

ACTIVATED CARBON DERIVED FROM PENTACE TRIPTERA, INTSIA BIJUGA AND HEVEA BRASILIENSIS SAWDUST VIA MICROWAVE-INDUCED POTASSIUM HYDROXIDE ACTIVATION FOR DYES ADSORPTION

AZDUWIN BINTI KHASRI

UNIVERSITI SAINS MALAYSIA

2019

ACTIVATED CARBON DERIVED FROM PENTACE TRIPTERA, INTSIA BIJUGA AND HEVEA BRASILIENSIS SAWDUST VIA MICROWAVE-INDUCED POTASSIUM HYDROXIDE ACTIVATION FOR DYES ADSORPTION

by

AZDUWIN BINTI KHASRI

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

April 2019

ACKNOWLEDGEMENT

In the name of Allah, the Beneficent, the Merciful. I start to express my heartfelt gratitude and greatest appreciation to my supervisor Prof. Dr. Mohd Azmier Ahmad who had given valuable guidance and constant support. His invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research.

I would also like to express my deepest gratitude to University Malaysia Perlis together with Ministry of Higher Education for funding my PhD study. I am also indebted to Universiti Sains Malaysia under the Iconic grant scheme (Grant No. 1001/ CKT/ 870023) for research associated with the Solid Waste Management Cluster, Bridging grant (304. PJKIMIA. 6316100) and Bridging grant (304. PJKIMIA. 6316100) and Bridging grant (304. PJKIMIA. 60312032) for funding this project. I would like to thank all the technicians and postgraduate students of School of Chemical Engineering for their kindness assistance, professional advice and guidance along completing my thesis.

My special appreciation goes to my dearest husband Mohd Ridzuan bin Mohd Jamir and my daughter Dhia Adelia bt Mohd Ridzuan for their love, support, and encouragement. Not forgotten to both of my beloved parents Khasri bin Md Nen and Sandiah binti Depong, as well as my other family members for their continuous love and support. Last but not least, I would like to thank all the people who have helped me through my research, directly or indirectly; their contribution shall not be forgotten.

Azduwin binti Khasri January 2019

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	X
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xviii
ABSTRAK	xix
ABSTRACT	XX
CHAPTER 1: INTRODUCTION	1
1.1 Background of study	1
1.2 Problem statement	3
1.3 Research objectives	5
1.4 Scope of study	6
1.5 Thesis outline	7
CHAPTER 2: LITERATURE REVIEW	8
2.1 Synthetic dyes and toxicity	8
2.2 Textile effluents and regulation	10
2.3 Dyes removal techniques	12
2.4 Adsorption	14
2.5 Activated carbon	15
2.5.1 Source of AC	16
2.5.2 Wood residues as a precursor	16
2.5.3 Classification of porous materials	18
2.6 Production of AC	21
2.6.1 Carbonization process	21
2.6.2 Activation process	22
2.6.2 (a) Physical activation	22
2.6.2 (b) Chemical activation	23
2.6.2 (c) Physicochemical activation	24
2.7 Microwave heating activation	24
2.8 Factors affecting microwave induced chemical activation	30
2.8.1 Effects of microwave radiation power	30

2.8.2 Effects of microwave radiation time	31
2.8.3 Effects of IR	33
2.9 Optimization of AC preparation conditions and RSM method	34
2.10 Adsorption isotherm	36
2.10.1 Langmuir isotherm	37
2.10.2 Freundlich isotherm	38
2.10.3 Temkin isotherm	39
2.10.4 Dubinin-Radushkevich isotherm	39
2.11 Adsorption kinetics	40
2.11.1 Pseudo-first order kinetic model	41
2.11.2 Pseudo-second order kinetic model	41
2.11.3 Elovich kinetic model	42
2.11.4 Avrami kinetic model	43
2.12 Adsorption mechanism	43
2.12.1 Weber–Morris intraparticle diffusion mechanism	44
2.12.2 Boyd plot diffusion mechanism model	45
2.13 Adsorption thermodynamics	46
2.14 Continuous adsorption	47
2.14.1 Fixed-bed column studies	47
2.14.2 Breakthrough curve modeling	50
2.14.2 (a) Adams-Bohart model	50
2.14.2 (b) Thomas Model	51
2.14.2 (c) Yoon–Nelson model	51
2.15 Regeneration	52
CHAPTER 3: MATERIALS AND METHODS	54
3.1 Experimental overview	54
3.2 Materials	56
3.3 Equipment and instrumentations	58
3.3.1 AC preparation system	58
3.3.2 Characterization system	60
3.3.2 (a) Nitrogen adsorption-desorption isotherms	60
3.3.2 (b) Proximate analysis	61
3.3.2 (c) Ultimate analysis	61
3.3.2 (d) Surface morphology analysis	61
3.3.2 (e) Surface chemistry determination	62

3.3.3 Batch adsorption systems	62
3.3.4 Column adsorption system	63
3.3.5 Analysis system	64
3.4 Experimental procedure	64
3.4.1 Preparation of AC	64
3.4.2 Design of experiment for preparation of ACs	65
3.4.3 Batch adsorption equilibrium studies	67
3.4.3 (a) Effect of contact time and initial concentration	68
3.4.3 (b) Effect of solution temperature	69
3.4.3 (c) Effect of initial solution pH	69
3.4.4 Adsorption isotherm model	70
3.4.5 Batch adsorption kinetics	70
3.4.6 Adsorption mechanism	71
3.4.7 Thermodynamic studies	71
3.4.8 Fixed bed adsorption studies	72
3.4.9 Regeneration of the spent ACs	72
CHAPTER 4: RESULTS AND DISCUSSION	74
4.1 Experimental design	74
4.1.1 Regression model development on PSAC	74
4.1.2 Response surface of PSAC in 3D	80
4.1.3 Regression model development of ISAC	83
4.1.4 Response surface of ISAC in 3D	88
4.1.5 Regression model development of HSAC	90
4.1.6 Response surface of HSAC in 3D	95
4.1.7 Comparison of PSAC, ISAC and HSAC performance	97
4.1.7 (a) Interpretation of regression analysis	97
4.1.7 (b) 3D response surface	99
4.1.7 (c) Process optimization and validation	99
4.2 Characterization of sawdust, char and ACs	102
4.2.1 Surface area and pore characteristics	102
4.2.2 Proximate and elemental analysis	106
4.2.3 Surface morphology	108
4.2.4 Surface chemistry	110
4.3 Batch adsorption studies	113

4.3.1 Equilibrium studies	113
4.3.1 (a) Effect of contact time and initial concentration	114
4.3.1 (b) Effect of solution temperature	118
4.3.1 (c) Effect of initial solution pH	120
4.3.2 Isotherm studies	123
4.3.3 Kinetic studies	136
4.3.4 Adsorption mechanism	149
4.3.4 (a) Weber–Morris intraparticle diffusion	149
4.3.4 (b) Boyd models	154
4.3.4 (c) Pore filling and interaction	158
4.3.5 Thermodynamic studies	163
4.3.6 Summary on the mechanism of ACs	164
4.4 Fixed bed column studies4.4.1 Effect of volumetric flow rate	165 165
4.4.2 Effect of initial concentration	168
4.4.3 Effect of bed height	171
4.4.4 Comparison on all ACs performance for MB and RBV adsorption	174
4.4.5 Breakthrough modelling	176
4.5 Spent ACs regeneration	178
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	181
5.1 Conclusions	181
5.2 Recommendations REFERENCES	183 184
APPENDICES	104
Appendix A: Calibration curve for MB and RBV dyes Appendix B: Preliminary studies Appendix C: Proximate and elemental analysis Appendix D: Plots of adsorption uptakes versus time	
Appendix E: Plots of percentage removal versus time	

- Appendix F: Amount of dyes adsorbed and removal
- Appendix G: Parameters of kinetics

Appendix H: Parameters of intraparticle diffusion model

Appendix I : Boyd plots

Appendix J : Thermodynamic plot

LIST OF PUBLICATIONS AND AWARDS

LIST OF TABLES

		Page
Table 2.1	Acceptable conditions for discharge of industrial effluent for mixed effluent of standards A and B (Department of Environment Malaysia, 2010)	11
Table 2.2	Advantages and disadvantages of dye removal methods	13
Table 2.3	Comparison of physisorption and chemisorption	15
Table 2.4	Steps and range of temperature in the carbonization process (Chowdhury et al., 2013)	22
Table 2.5	Advantages and disadvantages of microwave and conventional heating	27
Table 2.6	Previous studies using microwave heating activation for basic dye adsorption	29
Table 2.7	Previous studies using microwave heating activation for reactive dye adsorption	29
Table 2.8	Effects of IR (microwave power = 800 W; activation time = 9 minutes) (Li et al., 2016)	34
Table 2.9	Optimization parameter of different adsorbent	36
Table 2.10	Regeneration efficiency of various adsorbents in previous work	53
Table 3.1	List of reagents and chemicals	56
Table 3.2	Properties of MB	57
Table 3.3	Properties of RBV	57
Table 3.4	Complete design matrix for AC preparation	66
Table 4.1	Experimental design matrix for preparation of PSAC	75
Table 4.2	ANOVA and lack of fit test for response surface quadratic model for MB removal of PSAC	78
Table 4.3	ANOVA and lack of fit test for response surface quadratic model for RBV removal of PSAC	79
Table 4.4	ANOVA and lack of fit test for response surface quadratic model for PSAC yield	80

Table 4.5	Experimental design matrix for preparation of ISAC	83
Table 4.6	ANOVA and lack of fit test for response surface quadratic model for MB removal of ISAC	86
Table 4.7	ANOVA and lack of fit test for response surface quadratic model for RBV removal of ISAC	86
Table 4.8	ANOVA and lack of fit test for response surface quadratic model for ISAC yield	87
Table 4.9	Experimental design matrix for preparation of HSAC	90
Table 4.10	ANOVA and lack of fit test for response surface quadratic model for MB removal of HSAC	93
Table 4.11	ANOVA and lack of fit test for response surface quadratic model for RBV removal of HSAC	93
Table 4.12	ANOVA and lack of fit test for response surface quadratic model for HSAC yield	94
Table 4.13	Significant factor for PSAC, ISAC and HSAC from ANOVA	97
Table 4.14	Model validation for ACs prepared for MB removal and yield	101
Table 4.15	Model validation for AC prepared for RBV removal and yield	101
Table 4.16	Surface area and pore characteristics of the samples	104
Table 4.17	Isotherm parameters for adsorption of MB dyes by optimized PSAC, ISAC and HSAC at 30, 45 and 60 °C	131
Table 4.18	Isotherm parameters for adsorption of RBV dyes by optimized PSAC, ISAC and HSAC at 30, 45 and 60 °C	132
Table 4.19	Kinetic parameters for MB-PSAC, MB-ISAC and MB-HSAC systems at 30 $^{\circ}\mathrm{C}$	145
Table 4.20	Kinetic parameters for RBV-PSAC, RBV-ISAC and RBV-HSAC systems at 30 $^{\circ}\mathrm{C}$	147
Table 4.21	Intraparticle diffusion model constant and R^2 values for adsorption of MB-PSAC, MB-ISAC and MB-HSAC at 30 °C	153
Table 4.22	Intraparticle diffusion model constant and R^2 values for adsorption of RBV onto PSAC, ISAC and HSAC at 30 °C	154

Table 4.23	Boyd plot diffusion coefficients of MB adsorption onto PSAC, ISAC and HSAC at 30 $^\circ\mathrm{C}$	157
Table 4.24	Boyd plot diffusion coefficients of RBV adsorption onto on PSAC, ISAC and HSAC at 30 °C	157
Table 4.25	Thermodynamic parameters for MB and RBV dyes adsorption onto optimized ACs	163
Table 4.26	Summary of the type of adsorption for PSAC, ISAC and HSAC for MB and RBV adsorption	164
Table 4.27	Column data parameters for adsorption of MB onto PSAC, ISAC and HSAC	174
Table 4.28	Column data parameters for adsorption of RBV onto PSAC, ISAC and HSAC	175
Table 4.29	Parameters predicted from the Adams-Bohart model for MB and RBV adsorption by PSAC, ISAC and HSAC	177
Table 4.30	Parameters predicted from the Thomas model for MB and RBV adsorption by PSAC, ISAC and HSAC	177
Table 4.31	Parameters predicted from the Yoon-Nelson model for MB and RBV adsorption by PSAC, ISAC and HSAC	178
Table 4.32	Regeneration efficiency of MB and RBV onto spent PSAC, ISAC and HSAC	179

LIST OF FIGURES

		Page
Figure 2.1	Porous structure of AC (Suresh Kumar et al., 2017)	19
Figure 2.2	Type of adsorption isotherm (Zhang et al., 2016).	20
Figure 2.3	Classification of hysteresis loops and their related pore shapes (Zhang et al., 2016)	21
Figure 2.4	Schematic of temperature profile and direction of heat transfer (a) conventional heating (b) microwave heating (red-high temperature, blue-low temperature) (Lin and Chen, 2015)	25
Figure 2.5	Comparison between conventional & microwave chemical activation process towards surface characteristics of various precursors (Liu et al., 2010; Xin-hui et al., 2011; Alslaibi et al., 2014; Sharif et al., 2018)	28
Figure 2.6	Effects of microwave power (H3PO4 concentration = 40%; activation time = 8 min) (Duan et al., 2016)	31
Figure 2.7	Effects of activation time (microwave power = 640 W; H3PO4 concentration = 40% (c) (Duan et al., 2016)	33
Figure 2.8	The schematic diagram of the adsorption process and mechanism (Feng et al., 2012)	45
Figure 2.9	Typical breakthrough curve (Kopsidas, 2018)	48
Figure 3.1	Schematic flow diagram of experimental activities	55
Figure 3.2	Waste sawdust from (a) PS (b) IS and (c) HS	56
Figure 3.3	Schematic diagram of the carbonization unit	58
Figure 3.4	Schematic diagram of the microwave activation unit	59
Figure 3.5	Schematic diagram of adsorption column system	63
Figure 4.1	Predicted versus actual experimental values for (a) MB removal, (b) RBV removal and (c) PSAC yield	77
Figure 4.2	3D response plot for (a) MB removal (effect of radiation power and IR, radiation time = 4 min), (b) RBV removal (effect of radiation power and IR, radiation time = 4 min)	81

	min) and (c) PSAC yield (effect of radiation power and radiation time, $IR = 0.5$)	
Figure 4.3	Predicted versus actual experimental values for (a) MB removal, (b) RBV removal and (c) ISAC yield.	85
Figure 4.4	3D response plot for (a) MB removal (effect of radiation power and IR, radiation time = 4 min), (b) RBV removal (effect of radiation power and IR, radiation time = 4 min) and (c) ISAC yield (effect of radiation power and radiation time, IR = 0.5)	89
Figure 4.5	Predicted versus actual experimental values for (a) MB removal, (b) RBV removal and (c) HSAC yield.	92
Figure 4.6	3D response plot for (a) MB removal (effect of radiation power and IR, radiation time = 4 min), (b) RBV removal (effect of radiation power and IR, radiation time = 4 min) and (c) HSAC yield (effect of radiation power and radiation time, IR = 0.5)	96
Figure 4.7	Profile for surface area of (a) PSAC (b) ISAC and (c) HSAC	103
Figure 4.8	Pore size distributions of PSAC, ISAC and HSAC	105
Figure 4.9	Proximate analysis of the samples (a) before and (b) after activation	107
Figure 4.10	Elemental analysis of the samples (a) before and (b) after activation	108
Figure 4.11	SEM images of (a) PS, (b) PS char and (c) PSAC (magnification of 1kx)	109
Figure 4.12	SEM images of (a) IS, (b) IS char and (c) ISAC (magnification of 1kx)	109
Figure 4.13	SEM images of (a) HS, (b) HS char and (c) HSAC (magnification of 1kx)	109
Figure 4.14	FTIR spectrum for PS and PSAC	110
Figure 4.15	FTIR spectrum for MR and ISAC	111
Figure 4.16	FTIR spectrum for HS and HSAC	113
Figure 4.17	MB adsorption uptake versus adsorption time at various initial concentrations by (a) MB-PSAC, (b) MB-ISAC and (c) MB-HSAC at $30 \ ^{\circ}C$	115

Figure 4.18	RBV adsorption uptake versus adsorption time at various initial concentrations by (a) RBV-PSAC, (b) RBV-ISAC and (c) RBV-HSAC at 30 °C	116
Figure 4.19	Effect of solution temperature on MB adsorption capacity of MB-PSAC, MB-ISAC and MB-HSAC systems (condition: initial concentration 100 mg/L)	119
Figure 4.20	Effect of solution temperature on RBV adsorption capacity of RBV-PSAC, RBV-ISAC and RBV-HSAC systems (condition: initial concentration 100 mg/L)	119
Figure 4.21	Effect of initial pH on MB adsorption capacity by optimized PSAC, ISAC and HSAC	120
Figure 4.22	The AC–MB dye interaction under different pH conditions: (a) basic and (b) acidic	121
Figure 4.23	Effect of initial pH on RBV adsorption capacity by optimized PSAC, ISAC and HSAC	122
Figure 4.24	The AC–RBV dye interaction under different pH conditions: (a) basic and (b) acidic	123
Figure 4.25	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for MB adsorption onto optimized PSAC at 30, 45 and 60 °C	124
Figure 4.26	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for MB adsorption onto optimized ISAC at 30, 45 and 60 °C	125
Figure 4.27	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for MB adsorption onto optimized HSAC at 30, 45 and 60 °C	126
Figure 4.28	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for RBV adsorption onto optimized PSAC at 30, 45 and 60 °C	127
Figure 4.29	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for RBV adsorption onto optimized ISAC at 30, 45 and 60 °C	128
Figure 4.30	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for RBV adsorption onto optimized HSAC at 30, 45 and 60 °C	129
Figure 4.31	Plots of separation factor, RL versus MB initial concentration for optimized PSAC, ISAC and HSAC at (a) $30 \degree$ C, (b) $45 \degree$ C and (c) $60 \degree$ C	133

Figure 4.32	Plots of separation factor, RL versus RBV initial concentration for optimized PSAC, ISAC and HSAC at (a) 30 $^{\circ}$ C, (b) 45 $^{\circ}$ C and (c) 60 $^{\circ}$ C	134
Figure 4.33	Linearized plots of pseudo-first order kinetic model for (a) MB-PSAC, (b) MB-ISAC and (c) MB-HSAC systems at 30 °C	137
Figure 4.34	Linearized plots of pseudo-second order kinetic model for (a) MB-PSAC, (b) MB-ISAC and (c) MB-HSAC systems at 30 $^{\circ}$ C	138
Figure 4.35	Linearized plots of Elovich kinetic model for (a) MB-PSAC, (b) MB-ISAC and (c) MB-HSAC systems at 30 $^{\circ}C$	139
Figure 4.36	Linearized plots of Avrami kinetic model for (a) MB-PSAC, (b) MB-ISAC and (c) MB-HSAC systems at 30 $^{\circ}C$	140
Figure 4.37	Linearized plots of pseudo-first order kinetic model for (a) RBV-PSAC, (b) RBV-ISAC and (c) RBV-HSAC systems at 30 $^{\circ}$ C	141
Figure 4.38	Linearized plots of pseudo-second order kinetic model for (a) RBV-PSAC, (b) RBV-ISAC and (c) RBV- HSAC systems at 30 °C	142
Figure 4.39	Linearized plots of Elovich kinetic model for (a) RBV-PSAC, (b) RBV-ISAC and (c) RBV-HSAC systems at $30 \ ^{\circ}C$	143
Figure 4.40	Linearized plots of Avrami kinetic model for (a) RBV-PSAC, (b) RBV-ISAC and (c) RBV-HSAC systems at $30 \ ^{\circ}C$	144
Figure 4.41	Plots of intraparticle diffusion model for MB adsorption onto (a) PSAC, (b) ISAC and (c) HSAC	150
Figure 4.42	Plots of intraparticle diffusion model for RBV adsorption onto (a) PSAC, (b) ISAC and (c) HSAC	151
Figure 4.43	Boyd's plots for MB adsorption onto (a) PSAC, (b) ISAC and (c) HSAC at 30 $^\circ\mathrm{C}$	155
Figure 4.44	Boyd's plots for RBV adsorption onto (a) PSAC, (b) ISAC and (c) HSAC at 30 $^\circ\mathrm{C}$	156
Figure 4.45	Chemical structure and molecular dimension of (a) MB and (b) RBV dyes.	159

Figure 4.46	Possible interactions contributing to the mechanism of (a) MB and (b) RBV adsorption onto PSAC, ISAC and HSAC	161
Figure 4.47	Illustration of possible PSAC, ISAC and RSAC components based on elemental analysis (N and S component is negligible)	162
Figure 4.48	Breakthrough curve of MB dyes adsorption onto (a) PSAC, (b) ISAC and (c) HSAC at different flow rate (initial concentration = 100 mg/L and bed height = 2 cm)	166
Figure 4.49	Breakthrough curve of RBV dyes adsorption onto (a) PSAC, (b) ISAC and (c) HSAC at different flow rate (inlet concentration = 100 mg/L and bed height = 2 cm)	167
Figure 4.50	Breakthrough curve of MB dyes adsorption onto (a) PSAC, (b) ISAC and (c) HSAC at different initial concentration (flow rate = 10 mL/min and bed height = 2 cm)	169
Figure 4.51	Breakthrough curve of RBV dyes adsorption onto (a) PSAC, (b) ISAC and (c) HSAC at different flow rate (inlet concentration = 100 mg/L and bed height = 2 cm)	170
Figure 4.52	Breakthrough curve of MB dyes adsorption onto (a) PSAC, (b) ISAC and (c) HSAC at different bed height (initial concentration = 100 mg/L and flow rate = 10 mL/min)	172
Figure 4.53	Breakthrough curve of RBV dyes adsorption onto (a) PSAC, (b) ISAC and (c) HSAC at different flow rate (inlet concentration = 100 mg/L and bed height = 2 cm)	173
Figure 4.54	Regeneration performance of (a) MB-PSAC, (b) MB-ISAC and (c) MB-HSAC	179
Figure 4.55	Regeneration performance of (a) RBV-PSAC, (b) RBV-ISAC and (c) RBV-HSAC	180

LIST OF SYMBOLS

	Symbol	Unit
А	Arrhenius pre-exponential factor	-
A_{T}	Temkin isotherm constant	L/g
b_i	Linear coefficient	-
b_0	Constant coefficient	-
b_{ii}	Quadratic coefficient	-
b_{ij}	Interaction coefficient	-
В	Boyd plot slope	-
B _{DR}	Dubinin–Radushkevich model constant	mol^2/kJ^2
B _T	Temkin constant related to the heat of adsorption	J/mol
B_t	Boyd plot constant	-
С	Intercept related to the boundary layer effect	mg/g
Ce	Adsorbate concentration at equilibrium	mg/L
C_0	Adsorbate concentration at initial	mg/L
C_t	Adsorbate concentration at time "t"	mg/L
C_{ad}	Adsorbed solute concentration	mg/L
D_i	Effective diffusion coefficient	m²/h
ei	Error	-
Ea	Activation energy	kJ/mol
E _{DR}	Mean energy of sorption	kJ/mol
Н	The bed depth of column	cm
kA	Adams-Bohart kinetic constant	L/min.mg
k _{TH}	Thomas rate constant	L/min mg
$k_{\rm Y}$	Yoon Nelson rate constant	1/min
$k_{\rm AV}$	Avrami constant	1/h
\mathbf{k}_{ti}	Intraparticle diffusion rate constant	mg/g $h^{1/2}$
\mathbf{k}_1	Pseudo-first order model rate constant	1/h
k ₂	Pseudo-second order rate constant	g/mg h
Kc	The equilibrium constant	-
K_{L}	Langmuir model constant	L/mg

\mathbf{K}_{f}	Freundlich constant related to adsorption capacity	$(m/g)(L/mg)^{1/n}$	
ms	Dry weight of the adsorbent after exhausted	g	
m _{tot}	Quantity of adsorbates deposited in the column g		
М	Mass of activated carbon	g	
n	Number of variables	-	
n _c	Number of centre runs	-	
n _F	Freundlich constant related to sorption intensity of the sorbent	-	
n_{AV}	Avrami model exponent of time -		
Ν	Number of data points	-	
N_0	Adams-Bohart saturation concentration	mg/L	
q_e	Amount of adsorbate adsorbed at equilibrium	mg/g	
q_{TH}	Thomas adsorption capacity of the bed	mg/g	
q_t	Adsorption capacity of adsorbent at time "t"	mg/g	
q_{bed}	Bed capacity	mg/g	
q_{tot}	Total adsorbed quantity of adsorbate	mg	
q _{e,exp}	Experimental amount of adsorbate adsorbed at equilibrium	mg/g	
q _{e,cal}	Calculated amount of adsorbate adsorbed at equilibrium	mg/g	
Q	Volumetric flow rate	mL/min	
Q_m	Maximum Langmuir monolayer capacity	mg/g	
Q _{DR}	Theoretical monolayer saturation capacity	mg/g	
r	Radius of the adsorbent particle	m	
R	Perfect gas constant	J/mol.K	
$R_{\rm L}$	Langmuir adsorption isotherm characteristic	-	
\mathbb{R}^2	Correlation coefficient	-	
Sbet	BET surface area	m^2/g	
t _{tot}	Total flow time until exhaustion	min	
Т	Absolute temperature	Κ	
U_{o}	Linear velocity	cm/min	
V	Volume of the solution	L	
Wchar	Dry weight of char	g	
WKOH	Dry weight of KOH pellets	g	
W	Mass of adsorbent	g	
X ₁	Radiation power	Watt	

X2	Radiation time	min
X3	Impregnation ratio	-
\mathbf{Y}_1	Percentage of adsorbate removal	%
Y ₂	Yield percentage	%

Greek letters

$\pm \alpha$	Distance of axial point from centre	-
$\alpha_{\rm E}$	Elovich initial adsorption rate	mg/g min
$\beta_{\rm E}$	Elovich desorption constant	g/mg
$\Delta G^{\rm o}$	Change in free energy	kJ/mol
ΔH^{o}	Change in enthalpy	kJ/mol
ΔS^{o}	Change in entropy	kJ/mol
Δq	The normalised standard deviation	-
3	Polanyi potential	kJ/mol
λ	Wavelength	nm
π	Ratio of a circle's circumference to its diameter	-
τ	Time required for 50% adsorbate breakthrough	min
χ^2	Chi-square	-

LIST OF ABBREVIATIONS

AC	Activated carbon
ANOVA	Analysis of variance
AP	Adequate Precision
BET	Brunauer-Emmett-Teller
CCD	Central composite design
DoE	Design of experiment
FC	Fixed carbon
FRIM	Forest Research Institute Malaysia
FTIR	Fourier transform infrared
HS	Hevea brasiliensis sawdust
HSAC	Hevea brasiliensis sawdust-based activated carbon
IR	Impregnation ratio
IS	Intsia bijuga sawdust
ISAC	Intsia bijuga sawdust-based activated carbon
IUPAC	International Union of Pure and Applied Chemistry
MB	Methylene blue
MTZ	Mass transfer zone
PS	Pentace triptera sawdust
PSAC	Pentace triptera sawdust-based activated carbon
RBV	Reactive Brilliant Violet 5R
rpm	Rotation per minute
RSM	Response surface methodology
SD	Standard deviation
SEM	Scanning electron microscopy
spp.	Species
TGA	Thermogravimetric analyzer
VM	Volatile matter

KARBON TERAKTIF DARIPADA HABUK KAYU *PENTACE TRIPTERA*, *INTSIA BIJUGA* DAN *HEVEA BRASILIENSIS* TERHASIL MELALUI PENGAKTIFAN GELOMBANG MIKRO TERINDUKSI KALIUM HIDROKSIDA UNTUK PENYERAPAN PEWARNA

ABSTRAK

Pewarna sintetik digunakan secara meluas dalam pelbagai industri yang mengakibatkan pencemaran air. Oleh itu, kajian ini bertujuan untuk menghasilkan karbon teraktif (AC) daripada Pentace triptera (PS), Intsia bijuga (IS) dan Hevea brasiliensis (HS) untuk penjerapan pewarna metilena biru (MB) dan remazol ungu berkilau 5R (RBV) melalui pengaktifan gelombang mikro-terinduksi kalium hidroksida (KOH) bersama dengan gasifikasi karbon dioksida (CO₂). Keadaan penyediaan optimum untuk semua AC ditentukan menggunakan kaedah permukaan respon (RSM). ISAC telah menunjukkan luas permukaan Bruneaur-Emmet-Teller (BET) dan jumlah jisim liang yang tinggi iaitu 952.23 m²/g dan 0.584 cm³/g, masingmasing berbanding PSAC dan HSAC. Semua penjerap berpadanan dengan model isoterma Langmuir dengan ISAC telah menunjukkan kapasiti penjerapan monolayer maksimum (Q_m) tertinggi sebanyak 434.78 dan 212.77 mg/g, masing-masing untuk pewarna MB dan RBV pada 30°C. Kajian kinetik menunjukkan bahawa semua sistem mengikuti model pseudo-tertib kedua dengan resapan filem adalah langkah pengehad yang mengawal penjerapan. Kajian termodinamik mengesahkan bahawa semua sistem bersifat endotermik. Untuk kajian turus, korelasi data terobosan yang lebih baik ditunjukkan oleh model Thomas dan Yoon-Nelson. Semua AC mempunyai prestasi kebolehgunaan yang baik untuk penjerapan MB dan RBV terutamanya sehingga tiga kitaran menggunakan etanol sebagai pelarut.

ACTIVATED CARBON DERIVED FROM *PENTACE TRIPTERA*, *INTSIA BIJUGA* AND *HEVEA BRASILIENSIS* SAWDUST VIA MICROWAVE-INDUCED POTASSIUM HYDROXIDE ACTIVATION FOR DYES ADSORPTION

ABSTRACT

Synthetic dyes are widely applied in various industries which has resulted in the water pollution. Therefore, this study aims to synthesis activated carbon (AC) from Pentace triptera (PS), Intsia bijuga (IS) and Hevea brasiliensis (HS) for methylene blue (MB) and remazol brilliant violet 5R (RBV) dye adsorption via microwaveinduced potassium hydroxide (KOH) activation adopted together with carbon dioxide (CO₂) gasification. Optimum preparation conditions for all ACs prepared were determined using response surface methodology (RSM). ISAC showed high Bruneaur-Emmet-Teller (BET) surface area and total pore volume of 952.23 m^2/g and 0.584 cm³/g, respectively compared to PSAC and HSAC. All adsorbents best fitted to the Langmuir isotherm model with ISAC showed higher maximum monolayer adsorption capacity (Q_m) of 434.78 and 212.77 mg/g, respectively for MB and RBV dye at 30°C. Kinetic studies showed that all system followed a pseudo-second order model with film diffusion was the rate-limiting step controlling adsorption. Thermodynamic studies confirmed that all systems were endothermic in nature. For the column studies, the better correlation of breakthrough data shown by Thomas and Yoon-Nelson model. The ACs had good reusability performance for MB and RBV adsorption especially up to three cycle using ethanol as solvent.

CHAPTER 1

INTRODUCTION

This chapter highlights the background of the study, problem statement, research objectives as well as scope of study.

1.1 Background of study

Dyes are common pollutants that can be found in aqueous waste streams from industrial sections including paint, textile, plastic, cosmetic and paper industries. Greater than 700,000 metric tons of dyes are produced annually, with 2-3% is reported loss to industrial wastewaters during manufacturing and dyeing (Sangon *et al.*, 2018). Many of these dyes can cause allergies, skin irritation or even cancer and human mutations (Wang *et al.*, 2018). They are also considered dangerous to the environment and result in the deterioration of water quality, thus affecting aquatic life (Heidarinejad *et al.*, 2018). It is therefore essential to remove these dyes from the waste stream prior to release into watercourses.

Various methods such as adsorption, coagulation, advanced oxidation and membrane separation are used in the removal of dyes from wastewater. Adsorption via activated carbon (AC) as adsorbent is one of the most effective wastewater treatment processes used by the textile industry to reduce pollutants present in the effluent (Yagub *et al.*, 2014). AC is a term used to express carbon-rich materials which contain well-built internal pore structure. The high surface area (> 400 m²/g), well-organized pores and a wide range of chemical functional groups present on the surface of AC make it a versatile and popular adsorbent in wastewater treatment industries (Danish and Ahmad, 2018).

Recently, heating systems employing microwave irradiation have been widely used for the preparation of AC. The microwave energy is transferred to the interior part of the samples by dipole rotation and ionic conduction, rather than by conduction and convection (Makhado *et al.*, 2018). Consequently, microwave heating results in a significantly reduced treatment time. The removal of dyes from wastewater using AC prepared by microwave-assisted activation from various source such as date stones (Abbas and Ahmed, 2016), coconut shells (Mohammed *et al.*, 2015), pomegranate peel (Ahmad *et al.*, 2014), oil palm shells (Hesas *et al.*, 2013a), peanut shells (Georgin *et al.*, 2016), coffee shells (Li *et al.*, 2016a), palm kernel shells (Kundu *et al.*, 2015a), Jatropha (Khalil *et al.*, 2013) and rice husks (Muniandy *et al.*, 2014) have been studied by other researchers. Out of these presursors, woody materials are significant sources for AC preparation, because they contain appropriate carbon fractions (50–90%) and low ash content (< 5 %) (Kazemi *et al.*, 2016).

Malaysia produces large amount of forest and wood processing mass where logging residues were produced during various phases of logging. The secondary processing residues are produced during the process of planning mills, moulding plants, and furniture factories in the form of sawdust, plane shavings, small pieces of lumber trimming, edging, bark and fragments (Osman *et al.*, 2014). With the growing of wood activities has also increased the wood waste amount resulted from this process. *Pentace triptera* (PS), *Intsia bijuga* (IS) and *Hevea brasiliensis* (HS) are among commercially important hardwoods used in Malaysian wooden furniture manufacturing industry which has resulted in the increasing of the waste sawdust from these wood species. These three woods PS, IS and HS possess different density of 530-755 kg/m³, 515-1,040 kg/m³ and 560 - 640 kg/m³, respectively. It was hypothesized that different density of wood will results in different characteristic and adsorption

capability for batch and column mode of studies. Therefore, the potential of these three waste sawdust as a precursor in producing novel AC has been explored in this study.

1.2 Problem statement

Various cationic and anionic synthetic dyes such as methylene blue (MB) and Remazol Brilliant Violet 5R (RBV) are released in water bodies through the effluents of these industries. The discharge of MB basic dye into the water stream has a number of harmful effects such as allergic dermatitis, skin irritation, mutations, and even cancer (Rangabhashiyam and Balasubramanian, 2018). The reactive RBV dye is an anthracene derivative and represents an important class of toxic and recalcitrant organic pollutants (Bello and Ahmad, 2011a). Due to stable conjugation structures by the presence of an -N=N- (azo) bond in the chemical structure, RBV dye is difficult to eliminate by biodegradation process (Li *et al.*, 2017). Therefore, the strategy to eliminate the colour and to reduce its effect on the industrial effluents before they are mixed up with natural water bodies is of significant importance.

Adsorption process using AC has been considered superior method for dye treatment due its high efficiency and operational simplicity. However, this application is limited by the cost of production and vague methods (Danish and Ahmad, 2018). The heating techniques strongly affect the physical and chemical characteristics of AC. Through conventional heating, heat is transferred to the samples by conduction and convection mechanisms which leads to an inhomogeneous heating samples of dissimilar shapes and sizes. Furthermore, this thermal heating takes a longer time to achieve the preferred phase of activation. Consequently, volatile components may remain inside the particles, giving rise to carbon deposition problems. The deposited carbon leading to distortion and inhomogeneous structure, low values of total pore