NEW EVOLVING FUZZY SYSTEM ALGORITHMS USING DYNAMIC CONSTRAINT

MD. MANJUR AHMED

UNIVERSITI SAINS MALAYSIA 2016

NEW EVOLVING FUZZY SYSTEM ALGORITHMS USING DYNAMIC CONSTRAINT

by

MD. MANJUR AHMED

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

ACKNOWLEDGEMENTS

All Praises be to Allah the Almighty, for delivering me the patience, the potency and the guidance to conclude this thesis fruitfully.

I owe the greatest debt to my parents, brothers, sisters and all my relatives for not only their never-ending affection, love and patience, but also their encouragement and unconditioned support to me in all my decisions. Their guidance helped me to keep my motivations high throughout my studies. I would like to share this moment of happiness and express the appreciations to my father (Md. Akmal Hossain) and mother (Mrs. Morjina Begum) who encouraged me in every step in my life.

I would like to express my utmost gratitude and appreciation to my supervisor, Professor Dr. Nor Ashidi Mat Isa for being a dedicated mentor as well as for his valuable and constructive suggestions that enabled this thesis to run smoothly. He provided excellent guidance through these years with a mix of trust in my ideas and instant feedback on my questions.

I am greatly indebted to my brother Md. Mostafijur Rahman, for his guidance and great source of motivation. I owe a special gratitude to my sister and brother-in-law Dr. Fazlul Bari. My warmest acknowledgements also to my wife and son, for their love and affection to keep my inspirations high throughout my research. All of them have sacrificed more than I have for this research.

I thank all of my lab friends and all staffs of University Sains Malaysia for their supports. Special thanks to Jamaluddin for translating abstract to Bahasa Melayu.

I would also like to thank the Malaysian Ministry of Higher Education (MOHE) for their financial support by awarding me the Commonwealth Scholarship and Fellowship Plan (CSFP). This work is also partially supported by the Universiti Sains Malaysia (USM) through Research University Grants (RU) entitled "Development of an Intelligent Auto-Immune Diseases Diagnostic System by Classification of Hep-2 Immunoflourenscence Patterns."

TABLE OF CONTENTS

Ackı	nowledgen	ments	ii
Tabl	e of Conte	ents	iv
List	of Tables .		X
List	of Figures		xiii
List	of Abbrev	iations	xix
List	of Symbol	ls	xxii
Abst	rak		xxvi
Abst	ract		xxix
CHAI	PTER 1-	INTRODUCTION	
1.1	Knowle	edge Base to Fuzzy Information Granule: A Paradigm of	
	Granula	ar Computing	. 1
1.2	Fuzzy I	Models to Realize the Application Environment	. 3
1.3	Probler	n Statement	. 5
1.4	Researc	ch Objectives	. 9
1.5	Researc	ch Scope of Evolving Fuzzy System	. 10
1.6	Thesis	Outlines	. 12
СНАІ	PTER 2-	LITERATURE REVIEW	
2.1	Introdu	ction	. 14
2.2	Informa	ation Granule and Fuzzy Rule Base Model	. 15
	2.2.1	Knowledge Transfer to Fuzzy Rule-based Model	. 15
	2.2.2	Granularity and Complexity	. 18
2.3	Interpre	etability-Accuracy Tradeoff	20
	2.3.1	Measure of Interpretability and Accuracy	. 20

	2.3.2	Conflict Decision of Fuzzy Model	21
	2.3.3	Overfitting and Underfitting Situation	24
	2.3.4	Previous Studies on Interpretability-accuracy Tradeoff	26
	2.3.5	Discussions on Interpretability-Accuracy Tradeoff	28
2.4	Fuzzy (Granularity Model	28
	2.4.1	Context Based Fuzzy System	28
	2.4.2	Evolving Granule Methods to Realize Application	
		Environment	31
	2.4.3	Self-adaptation Methods	33
	2.4.4	Sequential Decision Making and Progressive Computing	34
	2.4.5	Discussions on Existing Fuzzy Granularity Model	34
2.5	Interpre	etability Constraints and Parameter Optimization for	
	Interpre	etability-Accuracy Tradeoff	35
	2.5.1	Constraint Realization for Semantic Blocks	35
	2.5.2	Parameter Optimization	41
		2.5.2.1 Gradient-descent Method and Its Drawback	42
		2.5.2.2 Extremum and Inflexion Points	44
		2.5.2.3 Justifiable Granularity and Allocation of	
		Information Granularity	45
	2.5.3	Discussions on Constraint Realization and Parameter	
		Optimization	49
2.6	General	Framework of the Existing Fuzzy System	50
2.7		ry	52
СНА	PTFR 2_N	METHODOLOGY	
	1 1121X J- IV		
3.1	Introdu	ction	54
3.2	Design	Consideration: Flowchart of the EFS	55
3.3	The Co	ncept: Distinct Points and Effective Rule Base	57

Initial St	tage: Unde	efitting state
3.3.1	Supervis	ed condition
3.3.2	Unsuper	vised Condition
Uncertai	nty Contr	oller Using Dynamic Constraints: Introducing
Pseudo-s	sigma (P _σ))
3.5.1	Dynamic	Constraint for Output-context Realization
3.5.2	Input-co	ntext Associated with Output-context
	3.5.2.1	Center of the Input Cluster
	3.5.2.2	Sigma Value (variances) of the Input Cluster
Design I	Methodolo	egy: Evolving Methods and Algorithms
3.6.1	Evolvin	g Structural Fuzzy System Based on Input-output
	Context	
	3.6.1.1	Overview of ESFS
	3.6.1.2	Structural System
	3.6.1.3	Realization of the Output-contexts
	3.6.1.4	Input-contexts Associated with the Output-
		context
	3.6.1.5	Algorithm for ESFS
3.6.2	Evolvin	g Output-context Fuzzy System (EOCFS)
	3.6.2.1	Overview of EOCFS
	3.6.2.2	Evolving System
	3.6.2.3	Algorithm of EOCFS
3.6.3	Evolvin	g Information Granule (EIG)
	3.6.3.1	Overview and Evolving Method
	3.6.3.2	Algorithm of EIG
Features	of the Pro	pposed Evolving Methods and Recognition of the
		oposed Evolving Methods and Recognition of the

CHAPTER 4 – RESULTS AND DISCUSSION

4.1	Introduct	tion	
4.2	EOCFS: Performance Analysis and Discussion		105
	4.2.1	Data Samples and Analysis	106
	4.2.2	Evaluation of the EOCFS Characteristics: Evolving and	109
		Adaptation	
		4.2.2.1 Evolving Characteristic	109
		4.2.2.2 Adaptation Characteristic	112
		4.2.2.3 Noise Handling	115
	4.2.3	Performance Comparison	116
	4.2.4	Semantic Rule Representation	121
4.3	Performa	ance Analysis and Discussion of EIG	122
	4.3.1	Data Samples and Analysis	
	4.3.2	Characteristics of Evolving, Adaptation, and RPE Index	
			124
	4.3.3	Performance Comparison	130
	4.3.4	Semantic Rule Representation	136
	4.3.5	Discussion on Error Analysis for Overfitting Situation	137
4.4	ESFS: Po	erformance Analysis and Discussion	138
	4.4.1	Data Samples and Analysis	138
	4.4.2	Realization of the output contexts and its corresponding	
		input-contexts	139
	4.4.3	Bipartite fuzzy model	141
	4.4.4	Performance Comparison	142
4.5	Compari	son Between ESFS, EOCFS and EIG	146
4.5	Summar	V	147

CHAPTER 5 – CASE STUDY: RECURSIVE CONSTRUCTION OF OUTPUT-CONTEXT FUZZY SYSTEMS FOR THE CONDITION MONITORING OF ELECTRICAL HOTSPOTS BASED ON INFRARED THERMOGRAPHY

5.1	Introdu	ction	149
5.2	Method	lology of Thermographic Diagnostics	152
	5.2.1	Image Capture	152
	5.2.2	Typical Condition Monitoring by IRT	154
5.3	Hotspor	t Detection and Feature Extraction	157
	5.3.1	Hotspot Detection	157
	5.3.2	Automatic Feature Extraction	158
5.4	Conditi	on Monitoring of Hotspots: Recursively Constructed Output-	
	context	Fuzzy Approach	159
	5.4.1	Preliminaries	160
	5.4.2	Recursive Construction of the Output-context Fuzzy	
		System	160
5.5	Thermo	ographic Diagnostic of Electrical Components	165
	5.5.1	Diagnostic Preliminaries	165
	5.5.2	Classification of Conditions of Electrical Hotspots	167
	5.5.3	Fuzzy Rule Creation	171
	5.5.4	Performance Comparison	173
5.6	Summa	ry	175
СНАР	TER 6 - 0	CONCLUSIONS AND FUTURE WORK	
6.1	Conclu	sions And Research Findings	177
6.2	Recomi	mendations for Future Research	179

REFERENCES	181
LIST OF PURLICATIONS	

LIST OF TABLES

		Page
Table 2.1	Summary of related work to assess the interpretability-accuracy tradeoff of fuzzy rule base	27
Table 4.1	Evolving process of the EOCFS to obtain an effective rule base for Equation (4.1) (i.e. Dataset 1)	110
Table 4.2	Performance of the EOCFS with noise for Dataset 4 (i.e. Equation (4.5))	115
Table 4.3	Performance comparison in RMSE of Dataset 1	116
Table 4.4	Performance comparison in RMSE of Dataset 2	117
Table 4.5	APE performance comparison for Dataset 3	118
Table 4.6	Performance comparison in RMSE of Dataset 4	119
Table 4.7	Performance comparison in RME of Dataset 5	120
Table 4.8	Performance comparison in RMSE of Dataset 6	120
Table 4.9	Mamdani type fuzzy rules for Dataset 1, 2 and 3	122
Table 4.10	Evolving process of the EIG for Dataset 7 (i.e. Equation (4.5))	125
Table 4.11	Performance comparison of non-linear system (4.5) for EIG	130
Table 4.12	Performance comparison of Dataset 8 (human-operated chemical plant datasets) for EIG.	131
Table 4.13	Performance comparison of Dataset 9 (Nakanishi's nonlinear	132

system) for EIG.

Table 4.14	Performance comparison of Dataset 10 (daily price of a stock in the stock market) for EIG.	134
Table 4.15	Performance comparison of Dataset 11 (automobile) for EIG	135
Table 4.16	Performance comparison of Dataset 12 (Boston area) for EIG	136
Table 4.17	Mamdani-type fuzzy rules of Nakanishi's Datasets 7, 8, and 9 while applying EIG	137
Table 4.18	Realization of the output-contexts for Dataset 13 (Nakanishi's nonlinear system) using ESFS algorithm. RPE with shadow color indicating overfitting stage	140
Table 4.19	Realization of the input-contexts for Dataset 13 (Nakanishi's nonlinear system) using ESFS algorithm. Consider $\sigma_{init}^t = 0.3$ where number of output-context equal to 4. RPE' with shadow color indicating overfitting stage	140
Table 4.20	Performance comparison of Dataset 13 (Nakanishi's nonlinear system) for ESFS.	142
Table 4.21	Performance comparison of Dataset 14 (Wine data) while applying ESFS	143
Table 4.22	Performance comparison of non-linear system (Dataset 15) for ESFS	144
Table 4.23	Performance comparison in RME of Dataset 16	145
Table 4.24	Performance comparison in RMSE of Dataset 17	145

Table 5.1	Fluke Ti24 camera specifications (Source: Fluke Ti25 system, 2010)	153
Table 5.2	Evolving process of the RCFS to obtain an effective rulebase for the thermographic diagnostic of electrical components	168
Table 5.3	Classification of the conditions of electrical components realized by the RCFS when the number of rules is 2 at $\sigma_{init}^t = 6.5$	168
Table 5.4	Further recursion of RCFS algorithm to obtain an effective rule base	170
Table 5.5	Classification of the electrical components conditions realized by the RCFS when the number of rules are 4 and $\sigma_{init}^t=2$	170
Table 5.6	Mamdani-type fuzzy rules identified for the thermographic diagnostic of electrical components	173
Table 5.7	Comparison of the classification accuracy on test data. Tenfold cross validation is used to train and test the data.	175

LIST OF FIGURES

Page

Figure 2.1	Knowledge transfer to information granule (Pedrycz, 2011). (a) Individual sources of knowledge to a granular model, and (b) interaction linkages of knowledge sources $(f_1, f_2,, f_c)$.	16
Figure 2.2	(a) Lower granularity with bloated rules and, (b) higher granularity. Rule centroids are showed with "+" (Riid and Rüstern, 2014).	19
Figure 2.3	Fuzzy rule-base and its conflict for (a) a five rule fuzzy classifier (b) conflict situation for first (R_1) and third (R_2) rule.	23
Figure 2.4	Decision boundaries and its effect on membership function (Riid and Rüstern, 2014).	24
Figure 2.5	Dataset to information model, (a) underfitting, (b) good compromise, (c) overfitting (Mathbabe, 2012).	25
Figure 2.6	Web of information granules based on context-based clustering approach (Pedrycz, 2005b).	30
Figure 2.7	Fuzzy partition with a poor semantic interpretability (Gacto et al., 2011).	36
Figure 2.8	Creation and updating of fuzzy rules and membership functions for a closed selected region (Di et al., 2010).	37
Figure 2.9	CLIP procedure for each input—output dimension (A) Initialization. (a) First cluster formed if the center coincides with the midpoint of the domain. (b) First cluster formed	40

	left neighbor. (b) Creation of a new cluster before regulation. (c) Final appearance of the fuzzy partitioning after regulation. (d) Introduction of a novel data point with both left and right neighbors. (e) Creation of a new cluster before regulation. (f) Final appearance of the fuzzy partitioning after regulation (Tung et al., 2011).	
Figure 2.10	Gradient-descent technique (a) initial stage with a guess and, (b) its recursive procedure until a stopping criterion is fulfilled (Bayen, 2015).	42
Figure 2.11	Optimized fuzzy rule bases which cover the extrema of a function. The extrema points define as the center of the fuzzy system (Kosko, 1995).	45
Figure 2.12	Optimization of interval for information granule $\Omega = [a,b]$ (Gacek, 2013)	47
Figure 2.13	Relationship between Q and ε .	49
Figure 2.14	Flowchart of a general framework of the existing fuzzy system	51
Figure 3.1	Flowchart of the proposed framework of EFS.	56
Figure 3.2	Realization of prominent distinct points {a, b, c, d, e} by EFS. $c^{t,(a)}$, $c^{t,(b)}$, $c^{t,(c)}$, $c^{t,(d)}$, and $c^{t,(e)}$ depicts the distinct centers at t th evolving stage. $f(x)$ and $o(x)$ are the application data and model's output, respectively.	58
Figure 3.3	Initial stage or underfitting criteria (a) supervised and, (b)	61

before regulation. (c) First cluster formed after regulation.

(B) Clustering. (a) Introduction of a novel data point with no

unsu	nerv1	sed

	unsupervised.	
Figure 3.4	(a) Dynamic constraints (left, F_L and right, F_R constraint of the pseudo sigma, P_σ) in the output-context y^2 , and (b) its membership function. Small circle depicts the F_L and F_R of P_σ . $\alpha>0$ is a minimum membership value.	67
Figure 3.5	Semantic structural fuzzy system which shows two level of processing (distinct output and input context) in order to realize higher level of abstractions.	77
Figure 3.6	Structural representation of the ESFS (a) input object I_s associated with sth output-structure (b) list portrayal of the output-structure, C_s and $s=1,2,\ldots,S$.	79
Figure 3.7	Fuzzy rule base system using bipartite graph model. First {a, b, c}, second {e, f} and third {g, h, i} input-contexts are reconciled for a sth output-context.	80
Figure 3.8	Realization of the distinct input-context in attribute x_1 .	83
Figure 3.9	ESFS algorithm describing the evolving fuzzy system.	87
Figure 3.10	Output-context based fuzzy rule creation for the proposed EOCFS. $y^s = f(x) = f(x_1, x_2,, x_n)$, where y^s symbolizes the output context of the s th partition ($s = 1, 2,, x_n$)	89

Figure 3.11 Evolving selection of the center points shows the distinct 92 output-context (or rules).

space.

3, ...) and \boldsymbol{x} represents the corresponding input feature

Figure 3.12 93 Algorithm for the proposed EOCFS.

Figure 3.13	Distinct output-context (or rule) creation for the proposed EIG (a) underfitting state, (b) evolving state. $y^s = f(x)$, where y^s symbolizes the output context of the s th partition ($s = 1, 2, 3,$) and x represents the corresponding input feature space. The output model is defined as $o(x)$.	95
Figure 3.14	EIG algorithm describing the evolving fuzzy system.	97
Figure 4.1	Effective rule base for dataset 1 (a) eight distinct output- context structure of (4.1), (b) membership functions for output-context structures, (c-d) centers of the antecedent parts while considering negative and positive region of the input domain, respectively.	111
Figure 4.2	Adaptation for example 1 by considering 5 th to 8 th rule of the effective rule base, (a) output-context structure (i.e. consequent part) and (b) its corresponding antecedent part. Horizontal arrows show the variance of the membership function.	113
Figure 4.3	Membership functions of the output-context structures in Dataset 3. Numbers 1, 2, 3, and 4 shows the sequence of the self-organizing partitions.	118
Figure 4.4	Realization of the output-contexts by the EIG of Dataset 1where $\sigma_{init}^t=0.008 \text{ and number of rules}=11.$	126
Figure 4.5	Evaluation of the EIG using Dataset 2 (a) three distinct points are realized in the output domain, (b) three output-contexts (or consequent parts), (c) antecedent parts of x_1 and, (d) antecedent parts of x_2 . $A^{(s)}$ is the sth antecedent part associated with the sth consequent part $C^{(s)}$.	127

Figure 4.6	RPE' index for Dataset 2 (human-operated chemical plant).	128
Figure 4.7	RPE' index and its overfitting criteria for Dataset 11 (Auto MPG datasets) while applying EIG algorithm	129
Figure 4.8	RPE' index and its overfitting situation for Dataset 6 (Boston datasets).	129
Figure 5.1	Thermal images from (a) 5, (b) 2, and (c) 1m distance.	153
Figure 5.2	Flowchart of the infrared thermographic inspection (Bakar et al., 2013).	155
Figure 5.3	(a) Hotspots in Phases A and C are normal compared with Phase B,(b) the hotspot in Phase C appears to be in a warning condition compared with that in Phase A, and (c) the hotspot in Phase C appears to be in critical condition compared with that in Phase A.	156
Figure 5.4	Typical load imbalance problem: (a) thermal image, (b) grayscale image, (c) segmented image (T=163).	158
Figure 5.5	Flowchart of the RCFS.	161
Figure 5.6	Algorithm for RCFS.	162
Figure 5.7	Actual output data ΔT (°C) for thermographic diagnostic of electrical components.	166
Figure 5.8	Two distinct points ΔT (°C) = {7.1,23.8} as the center of consequent parts (or outputcontexts) shows semantic interpretability.	168

- Figure 5.9 Further recursion and $\sigma_{init}^t = 2$. Four distinct points 170 $\Delta T(^{\circ}\text{C}) = \{0.3, 7.1, 16.6, 23.8\}$ as the center of consequent parts (or output contexts) shows the semantic interpretability.
- Figure 5.10 Fuzzy clusters in the first, second, and third input dimensions 172 by considering (a–c) two and (d–f) three classes of hotspots. $L = Low, \, M = Medium, \, H = High, \, and \, VH = Very \, High.$

LIST OF ABBREVIATIONS

Acc. Accuracy

ANN Artificial Neural Network

ASTM American Society for Testing and Materials

AUC Area Under Curve

APE Average Percentage Error

BNR Balanced Number of Rule

CLIP Categorical Learning-Induced Partitioning

CI Computational Intelligence

ECSFS Evolving-Construction Scheme for Fuzzy Systems

EER Error-Evolving Rate

EFS Evolving Fuzzy System

EIG Evolving Information Granule

eFSM Evolving Neural-Fuzzy Semantic Memory

EOCFS Evolving Output-Context Fuzzy System

ESFS Evolving Structural Fuzzy System

FCM Fuzzy C-Means

FIG Fuzzy Information Granule

FRBS Fuzzy Rule Base System

FST Fuzzy Set Theory

GrC Granular Computing

GFRBS Granular Fuzzy Rule-Based System

IRT Infrared Thermography

JG Justifiable Granularity

LFM Linguistic Fuzzy Modeling

LPA Localized Parameter Adaptation

LSM Least Square Method

MF Membership Function

MLP Multi-Layer Perceptron

MPG Miles Per Gallon

MSE Mean Square Error

MSB Main Switch Board

NR Number of Rules

NFS Neural Fuzzy System

OAIG Optimal Allocation of Information Granularity

PFM Precise Fuzzy Modeling

RCFS Recursive Construction of Fuzzy System

RCFS Recursively Constructed Fuzzy System

RGB Red, Blue and Green

RMSE Root of MSE

RPE Rational Partition Error

RSA Rule Selection Algorithm

SaFIN Self-Adaptive Fuzzy Inference Network

SC Semantic Cointention

SM Similarity Measure

SONFIN Self-Constructing Neural Fuzzy Inference Network

SSE Sum of Square Error

SSEM Simplified Structure Evolving Method

SVM Support Vector Machine

TFIG Theory of Fuzzy Information Granule

UoD Universe of Discourse

VSANF Variable Selection Algorithm for the Neuro-fuzzy

LIST OF SYMBOLS

$[\boldsymbol{x},d]_i$	Evidence of the <i>i</i> th Training Data where $x = (x_1, x_2,, x_n)$ is an input vector, and d is the corresponding output
i	<i>i</i> th Training Data Where $i = \{1, 2,, N\}$
n	Number of Features (Inputs)
N	Number of Training Data
x_p	pth input feature
r	A Rule
t	An Evolving Stage
$R^{t,r}$	r th IF-THEN Mamdani-type Fuzzy Rule at t th Evolving Stage Where $r=1,2,\ldots,R^t$
R^t	Number of Rules at tth Evolving Stage and $\{r = 1, 2,, R^t\}$
μ	Gaussian Membership Function
c	Center of the Linguistic Levels
σ	Width (or variance) of the Linguistic Levels
α	Minimum Membership Value or Distinguishability Factor for UoD
$C^{t,(r)}$	rth Consequent Part at tth Evolving Stage
$c^{t,(r)}$	Center of the rth Consequent Part at tth Evolving Stage
$\sigma^{t,(r)}$	Width (or variance) of the r th Consequent Part at t th Evolving Stage
$A_p^{t,(r)}$	rth Antecedent Part at tth Evolving Stage Associated with the pth Input Variable
$c_p^{t,(r)}$ or $c_p^{t,(r)}(x_p)$	Center of the <i>r</i> th Antecedent Part at <i>t</i> th Evolving Stage Associated with the <i>p</i> th Input Variable
$\sigma_p^{t,(r)}$ or $\sigma_p^{t,(r)}(x_p)$	Width (or variance) of the rth Antecedent Part at tth

Evolving Stage Associated with the pth Input Variable

E(t) Error Function at tth Evolving Stage Using SSE, MSE or

RMSE

E(t-1) Error Function at (t-1)th Evolving Stage Using SSE,

MSE or RMSE

 E_{global} global threshold error

Error, Without Considering Any Stage

 E_i Error for *i* Training Data Where $i = \{1, 2, ..., N\}$

 $o(x_i)$ Model's output of the *i*th Training Data

 d_{des_i} or d_i Desired Output of the *i*th Training Data

 c_{1p} Center of the First Antecedent Part (A_{1p}) (used in

SAFIN)

 σ_{1p} Width of the First Antecedent Part (A_{1p}) (used in

SAFIN)

Q Optimization Factor

 y_i Desired Output data Where $i = \{1, 2, ..., N\}$

 $T_i(y_i)$ Granular Output of y_i

 \hat{y}_i Model Output Where $i = \{1, 2, ..., N\}$

 Δw Gradient Vector

*W*_{new} New Gradient Point

*w*_{old} Current Gradient Point

 η Iteration Rate

u_i Output Parameter with Rule Weight

 Ω An Information Granule

D Experimental Evidence (data) where D = x =

 $\{x_1, x_2, ..., x_N\}$ (used in Pedrycz et al. (2013))

card Ω Cardinality of Ω