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TENUNAN GENTIAN KARBON EPOKSI KOMPOSIT LAMINAT 

DIPERKUAT DENGAN NANOTIUB KARBON DI ANTARA LAPISAN 

MENGGUNAKAN KAEDAH PEMENDAPAN SEMBURAN ELEKTRO 

 

ABSTRAK 

Penghibridan tenunan gentian karbon-nanotiub karbon mendapat banyak 

perhatian dari kalangan penyelidik dalam bidang epoksi komposit laminat. Dalam 

kajian ini, kaedah pemendapan semburan elektro digunakan untuk mendepositkan 

nanotiub karbon pada permukaan tenunan gentian karbon. Pemendapan nanotiub 

karbon pada permukaan tenunan gentian karbon bertujuan untuk meningkatkan 

kekasaran permukaan tenunan gentian karbon serta hubungan saling pengaruh 

mekanikal antara tenunan gentian karbon dan matrik epoksi. Untuk kaedah 

pemendapan semburan elektro, kestabilan nanotiub karbon dalam pelarut adalah 

sangat penting semasa proses pemendapan semburan elektro dan N-metil-2-pirolidon 

adalah terbukti sesuai untuk penyebaran nanotiub karbon kerana kestabilan yang 

tinggi. Kesan voltan dan masa semburan pemendapan semburan elektro pada 

morfologi tenunan gentian karbon-nanotiub karbon hibrid telah dikaji. Voltan dan 

masa semburan optimum untuk mendapatkan lapisan nanotiub karbon yang homogen 

dan rata pada permukaan tenunan gentian karbon adalah 15 kV dan 15 minit, masing-

masing. Daripada ujian gentian tunggal, kaedah pemendapan semburan elektro 

didapati selamat tanpa sebarang kemerosotan ketara pada kekuatan tenunan gentian 

karbon-nanotiub karbon hibrid. Epoksi komposit laminat dengan tenunan gentian 

karbon-nanotiub karbon hibrid yang dioptimumkan dan tenunan gentian karbon tanpa 

didepositkan nanotiub karbon kemudiannya dihasilkan dan dibandingkan dari segi 

sifat mekanikal, terma dan dielektrik. Penilaian menunjukkan gentian karbon-nanotiub 



 

 xx 

karbon hibrid epoksi komposit laminat mempunyai sifat mekanikal, terma dan 

dielektrik yang lebih tinggi daripada tenunan gentian karbon epoksi komposit laminat. 

Keputusan menunjukkan bahawa gentian karbon-nanotiub karbon hibrid epoksi 

komposit laminat mampu meningkatkan kekuatan tegangan, modulus tegangan, 

kekuatan lentur, modulus lentur, kekuatan ricih antara laminar, konduktiviti terma dan 

pemalar dielektrik masing-masing sebanyak 21 %, 37 %, 19 %, 27 %, 35 % and 22 %, 

berbanding tenunan gentian karbon epoksi komposit laminat. 
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WOVEN CARBON FIBER EPOXY COMPOSITE LAMINATES 

REINFORCED WITH CARBON NANOTUBE INTERLAYER USING 

ELECTROSPRAY DEPOSITION METHOD 

 

ABSTRACT 

The hybridization of woven carbon fiber-carbon nanotube (CF-CNT) received 

enormous attention from research communities in the field of epoxy laminates 

composites. In this study, electrospray deposition (ESD) method was used to deposit 

carbon nanotube (CNT) on the woven carbon fiber (CF) surface. The deposition of the 

CNT on the woven CF surface is intended to improve the surface roughness of the 

woven CF as well as to provide a mechanical interlocking between the woven CF and 

the epoxy matrix. For ESD method, the stability of the CNT in the solvent is very 

crucial during the ESD process and N-Methyl-2-Pyrrolidone is proven suitable for 

dispersing CNT due to high stability. The effect of voltage and spray time of ESD on 

the morphologies of the woven hybrid CF-CNT has been studied. The optimum 

voltage and spray time to achieve homogeneous and even CNT coating on the woven 

CF surface is 15 kV and 15 min, respectively. From single fiber test, the ESD method 

is found to be safe without any significant degradation on the tensile strength of the 

woven CF-CNT. The epoxy composite laminates with optimized woven hybrid CF-

CNT and woven CF without deposited CNT were then prepared and compared in terms 

of mechanical, thermal and dielectric properties. The evaluation showed that woven 

hybrid CF-CNT epoxy composite laminates have greater mechanical, thermal and 

dielectric properties than woven CF epoxy composite laminates. The results 

demonstrate that the woven hybrid CF-CNT epoxy composite laminates are capable 

of improving tensile strength, tensile modulus, flexural strength, flexural modulus, 
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interlaminar shear strength, thermal conductivity and dielectric constant about 21 %, 

37 %, 19 %, 27 %, 25%, 35 % and 22 %, respectively, compared to the woven CF 

epoxy composite laminates. 
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CHAPTER ONE 

INTRODUCTION 

1.1       Background of the Research 

CF reinforced epoxy composites exhibit high strength and modulus to weight 

ratio and broadly used in the aerospace, automobile industries, military and sporting 

goods. Even though the CF epoxy composite laminates have been widely used in many 

applications, their potential is still governed by few factors. As is well known, the CF 

epoxy composite laminates in the form of laminates have poor strength in the direction 

of through thickness, as no fibers are oriented in the direction of thickness to support 

transverse load. Thus, CF epoxy composite laminates are vulnerable for the crack to 

initiate and propagate along the interface. The delamination is one of the frequent 

failure modes in the laminates composites, which may cause critical reduction in 

transverse direction strength and stiffness and can lead to catastrophic failure for the 

whole structure. During manufacturing or service life, the delamination may be 

introduced by external loading such as tension, static bending, impact loading, cyclic 

fatigue and compression.  

In order for CF epoxy composite laminates to offer better design for advanced 

components, significant enhancement in the aforementioned properties are necessary. 

The incorporation of nanofiller, such as carbon nanotubes (CNT) into the matrix of 

composites has been developed as an efficient method for improving the mechanical 

and multifunctional properties of CF epoxy composite laminates. The exceptional 

mechanical and physical properties of CNT have inspired their utilization as additives 

to enhance the inadequate properties of CF epoxy composite laminates. CNT is one-

dimensional with a cylindrical nanostructure of sp2 hybridized carbon atoms that are 

densely packed in a honeycomb crystal lattice. CNT has been reported to possess 
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superior mechanical properties, with Young's modulus of 0.27 - 0.95 TPa and tensile 

strengths of 11 – 63 GPa (Trojanowicz, 2006). CNT is also expected to offer 

remarkable performances in areas such as thermal and electrical properties. Thermal 

and electrical conductivity of CNT is up to 3,000W/mK and 1800 S/cm, respectively 

(Kausar et al., 2016).  

There are two common ways for incorporating CNT into the CF epoxy 

composite laminates. First, CNT is used as reinforcing fillers in the epoxy matrix of 

the CF epoxy composite laminates to improve their mechanical properties (Davis et 

al., 2010; Kim et al., 2011). The challenge of this approach is that the uniform 

dispersion of CNT in the epoxy matrix is difficult to achieve, especially at high 

concentrations, due to the dramatically increased viscosity of the resin. Highly viscous 

resin with agglomerated CNT is very difficult to process and always leads to poor 

performance of CF epoxy composite laminates. In addition, the direct incorporation of 

the CNT into the epoxy matrix is less effective in improving the interfacial bonding 

between the CF and epoxy matrix. 

Another way is to grow or deposit CNT directly onto CF surface to form a 

hierarchical reinforcement. Several methods were successfully developed hierarchical 

hybrid carbon fiber-carbon nanotube (CF-CNT) such as chemical vapour deposition 

(CVD), electrophoretic deposition (EPD), chemical functionalization and electrospray 

deposition (ESD) (Susi et al., 2008; Li et al., 2013; Deng et al., 2015; Li et al., 2016). 

The main motivation for producing hybrid CF-CNT is to improve the interface 

properties and minimize the existing limitations associated with the matrix dominated 

properties. For example, CNT could offer interlaminar reinforcement, thus improving 

resistance to delamination and through thickness properties, without sacrificing the 

performance of longitudinal direction. In addition, the hybridization of CF with CNT 
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