/l), H2O2 dosage (1.46 g/l), and pH (6.87)]
- Table 4.4ANOVA results and adequacy of the quadratic models for104TOC and COD removal efficiency by the solar photocatalystof TiO2/ZnO/Air process
- Table 4.5Maximum TOC and COD removal efficiencies for model110

response and verification experiments under Optimum conditions [TiO₂ dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), pH (6.8) and reaction time (170 min)]

- Table 4.6ANOVA results and adequacy of the quadratic models for117TOC and COD removal efficiency and residual iron by the
solar photocatalyst of TiO2/Fenton process
- Table 4.7Optimization results for maximum TOC and COD removal121efficiencies and minimum residual iron (RI) by the solarphotocatalyst of TiO2/Fenton process
- Table 4.8ANOVA results and adequacy of the quadratic models for134TOC and COD removal efficiency by the solar photocatalystof TiO2 process
- Table 4.9Maximum TOC and COD removal efficiencies for model139response and verification experiments under Optimum
conditions [TiO_2 dosage (0.6 g/L), C_0 of COD (1600 ppm),
pH (8) and reaction time (139 min)]
- Table 4.10ANOVA results and adequacy of the quadratic models for149TOC and COD removal efficiency by the solar photo-Fentonprocess
- Table 4.11 Maximum TOC and COD removal efficiencies for model 160 response and verification experiments under Optimum conditions [H2O2 dosage (850 mg L-1), Fe+2 dosage (60 mg L-1), pH (3.68) and reaction time (127 min)]
- Table 4.12Overview of work done in the area of photo-Fenton 162application in recent years

Table 4.13Comparing the solar photocatalyst TiO2/ZnO/Fenton166process with other processes under pH values range

Table 4.14	Experiment conditions for the $TiO_2/ZnO/Fenton$ process	175
Table 4.15	Data of plant using the $TiO_2/ZnO/Fenton/Solar$ process	177
Table 4.16	Experiment conditions for the $TiO_2/ZnO/air$ process	179
Table 4.17	Data of plant using the TiO ₂ /ZnO/air/Solar process	180

LIST OF FIGURES

		Page
Figure 2.1	Typical schematic of wastewater treatment	10
Figure 2.2	The maximum percentage COD removal (%) by photo- Fenton and Fenton-like applications to treat the petroleum wastewater reported by various researchers	39
Figure 2.3	The optimum pH for the photo-Fenton and Fenton-like applications to treat the petroleum wastewater reported by various researchers	40
Figure 3.1	The flowchart of overall research work	54
Figure 3.2	The satellite image for WWTP in SOR	55
Figure 3.3	The overall plan view of WWTP in SOR	55
Figure 3.4	Schematic diagram of the dissolved air flotation (DAF) unit for a petroleum wastewater treatment plant in SOR	56
Figure 3.5	The experimental device of a photoreactor	59
Figure 3.6	A sketch of the solar photocatalyst of $TiO_2/ZnO/Fenton$ process (New method)	61
Figure 3.7	A sketch of the solar photocatalyst of $TiO_2/ZnO/Air$ process (New method)	62
Figure 3.8	A sketch of the solar photocatalyst of TiO ₂ /Fenton process	63
Figure 3.9	A sketch of the solar photocatalyst of TiO ₂ process	64

Figure 3.11 UV-Index which measures UV intensity levels on a scale 68 of 1 to 12.

65

- Figure 4.1 Effect of the Fenton ratio on the solar photocatalyst of 78 TiO₂/ZnO/Fenton process (New method) at pH 7
- Figure 4.2 Influence of the initial pH on the removal rate of TOC and 79 COD by the solar photocatalyst of TiO₂/ZnO/Fenton process (New method)
- Figure 4.3 Concentrations of residual iron in petroleum wastewater 81 after treatment by the solar photocatalyst of TiO₂/ZnO/Fenton process (New method)
- Figure 4.4 Diagnostics plots for predicted versus actual values for the 86 TOC and COD removal rates and residual iron by the solar photocatalyst of TiO₂/Fenton/ZnO process
- Figure 4.5 Normalized coefficients of the models for TOC and COD 88 removals and for residual iron by the solar photocatalyst of TiO₂/Fenton/ZnO process
- Figure 4.6 The normal probability plots of the studentized residuals 89 for TOC and COD removals and residual iron by the solar photocatalyst of TiO₂/Fenton/ZnO process.
- Figure 4.7 Three dimensional surface plots of TOC removal by the 91 solar photocatalyst of TiO₂/Fenton/ZnO process as a function of: (a) ZnO concentration and pH (b) TiO₂ concentration and pH (c) Fe⁺² concentration and pH (d)

- Figure 4.8 Three dimensional surface plots of COD removal by the 92 solar photocatalyst of TiO₂/Fenton/ZnO process as a function of: (a) ZnO concentration and pH (b) TiO₂ concentration and pH (c) Fe⁺² concentration and pH (d) H₂O₂ concentration and pH
- Figure 4.9 Response surface models for TOC and COD removal 93 efficiencies and residual iron by the solar photocatalyst of TiO₂/Fenton/ZnO process.
- Figure 4.10 Perturbation plots for TOC and COD removal efficiencies 95 and residual iron by the solar photocatalyst of TiO₂/Fenton/ZnO process.
- Figure 4.11 Effect of TiO₂/ZnO ratios on the degradation rate of TOC 99 and COD by the solar photocatalyst of TiO₂/ZnO/Air process (new method) at pH 7
- Figure 4.12 Influence of the initial pH on the degradation rate of TOC 101 and COD by the solar photocatalyst of TiO₂/ZnO/Air process (new method)
- Figure 4.13 Influence of the reaction time on the degradation rate of 102 TOC and COD by the solar photocatalyst of TiO₂/ZnO/Air process (new method)
- Figure 4.14 Diagnostics plots for predicted versus actual values for the 105 TOC and COD removal rates by the solar photocatalyst of TiO₂/ZnO/Air process
- Figure 4.15 Normalized coefficients of the models for TOC and COD 107

removals by the solar photocatalyst of $TiO_2/ZnO/Air$ process

- Figure 4.16 Normal probability plots of the studentized residuals for 108 TOC and COD removals by the solar photocatalyst of TiO₂/ZnO/Air process
- Figure 4.17 Perturbation plots for TOC and COD removals by the 109 solar photocatalyst of TiO₂/ZnO/Air process
- Figure 4.18 Response surface models for COD and TOC removal 110 efficiencies by the solar photocatalyst of TiO₂/ZnO/Air process
- Figure 4.19 Effect of the H_2O_2/Fe^{2+} ratio on the degradation rate of 113 TOC and COD by the solar photocatalyst of TiO₂/Fenton process at pH 5.5 and 1 g L⁻¹ TiO₂
- Figure 4.20 Influence of the initial pH on the degradation rate of TOC 114 and COD by the solar photocatalyst of TiO₂/Fenton process in the petroleum wastewater
- Figure 4.21 Concentrations of iron ions before and after the solar 115 photocatalyst of TiO₂/Fenton process
- Figure 4.22 Diagnostics plots for predicted versus actual values for the 118 TOC and COD removal rates and residual iron by the solar photocatalyst of TiO₂/Fenton process
- Figure 4.23 Perturbation plots for the TOC and COD removal rates 119 and residual iron by the solar photocatalyst of TiO₂/Fenton process

- Figure 4.24 Normalized coefficients of the models for the TOC and 121 COD removal rates and residual iron by the solar photocatalyst of TiO₂/Fenton process
- Figure 4.25 The normal probability plots of the studentized residuals 122 for the TOC and COD removal rates and residual iron by the solar photocatalyst of TiO₂/Fenton process
- Figure 4.26 Response surface models for COD removal efficiency by 123 the solar photocatalyst of TiO₂/Fenton process
- Figure 4.27 Response surface models for TOC removal efficiency by 123 the solar photocatalyst of TiO₂/Fenton process
- Figure 4.28 Response surface models for residual iron by the solar 124 photocatalyst of TiO₂/Fenton process
- Figure 4.29 Effect of catalyst concentration on TOC and COD 128 removal at three typical irradiation times and pH 7
- Figure 4.30 Influence of the initial pH on the degradation rate of TOC 130 and COD by the solar photocatalyst of TiO₂ process in the petroleum wastewater
- Figure 4.31 Effect of the initial concentration of COD on the 131 degradation rate of TOC and COD by the solar photocatalyst of TiO₂ process
- Figure 4.32 Diagnostics plots for predicted versus actual values for the 135 TOC and COD removal rates by the solar photocatalyst of TiO₂ process
- Figure 4.33 Normalized coefficients of the models for TOC and COD 136

removals by the solar photocatalyst of TiO₂ process

- Figure 4.34 The normal probability plots of the studentized residuals 137 for TOC and COD removals by the solar photocatalyst of TiO₂ process
- Figure 4.35 Perturbation plots for TOC and COD removals by the 138 solar photocatalyst of TiO₂ process
- Figure 4.36 Response surface models for TOC & COD removal 141 efficiencies by the solar photocatalyst of TiO₂ process
- Figure 4.37 The maximum TOC and COD removal efficiencies under 141 the optimum conditions
- Figure 4.38 Effect of the H_2O_2/Fe^{2+} ratio on the degradation rate of 143 TOC and COD by the solar photo-Fenton process in petroleum waste water (pH = 3; 180 min)
- Figure 4.39 Effect of the H_2O_2 dosage on the TOC and COD removals 144 by the solar photo-Fenton processes (pH 3; 0.08 g L⁻¹ Fe⁺²; 180 min)
- Figure 4.40 Effect of the ferrous iron (Fe^{+2}) dosage on the TOC and 146 COD removals by the solar photo-Fenton processes (pH 3; 1 g L⁻¹ H₂O₂; 180 min)
- Figure 4.41 Influence of the initial pH on the degradation rate of TOC 147 and COD by the solar photo-Fenton process
- Figure 4.42 Influence of the reaction time on the degradation rate of 148 TOC and COD by the solar photo-Fenton process

- Figure 4.43 Diagnostics plots for predicted versus actual values for the 151 TOC and COD removal rates by the solar photo-Fenton process
- Figure 4.44 Normalized coefficients of the models for TOC and COD 153 removal by the solar photo-Fenton process
- Figure 4.45 Normal probability plots of the studentized residuals for 154 TOC and COD removal by the solar photo-Fenton process
- Figure 4.46 Response surface models for TOC removal by the solar 156 photo-Fenton process
- Figure 4.47 Response surface models for COD removal by the solar 157 photo-Fenton process
- Figure 4.48 Perturbation plots for TOC and COD removals by the 161 solar photo-Fenton process
- Figure 4.49 Effect of pH on the degradation rate of TOC & COD by 163 the photolytic process at 180 min
- Figure 4.50 Effect of pH on the degradation rate of TOC and COD by 164 the H₂O₂/solar process at 180 min
- Figure 4.51 COD removal from petroleum wastewater under different 165 processes
- Figure 4.52 Comparing the solar photocatalyst TiO₂/ZnO/Fenton 167 process (New method) with other processes under pH values range
- Figure 4.53 Comparing treatment time of the solar photocatalyst 169 TiO₂/ZnO/Fenton process with different processes for

xix

degradation of COD under pH7

- Figure 4.54 Comparing the solar photocatalyst TiO₂/ZnO/Air process 170 (New method) with other processes under pH values range
- Figure 4.55 Comparing treatment time of the solar photocatalyst 172 TiO₂/ZnO/air process with different processes for degradation of COD under pH7
- Figure 4.56 Comparing the TiO₂/Fenton/Solar system (New 173 investigation) with other applications under pH values range
- Figure 4.57 Schematic diagram for petroleum wastewater treatment 177 plant by using the solar photocatalyst of TiO₂/ZnO/Fenton process
- Figure 4.58 Schematic diagram for petroleum wastewater treatment 180 plant by using the solar photocatalyst of TiO₂/ZnO/Air process

LIST OF ABBREVIATIONS

AP	Adequate precision
R^2_{adj}	Adjusted Coefficient of determination
AOPs	Advanced oxidation processes
AF	Air flow
API Oil Separator	American Petroleum Institute Oil Separator
ANOVA	Analysis of variance
BOD	Biological oxygen demand
BT	Biological Treatment
CCD	Central composite design
COD	Chemical oxygen demand
R ²	Coefficient of determination
COD_{f}	Concentration of COD after treatment
TOC _f	Concentration of TOC after treatment
CF	Degree of freedom
DOE	Design of experiment
De	Desirability
Fe ⁺³	Ferric iron
Fe ⁺²	Ferrous iron
·OH	Hydroxy1 radicals
CODi	Initial concentration of COD
TOC _i	Initial concentration of TOC
RH	Organic compounds
PRESS	Predicted Residual Sum of Squares
RT	Reaction time

RI	Residual iron
RO	Reverse osmosis
SOR	Sohar oil refinery
Std. Dev.	Standard Deviation
k	The number of factors
ei	The random error
$X_i \text{ and } X_j$	The variables.
TDS	Total Dissolved Solids
TOC	Total organic compounds
TSS	Total suspended solid
TOG	Total of oil and grease

LIST OF SYMBOLS

Coefficient for the linear effect	ßi
Coefficient for the quadratic effect	ßii
Coefficient for the cross- product effect	ßij
Constant coefficient	ßo
Error	ε
Standard deviation	б
The regression coefficient.	β