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RMSE  

 

𝐸 𝑡 − 1  Error Function at (𝑡 − 1)th Evolving Stage Using SSE, 

MSE or RMSE  

 

Eglobal  global threshold error 

 

𝐸  Error, Without Considering Any Stage  

 

𝐸𝑖   Error for 𝑖 Training Data Where 𝑖 = {1, 2, … , 𝑁}  

 

𝑜 𝒙𝒊   Model‘s output of the 𝑖th Training Data  

 

𝑑𝑑𝑒𝑠 𝑖
 or 𝑑𝑖  Desired Output of the 𝑖th Training Data 

 

𝑐1𝑝   Center of the First Antecedent Part (𝐴1𝑝 ) (used in 

SAFIN) 

 

𝜎1𝑝   Width of the First Antecedent Part (𝐴1𝑝 ) (used in 

SAFIN)  

 

𝑄  Optimization Factor  

 

𝑦𝑖    Desired Output data Where 𝑖 = {1, 2, … , 𝑁} 

 

𝑇𝑖 𝑦𝑖   Granular Output of 𝑦𝑖   

 

𝑦 𝑖   Model Output Where 𝑖 = {1, 2, … , 𝑁} 

 

∆𝑤 Gradient Vector  

 

𝑤𝑛𝑒𝑤   New Gradient Point  

 

𝑤𝑜𝑙𝑑   Current Gradient Point  

 

𝜂  Iteration Rate  

 

𝑢𝑗   Output Parameter with Rule Weight 

 

Ω  An Information Granule  

 

D  Experimental Evidence (data) where  𝐷 = 𝒙 =
{𝑥1, 𝑥2, … , 𝑥𝑁} (used in Pedrycz et al. (2013)) 

 

card Ω  Cardinality of Ω 
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