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SINTESIS GRAFENA DARIPADA PENDAHULU ALTERNATIF DAN 

PENGGUNAAN KEPINGAN KUARZA UNTUK MEMANIPULASI SUMBER 

KARBON 

 

ABSTRAK 

 

Grafena ialah satu lapisan atom karbon yang tersusun dalam struktur sp2-

hibridisasi dengan sifat yang jauh lebih hebat berbanding dengan bahan lain. 

Penyelidikan dan pembangunan di dalam bidang sintesis grafena telah berkembang 

dengan pesat beberapa tahun kebelakangan ini terutamanya dengan menggunakan 

kaedah pemendapan wap kimia (CVD). Walau bagaimanapun, untuk membolehkan 

grafena bergerak dari skala makmal ke domain komersial; kos untuk sintesis graphene 

perlu terus dikurangkan dari masa ke masa. Di dalam tesis ini, masalah ini disentuh 

daripada beberapa sudut. Salah-satu daripada kajian yang dilakukan dalam tesis ini 

menunjukkan yang jerami padi dan biogas sintetik; sisa buangan daripada industri padi 

dan kelapa sawit boleh digunakan sebagai sumber karbon murah untuk penghasilan 

grafena. Dalam kes jerami padi, pertama sekali ia akan melalui proses pirolisis untuk 

memperoleh minyak-bio dan arang-bio. Hanya 0.50 mL minyak-bio kemudiannya 

digunakan sebagai sumber karbon untuk mensintesis 1 cm x 1 cm grafena filem dengan 

kualiti yang bagus (ID/IG = ~0.55) melalui kaedah dua pemanas pemendapan wap 

kimia pada tekanan atmosfera (APCVD). Dengan melakukan pirolisis, kuantiti sumber 

karbon yang keluar sebagai efluen dapat dikurangkan memandangkan kebanyakannya 

telah ditukar kepada produk sampingan sebelum pertumbuhan grafena. Arang-bio juga 

digunakan sebagai sumber karbon untuk mensintesis grafena tetapi dengan proses 

APCVD yang dibantu dengan kaedah memerangkap karbon yang baru dan mudah 



 xviii 

melalui plat kuarza yang ditempah khas. Di sini, 2.5 mg arang-bio telah dikelilingi 

dengan plat kuarza dan kepingan kuprum dalam susunan yang khusus untuk bertindak 

sebagai perisai karbon bagi memerangkap spesies aktif karbon pada suhu tinggi dalam 

ruangan yang sempit. Dengan melaksanakan perangkap karbon, kuantiti sumber 

karbon yang diperlukan untuk sintesis grafena pada kadar saiz yang sama adalah lebih 

rendah; keupayaan pertumbuhan grafena meningkat sekitar 400 %. Akhir sekali, 

efluen kepada proses pertumbuhan grafena telah ditukarkan menjadi syngas apabila 

biogas sintetik digunakan sebagai sumber karbon bersama dengan nikel sebagai 

pemangkin pada 900 oC dalam proses yang sama; menukar sisa kepada harta. 
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SYNTHESIS OF GRAPHENE FROM ALTERNATIVE PRECURSORS AND 

THE USE OF QUARTZ PLATE FOR CARBON SOURCE MANIPULATION 

 

ABSTRACT 

 
Graphene is a single layer of carbon atoms arranged in an sp2-hybridized 

structure with properties far superior compared to other materials. Research and 

development in graphene synthesis have been rapidly growing the past few years 

especially using chemical vapor deposition (CVD). However, in order to move 

graphene from laboratory scale to commercial domain; graphene synthesis cost need 

to be continually reduced. In this thesis, this problem was approached from a few 

angles. One of the study in this thesis demonstrate that rice straw and synthetic biogas, 

typical wastes from the rice and palm oil production industries can be used as 

inexpensive carbon source for the production of graphene. In the case of rice straw, 

the lignocellulosic biomass was first put through thermal pyrolysis in order to obtain 

the bio-oil and bio-char. Only 0.50 mL of bio-oil was then used as carbon source to 

sufficiently synthesized 1 cm x 1 cm of large area graphene with good quality (ID/IG = 

~0.55) via a two-heating source setup ambient pressure CVD (APCVD) . By doing 

this, the amount of carbon source going out as effluent is reduced as it has been 

recovered as side-products prior to graphene growth. The bio-char was also used as 

carbon source for graphene growth but with a novel and facile carbon trapping assisted 

APCVD involving customized quartz plate. Here, 2.5 mg of bio-char was encapsulated 

with quartz plate and Cu foil in a specific arrangement which acted as carbon shields 

and trapped the carbon active species at high temperature within the confined space of 

the setup. By implementing carbon trapping, lesser amount of carbon source was 

needed for graphene growth of the same size; graphene growth efficiency increased 



 xx 

around 400 %. Lastly, the effluent of the graphene growth process was converted into 

syngas when synthetic biogas was used as the carbon precursor with Ni as the catalyst 

at 900 oC in a one-step process; turning waste into wealth.  
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CHAPTER ONE 

INTRODUCTION 

 
This chapter provides an overall introduction to the PhD research project. A 

brief introduction on two-dimensional materials and graphene as the main theme of 

this thesis are outlined at the beginning of the chapter followed by a section on 

chemical vapor deposition (CVD) as the tool to synthesis graphene. At the end of this 

chapter, the problem statement, objectives, scope of work and thesis organization are 

laid out. 

 

1.1 Two-dimensional materials 

The introduction of new materials has enabled the growth of new technologies 

that have beneficial impact on society. Currently, the world is in the precipice of a new 

age of 2-dimensional (2D) materials. Boron nitride (BN) (Örnek et al. 2018; Wang et 

al. 2018b; Zhuang et al. 2017), bismuth telluride (Bi2Te3) (Termsaithong & 

Rodchanarowan 2017; Wada et al. 2017), bismuth(III) selenide (Bi2Se3) (Desai et al. 

2018), molybdenum disulfide (MoS2) (Jiang et al. 2017; Solanki et al. 2017), 

molybdenum diselenide (MoSe2) (Sathe et al. 2013; Wang et al. 2017), molybdenum 

ditelluride (MoTe2) (Park et al. 2015), tungsten disulfide (WS2) (Choi et al. 2017), 

tungsten diselenide (WSe2) (Chen et al. 2015; Yun et al. 2016), silicone (De Padova 

et al. 2017; Vogt et al. 2014), phosphorene (Khandelwal et al. 2017; Woomer et al. 

2015), bismuthene (Aktürk et al. 2016), graphyne (Dearden & Crean 2014; Kehoe et 

al. 2000), graphane (Arguilla et al. 2014) and graphene (Ali et al. 2016; Murdock et 

al. 2017) are among the 2D materials that have been investigated. Within that group, 

graphene is the most-researched material since its discovery in 2004 (Geim & 

Novoselov 2007; Novoselov et al. 2004). It is investigated for use in the next 
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generation devices due to its outstanding combination of properties not observed in 

any other type of materials. Its magnificent properties are attributed to the strong 

bonding between the hexagonal arrangement of carbon atoms that make up graphene.    

Graphene can be produced in several forms which include flakes (Chae et al. 

2017; Ghaemi et al. 2017; Nizam et al. 2017), ribbons (An et al. 2012; Liu et al. 2016), 

and large-area sheets (Bhaviripudi et al. 2010; Yan et al. 2012). They differ in lateral 

dimensions; flakes with limited lateral dimensions (from several nanometers to 

micrometers), large-area sheets possess macroscopic and extended lateral dimensions, 

while ribbons have one lateral dimension that is at least one order of magnitude larger 

than the other (Bianco et al. 2013). These differences allow graphene to be used in 

various types of application; certain physical forms are more compatible for particular 

applications. For example, large-area graphene sheets are more suited for wafer-scale 

thin film-like application such as transparent conductive electrode (Li et al. 2009c) 

while graphene flakes (GFs) are investigated for conductive ink applications (Arapov 

et al. 2016; Yang & Wang 2016). 

 

1.2 Graphene 

The unique properties of graphene have triggered a sudden drive of graphene 

researches all over the world. Graphene is expected to be the next generation two-

dimensional materials having the potential to enhance current technology and create a 

new one in the near future. Graphene is a thermodynamically stable species of pure 

carbon atoms bonded in a single sheet of hexagonal sp2 structure (Gilje et al. 2007). It 

represents the base structure of carbon nanotubes (CNTs), graphite and fullerenes. 

Electron configuration of the carbon atoms is the key factor for the incredible 

properties of graphene such as its high mechanical strength (Ahmad et al. 2015; Wang 
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et al. 2014), high surface area (Gadipelli & Guo 2015; Huang et al. 2012), 

extraordinary thermal conductivity (Wang & Tsai 2016; Wang et al. 2016), ultra-high 

elasticity (Geim 2009) and high optically transparency (Weber et al. 2014; Zhu et al. 

2014). Due to its outstanding properties, graphene has immense potential in many 

applications. Even if properties of graphene depend on its structure and form (Lee et 

al. 2017; Pang et al. 2016) and the intended applications depend on graphene 

characteristics, its potential to improve performances in numerous materials and 

processes is widely recognized. Among the numerous applications targeted, graphene 

could be used as transparent conducting electrodes (Casaluci et al. 2016), fillers in 

reinforced polymer nanocomposites (Kumar et al. 2017b; Mittal et al. 2015; Young et 

al. 2012), super-capacitors (Ke & Wang 2016; Kumar et al. 2017a, 2017d), lithium ion 

batteries (Kheirabadi & Shafiekhani 2012; Kucinskis et al. 2013; Zhao et al. 2016a), 

fuel cells (Devrim & Albostan 2016; Najafabadi et al. 2016), solar cells (Kuhn & Gorji 

2016), photo-catalysis (Putri et al. 2015), biosensors (Park et al. 2016), chemical 

sensors (Zhao et al. 2016b), purification of water (Aghigh et al. 2015) and 

optoelectronics (Jin et al. 2015; Polat et al. 2016). To face the demand for both 

fundamental studies and developments for its practical utilization, development of 

large-scale synthesis methods has never been more vital (Bae et al. 2010; Levchenko 

et al. 2016).  

Since the discovery of graphene through highly oriented pyrolytic graphite 

(HOPG) mechanical exfoliation (Geim & Novoselov 2007; Seah et al. 2014), a number 

of alternative methods for graphene synthesis have been developed. Wet chemical 

exfoliation is one of the most widely used techniques to prepare graphene nowadays 

but it does have some drawbacks (Botas et al. 2013) including numerous lattice 

defects, multiple grain boundaries and oxidative traps, which increases its electrical 
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