

IMPROVING TORSIONAL BEHAVIOUR OF REINFORCED CONCRETE BEAM STRENGTHENED WITH ULTRA HIGH PERFORMANCE FIBRE REINFORCED CONCRETE

THAER JASIM MOHAMMED

UNIVERSITI SAINS MALAYSIA

2016

IMPROVING TORSIONAL BEHAVIOUR OF REINFORCED CONCRETE BEAM STRENGTHENED WITH ULTRA HIGH PERFORMANCE FIBRE REINFORCED CONCRETE

by

THAER JASIM MOHAMMED

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

January 2016

بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيم

{يَرْفَعِ اللَّهُ الَّذِينَ آمَنُوا مِنكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ وَاللَّهُ بِمَا تَعْمَلُونَ خَبِير}

صَدَقَ اللهُ الْعَظِيم

المجادلة (11)

DEDICATION

To the soul of my mother who had dreamt to witness these moments...

To my kind-hearted father for his unlimited love, inspires, supports, protections, sacrifices, and prayers...

To all my brothers for their supports, help, and encouragement...

To my wife and my kids for their endless love, patience, encouragement, and supports...

I dedicated this work hoping that I made all of them proud...

Thaer Jasim Mohammed

ACKNOWLEDGEMENT

First and foremost, Alhamdulillah thanks to Allah, The Most Merciful that this research had been completed.

I would like to express my grateful thanks to my supervisor professor Dr. Badorul Hisham Abou Bakar for his guidance, advice, endless support and, motivation throughout this research. Also, I would like to thank my co-supervisor Dr. Norazura Muhamad Bunnori, for her continuous support, advice and constructive comments.

Furthermore, I would like to thank Associate Prof. Dr. Choong Kok Keong from School of Civil Engineering and Dr.Yen Lei Voo, from Dura Technology Sdn. Bhd., Perak, Malaysia, for their advice and scientific comments. I would also like to thank all the lab technicians who have helped me throughout my study namely Mr. Shahril, Mr. Fauzi, Mr. Fadzil, Mr. Abdullah, and Mr. Taib who have played some very important roles in realizing this thesis.

I would like to thank School of Civil Engineering, Universiti Sains Malaysia (USM) for providing an appropriate and healthy environment, which is wellequipped with facilities to allow me to work on my research project.

I would like to express my deepest gratitude to my country Iraq. Lastly my grateful thanks also dedicated to my parents, my brother (Raed, Wisam, Hussam, Salam), my wife and my kids (Jannah, Adian, Abdullah) for all their pray and supporting me to finish my PhD study.

TABLE OF CONTENTS

Page

Acknowledgement	ii
Table of Contents	iii
List of Tables	ix
List of Figures	xi
List of Abbreviations	xix
List of Symbols	XX
Abstrak	xxii
Abstract	xxiv

CHAPTER 1- INTRODUCTION

1.1	General	1
1.2	Problem statement	4
1.3	Research objectives	7
1.4	Scope of the study	8
1.5	Thesis outline	9

CHAPTER 2- LITERATURE REVIEW

2.1	Introduction	11
2.2	Background of ultra high performance fibre concrete (UHPFC) definition	11
2.3	Properties of UHPFC	14

	2.3.1	Tensile behaviour	14
	2.3.2	Flexural strength	15
	2.3.3	Durability	15
2.4	Appli	cation of UHPFC	16
2.5	Potent	tial of UHPFC as a repair material	21
2.6	Туре	of concrete repair / strengthen of RC structures	24
2.7	Applie	cation of UHPFC in rehabilitation	31
	2.7.1	Rehabilitation and widening of a road bridge	31
	2.7.2	UHPFC protection layer on a crash barrier wall	33
	2.73	Rehabilitation of a bridge pier using prefabricated UHPFC shell elements	33
	2.7.4	Strengthening of an industrial floor	34
2.8	Torsic	onal strength of reinforced concrete members	35
	2.8.1	Behaviour of torsional members with longitudinal steel only	36
	2.8.2	Behaviour of torsional members with longitudinal steel and stirrups	37
2.9	Theor	ies of design for torsion	39
2.10	Previo	ous studies on reinforced concrete beams under torsion	41
2.11	Previo	ous studies on strengthening RC beams under torsion	47
2.12	Summ	nary	53

CHAPTER 3- RESEARCH METHODOLOGY

3.1	Introduction	56
3.2	Materials	59
	3.2.1 Cement	59

	3.2.2	Silica fume	59
	3.2.3	Aggregate	60
	3.2.4	Steel reinforcing bars	60
	3.2.5	Steel fibres	60
	3.2.6	Superplasticizer	61
3.3	Mix p	proportion	62
3.4	Mixin	ng procedure	64
	3.4.1	Preparation of NC	64
	3.4.2	Preparation of UHPFC	67
	3.4.3	Specimens preparation	67
3.5	Work	ability of concrete mixtures	70
	3.5.1	Normal concrete	70
	3.5.2	UHPFC	71
3.6	Mech	anical properties of hardened concrete and UHPFC	73
	3.6.1	Compressive test	73
	3.6.2	Splitting tensile test	74
	3.6.3	Modulus of elasticity	75
	3.6.4	Flextural strength	76
	3.6.5	Uniaxial tensile test	77
	3.6.6	Properties of hardened concrete	78
3.7	Speci	men details and strengthening schemes	80
3.8	Test s	etup and testing procedure	84
3.9	Measu	uring instruments	86
	3.9.1	Measurement of twist angle	86

	3.9.2 Position of strain gauges on the tested beam	87
3.10	Determination of torque and angle of twist value	88
3.11	Summary	90

CHAPTER 4- RESULT AND DISCUSSION

4.1	Introd	uction		93
4.2	Exper	imental r	esults	93
	4.2.1	Torsion	al moment and angle of twist of all beams	93
		4.2.1.1	Plain and controlled concrete beams	95
		4.2.1.2	Strengthening specimens Group L	101
		4.2.1.3	Strengthening specimens Group S	106
	4.2.2	Torsion	al moment and strain of all beams	110
4.3	Effect	of schem	nes of strengthening	111
4.4	Effect	of thickr	ness of strengthening	120
4.5	Effect	of stirrup	o ratio on torsional behaviour	134
4.6	Crack	pattern .		140
4.7	Summ	nary		152

CHAPTER 5- FINITE ELEMENT ANALYSIS

5.1	Introd	uction	153
5.2	Finite	element modelling	154
	5.2.1	SOLID65 element	154
	5.2.2	LINK8 element	155
	5.2.3	SOLID45 element	156

5.3	Mater	al properties	157
	5.3.1	Concrete	157
		5.3.1.1 Uniaxial compression behaviour for concrete	157
		5.3.1.2 Tensile behaviour of concrete	161
		5.3.1.3 Failure model for concrete	163
	5.3.2	Steel reinforcement and structural steel	165
		5.3.2.1 Steel reinforcement modelling	166
5.4	Real c	onstants	167
5.5	Beam	geometry	168
5.6	Beam	meshing	169
5.7	Bound	ary conditions and loads	172
	5.7.1	Load stepping and failure definition	173
5.8	Streng	thening of RC beams: numerical investigation	173
5.9	Summ	ary	176

CHAPTER 6- FINITE ELEMENT RESULTS AND DISCUSSION

6.1	Introduction	177
6.2	Results and discussion	177
	6.2.1 Controlled specimen	179
	6.2.2 Strengthened specimens Group L	183
	6.2.3 Strengthened specimens Group S	189
6.3	Contribution of retrofitting by UHPFC	195
6.4	Torsional stiffness	198
6.5	Torsional toughness	200

6.6	Crack patterns and failure modes	202
6.7	Summary	207

CHAPTER 7- CONCLUSIONS AND RECOMMENDATIONS

7.1	General	208
7.2	Effective strengthened reinforcement concrete beams by UHPFC	208
7.3	Effect of transverse reinforcement of beams	209
7.4	Effect of configuration strengthening	210
7.5	Effect of thickness strengthening	211
7.6	Comparison between finite element analysis by using program ANSYS with experimental test	212
7.7	Recommendation for future work	213
REFERENCES 2		
APPE	ENDICES	

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	UHPFC mix design components (Voort, 2008)	12
Table 2.2	Comparison of properties over NC and HPC and UHPdC (Lei et al., 2012)	13
Table 2.3	Examples of UHPFC application in concrete structures (Toutlemonde and Resplendino, (2011); Nematollahi et al., (2012); Tayeh, (2013); Aldahdooh, (2014))	20
Table 2.4	Literature summary	53
Table 3.1	Chemical composition of OPC and Silica fume	61
Table 3.2	RC beam mix design	63
Table 3.3	UHPFC mix design	63
Table 3.4	Flow domain classifications of freshly mixed UHPFC (Graybeal, 2006; Ahlborn et al., 2008; Tayeh, 2013)	72
Table 3.5	Mechanical properties of NC and UHPFC	78
Table 3.6	Mechanical properties of the tested specimens	79
Table 3.7	Details of testing beams and controlled beam for Group L	83
Table 3.8	Details of testing beams and controlled beam for Group S	84
Table 4.1	Test results of the specimens (Group L)	95
Table 4.2	Test results of the specimens (Group S)	95
Table 4.3	Effect configuration of strengthening on cracking torsional moment of the beams (Group L)	113
Table 4.4	Effect configuration of strengthening on ultimate torsional moment of the beams (Group L)	114
Table 4.5	Effect configuration of strengthening on cracking torsional moment of the beams (Group S)	115
Table 4.6	Effect configuration of strengthening on ultimate torsional moment of the beams (Group S)	115

Table 4.7	Effect thickness of strengthening on cracking torsional moment of the beams (Group L)	123
Table 4.8	Effect thickness of strengthening on ultimate torsional moment of the beams (Group L)	123
Table 4.9	Effect thickness of strengthening on cracking torsional moment of the beams (Group S)	125
Table 4.10	Effect thickness of strengthening on ultimate torsional moment of the beams (Group S)	126
Table 4.11	Percent of the cracking torque to the maximum torque of tested beams	128
Table 4.12	Effect stirrup ratio on cracking torsional moment of the strengthened beams	136
Table 4.13	Effect stirrup ratio on ultimate torsional moment of the strengthened beams.	137
Table 4.14	Crack patterns of tested beams	146
Table 5.1	Element types	154
Table 5.2	Real constants for beams	168
Table 5.3	Material properties of the model tested controlled beam.	174
Table 5.4	Material properties of the UHPFC	175
Table 6.1	Comparison of cracking and ultimate load for the tested beams	179

LIST OF FIGURES

Page

Figure 1.1	Examples of torsion in structural members (Panchacharam and Belarbi, 2002)	3
Figure 2.1	Sherbrooke Bridge, Quebec, Canada (Adeline et al., 1998)	17
Figure 2.2	Footbridge of Peace, Seoul (Deem, 2012)	17
Figure 2.3	Sakata-Mirai Footbridge, Sakata, Japan (Rebentrost and Wight, 2008)	18
Figure 2.4	Applications of UHPFC structural and architectural from 1995 to 2010 (Lei et al., 2012)	19
Figure 2.5	50m single span UHPdC road bridge crossing Sungai Linggi, Negeri Sembilan (Voo et al., 2011)	20
Figure 2.6	HPFRC characterization(Martinola et al., 2010): (a) direct tensile test on dog-bone specimen; (b) flexural test (100 x100 mm cross-section)	28
Figure 2.7	(a) Strengthening repairs in progress; and (b) completed repairs (Rosignoli et al., 2012)	28
Figure 2.8	Bridge cross section after rehabilitation (dimensions in cm) and photo taken in 2006 (Denarié et al., 2005; Denarie and Brühwiler, 2006)	32
Figure 2.9	Typical cross section of the crash barrier wall and view after rehabilitation (Oesterlee et al., 2007)	33
Figure 2.10	Cross section and general view of the rehabilitated bridge pier (Oesterlee et al., 2007; Brühwiler and Denarie, 2008)	34
Figure 2.11	Cross section (dimensions in cm) with UHPFRC layer (in grey) and view of UHPFRC casting performed in autumn 2007 (Brühwiler and Denarie, 2008)	35
Figure 2.12	Typical torque - twist curve for beams in torsion (Pillai, 2009): (a) plain concrete (b) reinforced concrete beam	36
Figure 2.13	Torque - twist curves of beams with various percentages of reinforcement (Hsu, 1968)	37

Figure 2.14	(a) Thin-walled tube; (b) area enclosed by shear flow path (ACI Committee 318, 2011)	39
Figure 2.15	Space truss analogy (ACI Committee 318, 2011)	40
Figure 2.16	Pure torsion test set-up (Husem et al., 2011)	41
Figure 2.17	Effect of complete wrap and U-wrap (with and without anchors) (Panchacharam and Belarbi, 2002)	48
Figure 2.18	Baseline specimen and model failure mode (Salom etal., 2004)	48
Figure 2.19	(a) Geometrical and reinforcement arrangement of the beams(b) experimental behavioural curves of tested beams(Chalioris, 2008)	50
Figure 2.20	Different strengthening schemes that can be used for torsion (Deifalla and Ghobarah, 2010)	51
Figure 3.1	Flowchart of the research methodology	58
Figure 3.2	Uniaxial tensile test of steel reinforcement according to ASTM: A675/A675M (2009)	62
Figure 3.3	Mixer of core RC beam	65
Figure 3.4	Vibrating core RC beam	65
Figure 3.5	Planeness of core RC beam	66
Figure 3.6	Remove mold and covered with a nylon sheet of RC beam	66
Figure 3.7	Sandblasting surface preparation before applying UHPFC on the beams	69
Figure 3.8	Core beam inside mould.	69
Figure 3.9	Application of UHPFC layer on the beam.	70
Figure 3.10	Curing tank for the specimens.	70
Figure 3.11	Slump test procedure of fresh concrete according to ASTM: C143/C143M (1998)	71
Figure 3.12	Flow table measurement of the UHPFC flow	72
Figure 3.13	A compression machine with maximum capacity of 3000 kN	73

Figure 3.14	Universal Testing Machine used for determining splitting tensile test	74
Figure 3.15	Universal Testing Machine used for determining modulus of elasticity	75
Figure 3.16	Universal Testing Machine used for determining flextural strength	76
Figure 3.17	Uniaxial tensile test for UHPFC	77
Figure 3.18	Elevation, cross-sectional dimensions, and steel reinforcement details of the tested beams: (a) Group L- without transverse reinforcement, (b) Group S - with transverse reinforcement	80
Figure 3.19	Testing set-up	86
Figure 3.20	Angle of twist measurement	87
Figure 3.21	Strain gauges	88
Figure 3.22	Torque capacity of the tested beam	89
Figure 3.23	Rotation by using Pythagoras theorem	90
Figure 3.24	Torsional shear stresses and cracking due to pure torsion (Prabaghar and Kumaran, 2013)	91
Figure 4.1	The torque-twist curve for beam RS-P	96
Figure 4.2	Mode of failure of a plain concrete beam RS-P	97
Figure 4.3	The torque-twist curve for controlled beam RS-S00	98
Figure 4.4	Mode of failure of the controlled beam RS-S00	99
Figure 4.5	The torque-twist curve for controlled beam RS-S66	100
Figure 4.6	Mode of failure of the controlled beam RS-S66	101
Figure 4.7	The torque-twist curve for fully wrapped beam (Group L)	102
Figure 4.8	The torque-twist curve for U-jacket beam (Group L)	104
Figure 4.9	The torque-twist curve for left-right beam (Group L)	105
Figure 4.10	The torque-twist curve for fully wrapped beam (Group S)	109

Figure 4.11	The torque-twist curve for U-jacket beam (Group S)	108
Figure 4.12	The torque-twist curve for left-right beam (Group S)	109
Figure 4.13	UHPFC contribution to crack torque of tested beams for different configuration (Group L)	117
Figure 4.14	UHPFC contribution to crack torque of tested beams for different configuration (Group S)	117
Figure 4.15	UHPFC contribution to ultimate torque of tested beams for different configuration (Group L)	119
Figure 4.16	UHPFC contribution to ultimate torque of tested beams for different configuration (Group S)	119
Figure 4.17	UHPFC contribution to crack torque capacity of tested beams for different thickness (Group L)	129
Figure 4.18	UHPFC contribution to ultimate torque of tested beams for different thickness (Group L)	129
Figure 4.19	UHPFC contribution to crack torque capacity of tested beams for different thickness (Group S)	130
Figure 4.20	UHPFC contribution to ultimate torque of tested beams for different thickness (Group S)	130
Figure 4.21	UHPFC contribution to crack torque of tested beams (with and without stirrup)	139
Figure 4.22	UHPFC contribution to ultimate torque of tested beams (with and without stirrup)	139
Figure 4.23	Mode of failure of the fully wrapped beam	141
Figure 4.24	The fibres bridging of the major cracks (pulled out of the UHPFC)	142
Figure 4.25	The cracks of the U-jacketed beam	143
Figure 4.26	Mode of failure of the U-jacketed beam	143
Figure 4.27	The cracks of the left-right beam	144
Figure 4.28	Mode of failure of the left-right beam	145
Figure 4.29	Mode of failure of the full wrap beam RS-S00-F25	146

Figure 4.30	Mode of failure of the full wrap beam RS-S00-F20	147
Figure 4.31	Mode of failure of the full wrap beam RS-S00-F15	147
Figure 4.32	Mode of failure of the full wrap beam RS-S00-F10	147
Figure 4.33	Mode of failure of the U-wrapped beam RS-S00-J25	148
Figure 4.34	Mode of failure of the U-wrapped beam RS-S00-J20	148
Figure 4.35	Mode of failure of the U-wrapped beam RS-S00-J15	148
Figure 4.36	Mode of failure of the U-wrapped beam RS-S00-J10	149
Figure 4.37	Mode of failure of the left-right beam RS-S00-LR25	149
Figure 4.38	Mode of failure of the left-right beam RS-S00-LR15	149
Figure 4.39	Mode of failure of the full wrap beam RS-S66-F25	150
Figure 4.40	Mode of failure of the full wrap beam RS-S66-F15	150
Figure 4.41	Mode of failure of the U-wrapped beam RS-S66-J25	150
Figure 4.42	Mode of failure of the U-wrapped beam RS-S66-J15	151
Figure 4.43	Mode of failure of the left-right beam RS-S66-LR25	151
Figure 4.44	Mode of failure of the left-right beam RS-S66-LR15	151
Figure 5.1	Coordinate system for SOLID65 concrete element	155
Figure 5.2	LINK8 3D spar element (ANSYS, 2005)	156
Figure 5.3	SOLID45 element	157
Figure 5.4	Simplified compressive uniaxial stress-strain curve for concrete	159
Figure 5.5	Multilinear stress-strain curve for UHPFC adopted in the analysis (Al-Azzawi et al., 2011;Al-Azzawi and Ali, 2015)	161
Figure 5.6	Stress-strain model for concrete in tension (ANSYS 2005)	162
Figure 5.5	Relationship between experimental ultimate strengths and STOC values of numerical models	164
Figure 5.6	Stress-strain curve for steel reinforcement	165

Figure 5.7	Models for reinforcement in reinforced concrete (Tavárez, 2001): (a) discrete, (b) embedded, and (c) smeared	167
Figure 5.8	Volume model	169
Figure 5.9	Concrete and strengthening mesh.	170
Figure 5.10	Steel reinforcement mesh.	171
Figure 5.11	Beam mesh	171
Figure 5.12	Boundary conditions for end supports and applied load	172
Figure 5.13	The basic steps of the finite element model	176
Figure 6.1	Theoretical and experimental torque - twist behaviour for plain beam RS-P	180
Figure 6.2	Theoretical and experimental torque - twist behaviour for controlled beam with longitudinal steel only RS-S00	181
Figure 6.3	Theoretical and experimental torque - twist behaviour for controlled beam with longitudinal and transverse steel RS- S66	182
Figure 6.4	Theoretical and experimental torque - twist behaviour for strengthened beam from four sides with a thin layer of UHPFC 25 mm RS-S00-F25	183
Figure 6.5	Theoretical and experimental torque - twist behaviour for strengthened beam from four sides with a thin layer of UHPFC 20 mm RS-S00-F20	184
Figure 6.6	Theoretical and experimental torque - twist behaviour for strengthened beam from four sides with a thin layer of UHPFC 15 mm RS-S00-F15	184
Figure 6.7	Theoretical and experimental torque - twist behaviour for strengthened beam from four sides with a thin layer of UHPFC 10 mm RS-S00-F10	185
Figure 6.8	Theoretical and experimental torque - twist behaviour for strengthened beam from three sides with a thin layer of UHPFC 25mm RS-S00-J25	186
Figure 6.9	Theoretical and experimental torque - twist behaviour for strengthened beam from three sides with a thin layer of UHPFC 20mm RS-S00-J20	186

Figure 6.10	Theoretical and experimental torque - twist behaviour for strengthened beam from three sides with a thin layer of UHPFC 15mm RS-S00-J15	187
Figure 6.11	Theoretical and experimental torque - twist behaviour for strengthened beam from three sides with a thin layer of UHPFC 10mm RS-S00-J10	187
Figure 6.12	Theoretical and experimental torque - twist behaviour for strengthened beam from two sides with a thin layer of UHPFC 25mm RS-S00-LR25	188
Figure 6.13	Theoretical and experimental torque - twist behaviour for strengthened beam from two sides with a thin layer of UHPFC 15mm RS-S00-LR15	189
Figure 6.14	Theoretical and experimental torque - twist behaviour for strengthened beam from four sides with a thin layer of UHPFC 25mm RS-S66-F25	190
Figure 6.15	Theoretical and experimental torque - twist behaviour for strengthened beam from four sides with a thin layer of UHPFC 15mm RS-S66-F15	190
Figure 6.16	Theoretical and experimental torque - twist behaviour for strengthened beam from three sides with a thin layer of UHPFC 25mm RS-S66-J25	191
Figure 6.17	Theoretical and experimental torque - twist behaviour for strengthened beam from three sides with a thin layer of UHPFC 15mm RS-S66-J15	192
Figure 6.18	Theoretical and experimental torque - twist behaviour for strengthened beam from two sides with a thin layer of UHPFC 25mm RS-S66-LR25	193
Figure 6.19	Theoretical and experimental torque - twist behaviour for strengthened beam from two sides with a thin layer of UHPFC 15mm RS-S66-LR15	193
Figure 6.20	Cracking torque for experimental and finite element study (Group L)	195
Figure 6.21	Cracking torque for experimental and finite element study (Group S)	196
Figure 6.22	Maximum torque for experimental and finite element study (Group L)	197

Figure 6.23	Maximum torque for experimental and finite element study (Group S)	197
Figure 6.24	Approximate torsional stiffness for experimental and finite element study (Group L)	199
Figure 6.25	Approximate torsional stiffness for experimental and finite element study (Group S)	199
Figure 6.26	Approximate toughness for experimental and finite element study (Group L)	201
Figure 6.27	Approximate toughness for experimental and finite element study (Group S)	201
Figure 6.28	Crack pattern of strengthened beam on four sides	204
Figure 6.29	Crack pattern of strengthened beam on three sides	205
Figure 6.30	Crack pattern of strengthened beam on left-right sides	206

LIST OF ABBREVIATIONS

ACI	American concrete institute
ASTM	American society for testing and materials
CARDIFRC	Ultra-high-performance fibre cementitious composite
DFRCC	Ductile fibre-reinforced cementitious composite
ECC	Engineered cementitious composite
FRC	Fibre reinforced cement
FRP	Fibre reinforced polymer
GFRP	Glass-fibre-reinforced polymer
HPC	High performance concrete
HPFRC	High performance fibre-reinforced concrete
HPFRCC	High performance fibre-reinforced cementitious composites
NC	Normal concrete
OPC	Ordinary Portland cement
RC	Reinforced concrete
RPC	Reactive powder concrete
SCC	Self compacting concrete
SFRC	Steel fibre reinforced concrete
UHPC	Ultra high performance concrete
UHPdC	Ultra high performance dura concrete
UHPFC	Ultra high performance fibre concrete

LIST OF SYMBOLS

A_c	Gross area of the concrete section
A_{sl}	Total area of longitudinal reinforcement to resist torsion
A_{st}	Area of one leg of a closed stirrup resisting torsion
D	Diameter of the specimen
d_{f}	Diameter of steel fibre
e	A horizontal distance between load cell to the centre of the beam
E_c	Modulus of elasticity of concrete.
E_s	Modulus of elasticity of steel reinforcement.
ε	Strain of concrete
\mathcal{E}_o	Strain at ultimate compressive strength
f	Apply load
f'_c	Compressive strength of concrete
f_t	Splitting tensile strength
f_y	Specified yield strength of steel reinforcement.
f_{yt}	Specified yield strength of the transverse reinforcement.
k	Initial torsional stiffness
<i>k</i> _{cr}	Cracked torsional stiffness
L	Length of the specimen
l_{f}	Length of steel fibre
Р	Maximum applied load
P_h	Perimeter of the steel stirrup
S	Spacing of steel stirrups

- STCC Shear transfer coefficient for a closed crack
- STOC Shear transfer coefficient for a opened crack
- T Torque
- *T_{cr}* Cracking torque
- T_u Ultimate torque
- Δ_y Displacement of the beam in the *y*-direction
- θ Angle of twist
- *v* Poisson's ratio
- ρ_l Longitudinal rebar ratio (%)
- ρ_{st} Stirrup ratio (%)