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KARBON TERAKTIF DARIPADA HABUK KAYU PENTACE TRIPTERA, 

INTSIA BIJUGA DAN HEVEA BRASILIENSIS TERHASIL MELALUI 

PENGAKTIFAN GELOMBANG MIKRO TERINDUKSI KALIUM 

HIDROKSIDA UNTUK PENYERAPAN PEWARNA 

ABSTRAK 

Pewarna sintetik digunakan secara meluas dalam pelbagai industri yang 

mengakibatkan pencemaran air. Oleh itu, kajian ini bertujuan untuk menghasilkan 

karbon teraktif (AC) daripada Pentace triptera (PS), Intsia bijuga (IS) dan Hevea 

brasiliensis (HS) untuk penjerapan pewarna metilena biru (MB) dan remazol ungu 

berkilau 5R (RBV) melalui pengaktifan gelombang mikro-terinduksi kalium 

hidroksida (KOH) bersama dengan gasifikasi karbon dioksida (CO2). Keadaan 

penyediaan optimum untuk semua AC ditentukan menggunakan kaedah permukaan 

respon (RSM). ISAC telah menunjukkan luas permukaan Bruneaur-Emmet-Teller 

(BET) dan jumlah jisim liang yang tinggi iaitu 952.23 m2/g dan 0.584 cm3/g, masing-

masing berbanding PSAC dan HSAC. Semua penjerap berpadanan dengan model 

isoterma Langmuir dengan ISAC telah menunjukkan kapasiti penjerapan monolayer 

maksimum (Qm) tertinggi sebanyak 434.78 dan 212.77 mg/g, masing-masing untuk 

pewarna MB dan RBV pada 30ºC. Kajian kinetik menunjukkan bahawa semua sistem 

mengikuti model pseudo-tertib kedua dengan resapan filem adalah langkah pengehad 

yang mengawal penjerapan. Kajian termodinamik mengesahkan bahawa semua sistem 

bersifat endotermik. Untuk kajian turus, korelasi data terobosan yang lebih baik 

ditunjukkan oleh model Thomas dan Yoon-Nelson. Semua AC mempunyai prestasi 

kebolehgunaan yang baik untuk penjerapan MB dan RBV terutamanya sehingga tiga 

kitaran menggunakan etanol sebagai pelarut. 
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ACTIVATED CARBON DERIVED FROM PENTACE TRIPTERA, INTSIA 

BIJUGA AND HEVEA BRASILIENSIS SAWDUST VIA MICROWAVE-

INDUCED POTASSIUM HYDROXIDE ACTIVATION FOR DYES 

ADSORPTION 

ABSTRACT 

Synthetic dyes are widely applied in various industries which has resulted in 

the water pollution. Therefore, this study aims to synthesis activated carbon (AC) from 

Pentace triptera (PS), Intsia bijuga (IS) and Hevea brasiliensis (HS) for methylene 

blue (MB) and remazol brilliant violet 5R (RBV) dye adsorption via microwave-

induced potassium hydroxide (KOH) activation adopted together with carbon dioxide 

(CO2) gasification. Optimum preparation conditions for all ACs prepared were 

determined using response surface methodology (RSM). ISAC showed high Bruneaur-

Emmet-Teller (BET) surface area and total pore volume of 952.23 m2/g and 0.584 

cm3/g, respectively compared to PSAC and HSAC. All adsorbents best fitted to the 

Langmuir isotherm model with ISAC showed higher maximum monolayer adsorption 

capacity (Qm) of 434.78 and 212.77 mg/g, respectively for MB and RBV dye at 30ºC. 

Kinetic studies showed that all system followed a pseudo-second order model with 

film diffusion was the rate-limiting step controlling adsorption. Thermodynamic 

studies confirmed that all systems were endothermic in nature. For the column studies, 

the better correlation of breakthrough data shown by Thomas and Yoon-Nelson model. 

The ACs had good reusability performance for MB and RBV adsorption especially up 

to three cycle using ethanol as solvent. 
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CHAPTER 1  

INTRODUCTION 

This chapter highlights the background of the study, problem statement, 

research objectives as well as scope of study. 

1.1 Background of study 

Dyes are common pollutants that can be found in aqueous waste streams from 

industrial sections including paint, textile, plastic, cosmetic and paper industries. 

Greater than 700,000 metric tons of dyes are produced annually, with 2-3% is reported 

loss to industrial wastewaters during manufacturing and dyeing (Sangon et al., 2018). 

Many of these dyes can cause allergies, skin irritation or even cancer and human 

mutations (Wang et al., 2018). They are also considered dangerous to the environment 

and result in the deterioration of water quality, thus affecting aquatic life (Heidarinejad 

et al., 2018). It is therefore essential to remove these dyes from the waste stream prior 

to release into watercourses.  

Various methods such as adsorption, coagulation, advanced oxidation and 

membrane separation are used in the removal of dyes from wastewater. Adsorption via 

activated carbon (AC) as adsorbent is one of the most effective wastewater treatment 

processes used by the textile industry to reduce pollutants present in the effluent 

(Yagub et al., 2014). AC is a term used to express carbon-rich materials which contain 

well-built internal pore structure. The high surface area (> 400 m2/g), well-organized 

pores and a wide range of chemical functional groups present on the surface of AC 

make it a versatile and popular adsorbent in wastewater treatment industries (Danish 

and Ahmad, 2018). 
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Recently, heating systems employing microwave irradiation have been widely 

used for the preparation of AC. The microwave energy is transferred to the interior 

part of the samples by dipole rotation and ionic conduction, rather than by conduction 

and convection (Makhado et al., 2018). Consequently, microwave heating results in a 

significantly reduced treatment time. The removal of dyes from wastewater using AC 

prepared by microwave-assisted activation from various source such as date stones 

(Abbas and Ahmed, 2016), coconut shells (Mohammed et al., 2015), pomegranate peel 

(Ahmad et al., 2014), oil palm shells (Hesas et al., 2013a), peanut shells (Georgin et 

al., 2016), coffee shells (Li et al., 2016a), palm kernel shells (Kundu et al., 2015a), 

Jatropha (Khalil et al., 2013) and rice husks (Muniandy et al., 2014) have been studied 

by other researchers. Out of these presursors, woody materials are significant sources 

for AC preparation, because they contain appropriate carbon fractions (50–90%) and 

low ash content (< 5 %) (Kazemi et al., 2016).  

Malaysia produces large amount of forest and wood processing mass where 

logging residues were produced during various phases of logging. The secondary 

processing residues are produced during the process of planning mills, moulding 

plants, and furniture factories in the form of sawdust, plane shavings, small pieces of 

lumber trimming, edging, bark and fragments (Osman et al., 2014). With the growing 

of wood activities has also increased the wood waste amount resulted from this 

process. Pentace triptera (PS), Intsia bijuga (IS) and Hevea brasiliensis (HS) are 

among commercially important hardwoods used in Malaysian wooden furniture 

manufacturing industry which has resulted in the increasing of the waste sawdust from 

these wood species. These three woods PS, IS and HS possess different density of 530-

755 kg/m3, 515-1,040 kg/m3 and 560 - 640 kg/m3, respectively. It was hypothesized 

that different density of wood will results in different characteristic and adsorption 
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capability for batch and column mode of studies. Therefore, the potential of these three 

waste sawdust as a precursor in producing novel AC has been explored in this study. 

1.2 Problem statement 

Various cationic and anionic synthetic dyes such as methylene blue (MB) and 

Remazol Brilliant Violet 5R (RBV) are released in water bodies through the effluents 

of these industries. The discharge of MB basic dye into the water stream has a number 

of harmful effects such as allergic dermatitis, skin irritation, mutations, and even 

cancer (Rangabhashiyam and Balasubramanian, 2018). The reactive RBV dye is an 

anthracene derivative and represents an important class of toxic and recalcitrant 

organic pollutants (Bello and Ahmad, 2011a). Due to stable conjugation structures by 

the presence of an -N=N- (azo) bond in the chemical structure, RBV dye is difficult to 

eliminate by biodegradation process (Li et al., 2017). Therefore, the strategy to 

eliminate the colour and to reduce its effect on the industrial effluents before they are 

mixed up with natural water bodies is of significant importance. 

Adsorption process using AC has been considered superior method for dye 

treatment due its high efficiency and operational simplicity. However, this application 

is limited by the cost of production and vague methods (Danish and Ahmad, 2018). 

The heating techniques strongly affect the physical and chemical characteristics of AC. 

Through conventional heating, heat is transferred to the samples by conduction and 

convection mechanisms which leads to an inhomogeneous heating samples of 

dissimilar shapes and sizes. Furthermore, this thermal heating takes a longer time to 

achieve the preferred phase of activation. Consequently, volatile components may 

remain inside the particles, giving rise to carbon deposition problems. The deposited 

carbon leading to distortion and inhomogeneous structure, low values of total pore 
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