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acid-co-itaconic acid] 

Pb2+ Lead (II) cation 

PEDOT / PSS Lignin-poly(3,4-ethylenedioxythiophene) / 

polystyrene sulfonate 

PEGDA Poly(ethyelene glycol) diacrylate 

PNaAA Poly(sodium acrylate) 

PNIPAM Poly(N-isopropylacrylamide) 

PNIPAM-co-AA Poly(N-isopropylacrylamide-co-acrylic acid) 

(PNIPAM-co-AA)-silica-

PVP-MNPs 

Poly(N-isopropylacrylamide-co-acrylic acid)-

gelated silica- poly(vinylpyrrolidone)-iron oxide 

magnetic nanoparticles composite hydrogel 

PNIPAM-co-AAm-co-MA Poly(N-isopropylacrylamide-co-acrylamide-co-

maleic acid) 

P(NIPAM-co-BCAm) Poly(N-isopropylacrylamide-co-benzo-18-crown-6-

acrylamide) 

PNIPAM-silica-PVP-MNPs Poly(N-isopropylacrylamide)-gelated silica-

poly(vinylpyrrolidone)-iron oxide magnetic 

nanoparticles composite hydrogel 

PSt Polystyrene 

P(St-NIPAM) Poly(styrene-N-isopropylacrylamide) 

PSt-PNIPAM Polystyrene-poly(N-isopropylacrylamide) 

PVP Poly(vinylpyrrolidone) 

P(4-VP-co-HEMA) Poly(4-vinyl pyridine-co- 2-

hydroxyethylmetacrylate) 

SCH2COOH Thiodiglycolic acid 

SDBS Sodium n-dodecylbenzenesulfonate 

SH Sodium humate 

silica Silica coating layer 

SiOH Silanol 

SiOSi Siloxane 

SO3H Sulfonic acid  

SP Spiropyran 
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SP-PNVCL Spiropyran-ended poly(N-vinyl caprolactam)  

Sr2+ Strontium (II) cation 

St Starch 

TEOS Tetraethyl orthosilicate 

Th4+ Thorium (IV) cation 

THF Tetrahydrofuran 

TS-SPE Temperature-swing solid-phase extraction 

U6+ Uranium (VI) cation 

UF Ultrafiltration 

UO2
2+ Uranyl cation 

UV Ultraviolet 

UV-Vis Ultraviolet-visible 

V50 2,2’-Azobis(2-amidinopropane) dihydrochloride 

VIM n-vinyl imidazole 

VPT Volume phase transition 

VPTT Volume phase transition temperature 

Zn2+ Zinc (II) cation 
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LIST OF SYMBOLS 

 

T Temperature (ºC and K) 

pKa Acid dissociation constant 

pKb Base dissociation constant 

Dh Hydrodynamic diameter (nm) 

ζ Zeta potential (mV) 

R Cr3+ removal percentage (%) 

C0 Initial concentration of copper (II) cations in solution (mg L-1) 

Ce Equilibrium concentration in solution (mg L-1) 

M Dry mass of adsorbent (g) 

V Total volume of solution (L) 

qe Equilibrium adsorption capacity (mg g-1) 

qm Maximum equilibrium adsorption capacity (mg g-1) 

qt Equilirium adsorption capacity at time t (mg g-1) 

KL Langmuir constant (L mg-1) 

RL Langmuir separation factor 

KF Freundlich constant (L g-1) 

1/n Freundlich heterogeneity factor  

B Dubinin-Radushkevich constant related to adsorption energy 

(mol2 k-1J-2) 

R Gas constant (8.314 J mol.-1K-1) 

ɛ Polanyi potential  
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E Free mean energy of the adsorption (kJ mol-1) 

b Temkin constant related to heat of adsorption (J mol-1) 

KT Temkin constant (L g-1) 

θ Degree of surface coverage by adsorbates  

KFH Flory-Huggins equilibrium constant (L g-1) 

n Flory-Huggins model exponent 

ΔGº Standard free energy change (kJ mol-1) 

KFR Frumkin equilibrium constant (L g-1) 

a interaction parameter related to the interaction energy of the 

adsorbates 

k1 Pseudo-first-order rate constant (min-1) 

k2 Pseudo-second-order rate constant (g mg-1 min-1) 

kid Intra-particle diffusion rate constant (mg g-1min-1/2) 

Cid Constant related to the thickness of the boundary layer (mg g-1) 
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