

SYNTHESIS OF THERMO-MAGNETO-RESPONSIVE POLY(N-ISOPROPYLACRYLAMIDE)-BASED COMPOSITE HYDROGELS FOR ADSORPTION-DESORPTION OF CHROMIUM (III) IONS

by

CHEN JIAN JIE

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

July 2019

ACKNOWLEDGEMENT

First of all, with earnest gratefulness and appreciation, I would like to express my deepest gratitude to my parents and my family members for their support, tolerance and encouragement. They have provided me with great confidence to face the obstacles throughout my entire study. My sincere thanks to my dedicated supervisors, Assoc. Prof. Dr. Ooi Boon Seng, Prof. Lim Jit Kang and Prof. Dr. Abdul Latif Ahmad for their excellent supervision and enormous patience throughout my entire PhD study. I would like to thank them for their keen observations on my research works and their valuable suggestions on the areas that required further study. Thank you very much for the delicate help and invaluable advice throughout my entire study.

Furthermore, I would also like to express my gratitude to School of Chemical Engineering, USM who offers the great opportunity to me for gaining a lot of valuable knowledge from the research and thesis. Not forgetting to thank administrative staffs, office staffs and technicians for giving me full support throughout my research works. In addition, I would like to express my heartfelt gratitude and thank to all my beloved friends and colleagues for rendering their help, kindness and moral support on me. I might not be able to achieve what I want to be without their support.

Last but not least, the financial supports from Universiti Sains Malaysia Research University Grant (RUI) (1001/PJKIMIA/8014012), Ministry of Energy, Science, Technology, Environment and Climate Change Malaysia (DANA (R&D) MESTECC) (305/PJKIMIA/6013701) and Ministry of Higher Education (MyPhD) are gratefully acknowledged.

Chen Jian Jie

March 2019

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	х
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	xxiii
ABSTRAK	XXV
ABSTRACT	xxvii

CHAPTER ONE: INTRODUCTION

1.1	Research Overview	1
1.2	Thermo-responsive Composite Hydrogels for Heavy Metal Removal	2
1.3	Polydispersity and Undesired Aggregation of Composite Hydrogels	5
1.4	Release of Metal Ions and Regeneration of the Composite Hydrogels	6
1.5	Chromium and Its Interaction with PNIPAM	7
1.6	Problem Statement	9
1.7	Research Objectives	12
1.8	Scopes of Study	13
1.9	Organization of the Thesis	16

CHAPTER TWO: LITERATURE REVIEW

2.1	Stimu	li-responsive P	Polymeric Hydrogels	19
	2.1.1	Thermo-respo	onsive Hydrogels	21
	2.1.2	pH-responsiv	ve Hydrogels	25
	2.1.3	Photo-respon	sive Hydrogels	25
2.2	Iron C	xides Magneti	c Nanoparticles (MNPs) as Cores for Hydrogels	26
2.3	Archit	tectural Design	s of PNIPAM-based Hydrogel-MNPs Composites	27
	2.3.1	PNIPAM-M	NPs Core-Shell Structures	27
	2.3.2	Incorporation	n of MNPs within PNIPAM-matrix	31
2.4	Syner PNIP	gistic Behaviou AM-encapsulat	ar of Thermo-magneto-responsiveness of the red MNPs Composite Hydrogels.	35
2.5	Polym	neric Matrix for	r Metal Ions Removal	38
	2.5.1	Biopolymer f	for Metal Ions Removal	41
	2.5.2	Synthetic Pol	ymeric Hydrogels for Metal Ions Removal	45
2.6	Regen Therm	eration of Met	al-loaded PNIPAM Hydrogel via	50
	2.6.1	Chemical Me	ethod	51
	2.6.2	Temperature-	-swing Adsorption-desorption	54
2.7	Curren	nt Approaches	for Removal of Chromium (III) Ions	57
	2.7.1	Chemical Pre	ecipitation	57
	2.7.2	Electrodialys	is	58
	2.7.3	Membrane Fi	iltration	59
		2.7.3 (a)	Ultrafiltration (UF)	60
		2.7.3 (b)	Nanofiltration (NF)	60
2.8	Resea	rch Gap		62

CHAPTER THREE: MATERIALS AND METHODS

3.1	Chemi	cals	65
3.2	Flowch	nart of the Overall Experimental Works	67
3.3	Prepar	ation of PNIPAM-base / MNPs Composite Hydrogels	68
	3.3.1	Preparation of MNPs via Co-precipitation Method	68
	3.3.2	Direct Polymerization of PNIPAM onto Bare MNPs	69
	3.3.3	Surface Modification of Bare MNPs via Silanization	70
	3.3.4	Polymerization of PNIPAM onto MPS-modified MNPs	70
	3.3.5	Silica Coating of bare MNPs	70
	3.3.6	Functionalization of MNPs with PVP	71
	3.3.7	Silica Coating of PVP-functionalized MNPs	71
	3.3.8	Synthesis of PNIPAM-silica-PVP-MNPs Composite Hydrogels	71
	3.3.9	Preparation of MPS-modified silica-PVP-MNPs	72
	3.3.10	Preparation of PNIPAM-MPS-silica-PVP-MNPs Composite Hydrogels	72
	3.3.11	Synthesis of Co-polymeric (PNIPAM-co-AA)-silica-PVP-MNPs Composite Hydrogels	73
3.4	Physio	-chemical Properties Analyses of the Composite Hydrogels	73
	3.4.1	Identification of Functional Groups and Chemical Properties Analysis	73
	3.4.2	Estimation of PNIPAM Loading of the Composite Hydrogels.	74
	3.4.3	Dynamic Light Scattering (DLS)	74
	3.4.4	Magnetophoresis Kinetics Measurement	75
	3.4.5	Transmission Electron Microscopy (TEM)	75
	3.4.6	X-ray Photoelectron Spectroscopy (XPS)	75
3.5	Chrom	ium (III) Adsorption-desorption Study	76

	3.5.1	Measurement	of Cr ³⁺ concentration	76
	3.5.2	Temperature-	manipulated Adsorption-desorption Study	77
	3.5.3	Adsorption m	echanism study	77
		3.5.3 (a)	Langmuir Isotherm Model	78
		3.5.3 (b)	Freundlich Isotherm Model	79
		3.5.3 (c)	Dubinin-Radushkevich Isotherm Model	80
		3.5.3 (d)	Temkin Isotherm Model	81
		3.5.3 (e)	Flory-Huggins Isotherm Model	82
		3.5.3 (f)	Frumkin Isotherm Model	83
3.6	Adsor	rption Kinetics	Study	85

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Gelati	on of PNIPAM on bare MNPs	88
	4.1.1	Structure of Co-precipitated Iron Oxide Magnetic Nanoparticles (MNPs)	89
	4.1.2	Structure of PNIPAM-gelated MNPs Composites	90
	4.1.3	Change in Thermo-responsive Behaviour of PNIPAM After Incorporation of MNPs	91
4.2	Surfac	e Modification of MNPs via Silanization	94
	4.2.1	Structure of PNIPAM-MPS-MNPs Composites	94
	4.2.2	Thermo-responsive Behaviour of PNIPAM-gelated MPS-MNPs	96
	4.2.3	Chemical Identification of the Composite Materials	99
	4.2.4	Colloidal Stability Study	100
4.3	Stabil	ity Enhancement by Silica Coating of MNPs	103
	4.3.1	Silica Coating on Bare MNPs	104

	4.3.2	Pre-functionalization of MNPs by PVP for Effective Silica Coating	105
	4.3.3	Surface Modification of Silica-coated PVP-MNPs by MPS	106
4.4	Gelati (with	on of PNIPAM on Silica-coated PVP-MNPs and without MPS)	107
4.5	Chem PNIPA	ical Composition Change from Bare MNPs to AM-gelated MNPs Composite Hydrogels.	108
	4.5.1	Thermal Stability of Layer-by-layer Coating	111
	4.5.2	Thermo-responsive Volume Phase Transition	114
	4.5.3	Surface Charge Variation Induced by Thermo-responsive Behaviour	116
	4.5.4	Phase Separation Kinetics of Composite Hydrogels	117
	4.5.5	Magnetophoresis Profiles of Composite Hydrogels	118
4.6	Physic	o-chemical Properties of Chromium-laden Hydrogels	124
	4.6.1	Chemical Composition of Composite Hydrogels After Cr ³⁺ Adsorption	124
	4.6.2	Post-adsorption Morphological Change	125
	4.6.3	Surface Composition Change of Hydrogels After Cr ³⁺ Adsorption	126
	4.6.4	Thermo-responsive Behaviour of Chromium-laden Composite Hydrogels.	128
	4.6.5	Changes in Surface Potentials After Adsorption of Cr ³⁺	130
	4.6.6	Post-adsorption Colloidal Stability	131
4.7	Cr ³⁺ A Hydro	Adsorption Efficiency of PNIPAM-silica-PVP-MNPs Composite ogels	133
	4.7.1	Influence of Hydrogel Dosage on Cr ³⁺ Adsorption	134
	4.7.2	Thermo-responsive Adsorption-desorption of Cr ³⁺	134
	4.7.3	Adsorption Mechanism of Cr ³⁺	137

4.8	Enhar Acryl	acement of Cr^{3+} Chelating Ability by Coupling with ic Acid (AA).	141
	4.8.1	Identification of Functional Groups as Cr ³⁺ Binding Moieties	142
	4.8.2	Thermo-responsive Swelling-deswelling Behaviour Change in the Presence of AA	145
	4.8.3	Surface Potential Change Before and After Adsorption of Cr^{3+}	149
	4.8.4	Kinetic of Phase Separation Before and After Cr ³⁺ Adsorption.	151
	4.8.5	Magnetophoresis Kinetics Profiles Before and After Cr ³⁺ Adsorption.	152
	4.8.6	Morphological Change Before and After Cr ³⁺ Adsorption	153
	4.8.7	Surface Composition Change Before and After Cr ³⁺ Adsorption	155
4.9	Cr ³⁺ A Comp	Adsorption Efficiency of (PNIPAM-co-AA)-silica-PVP-MNPs osite Hydrogels	156
4.10	Thern (PNIP	no-responsive Adsorption-desorption of Cr ³⁺ by PAM-co-AA)-silica-PVP-MNPs Hydrogels	158
4.11	Adsor	ption Isotherm for (PNIPAM-co-AA)-silica-PVP-MNPs	160
4.12	Adsor	ption Kinetics of Cr ³⁺	164
CHA	PTER]	FIVE: CONCLUSIONS AND RECOMMENDATIONS	
5.1	Concl	usions	170

5.2 Recommendations 172

174

REFERENCES

APPENDICES

- APPENDIX A Gelation of PNIPAM via Free-radical Polymerization
- APPENDIX B UV-Spectrophotometer Calibration Curve for Chromium (III) Concentration Measurement.
- APPENDIX C Sample Calculations for Cr³⁺ Adsorption by Composite Hydrogels

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Lower critical solution temperature (LCST) of different thermos-responsive polymers	23
Table 2.2	Comparisons in adsorption capacities of different biopolymer hydrogels for adsorption of different heavy metal ions	44
Table 2.3	Comparisons in adsorption capacities of different synthetic polymer hydrogels for adsorption of different heavy metal ions	49
Table 3.1	List of chemicals and reagents used	66
Table 3.2	List of adsorption isotherm models used	84
Table 4.1	Assignments of main spectral bands based on their atomic concentration (AC) for PNIPAM-silica-PVP-MNPs composite hydrogels before and after adsorption of Cr^{3+}	127
Table 4.2	Isotherm parameters for adsorption of Cr^{3+} by PNIPAM-silica-PVP-MNPs composite hydrogels at different temperatures	139
Table 4.3	Assignments of main spectral bands based on their atomic concentration (AC) for (PNIPAM-co-AA)-silica-PVP-MNPs composite hydrogels before and after adsorption of Cr^{3+}	156
Table 4.4	Isotherm parameters for adsorption of Cr^{3+} by (PNIPAM-co-AA)-silica-PVP-MNPs composite hydrogels at different temperatures	161
Table 4.5	Comparison of the pseudo-first-order, pseudo-second- order and intra-particle diffusion adsorption rate constants and the calculated and experimental q_e values for PNIPAM-silica-PVP-MNPs and (PNIPAM-co- AA)-silica-PVP-MNPs composite hydrogels. ($T = 298$ K, pH 5)	167

LIST OF FIGURES

Page

Figure 2.1	Figure 2.1: Schematic illustration of the swelling- shrinking behaviour of stimuli-responsive hydrogels	21
Figure 2.2	Schematic illustration of the thermos-responsive phase transition of acrylamide-base polymer	23
Figure 2.3	A) Chemical structure of poly(<i>N</i> -isopropylacrylamide) (PNIPAM); B) schematic illustration of the volume phase transition of cross-linked PNIPAM hydrogel	24
Figure 2.4	Alignment of the magnetic moments of individual atoms in a MNP	26
Figure 2.5	Schematic diagram of the preparation route of PNIPAM- encapsulated MNPs with MPS as surface modifying silane	29
Figure 2.6	(a) PNIPAM-MNPs composite microgel formation mechanism for MNPs cluster larger than the nanogels, and (b) for MNPs cluster smaller than the nanogels	31
Figure 2.7	Three different structural designs with uniform distribution of MNPs within hydrogel matrix: a) Stabilization of inorganic MNPs by a stabilizing hydrogel matrix, b) non-covalent immobilization of MNPs, and c) covalent immobilization of MNPs in a hydrogel matrix	32
Figure 2.8	Schematic illustration of preparation route of MNPs- anchored PNIPAM-co-AA microcontainers	34
Figure 2.9	Schematic illustration of; (a) The structure of homo- polymeric CS-GLA hydrogels and; (b) the proposed mechanism of pH-manipulated adsorption-desorption of Cu^{2+} by GLA-cross-linked CS-PAA hybrid hydrogels	42

Figure 2.10	Illustration of the interactions between Hg ²⁺ ions and cross-linked AAm-CA hydrogels	47
Figure 2.11	Schematic diagram illustrates the pH-manipulated recyclable application of thermo-responsive PNIPAM-P(NaAA) IPN hydrogels	52
Figure 2.12	Schematic diagram of temperature-swing extraction of a metal ion complexed with an extractant onto the cross-linked PNIPAM hydrogels	55
Figure 2.13	Schematic diagram illustrating the thermo-responsive adsorption-desorption behavior of P(NIPAM-co-BCAm) hydrogel towards Pb^{2+} ions. The adsorption took place at temperature below the LCST, whereas the desorption occurred at temperature above the LCST	56
Figure 3.1	Flowchart of the research works	67
Figure 4.1	TEM images bare MNPs. Scale bars: 100 nm	89
Figure 4.2	TEM images show that there are some darker patches which could possibly be the denser clusters of MNPs enveloped by PNIPAM matrix, whereas the rest of the MNPs are adhered around the darker patches: (a) scale bar: 500 nm; (b) scale bar: 200 nm.	90
Figure 4.3	(a) Hydrodynamic diameter, D_h change and; (b) Zeta potential, ζ change against temperature change for PNIPAM-MNPs composite hydrogels	92
Figure 4.4	TEM images for: (a-b) MPS-modified MNPs (c-d) PNIPAM-MPS-MNPs. Scale bars: 500 nm for (a) and (c); 200 nm for (b) and (d)	95
Figure 4.5	(a) Hydrodynamic diameter, D_h change and; (b) Zeta potential, ζ change against temperature for PNIPAM-MPS-MNPs composite hydrogels	97
Figure 4.6	FT-IR spectra shows layer-by-layer significant peak change from bare MNPs until PNIPAM-MPS-MNPs	100

Figure 4.7	(a) kinetic profiles without magnetic field and (b) magnetic separation kinetic profiles for bare MNPs, MPS-MNPs, PNIPAM-MNPs and PNIPAM-MPS-MNPs	101
Figure 4.8	TEM image for coating of silica onto bare MNPs. Large aggregates were formed. Scale bar: 500 nm	105
Figure 4.9	TEM images for silica-coated PVP-MNPs. Scale bars: 200 nm.	105
Figure 4.10	TEM image for MPS-modified silica-PVP-MNPs. Scale bars: 200 nm	106
Figure 4.11	TEM images for: (a-b) PNIPAM-silica-PVP-MNPs (c- d) PNIPAM-MPS-silica-MNPs. Scale bars: 500 nm for (a) and (c); 200 nm for (b) and (d)	108
Figure 4.12	FT-IR spectra shows layer-by-layer significant peak change from bare MNPs until PNIPAM-MPS-silica- PVP-MNPs	109
Figure 4.13	Schematic diagram shows the major steps involved in layer-by-layer coatings of both PNIPAM-silica-PVP- MNPs and PNIPAM-MPS-silica-PVP-MNPs composite hydrogels	111
Figure 4.14	Layer-by-layer TGA curve change: (a) from bare MNPs to PNIPAM-silica-PVP-MNPs and; (b) from silica-PVP-MNPs to PNIPAM-MPS-silica-PVP-MNPs	112
Figure 4.15	Hydrodynamic diameters, D_h of; (a) PNIPAM-silica- PVP-MNPs and (b) PNIPAM-MPS-silica-PVP-MNPs nanoparticles as a function of temperature	115
Figure 4.16	Zeta potential, ζ change over temperature variation for; (a) PNIPAM-silica-PVP-MNPs and (b) PNIPAM-MPS- silica-PVP-MNPs.	117
Figure 4.17	Kinetic profiles without magnetic field for the samples beginning from bare MNPs until PNIPAM-MPS-silica- PVP-MNPs	118

- Figure 4.18 Magnetic separation kinetic profiles for the samples 119 beginning from bare MNPs until PNIPAM-MPS-silica-PVP-MNPs
- Figure 4.19 Comparison the collection rate of (left) bare MNPs and 121 (right) silica–PVP–MNPs composites by a NdFeB magnet within 420 min. Both suspensions were prepared with concentration of 0.2 g L⁻¹. The brownish colour of bare MNPs suspension and muddy hue of silica-PVP-MNPs suspension had faded at nearly equal rate at the end of magnetic collection
- Figure 4.20 Comparison the collection rate of (left) PNIPAM-silica-PVP-MNPs and (right) silica–PVP–MNPs composites by a NdFeB magnet within 420 min. Both suspensions were prepared with concentration at 0.2 g L⁻¹. The suspension colour of silica-PVP-MNPs was observed to have faded more rapidly than its PNIPAM-gelated counterpart indicating PNIPAM polymeric networks enhanced the colloidal stability via interfacial steric repulsion
- Figure 4.21Comparison the collection rate of (left) PNIPAM-silica-
PVP-MNPs and (right) PNIPAM-MPS-silica-PVP-
MNPs composite hydrogels by a NdFeB magnet within
420 min. Both suspensions were prepared with
concentration at 2 g L⁻¹. The solute phase of PNIPAM-
MPS-silica-PVP-MNPs was witnessed to be separated at
higher rate. Larger particle size and higher
polydispersity had collectively contributed to its higher
vulnerability of being harvested by external magetic
force
- Figure 4.22 FTIR spectrum shows comparisons in peak change 125 before and after adsorption Cr³⁺ for PNIPAM-silica-PVP-MNPs composite hydrogels
- Figure 4.23 TEM images of PNIPAM-silica-PVP-MNPs hydrogels: 126 (a-b) before and (c-d) after Cr^{3+} adsorption. Scale bars: 500 nm for (a) and (c) 200 nm for (b) and (d)

Figure 4.24	X-ray photoelectron spectroscopy (XPS) survey spectra of PNIPAM-silica-PVP-MNPs hydrogels before and after Cr ³⁺ adsorption	127
Figure 4.25	Hydrodynamic diameter, D_h change over temperature for PNIPAM-silica-PVP-MNPs after Cr ³⁺ adsorption ($C_0 = 100 \text{ mg L}^{-1}$).	129
Figure 4.26	Zeta potential, ζ change over temperature for PNIPAM- silica-PVP-MNPs after Cr ³⁺ adsorption ($C_0 = 100 \text{ mg L}^{-1}$).	131
Figure 4.27	Kinetic profiles without magnetic field and magnetic separation kinetic profiles for PNIPAM-silica-PVP-MNPs after Cr^{3+} adsorption	132
Figure 4.28	Effect of initial concentration of Cr^{3+} on the adsorption of Cr^{3+} onto PNIPAM-silica-PVP-MNPs composite hydrogels. (<i>pH</i> = 5, <i>V</i> = 50 mL, <i>M</i> = 4 mg, <i>T</i> = 298 K)	133
Figure 4.29	Cr^{3+} adsorption with different PNIPAM-silica-PVP- MNPs composite hydrogel concentrations ($C_0 = 100 \text{ mg}$ L^{-1} , $V = 50 \text{ mL}$, $T = 298 \text{ K}$, pH = 5)	134
Figure 4.30	Profile of Cr^{3+} adsorption capacity, q_e of PNIPAM- silica-PVP-MNPs composite hydrogels normalized by corresponding equilibrium concentration, C_e at different temperatures against varying initial concentration, C_0 . (Solution pH = 5)	136
Figure 4.31	Comparison of experimental Cr^{3+} adsorption capacity, q_e with different plots of q_e values calculated by various isotherm models against different equilibrium Cr^{3+} concentrations, C_e . (pH = 5, V = 50 mL, M = 4 mg)	138
Figure 4.32	Schematic diagram shows the thermos-responsive mechanisms for Cr^{3+} ions adsorption by PNIPAM-silica-PVP-MNPs composite hydrogels. Chelation of diffused Cr^{3+} dictated within hydrogel network	141
Figure 4.33	FTIR spectrum shows comparisons in peak change before and after adsorption Cr ³⁺ for (PNIPAM-co-AA)- silica-PVP-MNPs magnetic core composite hydrogels	143

Figure 4.34	Layer-by-layer TGA curves change: (a) from bare MNPs to PNIPAM-silica-PVP-MNPs and; (b) from silica-PVP-MNPs to (PNIPAM-co-AA)-silica-PVP- MNPs	144
Figure 4.35	Hydrodynamic diameter, D_h change over temperature, T for (PNIPAM-co-AA)-silica-PVP-MNPs; (a) before and (b) after Cr ³⁺ adsorption ($C_0 = 100 \text{ mg L}^{-1}$).	146
Figure 4.36	Zeta potential, ζ change over temperature, T for (PNIPAM-co-AA)-silica-PVP-MNPs; (a) before and (b) after Cr ³⁺ adsorption ($C_0 = 100 \text{ mg L}^{-1}$).	150
Figure 4.37	Kinetic profiles without magnetic field for (PNIPAM- co-AA)-silica-PVP-MNPs before and after Cr^{3+} adsorption	152
Figure 4.38	Magnetic separation kinetic profiles for (PNIPAM-co-AA)-silica-PVP-MNPs before and after Cr ³⁺ adsorption	153
Figure 4.39	TEM images for: (a-b) (PNIPAM-co-AA)-silica-PVP- MNPs before Cr^{3+} adsorption (c-d) (PNIPAM-co-AA)- silica-PVP-MNPs after Cr^{3+} adsorption. Scale bars: 500 nm for (a) and (c); 200 nm for (b) and (d)	154
Figure 4.40	X-ray photoelectron spectroscopy (XPS) survey spectra of (PNIPAM-co-AA)-silica-PVP-MNPs hydrogels before and after Cr^{3+} adsorption	156
Figure 4.41	Effect of initial concentration of Cr^{3+} on the adsorption of Cr^{3+} onto (PNIPAM-co-AA)-silica-PVP-MNPs magnetic composite hydrogels. (<i>pH</i> = 5, <i>V</i> = 50 mL, <i>M</i> = 4 mg, <i>T</i> = 298 K)	157
Figure 4.42	Profile of Cr^{3+} adsorption capacity, q_e of (PNIPAM-co- AA)-silica-PVP-MNPs normalized by corresponding equilibrium concentration, C_e at different temperatures against varying initial concentration, C_0 . (Solution pH = 5)	158

- Figure 4.43 Comparison of experimental Cr^{3+} adsorption capacity, 162 q_e with different plots of q_e values calculated by various isotherm models against different equilibrium Cr^{3+} concentrations, C_e . (pH = 5, V = 50 mL, M = 4 mg)
- Figure 4.44 Schematic diagram shows the thermos-responsive 164 mechanisms for Cr^{3+} ions adsorption by (PNIPAM-co-AA)-silica-PVP-MNPs hydrogels. Surface adsorption of Cr^{3+} predominated as more inner hydrogen bonds were formed within hydrogel network
- Figure 4.45 Kinetic plots of both types of composite hydrogels for 166 the models of; (a) pseudo-first-order, (b) pseudosecond-order and (c) intra-particle diffusion

LIST OF ABBREVIATIONS

AA	Acrylic acid
AAm-CA	Acrylamide-crotonic acid
AAS	Acrylic acid shell
AC	Activated carbon
AEM	Aminoethyl methacrylate hydrochloride
Ag^+	Silver (I) cation
APS	Ammonium persulfate
APTES	3-Aminopropyltriethoxysilane
AS-MNPs	Amino modified silica-iron oxide magnetic
	nanoparticles
Au	Gold
3-bt	3-butenoic acid
Ca(OH) ₂	Lime (calcium hydroxide)
CCGO	Magnetic cyclodextrin-chitosan / graphene oxide
Cd^{2+}	Cadmium (II) cation
CEC	Cation exchange capacity
C ₂ H ₄ CONH	Acrylamide
C ₃ H ₈ NH	Pyrrolidine
$C_4H_{10}NH$	Piperidine
СМ	Carboxymethylated
CM-β-CD-MNPs	Carboxymethyl-β-cyclodextrin (CM-β-CD)
	modified Fe ₃ O ₄ nanoparticles
Co ²⁺	Cobalt (II) cation
СО	Carbonyl group
CONH	Amide group
COO	Carboxylate group
СООН	Carboxylic group
Cr	Chromium
Cr ³⁺	Chromium (III) cation
Cr ⁶⁺	Chromium (VI) cation
CrC1 ₃ ·6H ₂ O	Chromium (III) chloride hexahydrate

$CrN_3O_9 \cdot 9H_2O$	Chromium (III) nitrate nonahydrate
$Cr(H_2O)_6^{3+}$	Hexaaquachromium (III) cation
Cr(OH) ⁴⁻	Tetrahydroxochromate (III) anion
Cr(OH) ₃	Chromium (III) hydroxide
$Cr_2(OH)_2^{4+}$	Binuclear dihydroxochromium (III) cation
$Cr_{3}(OH)_{4}^{5+}$	Trinuclear tetrahydroxochromium (III) cation
CS	Chitosan
CS	Core-shell
Cs ⁺	Cesium (I) cation
CS-PAA	Chitosan-poly(acrylic acid)
СТАВ	Cetyltrimethylammonium bromide
Cu^{2+}	Copper (II) cation
DBS	n-dodecylbenzenesulfonic
D_h	Hydrodynamic diameter
DLS	Dynamic light scattering
DNA	Deoxyribonucleic acid
ED	Electrodialysis
EDC·HCl	(3-dimethylaminopropyl) carbodiimide
	hydrochloride
EtOH	Ethanol
Eu ³⁺	Europium (III) cation
FAU	Faujasites
Fe ²⁺	Ferrous ion
Fe ³⁺	Ferric ion
Fe(acac) ₃	Ferric acetylacetonate
$Fe_2(CrO_4)_3$	Ferrous chromate
Fe ₃ O ₄	Magnetite
γ-Fe ₂ O ₃	Maghemite
FRP	Free radical polymerization
FT-IR	Fourier transform infrared spectroscopy
GLA	Glutaraldehyde
HAC	High adsorption capacities
HEMA	2-Hydroxyethyl methacrylate

HCl	Hydrochloric acid
HEC-g-PAA	Hydroxylethyl cellulose-g-poly(acrylic acid)
Hg^{2+}	Mercury (II) cation
H ₂ O	Water
IDA	Iminodiacetic acid
IEP	Isoelectric point
IPN	Inter-penetrating networks
KPS	Potassium persulfate
LCST	Lower critical solution temperature
LOD	Limit of detection
MBA	N, N'-methylene-bis-acrylamide
MgO	Magnesium Oxide
MC	Merocyanine
MNPs	Iron Oxide Magnetic Nanoparticles
MPS	3-(trimethoxysilyl)propyl methacrylate
MW	Molecular weight
MWCO	Molecular weight cut-off
NaNO ₃	Sodium nitrate
NaOH	Sodium hydroxide
Na ₂ SO ₄	Sodium sulfate
NF	Nanofiltration
Ni ²⁺	Nickel (II) cation
NIPAM	<i>N</i> -isopropylacrylamide
NH	Amine group
NHS	N-hydroxysuccinimide
ОН	Hydroxyl group
PAA	Poly(acrylic acid)
PAAm-HAp	Polyacrylamide-hydroxyapatite
PAC / PEG	Polyacrylate / poly(ethylene glycol)
P(AMPS-co-GT)-GO	Poly[(2-acrylamido-2-methyl propanesulfonic
	acid)-co-gum tragacanth] grafted graphene oxide
	composite

P(AMPS-co-IA)	Poly[2-(acrylamido)-2-methyl-1-propanesulfonic
	acid-co-itaconic acid]
Pb ²⁺	Lead (II) cation
PEDOT / PSS	Lignin-poly(3,4-ethylenedioxythiophene) /
	polystyrene sulfonate
PEGDA	Poly(ethyelene glycol) diacrylate
PNaAA	Poly(sodium acrylate)
PNIPAM	Poly(N-isopropylacrylamide)
PNIPAM-co-AA	Poly(<i>N</i> -isopropylacrylamide-co-acrylic acid)
(PNIPAM-co-AA)-silica-	Poly(N-isopropylacrylamide-co-acrylic acid)-
PVP-MNPs	gelated silica- poly(vinylpyrrolidone)-iron oxide
	magnetic nanoparticles composite hydrogel
PNIPAM-co-AAm-co-MA	Poly(N-isopropylacrylamide-co-acrylamide-co-
	maleic acid)
P(NIPAM-co-BCAm)	Poly(N-isopropylacrylamide-co-benzo-18-crown-6-
	acrylamide)
PNIPAM-silica-PVP-MNPs	Poly(N-isopropylacrylamide)-gelated silica-
	poly(vinylpyrrolidone)-iron oxide magnetic
	nanoparticles composite hydrogel
PSt	Polystyrene
P(St-NIPAM)	Poly(styrene-N-isopropylacrylamide)
PSt-PNIPAM	Polystyrene-poly(N-isopropylacrylamide)
PVP	Poly(vinylpyrrolidone)
P(4-VP-co-HEMA)	Poly(4-vinyl pyridine-co- 2-
	hydroxyethylmetacrylate)
SCH ₂ COOH	Thiodiglycolic acid
SDBS	Sodium n-dodecylbenzenesulfonate
SH	Sodium humate
silica	Silica coating layer
SiOH	Silanol
SiOSi	Siloxane
SO ₃ H	Sulfonic acid
SP	Spiropyran

SP-PNVCL	Spiropyran-ended poly(N-vinyl caprolactam)
Sr^{2+}	Strontium (II) cation
St	Starch
TEOS	Tetraethyl orthosilicate
Th^{4+}	Thorium (IV) cation
THF	Tetrahydrofuran
TS-SPE	Temperature-swing solid-phase extraction
U^{6+}	Uranium (VI) cation
UF	Ultrafiltration
UO_2^{2+}	Uranyl cation
UV	Ultraviolet
UV-Vis	Ultraviolet-visible
V50	2,2'-Azobis(2-amidinopropane) dihydrochloride
VIM	<i>n</i> -vinyl imidazole
VPT	Volume phase transition
VPTT	Volume phase transition temperature
Zn^{2+}	Zinc (II) cation

LIST OF SYMBOLS

Т	Temperature (°C and K)
pK_a	Acid dissociation constant
pK_b	Base dissociation constant
D_h	Hydrodynamic diameter (nm)
ζ	Zeta potential (mV)
R	Cr ³⁺ removal percentage (%)
C_0	Initial concentration of copper (II) cations in solution (mg L ⁻¹)
C_e	Equilibrium concentration in solution (mg L ⁻¹)
Μ	Dry mass of adsorbent (g)
V	Total volume of solution (L)
q_e	Equilibrium adsorption capacity (mg g ⁻¹)
q_m	Maximum equilibrium adsorption capacity (mg g ⁻¹)
q_t	Equilirium adsorption capacity at time $t \pmod{g^{-1}}$
KL	Langmuir constant (L mg ⁻¹)
R_L	Langmuir separation factor
K_F	Freundlich constant (L g ⁻¹)
1/ <i>n</i>	Freundlich heterogeneity factor
В	Dubinin-Radushkevich constant related to adsorption energy $(mol^2 k^{-1}J^{-2})$
R	Gas constant (8.314 J mol ¹ K ⁻¹)
ε	Polanyi potential

Ε	Free mean energy of the adsorption (kJ mol ⁻¹)
b	Temkin constant related to heat of adsorption (J mol ⁻¹)
K _T	Temkin constant (L g ⁻¹)
θ	Degree of surface coverage by adsorbates
K _{FH}	Flory-Huggins equilibrium constant (L g ⁻¹)
n	Flory-Huggins model exponent
ΔG^{o}	Standard free energy change (kJ mol ⁻¹)
K _{FR}	Frumkin equilibrium constant (L g ⁻¹)
а	interaction parameter related to the interaction energy of the adsorbates
<i>k</i> 1	Pseudo-first-order rate constant (min ⁻¹)
k_2	Pseudo-second-order rate constant (g mg ⁻¹ min ⁻¹)
<i>k_{id}</i>	Intra-particle diffusion rate constant (mg g ⁻¹ min ^{-1/2})
C_{id}	Constant related to the thickness of the boundary layer (mg g^{-1})