

STOCHASTIC AND MODIFIED SEQUENT PEAK ALGORITHM FOR RESERVOIR PLANNING ANALYSIS CONSIDERING PERFORMANCE INDICES

ISSA SAKET OSKOUI

UNIVERSITI SAINS MALAYSIA

2016

STOCHASTIC AND MODIFIED SEQUENT PEAK ALGORITHM FOR RESERVOIR PLANNING ANALYSIS CONSIDERING PERFORMANCE INDICES

by

ISSA SAKET OSKOUI

Thesis submitted in fulfillment of the requirements for the degree of doctor of philosophy

March 2016

Dedicated to My Dear Parents

Esmaeil Saket Oskoui and Nahid Azari

ACKNOWLEDGMENT

Accomplishing this study has been the most significant challenge the author has ever made in his life. Without the support and guidance of the sophisticated supervision and examination team, this research would have never been possible.

First and foremost, the author would like to express his deepest gratitude to his supervisor Professor Rozi Abdullah for his supervision, constant support, invaluable help and suggestions throughout the work. His insights and recommendations provided the main basis for the present thesis.

The author would also like to appreciate his co-supervisor Professor Majid Montaseri for his guidance and dedication to the author's educational and professional development. His programs and recommendations provided the technical basis for this dissertation.

The author would like to appreciate the examination panel Professor Ahmad Shukri Yahya for his supports during the author's teaching assistance period and Professor Sobri Harun for his guidance on the data collection procedure and Professor Mohd Nordin Adlan for his attention to this research.

The author would like to acknowledge Department of Irrigation and Drainage Malaysia (DID) for providing the streamflow data of the study sites and Malaysian people for their friendly behavior during author's stay in Malaysia. The author would also like to express special thanks to his close friend Haitham Hussein who has helped the author during the hard times in Malaysia unconditionally.

Last, but not Least, the author wishes to express his special gratitude to his dear parents Esmaeil Saket Oskoui and Nahid Azari who have supported the author mentally and financially during this study in Malaysia. This research would have never been possible without their endless prayers and helps. Moreover, the author would like to thank her sister Dr. Maryam Saket Oskoui for her prayers and helps.

TABLE OF CONTENTS

Acknowledgment	ii
Table of Contents	iv
List of Tables	viii
List of Figures	x
List of Abbreviations	xv
List of Symbols	xvii
Abstrak	xxv
Abstract	xxvii

CHAPTER 1 - INTRODUCTION

1.1	Background	. 1
1.2	Statement of the Problem	.2
1.3	Objectives of the Study	.4
1.4	Scope of the Study	.4
1.5	Thesis Outline	.6

CHAPTER 2 - LITERATURE REVIEW

2.1	Introd	uction	9
2.2	Reser	voir System Analysis	9
2.3	Reser	voir System Behavior	12
2.4	Reser	voir System Performance Criteria	18
	2.4.1	Reliability	19
	2.4.2	Resilience	20
	2.4.3	Vulnerability	21
	2.4.4	Drought Risk Index (DRI)	24
	2.4.5	Sustainability	24

2.5	Reserve	oir-Yield Analysis	25
	2.5.1	Reservoir Simulation Models	26
	2.5.2	Optimization Models	29
2.6	Sequen	t Peak Algorithm	33
	2.6.1	Basic Sequent Peak Algorithm (SPA)	33
	2.6.2	Modified Sequent Peak Algorithm (SPA)	34
		2.6.2(a) Modified SPA for Inclusion of Net Evaporation Losses	35
		2.6.2(b) Modified SPA for Inclusion of Performance Norms	38
2.7	Reserv	voir Storage Yield Relationships (S-Y-R)	41
2.8	Summary of Reservoir System Analysis		
2.9	Streamflow Data Generation		
2.10) Stochastic Streamflow Models		
	2.10.1	Non-Parametric Time Series Models	49
		2.10.1(a) Moving Window Method	49
		2.10.1(b) Bootstrap Method	50
	2.10.2	Parametric Time Series Models	53
		2.10.2(a) Short-Term Persistence Models	54
		2.10.2(b) Long-Term Persistence Models	55
2.11	Synthe	tic Monthly Flows	56
2.12	Summa	ary of Streamflow Data Generation	61

CHAPTER 3 - STUDY SITES AND METHODOLOGY

3.1	Introduction	
3.2	.2 Catchments and Data	
	3.2.1 Catchments	
	3.2.2 Runoff Data	
3.3	Synthetic Streamflow Data	

	3.3.1	Consistency	77
	3.3.2	Stationarity	78
	3.3.3	Randomness	79
	3.3.4	Persistence	80
3.4	Testing	g the Probability Distribution of Streamflow Data	82
	3.4.1	Probability Plot Correlation Coefficient Test (PPCC Test)	83
		3.4.1(a) Normal Reduced Variates	84
		3.4.1(b) Pearson type III Reduced Variates	86
		3.4.1(c) Gumbel Reduced Variate	88
3.5	Annua	l Streamflow Data Generation Model (Lag-one Autoregressive Model	l) 89
3.6	Genera	tion of Monthly Flows: The Valencia-Schaake Disaggregation Mode	1.93
3.7	Parame	eter Estimation of the Stochastic Model	97
3.8	Stocha	stic Streamflow Generation	97
3.9	Reserv	oir Storage-Yield-Performance Analysis	. 100
3.10	Develo	pping Regression Relationships for Critical Period and Storage Capaci	ity
			. 103
3.11	Summ	ary	. 108

CHAPTER 4 - RESULTS AND DISCUSSION

4.1	Introduction		109
4.2	Statisti	ical Data Analysis	111
	4.2.1	Consistency Test	111
	4.2.2	Trend Test	114
	4.2.3	Randomness Test	114
4.3	Proba	bility Distribution of Streamflow Data	117
4.4	Synthe	etic Data Generation	133
	4.4.1	Annual Streamflow Statistics	134
	4.4.2	Monthly flow Statistics	135

4.5	Critica	ll Period	139
	4.5.1	Relationship between CP, demand and performance indices	143
	4.5.2	Relationship between CP, <i>m</i> and performance indices	150
4.6	Empir	ical relationships for the Critical Period	158
	4.6.1	Regression equation between CP and <i>m</i>	158
	4.6.2	Regression equations for A_c and B_c	168
	4.6.3	Predicting CP with the regression equations	171
4.7	Storag	e Capacity	174
	4.7.1	The empirical distribution of storage capacities	178
	4.7.2	Relationship between storage capacity, demand and performance	
		indices	181
	4.7.3	Relationship between storage capacity, m and performance indices .	188
4.8	Storag	e-Yield-Performance measure relationships	195
	4.8.1	Regression equation between the storage capacity and <i>m</i>	195
	4.8.2	Regression equations for As and Bs	205
	4.8.3	Predicting Storage Capacity with the regression equations	208
4.9	Summ	ary	212

CHAPTER 5 - CONCLUSION AND RECOMMENDATION

5.1	Introduction	
5.2	Conclusion	
5.3	Recommendation	217

REFERENCES	

APPENDIX

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Limitations of different relationships in the literature for modeling behavior, critical period and storage capacity	45
Table 3.1	Characteristics of the study catchments	74
Table 3.2	Monthly runoff characteristics of the study catchments	75
Table 4.1	Results of the SROC and run tests for trend and randomness, respectively of monthly and annual streamflow data at Johor Catchment	115
Table 4.2	Results of the SROC and run tests for trend and randomness, respectively of monthly and annual streamflow data at Melaka Catchment	116
Table 4.3	Results of the SROC and run tests for trend and randomness, respectively of monthly and annual streamflow data at Muar Catchment	116
Table 4.4	Parameters of the applied probability density functions obtained using the method of maximum likelihood estimates (MLE) for the Johor system	124
Table 4.5	Parameters of the applied probability density functions obtained using the method of maximum likelihood estimates (MLE) for the Melaka system	125
Table 4.6	Parameters of the applied probability density functions obtained using the method of maximum likelihood estimates (MLE) for the Muar system	126
Table 4.7	Correlation coefficients obtained from the PPCC test for the monthly and annual historical streamflow data in Johor catchment	128
Table 4.8	Correlation coefficients obtained from the PPCC test for the monthly and annual historical streamflow data in Melaka catchment	129
Table 4.9	Correlation coefficients obtained from the PPCC test for the monthly and annual historical streamflow data in Muar catchment	129
Table 4.10	The results of the Shapiro-Wilk normality test along with the skewness and kurtosis of the transformed data for Johor System	131
Table 4.11	The results of the Shapiro-Wilk normality test along with the skewness and kurtosis of the transformed data for Melaka System	132

Table 4.12	The results of the Shapiro-Wilk normality test along with the skewness and kurtosis of the transformed data for Muar System	132
Table 4.13	Comparison of the key statistical parameters for the historical and generated annual streamflow data	134
Table 4.14	Mean critical period estimates in years for different demands, reliability and vulnerability indices of the study systems	142
Table 4.15	Estimates of regression coefficients A_c and B_c along with the R^2 for different combinations of vulnerability and time-based reliability at the study systems	167
Table 4.16	Summary of coefficient estimates, <i>t</i> -ratios, and <i>p</i> -values of the regression equations for A_c and B_c at the study systems	169
Table 4.17	Statistics of regression equations for A_c and B_c	169
Table 4.18	The mean, standard deviation and the results of the Shapiro-Wilk normality test of the error terms in regression equations for A_c and B_c	170
Table 4.19	Mean normalized storage capacity estimates for different demands, reliability and vulnerability indices of the study systems	177
Table 4.20	Estimates of regression coefficients A_s and B_s along with the R^2 for different combinations of vulnerability and time-based reliability at the study systems	204
Table 4.21	Summary of coefficient estimates, <i>t</i> -ratios and <i>p</i> -values of the regression equations for A_s and B_s at the study systems	206
Table 4.22	Statistics of regression equations for As and Bs	206
Table 4.23	The mean, standard deviation and the results of the Shapiro-Wilk normality test of the error terms in regression equations for A_s and B_s	211

LIST OF FIGURES

		Page
Figure 2.1	Schematic of reservoir storage allocation zones	11
Figure 2.2	Schematic illustration of within-year and over-year storage for a reservoir system with significant dead storage	14
Figure 2.3	Schematics of observed and linearized reservoir storage-surface area relationship	36
Figure 2.4	Identifying IOVF, ICRIT and critical period in Montaseri's Sequent Peak procedure	40
Figure 3.1	The summary of overall methodology	66
Figure 3.2	Sungai Johor river basin	70
Figure 3.3	Sungai Melaka river basin	71
Figure 3.4	Sungai Muar river basin	72
Figure 3.5	Summary of the scheme of streamflow stochastic model to generate synthetic monthly flows	99
Figure 3.6	Flowchart of the sequent peak algorithm (SPA) incorporating storage-dependent losses and reliability and vulnerability indices	102
Figure 3.7	The scheme of developing regression equation for the critical period of every system individually	106
Figure 3.8	The scheme of developing regression equation for the critical period of the three systems together	106
Figure 3.9	The scheme of developing regression equation for the storage capacity of every system individually	107
Figure 3.10	The scheme of developing regression equation for the storage capacity of the three systems together	107
Figure 4.1	Double-mass curves for annual flows at the study sites	113
Figure 4.2	Frequency distribution of historical annual flows at the study sites	118

Figure 4.3	Probability density functions of Normal and LN3 for annual flows of the study sites	120
Figure 4.4	Cumulative distribution functions of Normal and LN3 for annual flows of the study sites	121
Figure 4.5	Probability density functions of P3, LP3, and LN2 for annual flows of the study sites	122
Figure 4.6	Cumulative distribution functions of P3, LP3, and LN2 for annual flows of the study sites	123
Figure 4.7	Probability plot of historical annual flows at the study sites	130
Figure 4.8	Comparison of the mean for historical and generated monthly streamflow data of the study sites	136
Figure 4.9	Comparison of the standard deviation for historical and generated monthly streamflow data of the study sites	137
Figure 4.10	Comparison of the coefficient of variation for the historical and generated monthly streamflow data of the study sites	138
Figure 4.11	Variation of Critical Period with demand for different design time- based reliability indices at vulnerability of 10% for the study systems	144
Figure 4.12	Variation of Critical Period with demand for different design time- based reliability indices at vulnerability of 20% for the study systems	145
Figure 4.13	Variation of Critical Period with demand for different design time- based reliability indices at vulnerability of 30% for the study systems	146
Figure 4.14	Variation of Critical Period with demand for different design vulnerabilities at reliability of 98% for the study systems	147
Figure 4.15	Variation of Critical Period with demand for different design vulnerabilities at reliability of 95% the for study systems	148
Figure 4.16	Variation of Critical Period with demand for different design vulnerabilities at reliability of 90% for the study systems	149
Figure 4.17	Variation of Critical Period with parameter <i>m</i> for different design time-based reliability indices at vulnerability of 10% for the study systems	152
Figure 4.18	Variation of Critical Period with parameter <i>m</i> for different design time-based reliability indices at vulnerability of 20% for the study systems	153

Figure 4.19	Variation of Critical Period with parameter m for different design time-based reliability indices at vulnerability of 30% for the study systems	154
Figure 4.20	Variation of Critical Period with parameter <i>m</i> for different design vulnerabilities at time-based reliability of 98% for the study systems	155
Figure 4.21	Variation of Critical Period with parameter <i>m</i> for different design vulnerabilities at time-based reliability of 95% for the study systems	156
Figure 4.22	Variation of Critical Period with parameter <i>m</i> for different design vulnerabilities at time-based reliability of 90% for the study systems	157
Figure 4.23	Fitted regression model for CP as a function of m for the study sites at time-based reliability of 100%	160
Figure 4.24	Fitted regression model for CP as a function of m for the study sites at time-based reliability of 98% and vulnerability of 30%	161
Figure 4.25	Fitted regression model for CP as a function of m for the study sites at time-based reliability of 95% and vulnerability of 30%	162
Figure 4.26	Fitted regression model for CP as a function of m for the study sites at time-based reliability of 90% and vulnerability of 30%	163
Figure 4.27	Fitted regression model for CP as a function of m for the study sites at vulnerability of 10% and time-based reliability of 97%	164
Figure 4.28	Fitted regression model for CP as a function of m for the study sites at vulnerability of 20% and time-based reliability of 97%	165
Figure 4.29	Fitted regression model for CP as a function of m for the study sites at vulnerability of 30% and time-based reliability of 97%	166
Figure 4.30	Performance of prediction equation for Critical Period (Johor system)	171
Figure 4.31	Performance of prediction equation for Critical Period (Melaka system)	171
Figure 4.32	Performance of prediction equation for Critical Period (Muar system)	172
Figure 4.33	Performance of prediction equation for Critical Period (3 systems together)	172
Figure 4.34	Empirical box plots of storage capacity for different reliability and vulnerability indices at the study sites (Demand = 30% MAF)	179

Figure 4.35	Empirical box plots of storage capacity for different reliability and vulnerability indices at the study sites (Demand = 70% MAF)	180
Figure 4.36	Variation of normalized storage capacity with demand for different design time-based reliability indices at vulnerability of 10% for the study systems	182
Figure 4.37	Variation of normalized storage capacity with demand for different design time-based reliability indices at vulnerability of 20% for the study systems	183
Figure 4.38	Variation of normalized storage capacity with demand for different design time-based reliability indices at vulnerability of 30% for the study systems	184
Figure 4.39	Variation of normalized storage capacity with demand for different design vulnerability indices at time-based reliability of 98 % for the study systems	185
Figure 4.40	Variation of normalized storage capacity with demand for different design vulnerability indices at time-based reliability of 95 % for the study systems	186
Figure 4.41	Variation of normalized storage capacity with demand for different design vulnerability indices at time-based reliability of 90 % for the study systems	187
Figure 4.42	Variation of normalized storage capacity with parameter <i>m</i> for different design time-based reliability indices at vulnerability of 10 % for the study systems	189
Figure 4.43	Variation of normalized storage capacity with parameter <i>m</i> for different design time-based reliability indices at vulnerability of 20 % for the study systems	190
Figure 4.44	Variation of normalized storage capacity with parameter <i>m</i> for different design time-based reliability indices at vulnerability of 30 % for the study systems	191
Figure 4.45	Variation of normalized storage capacity with parameter <i>m</i> for different design vulnerability indices at time-based reliability of 98% for the study systems	192
Figure 4.46	Variation of normalized storage capacity with parameter <i>m</i> for different design vulnerability indices at time-based reliability of 95% for the study systems	193
Figure 4.47	Variation of normalized storage capacity with parameter <i>m</i> for different design vulnerability indices at time-based reliability of 90% for the study systems	194

Figure 4.48	Fitted regression model for normalized storage capacity as a function of m for the study sites at time-based reliability of 100%	197
Figure 4.49	Fitted regression model for normalized storage capacity as a function of m for the study sites at time-based reliability of 98% and vulnerability of 30%	198
Figure 4.50	Fitted regression model for normalized storage capacity as a function of m for the study sites at time-based reliability of 95% and vulnerability of 30%	199
Figure 4.51	Fitted regression model for normalized storage capacity as a function of m for the study sites at time-based reliability of 90% and vulnerability of 30%	200
Figure 4.52	Fitted regression model for normalized storage capacity as a function of m for the study sites at vulnerability of 10% and time-based reliability of 97%	201
Figure 4.53	Fitted regression model for normalized storage capacity as a function of m for the study sites at vulnerability of 20% and time-based reliability of 97%	202
Figure 4.54	Fitted regression model for normalized storage capacity as a function of m for the study sites at vulnerability of 30% and time-based reliability of 97%	203
Figure 4.55	Performance of prediction equation for storage capacity (Johor system)	209
Figure 4.56	Performance of prediction equation for storage capacity (Melaka system)	209
Figure 4.57	Performance of prediction equation for storage capacity (Muar system)	210
Figure 4.58	Performance of prediction equation for storage capacity (3 systems)	210

LIST OF ABBREVIATIONS

AR	Auto Regressive
ARMA	Auto Regressive Moving Average
BL	Broken Line
CDF	Cumulative Distribution Function
СР	Critical Period
DF	Degrees of Freedom
DID	Department of Irrigation and Drainage
DP	Dynamic Programming
DRI	Drought Risk Index
F	Failure
FGN	Fractional Gaussian Noise
FM	Figure of Merit
ISM	Indexed Sequential Method
LP	Linear Programming
MA	Moving Average
MAF	Mean Annual Flow
MLE	Maximum Likelihood Estimates
NLP	Non-Linear Programming
PDF	Probability Density Function
PPCC	Probability Plot Correlation Coefficient
RMSE	Root Mean Square Error
RNG	Random Number Generator
S	Success

- SC Storage Capacity
- SD Standard Deviation
- SE Standard Error
- SPA Sequent Peak Algorithm
- SPSS Statistical Package for Social Sciences
- SROC Spearman Rank Order Correlation
- WMO World Meteorological Organization

LIST OF SYMBOLS

А	Coefficient matrix of (MN×N) in the V-S model
AR(1)	auto regressive model of 1 order
AR(p)	autoregressive model of p order
ARMA(p, q)	autoregressive moving average models
Ac	regression coefficient for modeling the critical period
As	regression coefficient for modeling the storage capacity
A _k	Kirby parameter for modifying Pearson type III reduced variate
At	reservoir water surface area at the beginning period t
A_{t+1}	reservoir water surface area at the end of period t
a	parameter, linearized slope of the area-storage curve for the reservoir
В	Coefficient matrix of (MN×MN) in the V-S model
Bc	regression coefficient for modeling the critical period
Bs	regression coefficient for modeling the storage capacity
\mathbf{B}_k	Kirby parameter for modifying Pearson type III reduced variate
B0, B1, B2	specific coefficients for autoregressive model
b	parameter, reservoir water surface area at the dead storage level
Cov	Covariance
CPE	critical period for English systems
CPI	critical period for Iranian systems
CP (Johor)	critical period for Johor system
CP (Melaka)	critical period for Melaka system
CP (Muar)	critical period for Muar system
CP (3 Systems)	critical period for the three study systems together

Cv	coefficient of variation
c	minimum fraction of target demand to be guaranteed in a failure period
D	demand expressed as a ratio of mean annual flow
Demand	annual demand from the reservoir as a ratio of mean annual flow
$D_{\rm w}$	a window width of a given duration in moving window method
E[]	Expectation function
EPt	depth of evaporation from reservoir surface in period t
EVt	volumetric storage-dependent fluxes during period t
$\mathrm{EV}_{\mathrm{t}}^{\mathrm{sys}}$	net evaporation losses of the system during period t
e ⁽⁾	exponential function employed for modeling the storage capacity
ei	independent zero mean and unit variance normal random variable
ē	the average of independent zero mean and unit variance normal random variables
ent	net evaporation (i.e. evaporation minus rainfall) in period t
F-stat	<i>F</i> -statistic
\mathbf{f}_{s}	the number of continuous sequences of failure periods
f	total number of failure periods
f	annual risk i.e. 1 - f is the annual time-based reliability
G _k	Kirby parameter for modifying Pearson type III reduced variate
g	skewness of Pearson type III variable corrected for serial correlation
g 0	original sample skewness
H _k	Kirby parameter for modifying Pearson type III reduced variate
Ho	the null hypothesis
h	Hurst coefficient
It	volumetric inflow into reservoir during period t

ICRIT	the time period corresponding to the end of the critical period
ICY	current critical period
IOVF	the time period corresponding to the beginning of the critical period
i	time / rank of observation values
K	reduced variate or frequency factor
к [*] а	minimum active storage capacity obtained by the modified SPA
K _{t-1}	volumetric sequential storage deficits at the beginning of period t
Kt	volumetric sequential storage deficits at the end of period t
Ka, K'a	capacity estimates during any consecutive iterations for modified SPA
Ke	reduced variate of Gumbel distribution
Kg	reduced variate of Pearson type III distribution
K_g^m	modified Pearson type III reduced variate developed by Kirby (1972)
Ki	i th order reduced variate or frequency factor
Kn	reduced variate of the standard normal distribution
Ko	over-year storage capacity expressed as a ratio of Mean Annual Flow
K _T	total (i.e. over-year plus within-year) storage capacity
k	continuous failure period
Le	the length of streamflow data
LN2	the two-parameter log-normal distribution
LN3	the three-parameter log-normal distribution
LP3	the log-Pearson type III distribution
Lt	other losses during period t in the SPA
М	the total number of seasons per year in the V-S model
MA(1)	moving average model of order 1

т	standard demand parameter / standardized demand parameter
max(sh _k)	maximum shortfall during the k th continuous failure period
Ν	the length of the observed data record
Ν	the total number of sites in the V-S model
Ns	the number of independent samples or replicates
n	the number of the data
nu	the total number of data / the number of years of data
n 1	the number of successes in the randomness test
n2	the number of failures in the randomness test
Р	cumulative probability
Pi	the cumulative probability of i th ordered data observations
Pt	depth of rainfall on reservoir surface in period t
Р3	Pearson type III distribution
p	annual reliability
\overline{q}	historical mean annual flow
R	the total number of the runs in randomness test
R	the range of cumulative departures of annual flows from the mean
Re	the time-based reliability
Rt	release of the reservoir system during period t
R_t^{sys}	release of the system during period t
R^*_t	target demand of the reservoir system during period t
R_t^{*sys}	target demand of the system during period t
R^2	Coefficient of determination for the regression analysis
r ()	lag-zero cross-correlation function for the V-S model

round { }	is a function that rounds to the closest integer number
rui	the rank of time series value during i period
S	standard deviation of annual flows
Skew	Skewness
SN	normalized storage capacity
Storage	active storage capacity
S-Y-P	storage-yield-performance
S-Y-R	storage yield relationships
SN (Johor)	normalized storage capacity for Johor system
SN (Melaka)	normalized storage capacity for Melaka system
SN (Muar)	normalized storage capacity for Melaka system
SN (3 Systems)	normalized storage capacity for the three systems together
St	active storage for the reservoir at the beginning of period t
S_{t+1}	active storage for the reservoir at the end of period t
Sĸ	the coefficient of skewness for annual flows
Sx	standard deviation of the observed data
S _{xx}	The matrix of (MN×MN) in the V-S model
S _{xz}	The matrix of (MN×N) in the V-S model
Szz	the covariance matrix of $(N \times N)$ in the V-S model
S 0	the covariance matrix of $(N \times N)$ in the V-S model
sh _k	shortfall during the k-th continuous failure period
Т	total number of time periods in the record or inflow sequence
Т	one divided by cumulative probability
T-F	Thomas-Fiering

t	time period
tr	the coefficient of the trend for trend test
tu	the value of the test statistic for the trend test
tui	time of occurrence of time series data
$t\alpha_t/2$	value of trend test limit at α_t significance level
u	observed data record
u*	a bootstrap sample
ui	time series data during i period
Var	variance
V-S	Valencia-Schaake
Vi	the vector of (MN \times 1) independent standard normal random variables
V_u	Vulnerability
$\overline{\mathbf{X}}$	mean of the observed data
Xi	the vector of (MN×1) transformed normally distributed seasonal flows at i year
Xi, Xi+1	annual flows for the i^{th} and $(i+1)^{th}$ years, respectively
X_{mi}^{n}	streamflow for season m, year i and site n in the V-S model
X_j^n	flows of season j at the site n in the V-S model
$X_l^k \\$	flows of season l at the site k in the V-S model
Xi	i-th ordered data observations
X _{max}	the largest observation
Xmed	sample medium
X _{min}	the smallest observation
х	streamflow data