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Figure 4.35 (a) Thermogravimetric and (b) derivative thermogravimetric curve 189 

for the thermal, co-pyrolysis and catalytic co-pyrolysis of 

sugarcane bagasse with high density polyethylene over FAU-

EAFS and HAP-ZE at heating rate of 10 ℃/min  
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LIST OF SYMBOLS 

Symbol Description  Unit  

A Pre-exponential factor  min-1 

E Activation energy  kJ/mol 

g(α) Mechanism function  - 

α  Conversion of the combustible sample - 

·OH Hydroxyl radical  - 

R Universal gas constant J/mol·K 

R2 Correlation coefficient  - 

T Absolute temperature K 

wo Initial mass of sample mg 

wf Final mass of sample mg 

w Mass of sample at time t, mg 

∆W Weight loss  wt% 
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LIST OF ABBREVIATIONS 

BET Brunauer-Emmett-Teller  

BJH Barret-Joyner-Halenda  

BOFS Basic oxygen furnace slag  

CE Cellulose  

CS Corn stalk  

CDM Clean Development Mechanism (CDM) 

CR Coats-Redfern  

DAEM Distributed activation energy model  

DTG Derivative thermogravimetric  

EAFS Electric arc furnace slag  

EDX Energy dispersive X-ray 

FAU-EAFS Faujasite-electric arc furnace slag zeolite 

FWO Flynn-Wall-Ozawa  

GC–MS Gas chromatography–mass spectrometry 

GC-TCD Gas chromatography-thermal conductive detector  

HAP-ZE Hydroxyapatite-zeolite  

HHVs High heating values  

H/Ceff Hydrogen-to-carbon effective ratio 

HDPE High-density polyethylene  

IUPAC International Union of Pure and Applied Chemistry  

KAS Kissinger-Akahira-Sunose  

LDPE Low-density polyethylene 

LLDPE Linear low-density polyethylene  



xx 

 

MSW Municipal solid waste  

m/z Mass to charge ratio  

NH3-TPD Ammonia temperature-programmed desorption  

NIST National Institute of Standards and Technology  

PAHs Polyaromatic hydrocarbons  

PAW Paulownia wood  

PC Polycarbonate  

PE Polyethylene 

PET Polyethylene terephthalate  

PP Polypropylene 

PS Polystyrene  

PST Peach stones  

PSW Plastic solid waste  

PVC Polyvinylchloride  

Py-GC/MS Pyrolysis-gas chromatography/mass spectrometry  

RS Rice straw  

SCB Sugarcane bagasse  

SEM Scanning electron microscopy  

TGA Thermogravimetric analysis  

TG Thermogravimetric  

TG-MS Thermogravimetric -mass spectrometry  

WP Waste newspaper  

WS Walnut shells  

XRD X-ray diffraction  

XRF X-ray fluorescence 
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YP Yellow poplar 
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CO-PIROLISIS BERMANGKIN KE ATAS HAMPAS TEBU DAN SISA 

PLASTIK MENGGUNAKAN PEMANGKIN BERASASKAN ZEOLIT DAN 

HIDROKSIAPATIT UNTUK MENGHASILKAN MINYAK PIROLISIS 

BERMUTU TINGGI DI DALAM REAKTOR LAPISAN-TETAP 

ABSTRAK 

Kesusutan sumber asli, permintaan petroleum yang besar dan kebimbangan 

alam sekitar telah mencetus motivasi kajian pada bahan api boleh diperbaharui dari 

biomas. Kajian ini bertujuan menyelidik co-pirolisis dan co-pirolisis bermangkin ke 

atas hampas tebu (SCB) dan polietilena berkepadatan tinggi (HDPE) atau polietilena 

teraftalat (PET) di dalam reaktor lapisan tetap pemanasan perlahan menggunakan 

pemangkin zeolit (FAU-EAFS) dan hidroksiapatit-zeolit (HAP-ZE) yang disediakan 

dari arka elektrik sanga relau. Dalam proses co-pirolisis, kesan suhu tindak balas (400-

700 ℃) dan nisbah biomas kepada plastik (100:0-0:100) ke atas hasil keluaran, 

komposisi kimia dan juga kesan bersinergi telah dikaji. 63.69 wt% hasil cecair optimum 

dicapai pada 600 °C dan nisbah SCB kepada HDPE 60:40 di dalam co-pirolisis SCB 

dan HDPE manakala 60.94 wt% hasil cecair dicapai pada 600 °C dan nisbah SCB 

kepada PET 40:60. Dalam bahagian co-pirolisis bermangkin, kesan suhu tindak balas 

(400-700 ℃), nisbah pemangkin kepada bahan mentah (1:10-1:2) dan nisbah plastik 

kepada biomas (0:100-100:0) ke atas hasil keluaran dan komposisi kimia telah dikaji. 

68.56 wt% and 71.01 wt% maksimum minyak-pirolisis diperolehi dalam co-pirolisis 

bermangkin SCB dan HDPE menggunakan pemangkin FAU-EAFS dan HAP-ZE. Co-

pirolisis bermangkin SCB dan PET menggunakan pemangkin FAU-EAFS dan HAP-

ZE, menghasilkan 42.95 wt% and 45.64 wt%, maksimum minyak-pirolisis. Co-pirolisis 
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bermangkin SCB dan HDPE menggalakkan pengeluaran hidrokarbon dan alkohol 

manakala co-pirolisis bermangkin SCB dan PET meningkatkan pengeluaran aromatik 

dan asid. Berbanding HAP-ZE, FAU-EAFS menunjukkan prestasi yang lebih baik 

dalam pengeluaran hidrokarbon dan aromatik semasa co-pirolisis bermangkin SCB dan 

HDPE atau PET kerana keasidan yang kuat dan saiz liang yang lebih besar yang 

meningkatkan tindak balas peretakan dan penyahoksigen dan kecekapan resapan wap 

pirolisis ke dalam liang pemangkin. Kelakuan pirolisis haba, co-pirolisis dan  

co-pirolisis bermangkin bagi SCB dan HDPE telah ditentukan menggunakan analisis 

termogravimetri manakala parameter kinetik telah dikira menggunakan kaedah  

Coats-Redfern. Di kawasan kedua di mana uraian selulosa dan hemiselulosa menjadi 

dominan, kolerasi paling sesuai untuk HDPE diperihalkan oleh mekanisme tindak balas 

kimia tertib pertama, manakala sampel tindak balas lain dikawal oleh model resapan. 

Manakala, di kawasan ketiga di mana tindak balas di antara SCB dan HDPE berlaku, 

kesemua sampel tindak balas mengikut mekanisme tindak balas tertib. Penambahan 

pemangkin FAU-EAFS dan HAP-ZE menghasilkan tenaga pengaktifan yang lebih 

rendah di kawasan kedua di dalam co-pirolisis bermangkin SCB dan HDPE.  
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