

CATALYTIC CO-PYROLYSIS OF SUGARCANE BAGASSE AND WASTE PLASTICS USING ZEOLITE AND HYDROXYAPATITE BASED CATALYST FOR HIGH QUALITY PYROLYSIS OIL IN A FIXED-BED REACTOR

HAMIZURA BT HASSAN

UNIVERSITI SAINS MALAYSIA

2019

CATALYTIC CO-PYROLYSIS OF SUGARCANE BAGASSE AND WASTE PLASTICS USING ZEOLITE AND HYDROXYAPATITE BASED CATALYST FOR HIGH QUALITY OF PYROLYSIS OIL IN A FIXED-BED REACTOR

by

HAMIZURA BT HASSAN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

July 2019

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude and acknowledgement to my supervisor, Professor Dr. Bassim H. Hameed for his patience, guidance, immense knowledge and motivation throughout my Ph.D study. His dedication and enthusiasm in research really inspired and motivated me, especially during the tough time in my Ph.D pursuit. A special thanks to Prof. Dr. Lim Jit Kang, my co-supervisor, for his insightful comments and encouragement during this research. Furthermore, I would like to thank all the technical and administrative staff at the School of Chemical Engineering, for their valuable help and cooperation. I would like to acknowledge the Ministry of Higher Education (MOHE), Malaysia and the Universiti Teknologi MARA (UiTM) for the scholarship support. I also sincerely thank the research grants provided by the Universiti Sains Malaysia, Malaysia under Research University (RU) TOP-DOWN grant for funding these works. Special thanks to the members of READ especially Dr. Yee Ling Tan, Dr. Kabir Garba, Dr Norhaslinda Nasuha, Norhayati and Mutmirah, for their helping hand and kind support.

I would like to express my heartfelt love and gratitude to my parents; Hassan Jasin and Norrishah Yaakub and my sisters Hasmilizawati and Hazila for their unconditional love and emotional support. I am forever indebted to my husband, Musa Mohamed Zahidi for his unconditional love, assistance and endless encouragement. The last word goes to my baby boy, Lukman Harith, who has given me an extra strength and motivation to complete this Ph.D journey.

Hamizura Hassan

July 2019

TABLE OF CONTENTS

			Page
AC	KNOW	/LEDGEMENT	ii
TA	BLE O	F CONTENTS	iii
LIS	TOF	ΓABLES	ix
LIS	T OF I	FIGURES	xi
LIS	T OF I	PLATES	xvii
LIS	T OF S	SYMBOLS	xviii
LIS	T OF A	ABBREVIATIONS	xix
ABS	STRAF	ζ	xxii
ABS	STRAC	CT	xxiv
CH	APTEI	R 1 INTRODUCTION	1
1.1	Globa	l Demand for Alternative Energy Sources	1
1.2	Biom	ass-Derived Bio-Oil	2
1.3	Catal	tic Pyrolysis of Biomass	3
1.4	Catal	ytic Co-Pyrolysis	4
1.5	Proble	em Statement	7
1.6	Objec	tives of the Study	9
1.7	Scope	e of Study	10
1.8	Thesi	s Organization	11
CH	APTEI	R 2 LITERATURE REVIEW	13
2.1	Introd	luction	13
2.2	Feeds	tock for Co-Pyrolysis Process	13
	2.2.1	Lignocellulosic Biomass	13
		2.2.1(a) Components of Lignocellulosic Biomass	15
	2.2.2	Synthetic Polymers	17
2.3	Co-Py	/rolysis Process	20
2.4	Effect	of Operating Conditions on Co-Pyrolysis of Biomass and Plastic	28
	2.4.1	Effect of Reaction Temperature on Product Yield and Chemical	28
		Composition of Bio-Oil	
	2.4.2	Effect of Biomass-To-Plastic Ratio on Product Yield and Chemical	30
		Composition of Bio-Oil	

2.5	Cataly	ytic Co-Pyrc	olysis of Biomass and Plastics	31
	2.5.1	Reaction N	Aechanism of Biomass-Plastics Catalytic Co-Pyrolysis	33
	2.5.2	Function o	of Catalyst in Co-Pyrolysis of Biomass	36
		2.5.2(a)	Microporous Catalyst	37
		2.5.2(b)	Mesoporous catalyst	39
	2.5.3	Effect of C	Operating Conditions on Catalytic Co-Pyrolysis of Biomass	42
		and Plastic	;	
		2.5.3(a)	Effect of Reaction Temperature on Product Yields and	42
			Chemical Composition of Bio-Oil	
		2.5.3(b)	Effect of Catalyst Loading on Product Yields and	44
			Chemical Composition of Bio-Oil	
		2.5.3(c)	Effect of Biomass-To-Plastic Blending Ratio on Product	46
			Yields and Chemical Composition of Bio-Oil	
2.6	Chem	ical Compo	sition of Bio-Oil Obtained from Catalytic	47
	Co-Py	rolysis		
2.7	Produ	ct Fractiona	l Yield Obtained from Catalytic Co-Pyrolysis of	51
	Biom	ass and Plas	tic	
2.8	Kinet	ic of Therma	al, Co-Pyrolysis and Catalytic Co-Pyrolysis of	54
	Biom	ass and Plas	tic by Thermogravimetric	
2.9	Sumn	nary		61
CH	APTEI	R 3 METHO	ODOLOGY	62
3.1	Introd	uction		62
3.2	Exper	imental Flov	W	62
3.3	Mater	ials and Che	emicals	65
	3.3.1	Materials		65
	3.3.2	Chemicals		65
3.4	Descr	iption of Fix	ked-Bed Reactor Set-Up	66
3.5	Biom	ass, Plastic a	and Product Characterization	69
	3.5.1	Proximate	Analysis	69
	3.5.2	Elemental	Analysis	70
	3.5.3	Gas Chron	natography-Mass Spectrometry (GCMS)	70
	3.5.4	Gas Chron	natography with Thermal Conductivity Detector	71
		(GC-TCD))	
	3.5.5	High Heat	ing Value	71

3.6	Cataly	yst Characte	rization	71
	3.6.1	Nitrogen A	Adsorption-Desorption	72
	3.6.2	X-ray Fluc	prescence (XRF)	72
	3.6.3	X-ray Diff	Traction (XRD)	73
	3.6.4	Scanning I	Electron Microscopy with Energy Dispersive X-ray	73
		(SEM-ED)	X)	
	3.6.5	Ammonia-	Temperature-Programmed Desorption (NH ₃ -TPD)	73
3.7	Synth	esis of Cata	lysts	74
	3.7.1	Synthesis	of Faujasite-electric Arc Furnace Slag Zeolite	74
		(FAU-EAI	FS) Catalyst	
	3.7.2	Synthesis of	of Hydroxyapatite-Zeolite (HAP-ZE) Composite Catalyst	75
3.8	Pyrol	ysis Reactio	n	75
	3.8.1	Thermal C	o-pyrolysis	76
	3.8.2	Catalytic C	Co-pyrolysis	77
3.9	Syner	gistic Effect	t	78
	3.9.1	Synergistic	c Effect During Co-pyrolysis	78
	3.9.2	Synergistic	e Effect During Catalytic Co-pyrolysis	79
3.10	Kinet	ic Study		79
CH	APTEI	R 4 RESUL	TS AND DISCUSSION	83
4.1	Introd	luction		83
4.2	Chara	cterization of	of Feedstock	84
	4.2.1	Proximate	and Ultimate Analysis of Feedstock	84
	4.2.2	Thermal D	Degradation Characteristic of Feedstocks	86
4.3	Thern	nal Pyrolysi	s of Feedstock	88
4.4	Со-ру	rolysis of S	ugarcane Bagasse with High-Density Polyethylene	90
	and P	olyethylene	Terephthalate	
	4.4.1	Effect of R	Reaction Temperature	90
		4.4.1(a)	Co-pyrolysis Product Yield at Different Reaction	90
			Temperatures	
		4.4.1(b)	Chemical Composition of Pyrolysis Oil at Different	96
			Reaction Temperatures	
		4.4.1(c)	Gas compositions at different reaction temperatures	103
	4.4.2	Effect of b	iomass-to-plastic ratio	106

		4.4.2(a)	Co-pyrolysis product yield at different biomass-to-plastic	106
			ratio	
		4.4.2(b)	Chemical composition of pyrolysis oil at different	110
			biomass-to-plastic ratio	
	4.4.3	Elemental a	nalysis and heating value of pyrolysis oil	118
	4.4.4	Comparison	n of different plastic on product distribution and chemical	120
		composition	n in co-pyrolysis of sugarcane bagasse and plastics	
4.5	Cataly	tic co-pyroly	ysis of sugarcane bagasse with high-density	122
	polyet	hylene and p	oolyethylene terephthalate over Faujasite-electric arc	
	furnac	e slag zeolite	e and Hydroxyapatite-zeolite catalysts	
	4.5.1	Characteriz	ation of Faujasite-electric arc furnace slag and	122
		Hydroxyapa	atite-Zeolite catalysts	
		4.5.1(a)	X-ray diffraction analysis (XRD) analysis	122
		4.5.1(b)	Nitrogen adsorption-desorption	124
		4.5.1(c)	Scanning electron microscopy –energy dispersive X-ray	127
			(SEM-EDX)	
		4.5.1(d)	NH ₃ temperature programmed desorption (NH ₃ -TPD)	130
4.6	Cataly	tic co-pyroly	ysis of sugarcane bagasse and high density	132
	polyet	hylene over	Faujasite-electric arc furnace slag zeolite and	
	hydrox	xyapatite-zeo	olite catalysts	
	4.6.1	Effect of rea	action temperature	132
		4.6.1(a)	Effect of reaction temperature on product fractional yield	132
		4.6.1(b)	Effect of reaction temperature on chemical composition	134
			of pyrolysis oil	
		4.6.1(c)	Effect of reaction temperature on gas compositions	139
	4.6.2	Effect of ca	talyst-to-feedstock ratio	141
		4.6.2(a)	Effect of catalyst-to-feedstock ratio on product fractional	141
			yield	
		4.6.2(b)	Effect of catalyst-to-feedstock ratio on chemical	143
			composition of pyrolysis oil	
	4.6.3	Effect of SC	CB-to-HDPE blending ratio	146
		4.6.3(a)	Effect of SCB-to-HDPE blending ratio on product	147
			fractional yield	

		4.6.3(b)	Effect of SCB-to-HDPE blending ratio on chemical	148	
			compositions		
	4.6.4	6.4 Comparison between Faujasite-electric arc furnace slag zeolite and 15			
		Hydroxyapatite-zeolite performances in catalytic co-pyrolysis of			
		sugarcane b	sugarcane bagasse with high-density polyethylene		
	4.6.5	Elemental a	analysis and heating values of pyrolysis oil obtained from	156	
		co-pyrolysi	s of sugarcane bagasse and high density polyethylene over		
		Faujasite-el	lectric arc furnace slag zeolite and Hydroxyapatite-zeolite		
		catalysts			
4.7	Cataly	tic co-pyrol	ysis of sugarcane bagasse and polyethylene	157	
	tereph	thalate over	Faujasite-electric arc furnace slag zeolite and		
	Hydro	xyapatite-ze	olite catalysts		
	4.7.1	Effect of re	action temperature	157	
		4.7.1(a)	Effect of reaction temperature on product fractional yield	157	
		4.7.1(b)	Effect of reaction temperature on chemical compositions	159	
			of pyrolysis oil		
		4.7.1(c)	Effect of reaction temperature on gas compositions	164	
	4.7.2	Effect of ca	talyst-to-feedstock ratio	167	
		4.7.2(a)	Effect of catalyst-to-feedstock ratio on product fractional	167	
			yield		
		4.7.2(b)	Effect of catalyst-to-feedstock ratio on chemical	169	
			compositions of pyrolysis oil		
	4.7.3	Effect of SO	CB-to-PET ratio	173	
		4.7.3(a)	Effect of SCB-to-PET ratio on product fractional yield	173	
		4.7.3(b)	Effect of SCB-to-PET ratio on chemical compositions of	175	
			pyrolysis oil		
	4.7.4	Comparison	n of product distributions in catalytic co-pyrolysis of	181	
		sugarcane	bagasse and polyethylene terephthalate over Faujasite-		
		electric arc	furnace slag zeolite and Hydroxyapatite-zeolite catalysts		
	4.7.5	Elemental a	analysis and heating values of pyrolysis oil obtained from	182	
		co-pyrolysi	s of sugarcane bagasse and polyethylene terephthalate over		
		Faujasite-el	ectric arc furnace slag zeolite and Hydroxyapatite-zeolite		
		catalysts			

	4.7.6	Comparison of types of plastic on product distributions and chemical	183
		compositions in catalytic co-pyrolysis of sugarcane bagasse and	1
		plastic	
	4.7.7	Comparison between co-pyrolysis and catalytic co-pyrolysis of	185
		sugarcane bagasse with plastics over Faujasite-electric arc furnace	e
		slag zeolite and Hydroxyapatite-zeolite catalysts	
4.8	Thern	nal behaviour and kinetic study of catalytic co-pyrolysis of	188
	sugare	cane bagasse and high-density polyethylene	
	4.8.1	Thermal, co-pyrolysis and catalytic co-pyrolysis behaviour of	188
		sugarcane bagasse and high-density polyethylene by using	3
		thermogravimetric analysis	
	4.8.2	Kinetic of thermal, co-pyrolysis and catalytic of co-pyrolysis of	194
		sugarcane bagasse with high density polyethylene using Coats-	-
		Redfern methods	
CH	APTEI	R 5 CONCLUSION AND FUTURE RECOMMENDATIONS	202
5.1	Concl	usion	202
5.2	Future	e recommendations	204
REI	FEREN	ICES	206
API	PENDI	CES	
LIS	T OF I	PUBLICATIONS	

LIST OF TABLES

	1	Page
Table 2.1	Chemical composition of different types of biomass	16
Table 2.2	Several findings regarding synergetic effects between biomass and	26
	plastic in co-pyrolysis.	
Table 2.3	Comparison of products obtained from co-pyrolysis and catalytic	48
	co-pyrolysis of biomass and plastics	
Table 2.4	Comparison of products obtained from co-pyrolysis and catalytic	53
	co-pyrolysis of biomass and plastics	
Table 2.5	Kinetic models of Coats-Redfern method (Zhao et al., 2018,	57
	Magalhães et al., 2017; Vyazovkin et al., 2011; White et al., 2011)	
Table 2.6	Kinetic of co-pyrolysis and catalytic co-pyrolysis of biomass with	60
	plastic by thermogravimetric	
Table 3.1	List of gases	65
Table 3.2	List of chemicals	66
Table 4.1	Proximate and ultimate analyses of raw materials	85
Table 4.2	Elemental composition and heating values of co-pyrolysis oil	119
	(Reaction conditions: Reaction time = 45 min ; temperature = 600	
	°C for SCB/HDPE and 500 °C for SCB/PET, mass of SCB and	
	HDPE mixture = 6 g)	
Table 4.3	Comparison of product distribution and chemical compositions	121
	obtained from co-pyrolysis of SCB/HDPE and SCB/PET	
Table 4.4	Textural characteristic of the FAU-EAFS and HAP-ZE	126
Table 4.5	Experimental and theoretical yield of hydrocarbons and synergistic	152
	effect obtained under different SCB: HDPE ratios over FAU-	
	EAFS catalyst	
Table 4.6	Experimental and theoretical yield of hydrocarbons and synergistic	152
	effect obtained under different SCB: HDPE ratios over HAP-ZE	
	catalyst	
Table 4.7	Comparison of product distribution and chemical compositions	155
	obtained from co-pyrolysis of SCB and HDPE over FAU-EAFS	
	and HAP-ZE catalysts	

- Table 4.8Elemental composition and heating values of pyrolysis oil156obtained from thermal pyrolysis of SCB and catalytic co-pyrolysisof HDPE and SCB over FAU- EAFS and HAP-ZE (Reactionconditions: Reaction time = 45 min; temperature = 500 °C forFAU-EAFS and 600 °C for HAP-ZE, mass of SCB and HDPEmixture = 6 g)
- Table 4.9Experimental and theoretical yield of hydrocarbons and synergistic 180effect obtained under different SCB: PET ratios over FAU-EAFScatalyst
- Table 4.10Experimental and theoretical yield of hydrocarbons and synergistic 180effect obtained under different SCB: PET ratios over HAP-ZE
catalyst
- Table 4.11Comparison of product distribution and chemical compositions182obtained from co-pyrolysis of SCB and PET over FAU-EAFS andHAP-ZE catalysts
- Table 4.12Elemental composition and heating values of pyrolysis oil183obtained from thermal pyrolysis of SCB and catalytic co-pyrolysisof SCB and PET over FAU-EAFS and HAP-ZE. (Reactionconditions: Reaction time = 45 min; temperature = 500 °C, mass ofSCB and PET mixture = 6 g)
- Table 4.13Pyrolysis characteristics for the thermal, co-pyrolysis and catalytic193co-pyrolysis of sugarcane bagasse and high-density polyethylene
- Table 4.14Kinetic parameters from the chemical reaction models of the197Coats-Redfern method
- Table 4.15Kinetic parameters from the diffusion models of the Coats-198Redfern method
- Table 4.16Kinetic parameters from the power law models of the Coats-199Redfern method
- Table 4.17Kinetic parameters from the Avarami-Erofe'ev models of the200Coats-Redfern method
- Table 4.18Kinetic parameters from the contracting model of the Coats-201Redfern method

LIST OF FIGURES

		Page
Figure 2.1	Chemical structure of lignocellulosic biomass (a) Cellulose;	15
	(b) Hemicellulose; (c) Lignin (Hansen and Plackett, 2008;	
	Shahzadi et al., 2014)	
Figure 2.2	Breakdown of plastic production by plastic resin type in Malaysia	19
	(National Solid Waste Management Department, 2011)	
Figure 2.3	The schematic diagram of co-pyrolysis of biomass and plastic	22
Figure 2.4	Proposed decomposition pathway of the co-pyrolysis of CE and	25
	HDPE	
Figure 2.5	Reaction mechanism between biomass model compounds and	36
	polyethylene at catalyst sites (1) Diels-Alder reaction mechanism;	
	(2) hydrocarbon pool mechanism; (3) hydrogen transfer between	
	polyethylene and lignin (Xue et al., 2016)	
Figure 3.1	Flow chart of overall experimental work	64
Figure 3.2	Schematic diagram of pyrolysis fixed bed reactor	67
Figure 4.1	(a) Thermogravimetric and (b) derivative thermogravimetric	87
	curves of SCB, HDPE, and PET at heating rate of 10 °C/min	
Figure 4.2	Pyrolysis product yield of individual material at different	89
	temperature (a) SCB, (b) HDPE and (c) PET. (Reaction	
	conditions: reaction time = 45 min ; mass of each SCB, HDPE and	
	PET = 6 g)	
Figure 4.3	Effect of reaction temperature on the experimental product yields	91
	derived from co-pyrolysis of (a) SCB and HDPE and (b) SCB and	
	PET. (Reaction conditions: reaction time = 45 min ; mass of each	
	SCB/HDPE and SCB/PET mixture = 6 g, HDPE:SCB and PET:	
	SCB ratio = 40:60)	
Figure 4.4	Difference between experimental and theoretical products yield at	93
	different reaction temperatures derived from co-pyrolysis of (a)	
	SCB and HDPE and (b) SCB and PET. (Reaction conditions:	
	reaction time: 45 min; mass of each SCB/HDPE and SCB/PET	
	mixture = 6 g, HDPE: SCB and PET: SCB ratio = 40:60)	

- Figure 4.5 Effect of reaction temperature on the chemical composition of 97 pyrolysis oil from co-pyrolysis of (a) SCB and HDPE and (b) SCB and PET. (Reaction conditions: reaction time = 45 min; mass of each SCB/HDPE and SCB/PET mixture = 6 g, HDPE: SCB and PET: SCB ratio = 40:60)
- Figure 4.6 Difference between experimental and theoretical chemical 100 compositions at different reaction temperatures derived from copyrolysis of (a) SCB and HDPE and (b) SCB and PET (Reaction conditions: reaction time = 45 min; mass of each SCB/HDPE and SCB/PET mixture = 6 g, HDPE:SCB and PET:SCB ratio = 40:60)
- Figure 4.7 Evolution of non-condensable gases from co-pyrolysis of (a) 104 SCB/HDPE and (b) SCB/PET in the temperature range of 200–700 °C. (Reaction conditions: Mass of each SCB/HDPE and SCB/PET mixture = 6 g, SCB: HDPE ratio and SCB:PET ratio = 60:40)
- Figure 4.8 Effect of biomass-to-plastic ratio on the experimental product 107 yields derived from co-pyrolysis of (a) SCB/HDPE and (b) SCB/PET. (Reaction conditions: reaction time = 45 min; temperature = 600 °C for SCB/HDPE and 500 °C for SCB/PET, mass of each SCB/HDPE and SCB/PET mixture = 6 g)
- Figure 4.9 Difference between experimental and theoretical products yield at 109 different biomass-to-plastic ratio derived from co-pyrolysis of (a) SCB/HDPE and (b) SCB/PET (Reaction conditions: reaction time: 45 min; temperature: 600 °C for SCB/HDPE and 500 °C for SCB/PET, mass of each SCB/HDPE and SCB/PET mixture = 6 g)
- Figure 4.10 Effect of biomass-to-plastic ratio on the experimental chemical 111 composition from co-pyrolysis of (a) SCB and HDPE and (b) SCB and PET. (Reaction conditions: reaction time: 45 min; temperature: 600 °C for SCB/HDPE and 500 °C for SCB/PET, mass of each SCB/HDPE and SCB/PET mixture = 6 g)
- Figure 4.11 Difference between experimental and theoretical chemical 113 compositions at different biomass-to-plastic ratios derived from co-pyrolysis of (a) SCB and HDPE and (b) SCB and PET (Reaction conditions: Reaction time = 45 min; temperature = 600

°C for SCB/HDPE and 500 °C for SCB/PET, mass of each SCB/HDPE and SCB/PET mixture = 6 g)

- Figure 4.12 X-ray diffraction pattern of catalysts (a) FAU-EAFS, (b) HAP-ZE 123
- Figure 4.13 Nitrogen adsorption desorption isotherms of (a) FAU-EAFS and 125 (b) HAP-ZE
- Figure 4.14 SEM images and EDX spectra of (a) Hydroxyapatite (HAP) (b) 129 Faujasite-EAF (FAU-EAFS) and (c) Hydroxyapatite-zeolite (HAP-ZE). Magnification = 10000×
- Figure 4.15 NH₃-TPD plot (a) FAU-EAFS, (b) HAP-ZE 131
- Figure 4.16 Effect of reaction temperature on the product fractional yields 133 derived from co-pyrolysis of SCB and HDPE over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; catalyst: feedstock ratio = 1:10, mass of SCB and HDPE mixture = 6 g, SCB: HDPE ratio = 60:40)
- Figure 4.17 Effect of reaction temperature on chemical composition from co-135 pyrolysis of SCB and HDPE over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; catalyst: feedstock ratio = 1:10, mass of SCB and HDPE mixture = 6 g, SCB: HDPE ratio = 60:40)
- Figure 4.18 Evolution of non-condensable gases from co-pyrolysis of SCB and 140 HDPE over (a) FAU-EAFS and (b) HAP-ZE in the temperature range of 200–700 °C. (Reaction conditions: Reaction time = 45 min, catalyst: feedstock ratio = 1:10, mass of SCB and HDPE mixture = 6 g, SCB: HDPE ratio = 60:40)
- Figure 4.19 Effect of catalyst-to-feedstock ratio on product fractional yield 142 from co-pyrolysis of SCB and HDPE over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; temperature = 500 °C for FAU-EAFS and 600 °C for HAP-ZE, mass of SCB and HDPE mixture = 6 g, SCB: HDPE ratio = 60:40)
- Figure 4.20 Effect of catalyst-to-feedstock ratio on chemical composition from 144 co-pyrolysis of SCB and HDPE over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; temperature = 500 °C for FAU-EAFS and 600 °C for HAP-ZE, mass of SCB and HDPE mixture = 6 g, SCB: HDPE ratio = 60:40)

- Figure 4.21 Effect of SCB: HDPE ratio on product fractional yield from 148 co-pyrolysis of SCB and HDPE over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; temperature = 500 °C for FAU-EAFS and 600 °C for HAP-ZE, catalyst: feedstock ratio = 1:6, mass of SCB and HDPE mixture = 6 g)
- Figure 4.22Effect of SCB: HDPE ratio on chemical compositions from149co-pyrolysis of SCB and HDPE over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min;temperature = 500 °C for FAU-EAFS and 600 °C for HAP-ZE,catalyst: feedstock ratio = 1:6, mass of SCB and HDPE mixture =6 g)
- Figure 4.23 Effect of reaction temperature on the product fractional yields 158 derived from co-pyrolysis of SCB and PET over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; catalyst: feedstock ratio = 1:10, mass of SCB and PET mixture = 6 g, SCB: PET ratio = 60:40)
- Figure 4.24 Effect of reaction temperature on the chemical compositions 159 derived from co-pyrolysis of SCB and PET over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; catalyst: feedstock ratio = 1:10, mass of SCB and PET mixture = 6 g, SCB: PET ratio = 60:40)
- Figure 4.25 Distribution of aromatic compounds from catalytic co-pyrolysis of 162
 SCB and PET over FAU-EAFS at various reaction temperature
 (Reaction conditions: Reaction time = 45 min; catalyst: feedstock
 ratio = 1:10, mass of SCB and PET mixture = 6 g, SCB: PET ratio
 = 60:40)
- Figure 4.26 Evolution of non-condensable gases from co-pyrolysis of SCB and 165 PET over (a) FAU-EAFS and (b) HAP-ZE in the temperature range of 200–600 °C. (Reaction conditions: Reaction time = 45 min, catalyst: feedstock ratio = 1:10, mass of SCB and PET mixture = 6 g, SCB: PET ratio = 60:40)
- Figure 4.27 Effect of catalyst-to-feedstock ratio on product fractional yield 168 from co-pyrolysis of SCB and PET over (a) FAU-EAFS and (b)

HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; temperature = 500 °C, mass of SCB and PET mixture = 6 g, SCB: PET ratio = 60:40)

- Figure 4.28 Effect of catalyst-to-feedstock ratio on chemical compositions 169 from co-pyrolysis of SCB and PET over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min; temperature = 500 °C, mass of SCB and PET mixture = 6 g, SCB: PET ratio = 60:40)
- Figure 4.29 Distribution of aromatic compounds from catalytic co-pyrolysis of 172
 SCB and PET over (a) FAU-EAFS (b) HAP-ZE at various
 catalyst-to-feedstock ratio. (Reaction conditions: Reaction time = 45 min; temperature: 500 °C, mass of SCB and PET mixture = 6 g, PET: SCB ratio = 40:60)
- Figure 4.30Effect of SCB: PET ratio on product fractional yield from174co-pyrolysis of SCB and PET over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min;temperature = 500 °C, mass of SCB and PET mixture = 6 g,catalyst: feedstock ratio = 1:10 for FAU-EAFS and 1:8 for HAP-ZE)
- Figure 4.31Effect of SCB: PET ratio on chemical compositions from176co-pyrolysis of SCB and PET over (a) FAU-EAFS and (b) HAP-ZE catalysts. (Reaction conditions: Reaction time = 45 min;temperature = 500 °C, catalyst: feedstock ratio = 1:10 for FAU-EAFS and 1:8 for HAP-ZE, mass of SCB and PET mixture = 6 g)
- Figure 4.32 Distribution of aromatic compounds from catalytic co-pyrolysis of 178
 SCB and PET over (a) FAU-EAFS (b) HAP-ZE at various
 SCB:PET ratio. (Reaction conditions: Reaction time = 45 min; temperature: 500 °C, catalyst: feedstock ratio = 1:10 for FAU-EAFS and 1:8 for HAP-ZE, mass of SCB and PET mixture = 6 g)
- Figure 4.33 Effect of types of plastic on (a) Product distributions (b) Chemical 184 compositions. (Reaction conditions: Reaction time = 45 min, temperature: 500 °C, catalyst: feedstock ratio = 1:6 for HDPE and 1:10 for PET, SCB: HDPE and SCB: PET ratio = 40:60)

- Figure 4.34 Effect of co-pyrolysis and catalytic co-pyrolysis of SCB with 186 HDPE and PET over FAU-EAFS and HAP-ZE catalysts on (a) Product distributions, (b) Chemical compositions. (Reaction conditions: Reaction time = 45 min, temperature: 500 °C, mass of each SCB/HDPE and SCB/PET mixture = 6 g, catalyst: feedstock ratio = 1:6 for HDPE and 1:10 for PET, HDPE: SCB and PET: SCB ratio = 60:40)
- Figure 4.35 (a) Thermogravimetric and (b) derivative thermogravimetric curve 189 for the thermal, co-pyrolysis and catalytic co-pyrolysis of sugarcane bagasse with high density polyethylene over FAU-EAFS and HAP-ZE at heating rate of 10 °C/min

LIST OF PLATES

		Page
Plate 3.1	Image of pyrolysis fixed bed reactor	68

LIST OF SYMBOLS

Symbol	Description	Unit
А	Pre-exponential factor	min ⁻¹
E	Activation energy	kJ/mol
g(a)	Mechanism function	-
α	Conversion of the combustible sample	-
·ОН	Hydroxyl radical	-
R	Universal gas constant	J/mol·K
R ²	Correlation coefficient	-
Т	Absolute temperature	Κ
Wo	Initial mass of sample	mg
Wf	Final mass of sample	mg
W	Mass of sample at time t,	mg
ΔW	Weight loss	wt%

LIST OF ABBREVIATIONS

BET	Brunauer-Emmett-Teller
BJH	Barret-Joyner-Halenda
BOFS	Basic oxygen furnace slag
CE	Cellulose
CS	Corn stalk
CDM	Clean Development Mechanism (CDM)
CR	Coats-Redfern
DAEM	Distributed activation energy model
DTG	Derivative thermogravimetric
EAFS	Electric arc furnace slag
EDX	Energy dispersive X-ray
FAU-EAFS	Faujasite-electric arc furnace slag zeolite
FWO	Flynn-Wall-Ozawa
GC-MS	Gas chromatography-mass spectrometry
GC-TCD	Gas chromatography-thermal conductive detector
HAP-ZE	Hydroxyapatite-zeolite
HHVs	High heating values
H/C _{eff}	Hydrogen-to-carbon effective ratio
HDPE	High-density polyethylene
IUPAC	International Union of Pure and Applied Chemistry
KAS	Kissinger-Akahira-Sunose
LDPE	Low-density polyethylene
LLDPE	Linear low-density polyethylene

MSW	Municipal solid waste
m/z	Mass to charge ratio
NH ₃ -TPD	Ammonia temperature-programmed desorption
NIST	National Institute of Standards and Technology
PAHs	Polyaromatic hydrocarbons
PAW	Paulownia wood
PC	Polycarbonate
PE	Polyethylene
PET	Polyethylene terephthalate
РР	Polypropylene
PS	Polystyrene
PST	Peach stones
PSW	Plastic solid waste
PVC	Polyvinylchloride
Py-GC/MS	Pyrolysis-gas chromatography/mass spectrometry
RS	Rice straw
SCB	Sugarcane bagasse
SEM	Scanning electron microscopy
TGA	Thermogravimetric analysis
TG	Thermogravimetric
TG-MS	Thermogravimetric -mass spectrometry
WP	Waste newspaper
WS	Walnut shells
XRD	X-ray diffraction
XRF	X-ray fluorescence

YP Yellow poplar

CO-PIROLISIS BERMANGKIN KE ATAS HAMPAS TEBU DAN SISA PLASTIK MENGGUNAKAN PEMANGKIN BERASASKAN ZEOLIT DAN HIDROKSIAPATIT UNTUK MENGHASILKAN MINYAK PIROLISIS BERMUTU TINGGI DI DALAM REAKTOR LAPISAN-TETAP

ABSTRAK

Kesusutan sumber asli, permintaan petroleum yang besar dan kebimbangan alam sekitar telah mencetus motivasi kajian pada bahan api boleh diperbaharui dari biomas. Kajian ini bertujuan menyelidik co-pirolisis dan co-pirolisis bermangkin ke atas hampas tebu (SCB) dan polietilena berkepadatan tinggi (HDPE) atau polietilena teraftalat (PET) di dalam reaktor lapisan tetap pemanasan perlahan menggunakan pemangkin zeolit (FAU-EAFS) dan hidroksiapatit-zeolit (HAP-ZE) yang disediakan dari arka elektrik sanga relau. Dalam proses co-pirolisis, kesan suhu tindak balas (400-700 °C) dan nisbah biomas kepada plastik (100:0-0:100) ke atas hasil keluaran, komposisi kimia dan juga kesan bersinergi telah dikaji. 63.69 wt% hasil cecair optimum dicapai pada 600 °C dan nisbah SCB kepada HDPE 60:40 di dalam co-pirolisis SCB dan HDPE manakala 60.94 wt% hasil cecair dicapai pada 600 °C dan nisbah SCB kepada PET 40:60. Dalam bahagian co-pirolisis bermangkin, kesan suhu tindak balas (400-700 °C), nisbah pemangkin kepada bahan mentah (1:10-1:2) dan nisbah plastik kepada biomas (0:100-100:0) ke atas hasil keluaran dan komposisi kimia telah dikaji. 68.56 wt% and 71.01 wt% maksimum minyak-pirolisis diperolehi dalam co-pirolisis bermangkin SCB dan HDPE menggunakan pemangkin FAU-EAFS dan HAP-ZE. Copirolisis bermangkin SCB dan PET menggunakan pemangkin FAU-EAFS dan HAP-ZE, menghasilkan 42.95 wt% and 45.64 wt%, maksimum minyak-pirolisis. Co-pirolisis bermangkin SCB dan HDPE menggalakkan pengeluaran hidrokarbon dan alkohol manakala co-pirolisis bermangkin SCB dan PET meningkatkan pengeluaran aromatik dan asid. Berbanding HAP-ZE, FAU-EAFS menunjukkan prestasi yang lebih baik dalam pengeluaran hidrokarbon dan aromatik semasa co-pirolisis bermangkin SCB dan HDPE atau PET kerana keasidan yang kuat dan saiz liang yang lebih besar yang meningkatkan tindak balas peretakan dan penyahoksigen dan kecekapan resapan wap pirolisis ke dalam liang pemangkin. Kelakuan pirolisis haba, co-pirolisis dan co-pirolisis bermangkin bagi SCB dan HDPE telah ditentukan menggunakan analisis termogravimetri manakala parameter kinetik telah dikira menggunakan kaedah Coats-Redfern. Di kawasan kedua di mana uraian selulosa dan hemiselulosa menjadi dominan, kolerasi paling sesuai untuk HDPE diperihalkan oleh mekanisme tindak balas kimia tertib pertama, manakala sampel tindak balas lain dikawal oleh model resapan. Manakala, di kawasan ketiga di mana tindak balas di antara SCB dan HDPE berlaku, kesemua sampel tindak balas mengikut mekanisme tindak balas tertib. Penambahan pemangkin FAU-EAFS dan HAP-ZE menghasilkan tenaga pengaktifan yang lebih rendah di kawasan kedua di dalam co-pirolisis bermangkin SCB dan HDPE.