

SYNTHESIS OF GRAPHENE FROM ALTERNATIVE PRECURSORS AND THE USE OF QUARTZ PLATE FOR CARBON SOURCE MANIPULATION

MUHAMMAD IZHAR BIN KAIRI

UNIVERSITI SAINS MALAYSIA 2019

SYNTHESIS OF GRAPHENE FROM ALTERNATIVE PRECURSORS AND THE USE OF QUARTZ PLATE FOR CARBON SOURCE MANIPULATION

by

MUHAMMAD IZHAR BIN KAIRI

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

July 2019

ACKNOWLEDEGEMENT

In the name of Allah, the Most Gracious, the Most Merciful. Alhamdulillah. Thanks to Allah SWT, God Almighty for the heavenly blessing and guidance so that this thesis can be completed.

This thesis is dedicated to my family who have supported me throughout this journey. My wife, Dr. Nur Atikah and my daughter, Annur Iman who are the light of my heart. My parents, Jamilah Razak and Kairi Abu Bakar who are always there every time through the ups and downs of this journey. Without their support and encouragement, I would not be here today.

I would like to express the deepest appreciation to my main supervisor, Professor Abdul Rahman Mohamed and both of my co-supervisors, Dr. Brigitte Vigolo and Professor Suriani Abu Bakar for their unwavering support and mentorship throughout this period. Taking precious time of their busy schedule to supervise my research activities and giving valuable advice throughout the whole course of this study.

I humbly extend my thanks to everybody who have supported and helped me in this journey. This would not have been possible without the support of many great individuals in my life. Last but not least, I am very much indebted to the Government of Malaysia (MyBrain), FRGS grant (203/PJKIMIA/6071278) and Bridging Grant (203/PJKIMIA/6316084) for providing me with the financial support necessary for this research study to be completed.

Muhammad Izhar Kairi

July 2019

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvi
ABSTRAK	xvii
ABSTRACT	xix
CHAPTER ONE: INTRODUCTION	1
1.1 Two-dimensional materials	1
1.2 Graphene	2
1.3 Chemical vapor deposition	4
1.4 Problem statement	5
1.5 Objectives	9
1.6 Scope of study	10
1.7 Thesis organization	11
CHAPTER TWO: LITERATURE REVIEW	13
2.1 Growth of graphene by CVD	13
2.1.1 Gaseous carbon precursors	15
2.1.2 Liquid carbon precursors	21
2.1.3 Solid carbon precursors	29
2.2 Mechanism involved in the use of carbon precursors for	40
graphene synthesis by CVD	
2.2.1 Aliphatic compound precursors	40
2.2.2 Aromatic compound precursors	43
2.2.3 Unzipping nanotubes	49
2.2.4 Other carbon precursors	50
2.3 Graphene vs. carbon nanotubes by CVD	55

2.4	Parameters for graphene growth via CVD	59
	2.4.1 Annealing duration	64
	2.4.2 Catalyst for simultaneous graphene and syngas production	65
2.5	Summary	67
CH	IAPTER THREE: MATERIALS AND METHODS	70
3.1	Materials and chemicals	70
3.2	Experimental equipment and test rig	71
	3.2.1 Gas mixing section	78
	3.2.2 Reaction section	79
3.3	Experimental steps	79
	3.3.1 Thermal pyrolysis of rice straw	80
	3.3.2 Synthesis of graphene from rice straw bio-oil	82
	3.3.3 Synthesis of graphene via carbon trapping	83
	3.3.4 Co-synthesis of graphene and syngas	84
3.4	Graphene transfer	84
3.5	Characterization techniques	85
	3.5.1 Raman spectroscopy and mapping	90
	3.5.2 High resolution transmission electron microscopy	91
	(HRTEM)	
	3.5.3 X-ray photoelectron spectroscopy (XPS)	92
	3.5.4 Optical imaging	92
	3.5.5 Gas chromatography (GC)	92
	3.5.6 Proximate analysis	93
	3.5.7 Elemental analysis	94
	3.5.8 Bomb calorimeter	94
CH	IAPTER FOUR: RESULTS AND DISCUSSIONS	95
4.1	Preliminary studies	95
	4.1.1 APCVD gas flow rate condition	95
	4.1.2 Annealing duration	99
	4.1.3 Preliminary studies of graphene transfer	100
	4.1.4 Preliminary studies of fast cooling	103
		1.00

4.2 Graphene growth from rice straw bio-oil	105
4.2.1 Thermal pyrolysis of rice straws	106
4.2.1(a) Properties of rice straw	106
4.2.1(b) Effect of reaction temperature	107
4.2.2 Graphene APCVD from rice straw bio-oil	109
4.2.2(a) APCVD mode	109
4.2.2(b) Effect of bio-oil volume	113
4.2.2(c) Discussion	116
4.2.3 Carbon trapping assisted graphene growth	119
4.2.3(a) Carbon trapping configuration	119
4.2.3(b) Carbon trapping material	122
4.2.3(c) Effect of rice straw bio-char weight	126
4.2.3(d) Effect of trapping techniques on metal catalyst	131
4.2.3(e) Discussion	133
4.3 Graphene and syngas production from greenhouse gases	135
4.3.1 Effect of reaction temperature	135
4.3.2 Discussion	141
CHAPTER FIVE: CONCLUSION AND RECOMMENDATION	144
5.1 Conclusion	144
5.2 Recommendations	146
REFERENCES	149
APPENDIX	
LIST OF PUBLICATIONS	

LIST OF TABLES

		Page
Table 1.1	List of large area graphene prices from various	7
Table 2.1	Examples of graphene growth conditions using	19
	different gas as carbon precursors and their	
	characteristics.	
Table 2.2	Examples of graphene growth conditions using	26
	different liquid as carbon precursors and their	
	characteristics.	
Table 2.3	Examples of graphene growth conditions using	36
	different solid as carbon precursors and their	
	characteristics.	
Table 2.4	Estimated dehydrogenation time, tD for CH4, C6H6	44
	and C18H14 at different temperatures (Choi et al.	
	2013).	
Table 2.5	Observable mechanisms from various carbon	53
	precursors for graphene growth by CVD.	
Table 2.6	Carbon nanotube grown by CVD using various carbon	57
	precursors.	
Table 2.7	Previous reports on carbon precursors starting weight	64
	and CVD setup.	
Table 2.8	Annealing conditions prior to graphene growth	65

Table 2.9	Recent progress on carbon dioxide reforming of	67
	methane using various kinds of catalyst.	
Table 3.1	List of the chemicals and their properties used in this	70
	study.	
Table 3.2	List of the gases and their characteristics used in this	71
	study.	
Table 3.3	Details of major components in the experimental rig	76
	along with their function.	
Table 3.4	Details of major characterization equipment that were	86
	used in this study along with their function.	
Table 3.5	Graphene layer thickness based on the peak ratios from	91
	Raman spectroscopy (Hao et al. 2010; Matz et al. 2015;	
	Park et al. 2009; Wu et al. 2012).	
Table 4.1	Velocity of gas flowrate at different total gas flowrate.	98
Table 4.2	Mass of chemical compound required to get the same	103
	molarity and desired volume.	
Table 4.3	Properties of rice straw.	107
Table 4.4	Properties of rice straw bio-oil and bio-char.	108

LIST OF FIGURES

		Page
Figure 2.1	Chemical vapor deposition setups: a) Two-furnace; b)	14
	Bubbling; c) Magnetic boat (Jacobberger et al. 2015;	
	Kalita et al. 2011; Rosmi et al. 2016; Sharma et al.	
	2013).	
Figure 2.2	Schematics of bilayer graphene growth using spin-	32
	coated polymer films via carbon diffusion through Ni	
	layer (Peng et al. 2011).	
Figure 2.3	Schematic illustration of graphene synthesis with	34
	PCBM as carbon precursor (Seo et al. 2013).	
Figure 2.4	Diagram of methane dehydrogenation from the side	41
	view. Orange sphere = Transition metal atom; Green	
	sphere = Hydrogen atom; Black sphere = Carbon atom;	
	TS = Transition state (Gajewski & Pao 2011).	
Figure 2.5	Schematic of graphene flake CVD growth by using	45
	hexachlorobenzene (Gan et al. 2012).	
Figure 2.6	Schematic diagram of growth mechanism on a Cu	47
	surface from benzene by a) LPCVD; b) Normal	
	APCVD; c) Oxygen-free APCVD (Jang et al. 2015).	
Figure 2.7	Possible growth mechanism of 3D graphene grown by	48
	CVD from asphalt (Liu et al. 2014).	
Figure 2.8	Scheme of rebar graphene synthesis on Cu foil from	49
	CNTs (Yan et al. 2014).	

Figure 2.9	Suggested graphene CVD scheme with camphor as	51
	carbon precursor (Kumar et al. 2016b).	
Figure 2.10	Graphical illustration of observable mechanisms from	54
	various carbon precursors for graphene growth by CVD	
	(Jang et al. 2015; Yan et al. 2014).	
Figure 2.11	Schematic diagram of graphene CVD gas flow from the	63
	(a) side view; (b) front view.	
Figure 3.1	Photograph of the horizontal quartz tube reactor at	72
	School of Aerospace Engineering's MTDC lab.	
Figure 3.2	Schematic diagram of the horizontal quartz tube reactor	73
	at School of Aerospace Engineering's MTDC lab.	
Figure 3.3	Photograph of the vertical quartz tube reactor at School	74
	of Chemical Engineering's Petroleum lab.	
Figure 3.4	Schematic diagram of the vertical quartz tube reactor at	75
	School of Chemical Engineering's Petroleum lab.	
Figure 3.5	Flowchart of the research overview of this thesis.	80
Figure 3.6	Schematic diagram of thermal pyrolysis by using a	82
	movable furnace.	
Figure 3.7	Chemical vapor deposition setup using a heating ring as	83
	the second energy source. Red square = metal catalyst,	
	blue circle = rice straw bio-oil.	
Figure 3.8	Schematic diagram of the carbon trapping setup used in	83
	conjunction with rice straw bio-char for graphene	
	APCVD.	
Figure 4.1	Overall process of APCVD in this thesis.	97

Figure 4.2	Raman spectroscopy of graphitic film produced at	98
	different rate of N ₂ flow.	
Figure 4.3	Optical micrograph of Cu catalyst surface with	99
	annealing time of (a, b) 15 minutes; (c, d) 0 minutes.	
Figure 4.4	Picture of as-produced graphene on Cu substrate after	102
	being etched for (a) 5 min; (b) 10 min; (c) 15 min and	
	(d) 20 min.	
Figure 4.5	Fast cooling technique: (a) Mechanical displacement;	104
	(b) Movable furnace.	
Figure 4.6	Fast cooling technique: Movable furnace vs.	105
	mechanical displacement.	
Figure 4.7	Effect of pyrolysis temperature on product yield of rice	108
	straw at 200 sccm N_2 gas flow rate and 3 g of rice straw.	
Figure 4.8	Schematic diagram of graphene growth via APCVD by	110
	(a) Heating ring setup; (b) Rapid heating of carbon	
	precursor and metal catalyst; (c) Rapid heating of	
	carbon precursor only. Red square is metal catalyst Cu;	
	blue circle is rice straw bio-oil.	
Figure 4.9	Typical Raman spectroscopy spectra of the deposit	112
	from rice straw bio-oil by using (a) heating ring setup;	
	(b) rapid heating of carbon precursor and metal catalyst;	
	(c) rapid heating of carbon precursor only.	
Figure 4.10	Picture of the APCVD setup in the MTDC-Aero lab	112

assisted with customized heating ring.

- Figure 4.11 (a) Raman spectroscopy of graphitic material grown 114
 with different volume of bio-oil and Raman mapping of
 graphene grown from 0.5 mL of rice straw bio-oil, (b)
 I_{2D}/I_G and (c) I_D/I_G.
- Figure 4.12 (a) HRTEM and (b) SAED of graphene grown from 0.5 115 mL of rice straw bio-oil. (c) XPS of the same graphene film and (d) deconvolution of C 1s peak.
- Figure 4.13 Process flow diagram of graphene growth from rice 117 straw via thermal pyrolysis and APCVD.
- Figure 4.14 Image of (a) Cu foil enclosure (Li et al. 2011) and 120 schematic diagram of (b) bimetallic Ni-Cu catalyst (Seah et al. 2016).
- Figure 4.15 Picture of quartz plate and Cu plate used in this study. 121
- Figure 4.16 Configuration of Cu catalyst with quartz plates used in 122 this work.
- Figure 4.17 (a) Raman spectroscopy of graphitic film produced 123 from carbon trapping setup using Cu and quartz plate and (b) Images of Cu and quartz plate after carbon trapping assisted APCVD.
- Figure 4.18 Optical micrograph of Cu plate: (a, b) after CVD and (c, 124
 d) after oxidization and (e, f) after reduction process.
 Images of (b), (d) and (f) are at higher magnification than (a), (c) and (e).
- Figure 4.19 (a) Raman spectroscopy of graphene grown from biochar of different weight. Raman mapping of graphene

xi

growth from 2.5 mg of rice straw bio-char: (b, d) I_{2D}/I_G ; (c, e) I_D/I_G .

- Figure 4.20 HRTEM of graphene synthesized from (a) 2.5 mg
 (Enlarged images are cropped from the boxed region in respective graphene sheets) and (b) 10.0 mg of rice straw bio-char. SAED of graphene synthesized from (c)
 2.5 mg and (d) 10.0 mg of rice straw bio-char. Optical micrograph of graphene synthesized from (e) 2.5 mg and (f) 10.0 mg of rice straw bio-char transferred onto silicon wafer with oxide layer.
- Figure 4.21 (a) XPS of few-layer graphene obtained from graphene 130 growth assisted by carbon trapping setup and the (b) C 1s spectra band highlighted.
- Figure 4.22 Optical micrographs of (a, b) carbon trapping in this 132
 study, (d, e) bimetallic Ni-Cu catalyst and (g, h) Cu foil
 enclosure. Pictures of (c) carbon trapping in this study,
 (f) bimetallic Ni-Cu catalyst and (i) Cu foil enclosure.
- Figure 4.23Schematic diagram of graphene formation using (a)134carbon trapping setup and (b) typical single foil setup.
- Figure 4.24 Raman spectroscopy (a) and Raman mapping (b) I_{2D}/I_G 137 and (c) I_D/I_G of the grown multilayer graphene.
- Figure 4.25 Typical HRTEM images of graphene edge synthesized 139
 from CO₂ and CH₄ (a) and from CH₄ (c), respectively.
 Electron diffraction of graphene synthesized from carbon dioxide and CH₄ (b).

- Figure 4.26
 Gas conversion of CH4 to H2 and carbon dioxide to CO
 141

 over CVD at 900 °C for 60 min and the ratio of H2:CO
 produced.
- Figure 4.27 Schematic representation of the graphene and syngas 142 co-synthesis CVD mechanism.

LIST OF ABBREVIATIONS

2D	Two-dimensional
3D	Three-dimensional
ABS	Acrylonitrile-butadiene-styrene
APCVD	Atmospheric pressure chemical vapor deposition
Ar	Argon
BNNTs	Boron nitride nanotubes
С	Carbon
CH4	Methane
C_2H_2	Acetylene
C ₂ H ₄	Ethylene
C ₂ H ₅ OH	Ethanol
C_3H_6	Propene
C ₃ H ₇ OH	Isopropyl alcohol
$C_3N_6H_6$	Melamine
C ₅ H ₅ N	Pyridine
C ₆ H ₁₄	Hexane
$C_{12}H_{22}O_{11}$	Sucrose
C ₁₃ H ₁₀	Fluorene
CNTs	Carbon nanotubes
CRM	Carbon dioxide reforming of methane
Cu	Copper
CVD	Chemical vapor deposition
DFT	Density functional theory

EA	Elemental analysis
FWHM	Full width half maximum
GC	Gas chromatography
GNCs	Graphene nanoclusters
H ₂	Hydrogen
HBC	Hexabenzocoronene
НСВ	Hexachlorobenzene
HHV	High heating values
HIPS	High-impact polystyrene
HOPG	Highly oriented pyrolytic graphite
HRTEM	High resolution transmission electron microscope
LPCVD	Low pressure chemical vapor deposition
Ν	Nitrogen
Ni	Nickel
РСВМ	Phenyl-C ₆₁ -butyric acid methyl ester
PhD	Doctor of Philosophy
PMMA	Poly(methyl methacrylate)
RFCVD	Radio frequency chemical vapor deposition
RM	Ringgit Malaysia
SAED	Selected area electron diffraction
sccm	Standard cubic centimeter per minute
TST	Transition state theory
UHV-CVD	Ultra-high vacuum chemical vapor deposition
VOC	Volatile organic compounds
XPS	X-ray photoelectron spectroscopy

LIST OF SYMBOLS

€	Euro
%	Percent
π	Pi
\$	US dollar
I_{2D}/I_G	Ratio of 2D-peak over G-peak in a Raman spectra
I_D/I_G	Ratio of D-peak over G-peak in a Raman spectra
RM	Ringgit Malaysia
t _D	Dehydrogenation time
wt. %	Weight percent

SINTESIS GRAFENA DARIPADA PENDAHULU ALTERNATIF DAN PENGGUNAAN KEPINGAN KUARZA UNTUK MEMANIPULASI SUMBER KARBON

ABSTRAK

Grafena ialah satu lapisan atom karbon yang tersusun dalam struktur sp²hibridisasi dengan sifat yang jauh lebih hebat berbanding dengan bahan lain. Penyelidikan dan pembangunan di dalam bidang sintesis grafena telah berkembang dengan pesat beberapa tahun kebelakangan ini terutamanya dengan menggunakan kaedah pemendapan wap kimia (CVD). Walau bagaimanapun, untuk membolehkan grafena bergerak dari skala makmal ke domain komersial; kos untuk sintesis graphene perlu terus dikurangkan dari masa ke masa. Di dalam tesis ini, masalah ini disentuh daripada beberapa sudut. Salah-satu daripada kajian yang dilakukan dalam tesis ini menunjukkan yang jerami padi dan biogas sintetik; sisa buangan daripada industri padi dan kelapa sawit boleh digunakan sebagai sumber karbon murah untuk penghasilan grafena. Dalam kes jerami padi, pertama sekali ia akan melalui proses pirolisis untuk memperoleh minyak-bio dan arang-bio. Hanya 0.50 mL minyak-bio kemudiannya digunakan sebagai sumber karbon untuk mensintesis 1 cm x 1 cm grafena filem dengan kualiti yang bagus ($I_D/I_G = -0.55$) melalui kaedah dua pemanas pemendapan wap kimia pada tekanan atmosfera (APCVD). Dengan melakukan pirolisis, kuantiti sumber karbon yang keluar sebagai efluen dapat dikurangkan memandangkan kebanyakannya telah ditukar kepada produk sampingan sebelum pertumbuhan grafena. Arang-bio juga digunakan sebagai sumber karbon untuk mensintesis grafena tetapi dengan proses APCVD yang dibantu dengan kaedah memerangkap karbon yang baru dan mudah melalui plat kuarza yang ditempah khas. Di sini, 2.5 mg arang-bio telah dikelilingi dengan plat kuarza dan kepingan kuprum dalam susunan yang khusus untuk bertindak sebagai perisai karbon bagi memerangkap spesies aktif karbon pada suhu tinggi dalam ruangan yang sempit. Dengan melaksanakan perangkap karbon, kuantiti sumber karbon yang diperlukan untuk sintesis grafena pada kadar saiz yang sama adalah lebih rendah; keupayaan pertumbuhan grafena meningkat sekitar 400 %. Akhir sekali, efluen kepada proses pertumbuhan grafena telah ditukarkan menjadi syngas apabila biogas sintetik digunakan sebagai sumber karbon bersama dengan nikel sebagai pemangkin pada 900 °C dalam proses yang sama; menukar sisa kepada harta.

SYNTHESIS OF GRAPHENE FROM ALTERNATIVE PRECURSORS AND THE USE OF QUARTZ PLATE FOR CARBON SOURCE MANIPULATION

ABSTRACT

Graphene is a single layer of carbon atoms arranged in an sp²-hybridized structure with properties far superior compared to other materials. Research and development in graphene synthesis have been rapidly growing the past few years especially using chemical vapor deposition (CVD). However, in order to move graphene from laboratory scale to commercial domain; graphene synthesis cost need to be continually reduced. In this thesis, this problem was approached from a few angles. One of the study in this thesis demonstrate that rice straw and synthetic biogas, typical wastes from the rice and palm oil production industries can be used as inexpensive carbon source for the production of graphene. In the case of rice straw, the lignocellulosic biomass was first put through thermal pyrolysis in order to obtain the bio-oil and bio-char. Only 0.50 mL of bio-oil was then used as carbon source to sufficiently synthesized 1 cm x 1 cm of large area graphene with good quality $(I_D/I_G =$ ~ 0.55) via a two-heating source setup ambient pressure CVD (APCVD). By doing this, the amount of carbon source going out as effluent is reduced as it has been recovered as side-products prior to graphene growth. The bio-char was also used as carbon source for graphene growth but with a novel and facile carbon trapping assisted APCVD involving customized quartz plate. Here, 2.5 mg of bio-char was encapsulated with quartz plate and Cu foil in a specific arrangement which acted as carbon shields and trapped the carbon active species at high temperature within the confined space of the setup. By implementing carbon trapping, lesser amount of carbon source was needed for graphene growth of the same size; graphene growth efficiency increased

around 400 %. Lastly, the effluent of the graphene growth process was converted into syngas when synthetic biogas was used as the carbon precursor with Ni as the catalyst at 900 °C in a one-step process; turning waste into wealth.

CHAPTER ONE

INTRODUCTION

This chapter provides an overall introduction to the PhD research project. A brief introduction on two-dimensional materials and graphene as the main theme of this thesis are outlined at the beginning of the chapter followed by a section on chemical vapor deposition (CVD) as the tool to synthesis graphene. At the end of this chapter, the problem statement, objectives, scope of work and thesis organization are laid out.

1.1 Two-dimensional materials

The introduction of new materials has enabled the growth of new technologies that have beneficial impact on society. Currently, the world is in the precipice of a new age of 2-dimensional (2D) materials. Boron nitride (BN) (Örnek et al. 2018; Wang et al. 2018b; Zhuang et al. 2017), bismuth telluride (Bi₂Te₃) (Termsaithong & Rodchanarowan 2017; Wada et al. 2017), bismuth (III) selenide (Bi₂Se₃) (Desai et al. 2018), molybdenum disulfide (MoS₂) (Jiang et al. 2017; Solanki et al. 2017), molybdenum diselenide (MoSe₂) (Sathe et al. 2013; Wang et al. 2017), molybdenum diselenide (MoSe₂) (Chen et al. 2015; Yun et al. 2016), silicone (De Padova et al. 2017; Vogt et al. 2014), phosphorene (Khandelwal et al. 2017; Woomer et al. 2015), bismuthene (Aktürk et al. 2016), graphyne (Dearden & Crean 2014; Kehoe et al. 2000), graphane (Arguilla et al. 2014) and graphene (Ali et al. 2016; Murdock et al. 2017) are among the 2D materials that have been investigated. Within that group, graphene is the most-researched material since its discovery in 2004 (Geim & Novoselov 2007; Novoselov et al. 2004). It is investigated for use in the next

generation devices due to its outstanding combination of properties not observed in any other type of materials. Its magnificent properties are attributed to the strong bonding between the hexagonal arrangement of carbon atoms that make up graphene.

Graphene can be produced in several forms which include flakes (Chae et al. 2017; Ghaemi et al. 2017; Nizam et al. 2017), ribbons (An et al. 2012; Liu et al. 2016), and large-area sheets (Bhaviripudi et al. 2010; Yan et al. 2012). They differ in lateral dimensions; flakes with limited lateral dimensions (from several nanometers to micrometers), large-area sheets possess macroscopic and extended lateral dimensions, while ribbons have one lateral dimension that is at least one order of magnitude larger than the other (Bianco et al. 2013). These differences allow graphene to be used in various types of application; certain physical forms are more compatible for particular applications. For example, large-area graphene sheets are more suited for wafer-scale thin film-like application such as transparent conductive electrode (Li et al. 2009c) while graphene flakes (GFs) are investigated for conductive ink applications (Arapov et al. 2016; Yang & Wang 2016).

1.2 Graphene

The unique properties of graphene have triggered a sudden drive of graphene researches all over the world. Graphene is expected to be the next generation twodimensional materials having the potential to enhance current technology and create a new one in the near future. Graphene is a thermodynamically stable species of pure carbon atoms bonded in a single sheet of hexagonal sp² structure (Gilje et al. 2007). It represents the base structure of carbon nanotubes (CNTs), graphite and fullerenes. Electron configuration of the carbon atoms is the key factor for the incredible properties of graphene such as its high mechanical strength (Ahmad et al. 2015; Wang et al. 2014), high surface area (Gadipelli & Guo 2015; Huang et al. 2012), extraordinary thermal conductivity (Wang & Tsai 2016; Wang et al. 2016), ultra-high elasticity (Geim 2009) and high optically transparency (Weber et al. 2014; Zhu et al. 2014). Due to its outstanding properties, graphene has immense potential in many applications. Even if properties of graphene depend on its structure and form (Lee et al. 2017; Pang et al. 2016) and the intended applications depend on graphene characteristics, its potential to improve performances in numerous materials and processes is widely recognized. Among the numerous applications targeted, graphene could be used as transparent conducting electrodes (Casaluci et al. 2016), fillers in reinforced polymer nanocomposites (Kumar et al. 2017b; Mittal et al. 2015; Young et al. 2012), super-capacitors (Ke & Wang 2016; Kumar et al. 2017a, 2017d), lithium ion batteries (Kheirabadi & Shafiekhani 2012; Kucinskis et al. 2013; Zhao et al. 2016a), fuel cells (Devrim & Albostan 2016; Najafabadi et al. 2016), solar cells (Kuhn & Gorji 2016), photo-catalysis (Putri et al. 2015), biosensors (Park et al. 2016), chemical sensors (Zhao et al. 2016b), purification of water (Aghigh et al. 2015) and optoelectronics (Jin et al. 2015; Polat et al. 2016). To face the demand for both fundamental studies and developments for its practical utilization, development of large-scale synthesis methods has never been more vital (Bae et al. 2010; Levchenko et al. 2016).

Since the discovery of graphene through highly oriented pyrolytic graphite (HOPG) mechanical exfoliation (Geim & Novoselov 2007; Seah et al. 2014), a number of alternative methods for graphene synthesis have been developed. Wet chemical exfoliation is one of the most widely used techniques to prepare graphene nowadays but it does have some drawbacks (Botas et al. 2013) including numerous lattice defects, multiple grain boundaries and oxidative traps, which increases its electrical