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PEMINDAHAN HABA DAN DEFORMASI FLEKSIBEL PAPAN LITAR 

TERCETAK DENGAN PELBAGAI BILANGAN PAKEJ JARINGAN GRID 

BOLA 

ABSTRAK 

 Teknologi elektronik dan mikroelektronik yang berkembang pantas 

meningkatkan permintaan terhadap peranti elektronik yang fleksibel dan ringan. 

Papan Litar Tercetak Fleksibel (FPCB)  yang digunakan untuk menggantikan Papan 

Litar Tercetak Tegar (RPCB) dilengkapi dengan ciri-ciri tersebut. 

Walaubagaimanapun, ciri-ciri lembut yang terdapat pada FPCB menghadapi 

pesongan (δ) yang tidak diperlukan dan tegasan yang hadir daripada aliran dan haba 

yang dijana daripada komponen-komponen semasa operasi. Di dalam penyelidikan 

yang dijalankan, kesan haba dan aliran terhadap FPCB dengan pakej Jaringan Grid 

Bola (BGA) telah berganding secara setemu di dalam simulasi untuk mengkaji 

kesannya terhadap FPCB. Kesan-kesan aliran telah dikaji pada permulaan 

penyelidikan, diikuti dengan penambahan sumber haba terhadap pakej BGA. 

Disamping itu, pemindahan haba yang 24 % lebih tinggi pada FPCB telah 

ditunjukkan apabila dibandingkan dengan RPCB. Beberapa faktor parametrik telah 

dikaji termasuklah halaju aliran (v) (1 – 5 m/s), 1 - 4 pakej BGA yang dilampirkan, 

sumber kuasa (0 – 0.213 W) yang dikenakan pada pakej BGA, saiz FPCB (80mm2 – 

140mm2) dan jarak antara pakej BGA (15 mm – 45 mm). Disamping itu, kecekapan 

pemindahan haba (h) telah ditambah sebagai tindak balas terhadap kajian 

pemindahan dalam kes yang melibatkan sumber haba. Kemudian v, δ dan h telah 

dinormalkan kepada nombor Reynolds (Re), δ/panjang FPCB (L) dan nombor 

Nusselt ( 	) yang tidak berdimensi. Kebanyakan faktor-faktor parametrik telah 

dijumpai amat mempengaruhi tegasan δ/L dan 	. Tambahan pula, pengoptimuman 
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telah dijalankan melalui kaedah permukaan tindakbalas (RSM) bagi menyediakan 

pendekatan rekabentuk yang berasaskan faktor-faktor dalam kajian awal untuk 

kepentingan jurutera dan perekabentuk FPCB. Berdasarkan penemuan penyelidikan, 

pengaruh aliran lebih tinggi terhadap tindak balas apabila sumber haba rendah. 

Sebaliknya, pengaruh haba lebih tinggi daripada pengaruh aliran apabila sumber 

haba tinggi. Selain itu, korelasi empirik 	, Re, nombor Prandtl (Pr) dan δ/L telah 

berjaya ditemukan, di mana pengaruh yang paling tinggi ialah Re diikuti oleh Pr dan 

δ/L. Di dalam penyelidikan terkini, di bawah pengaruh aliran dan sumber haba, δ/L, 

tegasan dan 	 yang tertinggi boleh mencecah 0.0043, 8.69 MPa and 85.54. Oleh 

itu, adalah amat penting untuk mengambilkira aspek haba bersama pengaruh aliran 

untuk mendapatkan ciri-ciri FPCB bersama pakej BGA semasa operasi. Kejayaan 

simulasi ini boleh membantu kajian tentang ciri-ciri fleksibel substrat dengan 

komponen yang beroperasi di bawah pengaruh aliran.  
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HEAT TRANSFER AND DEFORMATION OF FLEXIBLE PRINTED 

CIRCUIT BOARD WITH MULTI BALL GRID ARRAY PACKAGES 

ABSTRACT 

The rapid development of electronic and microelectronic technology 

increases the demands for electronics device with flexible and light weight capability.  

Flexible printed circuit board (FPCB) which can be used to replace rigid printed 

circuit board (RPCB) is well equipped with those features. However, the soft feature 

of FPCB poses unwanted deflection (δ) and stress from the flow and heat generated 

by the operating components. In present research, thermal and flow effects on FPCB 

with attached ball grid array (BGA) packages have been investigated where the 

numerical simulation with coupled of flow and thermal effects concurrently has been 

successfully developed in the simulation. The effects of flow are studied at the initial 

stage of the research, followed by the addition of heat source to the BGA packages. 

The experimental work with actual attached ball grid array (BGA) packages was 

carried out to verify and validate the results. Findings show that better heat transfer 

performance on FPCB with an average 24 % higher than RPCB. Several parametric 

factors are explored including flow velocities (v) (1 – 5 m/s), 1 - 4 number of BGA 

packages attached, power supplied to the BGA packages (0 – 0.213 W), size of 

FPCB (80mm2 – 140mm2) and distance between BGA packages (15 mm – 45 mm). 

The heat transfer coefficient (h) has been added into the responses to study the heat 

transfer in the cases that involved heat source. Later on, v, δ and h had been 

normalized into dimensionless Reynolds number (Re), δ/length of FPCB (L) and 

Nusselt number ( 	), respectively. Most the parametric factors were found to be 

significantly affected the δ/L, stress and 	. Optimization is then carried out by 

response surface methodology (RSM) to provide the design approaches based on 
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those factors in present study for the interests of FPCB designers or engineers. Based 

on the results and findings, the flow has significant effect on the responses when 

thermal power is low. On the other hand, the thermal effect is higher than flow when 

thermal power is high. Besides, empirical correlation equations of Re, Prandtl 

number (Pr), δ/L and 	has been established, in which the highest effect is Re, 

followed by Pr and δ/L. In present research, under the influences of flow and thermal 

power supplied, the highest δ/L, stress and 	 could reach 0.0043, 8.69 MPa and 

85.54, respectively. Therefore, it is important to consider thermal effect together with 

flow influences for understanding the characteristic of FPCB attached with BGA 

under operating condition. With the successful development of thermal-mechanical-

fluid-structure interaction numerical coupling method, in which thermal and flow 

effects have been considered simultaneously could help to study flexible substrate 

characteristic under operating condition and flow environment which is closer to real 

life scenario. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

The high demand of electronic devices has caused the rapid growth of 

electronic and microelectronic industries since the past few decades. The devices 

such as smart phone, laptop, computer, tablet etc. have penetrated into the daily life 

and greatly improve the lifestyle of mankind. A lot of investigations have been 

carried out to bring the convenience of these devices to the user. Among most of the 

electronic devices, there is one similar common design which is printed circuit 

boards (PCB). PCB exists in most of the electronic devices as the platform to hold 

the components and integrated circuit (IC) in places while connecting the 

components with transmission lines.  

Therefore, the reliability of the PCB with components is always an interest 

for researchers. In the past few decades, many researchers had studied the 

characteristics of the PCB so that proper design and handling process could be done 

to ensure the quality and durability of the electronic assembly on PCB such as 

Arruda and Freitas (2007) who studied the effect of surrounding air on drop test of 

flexible PCB (FPCB). When under operating condition, one of the major issues is the 

overheating of IC and electronic components. Some of the devices use active cooling 

method which is using fan to create air flow for cooling the IC and components. It is 

one of the cheapest ways to cool down the device. However, when FPCB is exposed 

to flow environment, FPCB would encounter unwanted deflection and stress. Further 

elaboration on PCB and FPCB will be presented in the following subsections. 

CHAPTER ONE
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1.2 Printed Circuit Board 

1.2.1 Rigid PCB 

 PCB was invented by Albert Hanson in 1903 (Petherbridge et al., 2005). 

Most of the electronic devices contain PCB. The core material of PCB is FR-4 which 

is a composite material consisting of epoxy and woven glass. In the past two decades, 

rigid PCB (RPCB) was widely used as the substrate in modern electronic devices. 

Therefore, various studies on the reliability of the RPCB with components were 

conducted. Most of the reliability issues on RPCB include bending stress, mechanical 

shock/drop impact, joints connection and one of the major issues is the thermal stress. 

Figure 1.1 shows the open circuit faults on RPCB in mobile phones as marked in red 

arrows, which is also another issue encountered in RPCB (Ji et al., 2010). 

Components and IC always produce heat when in operation where different 

coefficient of thermal expansion (CTE) values of various materials would cause 

those materials expand in different rate which lead to high stress between materials. 

The thermal stress is harmful to the RPCB especially interconnection joints. Hence a 

lot of investigations have been carried out on heat transfer for electronic cooling. The 

fundamental of the numerical simulation and experimental setup for heat transfer on 

PCB are built up from those investigations.  

    

Figure 1.1: Rigid PCB in mobile phone (Ji et al., 2010). 
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1.2.2 Flexible PCB  

 With the rapid growth of electronic and microelectronics industries where 

mechanical flexibility is one of the crucial elements, FPCB has gained increasing 

popularity. FPCB has been used as an alternative to RPCB in several fields due to its 

lighter weight, lower cost, more robust, better twistability and flexibility (Xiao et al., 

2008). The core material of FPCB usually made of either polyimide, polyethylene, 

polyester or naphthalate (Leong et al., 2012a). Polyimide provides several 

advantages compared to other materials such as low cost, wide available thicknesses 

range and good mechanical stress tolerance (Rujun et al., 2016). As shown in Figure 

1.2, typical FPCB consist of electrically conductive layer (copper) and electrically 

resistive layer (polyimide). Researchers have used FPCB in several applications such 

as fabricated and mounted flow sensor on the FPCB for heat and flow detection, 

flexible wet sensor sheet to detect urination in diapers and applied FPCB in motor, 

coil and electrodynamics bearings (Dehez et al., 2014; Guoping et al., 2015; 

Petropoulos et al., 2012; Que Rui Yi and Zhu Rong, 2015; Takamiya et al., 2014; 

Wang et al., 2014). The reliability issues on FPCB (i.e. bending stress, mechanical 

shock/drop impact, joints connection and thermal stress) are similar to RPCB, just 

that FPCB has better flexibility to absorb more impact. However, the soft nature of 

FPCB unavoidably encounters more deflection and stress as compared to RPCB in 

the flow and operating environment.  
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Figure 1.2: Typical flexible PCB (Rizvi et al., 2010). 

1.3 Problem Statements 

The rigid feature in RPCB becomes constraint in some modern electronic or 

microelectronic devices. Therefore, FPCB becomes popular and as an alternative to 

RPCB. Previous researches focused more on the thermal stress and cooling effect on 

the RPCB while deflection and stress induced by flow was often ignored as it is 

insignificant for RPCB (Arruda and Freitas, 2007). However, FPCB inevitably 

confronts more deflection and stress under flow environment compared to RPCB. 

Former studies only investigate FPCB with simple Perspex blocks to represent the 

components in numerical simulation and experiment. Besides, previous studies were 

limited to the flow effect on FPCB (Leong and Abdullah, 2012; Leong et al., 2012a). 

In other words, the FPCBs in those studies were in idle state. Thus, the study of 

FPCB behaviour in operating condition is necessary so that the deflection, stress and 

thermal effect on FPCB could be controlled and reduced. Hence, thermal factor 

should be included and coupled simultaneously with flow effects.  
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