EXTENDED NEAREST CENTROID NEIGHBOR

METHOD WITH TRAINING SET REDUCTION

FOR CLASSIFICATION

NORDIANA BINTI MUKAHAR

UNIVERSITI SAINS MALAYSIA

2020

EXTENDED NEAREST CENTROID NEIGHBOR METHOD WITH TRAINING SET REDUCTION FOR CLASSIFICATION

by

NORDIANA BINTI MUKAHAR

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

JUNE 2020

ACKNOWLEDGEMENT

All praise to ALLAH S.W.T the Almighty for giving me the opportunity, strength, patience and ability to complete my study at Universiti Sains Malaysia. I would like to express my sincere gratitude to my supervisor, Associate Professor Dr. Bakhtiar Affendi bin Rosdi for his continuous encouragement, guidance and support throughout this research. Thank you for your informative suggestion and brilliant ideas, constructive and valuable comments and for giving me the flexibility to work at my own pace.

This thesis is dedicated to all my beloved: especially my mother, Pn. Hajjah Salmah Binti Mustajab. Her continuous support, love and prayer make me strong to endure this voyage. My heartfelt thanks to my beloved husband, Mohd Nazri Bin Amir Hamezah and my wonderful daughter, Nusaibah for always being there with me to encourage and care and for understanding and giving me the strength to face this journey. I am greatly indebted and appreciate very much to my husband for his patience, sacrifice and support in my life.

My gratitude is also expressed to all my friends and postgraduate roommates for their continuous support, help and understanding throughout this period. I would like to extend my appreciation to my main sponsor, the Ministry of Higher Education, Malaysia and my employer, Universiti Teknologi MARA for supporting me in finishing this study. I would also want to thank the administrative and technical staff of the School of Electrical and Electronic Engineering USM and Institute of Postgraduate Studies (IPS) for their kind support and assistance.

ii

TABLE OF CONTENTS

			0
ACKNO	OWLEDGE	CMENT	ii
TABLE	OF CONT	ENTS	iii
LIST O	F TABLES		viii
LIST O	F FIGURE	S	xi
LIST O	F ABBREV	/IATIONS	xvii
LIST O	F SYMBOI	LS	xix
ABSTR	AK		xxiii
ABSTR	ACT		XXV
СНАРТ	ER 1 - INT	RODUCTION	
1.1	Overview	v of Non-parametric Classifiers	1
1.2	Problem	Statement and Motivation	3
	1.2.1	Slow Classification Time of the k - Nearest Centroid Neighbor Classifier	4
	1.2.2	One-sided Selection of Nearest Centroid Neighbors	6
1.3	Research	Objectives	12
1.4	Scopes o	f Research	13
1.5	Thesis O	utlines	14
СНАРТ	ER 2 - LIT	ERATURE REVIEW	
2.1	Introduct	ion	16
2.2	Non-para	ametric Classifiers	16
2.3	Nearest N	Neighbor Based Classifiers	17
	2.3.1	k Nearest Neighbor Classifier	17
	2.3.2	Weighting Scheme in the k - Nearest Neighbor	23

Classifier

	2.3.3	Two-sided Selection of Nearest Neighbors in the <i>k</i> - Nearest Neighbor Classifier	25
2.4	Nearest	Centroid Neighbor Based Classifiers	40
	2.4.1	k - Nearest Centroid Neighbor Classifier	41
	2.4.2	Variants of the k - Nearest Centroid Neighbor Classifiers	47
2.5	Training Neighbo	Set Reduction Techniques of the k - Nearest Centroid or Classifier	52
	2.5.1	Decremental Techniques of the k - Nearest Centroid Neighbor Classifier	53
	2.5.2	Limiting the Training Set of the k - Nearest Centroid Neighbor Classifier.	58
2.6	Summar	у	68

CHAPTER 3 – REDUCED SET k - NEAREST CENTROID NEIGHBOR

CLASSIFIERS

3.1	Introductio	on	70
3.2	Training Set Reduction Techniques		71
	3.2.1	Reduced Set k - Nearest Centroid Neighbor.v1	72
	3.2.2	Reduced Set k - Nearest Centroid Neighbor.v2	82
	3.2.3	Reduced Set k - Nearest Centroid Neighbor.v3	90
	3.2.4	Reduced Set k - Nearest Centroid Neighbor.v4	98
3.3	The Differ Centroid M Limited-kM	rences of the Variants of the Reduced Set k - Nearest Neighbor, Wilson's Edited kNCN, Iterative kNCN and NCN Techniques	105
3.4	Performan	ce Evaluation	125
3.5	Summary		127

CHAPTER 4 – EXTENDED NEAREST CENTROID NEIGHBOR

CLASSIFIER WITH REDUCED TRAINING SET

4.1	Introduction		130
4.2	Extended 1	Nearest Centroid Neighbor Classifier	131
	4.2.1	Procedure of the ENCN Classifier	134
	4.2.2	The Differences between the kNCN and ENCN Classifiers	140
4.3	Reduced S	et Extended Nearest Centroid Neighbor Classifier	149
	4.3.1	Procedure of the RSENCN Classifier	154
	4.3.2	The Differences between the ENCN and RSENCN Classifiers	157
4.4	Performan	ce Evaluation	162
4.5	Summary		163

CHAPTER 5 - EXPERIMENTAL PROCEDURES, RESULTS AND

DISCUSSION

5.1	Introduction		166
5.2 Databases			168
	5.2.1	Real-world Database: UCI Machine Learning and KEEL Databases	169
	5.2.2	Artificial Data Set: I-4I Data Set	171
	5.2.3	Finger Vein Universiti Sains Malaysia (FV-USM) Images Database	172
5.3	Results of	the Training Set Reduction Techniques	173
	5.3.1	Selection of the Parameter, α for the RSkNCN.v2 and RSkNCN.v4 Techniques.	173
		5.3.1 (a) Experiment 1: Performance Evaluation of the RSkNCN.v2 and RSkNCN.v4	174

Techniques on the Real-world Data Sets

		5.3.1 (b)	Experiment 2: Performance Evaluation of the RSkNCN.v2 and RSkNCN.v4 Techniques on the FV-USM Image Database	177
	5.3.2	Performance	e of the Training Set Reduction Techniques	180
		5.3.2 (a)	Performance of Classification on the Real-world Data Sets	180
		5.3.2 (b)	Performance of Classification on the FV-USM Image Database	191
5.4	Results of Classifier	the Reduced S	et Extended Nearest Centroid Neighbor	196
	5.4.1	Selection of Technique for	the Training Set Reduction or the ENCN Classifier	196
		5.4.1 (a)	Experiment 1: Performance Evaluation of the ENCN Classifier with Four Variants of the Training Set Reduction Techniques on the Real-world Data Sets	197
		5.4.1 (b)	Experiment 2: Performance Evaluation of the ENCN Classifier with Four Variants of the Training Set Reduction Techniques on the FV-USM Image Database	206
	5.4.2	Performance	of the RSENCN Classifier	210
		5.4.2 (a)	Performance of Classification on the Real-world Data Sets	210
		5.4.2 (b)	Performance of Classification on the I-4I Data Set	221
		5.4.2 (c)	Performance of Classification on the FV-USM Image Database	224
5.5	Summary			228

CHAPTER 6 - CONCLUSIONS AND FUTURE WORKS

6.1	Conclusions	230

6.2	Thesis Contributions	233
6.3	Suggestions and Future Works	233

235

REFERENCES

APPENDIX A	Performance of the training set reduction technique		
	in terms of classification accuracy (%), reduction		
	ratio, classification time (s) and learning time (s) on		
	the Real-world data sets and FV-USM image		
	database		

- APPENDIX B Performance of the combination ENCN classifier with four training set reduction techniques in terms of classification accuracy (%), reduction ratio and classification time (s) on the Real-world data sets and FV-USM image database
- **APPENDIX C** Classification accuracy of the RSENCN classifier via different values of *k* on the Real-world data sets

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Sets of k - nearest neighbors for each training sample of the classes c_1 and c_2 before the introduction of the test sample, x in an offline stage ($k = 3$).	36
Table 2.2	New sets of k - nearest neighbors for each training sample of the classes c_1 and c_2 after the introduction of the test sample, x in an online stage ($k = 3$).	38
Table 2.3	New sets of k - nearest neighbors for each training sample of the classes c_1 and c_2 after the introduction of the test sample, x in an online stage ($k = 3$).	39
Table 2.4	Summary of the advantages and disadvantages of the kNN-based and kNCN-based classifiers.	50
Table 2.5	Sets of k - nearest neighbors for training samples of the classes c_1 and c_2 in the training set, <i>T</i> . ($k = 3$).	55
Table 2.6	Sets of k - nearest neighbors for training samples of the classes c_1 and c_2 in the subset, S (obtained from the first iteration) on the second iteration.	57
Table 2.7	Sets of k - nearest neighbors for training samples of the classes c_1 and c_2 in the subset, S (obtained from the second iteration) on the third iteration.	58
Table 2.8	Steps to determine the maximum rank of k - nearest centroid neighbors of the training sample, $y_2(m_{rank,y_2})$ when $k = 3$.	63
Table 2.9	Summary of the advantages and disadvantages of the kNCN-based training set reduction techniques.	66
Table 3.1	Classification accuracy (%) obtained by the RSkNCN.v2 on the Wdbc data set when varying the parameter, α for $k = 3$.	111
Table 3.2	Classification accuracy (%) obtained by the RSkNCN.v4 on the Wdbc data set when varying parameter, α for $k = 3$.	113
Table 3.3	Comparisons in terms of the size of the subset obtained by various training set reduction techniques.	116
Table 3.4	Comparisons in terms of the classification accuracy (%) and classification time (s) of subset obtained by various training set reduction techniques.	117
Table 4.1	Sets of k - nearest centroid neighbors for each training sample of the classes c_1 and c_2 before the introduction of the test	144

sample, x in an offline stage (k = 3).

- Table 4.2 New sets of k nearest neighbors for each training sample of 146 the classes c_1 and c_2 after the introduction of the test sample, x in an online stage (k = 3). (Assume that x belongs to the class c_1).
- Table 4.3 New sets of k nearest neighbors for each training sample of the 147 classes c_1 and c_2 the introduction of the test sample, x in an online stage (k = 3). (Assume that x belongs to the class c_2).
- Table 5.1List of the Real-world selected data sets.170
- Table 5.2 Average classification accuracy (%) obtained by the 176 RSkNCN.v2 on 30 sets of the Real-world data by varying the parameter, α for k = 3, 5, 7.
- Table 5.3 Average classification accuracy (%) obtained by the 176 RSkNCN.v4 on 30 sets of the Real-world data by varying the parameter, α for k = 3, 5, 7.
- Table 5.4 Classification accuracy (%) of the RSkNCN.v2 on the FV-USM 179 image database for when varying parameter, α for k = 1,3,5,7,9.
- Table 5.5 Classification accuracy (%) of the RSkNCN.v4 on the FV-USM 179 image database when varying the parameter, α for k = 1,3,5,7,9.
- Table 5.6 Average classification accuracy (%) obtained by the kNCN- 182 based training set reduction techniques on 30 sets of the Real-world data for k = 3, 5, 7.
- Table 5.7 Average reduction ratio and ranking obtained by the kNCN- 184 based training set reduction techniques on 30 sets of the Real-world data for k = 3, 5, 7.
- Table 5.8 Average learning time (s) obtained by the kNCN-based training 187 set reduction techniques on 30 sets of the Real-world data for k = 3, 5, 7.
- Table 5.9 Average classification time (s) and ranking obtained by the 188 kNCN-based training set reduction techniques on 30 sets of the Real-world data for k = 3, 5, 7.
- Table 5.10 Learning times (s) of the kNCN-based training set reduction 193 techniques on the FV-USM image database for k = 1, 3, 5, 7, 9.
- Table 5.11Average classification time (s) of the ENCN with training set203reduction techniques on 30 sets of the Real-world data for
k=3, 5, 7, 9.
- Table 5.12Classification comparison of the RSENCN and competing212classifiers in terms of classification accuracy (%) with the

standard deviation and values of k in the parentheses on 30 sets of the Real-world data.

Table 5.13	Performance comparison of the RSENCN and competing classifiers by using the Wilcoxon Signed-Ranks test.	216
Table 5.14	The rank of classifiers by using the Friedman test.	217
Table 5.15	Results obtained by using the Holm post hoc test.	219
Table 5.16	The optimum number of features for each classifier.	227

LIST OF FIGURES

xi

Page

Figure 1.1	k - nearest centroid neighbors distribution of the test sample, x $(k = 5)$	9
Figure 1.2	The situations when the test sample, <i>x</i> changes the <i>k</i> nearest centroid neighbors of 4 training samples, $(y_{95}, y_{154}, y_{155}, y_{76})$ when $k = 5$. (a) $NCN_k(y_{95}, T) = \{y_{12}, y_{155}, y_{90}, y_{76}, y_{144}\}$. (b) $NCN'_k(y_{95}, \{T + x\}) = \{x, y_{12}, y_{155}, y_{90}, y_{154}\}$. (c) $NCN_k(y_{154}, T) = \{y_{57}, y_{95}, y_{107}, y_{12}, y_{151}\}$. (d) $NCN'_k(y_{154}, \{T + x\}) = \{y_{57}, x, y_{107}, y_{95}, y_{71}\}$. (e) $NCN_k(y_{155}, T) = \{y_{76}, y_{91}, y_{136}, y_{95}, y_{72}\}$. (f) $NCN'_k(y_{155}, \{T + x\}) = \{y_{76}, y_{91}, y_{136}, x, y_{72}\}$. (g) $NCN_k(y_{76}, T) = \{y_{155}, y_{119}, y_{91}, y_{72}, y_{95}\}$. (h) $NCN'_k(y_{76}, \{T + x\}) = \{y_{155}, y_{119}, y_{91}, y_{72}, x\}$.	11
Figure 2.1	The workflow of the kNN classifier.	20
Figure 2.2	Two-class classification problem with the kNN classifier.	21
Figure 2.3	The set of k - nearest neighbors of the test sample, x and training samples $(y_{95}, y_{154}, y_{12}, y_{155} \text{ and } y_{76})$ when $k = 5$. (a) $NN_k(x,T) = \{y_{95}, y_{154}, y_{12}, y_{155}, y_{76}\}$. (b) $NN_k(y_{95},T) = \{x, y_{12}, y_{154}, y_{144}, y_{90}\}$. (c) $NN_k(y_{154},T) = \{y_{57}, x, y_{107}, y_{95}, y_{151}\}$. (d) $NN_k(y_{12},T) = \{y_{90}, y_{114}, y_{95}, y_{10}, y_{144}\}$. (e) $NN_k(y_{155},T) = \{y_{76}, y_{91}, y_{136}, y_{72}, y_{119}\}$. (f) $NN_k(y_{76},T) = \{y_{155}, y_{91}, y_{72}, y_{119}, y_{136}\}$.	27
Figure 2.4	The workflow of the ENN classifier during an (a) offline stage (without the test sample) and (b) online stage (with the test sample).	34
Figure 2.5	Distribution of training samples for a two-class classification problem without the test sample, x .	36
Figure 2.6	Distribution of training samples for a two-class classification problem with the introduction of the test sample, x .	37
Figure 2.7	The workflow of the kNCN classifier.	44
Figure 2.8	Steps of finding <i>k</i> nearest centroid neighbors of the test sample, <i>x</i> when $k = 5$. (a) Distribution of training and test samples for a two-class classification problem. (b) $NCN_1(x,T) = \{y_{95}\}$. (c) $NCN_2(x,T) = \{y_{95}, y_{154}\}$. (d) $NCN_3(x,T) = \{y_{95}, y_{154}, y_{29}\}$. (e) $NCN_4(x,T) = \{y_{95}, y_{154}, y_{29}, y_{107}\}$.	45

(f) $NCN_5(x,T) = \{y_{95}, y_{154}, y_{29}, y_{107}, y_{144}\}.$

- Figure 2.9 (a) 22 training samples of the Wdbac data set. (b) An edited 54 subset, *S* by using the Wilson's editing kNCN technique.
- Figure 2.10 Edited subset by using the Iterative kNCN editing technique. 57
- Figure 2.11 (a) The Euclidean distance of k nearest centroid neighbors for 62 each training sample in Figure 2.9 (a). (b) Ranks of k nearest centroid neighbors for each training sample according to the Euclidean distance. (c) The maximum rank of each training sample. (d) The largest rank, m defined by the Limited kNCN.v1.
- Figure 2.12 Edited subset by using the Limited-kNCN.v1 technique. 64
- Figure 2.13 (a) The Euclidean distance of k nearest centroid neighbors for 65 each training sample in Figure 2.9 (a). (b) Ranks of k nearest centroid neighbors for each training sample according to the Euclidean distance. (c) The sorted maximum rank of each training sample.

Figure 2.14	Edited subset by	using the	Limited-kNCN.v2 technique.	66
	1	()		

Figure 3.1 The workflow of the RSkNCN.v1 during an (a) offline stage 73 (without the test sample) and (b) online stage (with the test sample).

80

- Figure 3.2 The edited subset, *S* using the RSkNCN.v1 technique
- Figure 3.3 (a) The Euclidean distance of k nearest centroid neighbors for 81 the training set, T in Figure 2.9 (a). b) The ranks of k nearest centroid neighbors of training sample according to the Euclidean distance. (c) The maximum rank of training samples that agrees with the majority of its k nearest centroid neighbors.
- Figure 3.4 The workflow of the RSkNCN.v2 during an (a) offline stage 83 (without the test sample) and (b) online stage (with the test sample).
- Figure 3.5 Edited subset by using RSkNCN.v2 the technique. 88
- Figure 3.6 (a) The Euclidean distance of k nearest centroid neighbors for 89 the training samples in Figure 2.9 (a). (b) The ranks of k nearest centroid neighbors of training samples according to the Euclidean distance. (c) The optimum rank of training samples that agrees with the majority of its k nearest centroid neighbors.
- Figure 3.7 The workflow of the RSkNCN.v3 during an (a) offline stage 92 (without the test sample) and (b) online stage (with the test

sample).

Figure 3.8	Edited subset by using the RSkNCN.v3 technique. Subset to find	96		
	(a) the first nearest centroid neighbor, (b) the second nearest			
	centroid neighbor and (c) the third nearest centroid neighbor.			

- Figure 3.9 (a) The Euclidean distance of k nearest centroid neighbors for 97 the training samples in Figure 2.9 (a). b) The ranks of k nearest centroid neighbors of training samples according to the Euclidean distance. (c) The maximum rank of *j*-th nearest centroid neighbor.
- Figure 3.10 The workflow of the RSkNCN.v4 during an (a) offline stage 99 (without the test sample) and (b) online stage (with the test sample).
- Figure 3.11 Edited subset by using the RSkNCN.v4 technique. Subset to find 104 (a) the first nearest centroid neighbor, (b) the second nearest centroid neighbor and (c) the third nearest centroid neighbor.
- Figure 3.12 (a) The ranks of k nearest centroid neighbors for the training 105 samples in Figure 2.9 (a). (b) The sorted ranks for each *j*-th nearest centroid neighbor of training samples.
- Figure 3.13 Training samples distribution of the Wdbc data set. 106
- Figure 3.14 Subset edited by using the Wilson's Edited kNCN. 107
- Figure 3.15 Subset edited by using the Iterative kNCN. 107
- Figure 3.16 Subset edited by using the (a) Limited-kNCN.v1 and (b) 109 Limited-kNCN.v2.
- Figure 3.17 (a) Atypical samples (outside of the circles) in the subset edited 110 with the Limited-kNCN.v1. (b) The enlarged figure of the sample distribution in Figure 3.17 (a). (c) Subset edited with the RSkNCN.v1.
- Figure 3.18 (a) Atypical samples (outside of the circles) in the subset edited 112 with the RSkNCN.v1. (b) Subset edited with the RSkNCN.v2.
- Figure 3.19 Different subsets obtained by using the RSkNCN.v3 technique 114 to find k nearest centroid neighbors when k = 3. (a) Subset to find the first nearest centroid neighbor. (b) Subset to find the second nearest centroid neighbor. (c) Subset to find the third nearest centroid neighbor.
- Figure 3.20 Different subsets obtained by using the RSkNCN.v4 technique 115 when k = 3. (a) Subset to find the first nearest centroid neighbor. (b) Subset to find the second nearest centroid neighbor. (c) Subset to find the third nearest centroid neighbor.

- Figure 3.21 *k* nearest centroid neighbors of the test sample, *x* when k = 3. 118 $NCN_k(x) = \{y_{436}, y_{152}, y_{209}\}, C_k(x) = \{c_1, c_2, c_1\}.$
- Figure 3.22 (a) Black circles denote the samples removed by using the 120 Wilson's Edited kNCN. (b) *k* nearest centroid neighbors of the test sample, *x* on the subset obtained by using the Wilson's Edited kNCN when k = 3. $NN_k(x, S) = \{y_{326}, y_{319}, y_{127}\}$, $C_k(x, S) = \{c_2, c_2, c_2\}$. (c) Black circles denote the samples removed by using the Iterative kNCN. (d) *k* nearest centroid neighbors of the test sample, *x* on the subset obtained by using the Iterative kNCN. (d) k nearest centroid neighbors of the test sample, *x* on the subset obtained by using the Iterative kNCN. (d) k nearest centroid neighbors of the test sample, *x* on the subset obtained by using the Iterative kNCN when k = 3. $NN_k(x, S) = \{y_{278}, y_{178}, y_{260}\}$, $C_k(x, S) = \{c_2, c_2, c_1\}$.
- Figure 3.23 k nearest centroid neighbors of the test sample, x on the subset, 121 S obtained by using the (a) Limited-kNCN.v1 and (b) Limited-kNCN.v2 when k = 3, $NCN_k(x, S) = \{y_{436}, y_{152}, y_{209}\}$, $C_k(x, S) = \{c_1, c_2, c_1\}$.
- Figure 3.24 *k* nearest centroid neighbors of the test sample, *x* on the subset, 121 *S* obtained by using the (a) RSkNCN.v1 and (b) RSkNCN.v2 when $\underline{k} = 3$, $NCN_k(x, S) = \{y_{436}, y_{152}, y_{209}\}$, $C_k(x, S) = \{c_1, c_2, c_1\}$.
- Figure 3.25 *k* nearest centroid neighbors of the test sample, *x* on *k* subsets 123 obtained by using the RSkNCN.v3 when k = 3. First nearest centroid neighbor is found on the first subset, S_1 (a). Second nearest centroid neighbor is found on the second subset, S_2 (b) and third nearest centroid neighbor is found on the third subset, S_3 (c). $NCN_k(x, S_k) = \{y_{436}, y_{152}, y_{209}\}, C_k(x, S_k) = \{c_1, c_2, c_1\}$
- Figure 3.26 k nearest centroid neighbors of the test sample, x on k subsets 124 obtained by using the RSkNCN.v4 when k = 3. First nearest centroid neighbor is found on the first subset, S_1 (a). Second nearest centroid neighbor is found on the second subset, S_2 (b) and the third nearest centroid neighbor is found on the third subset, S_3 (c). $NCN_k(x, S_k) = \{y_{436}, y_{152}, y_{209}\}$ $C_k(x, S_k) = \{c_1, c_2, c_1\}$
- Figure 4.1 The workflow of the ENCN classifier during an (a) offline stage 131 (without the test sample) and (b) online stage (with the test sample).
- Figure 4.2 Distribution of k nearest centroid neighbors of the test sample, 141 x when k = 3.
- Figure 4.3 Distribution of training samples for a two-class classification 143 problem without the test sample, x.
- Figure 4.4 Changes of k nearest centroid neighbors for 3 training samples, 145 (y_4, y_7, y_{16}) when k = 3 with the introduction of the test sample, x. (a-i), (b-i),(c-i) k nearest centroid neighbors of

training samples, (y_4, y_7, y_{16}) without the test sample, x. (a-ii), (b-ii),(c-ii) k - nearest centroid neighbors of training samples, (y_4, y_7, y_{16}) with the test sample, x.

- Figure 4.5 The workflow of the RSENCN classifier during an (a) offline 152 stage (without the test sample) and (b) online stage (with the test sample).
- Figure 4.6 (a) Ranks of k nearest centroid neighbors for each training 158 sample in Table 4.1 according to the Euclidean distance. (b) Ranks of selected training samples that agree with the majority of its k nearest centroid neighbors. (c) The maximum rank of each selected training sample.
- Figure 4.7 (a) Atypical samples (outside of the circles) in the subset edited 159 with the RSkNCN.v1. (b) *k* nearest centroid neighbors of the test sample found in the subset.
- Figure 4.8 (a-i), (b-i), (c-i) Subsets obtained by using the RSkNCN.v1 for 161 training samples $\{y_4, y_7, y_{16}\}$ with atypical samples (outside of the circles). (a-ii), (b-i)i, (c-ii) The resulting k nearest centroid neighbors of training samples $\{y_4, y_7, y_{16}\}$ found in the edited subset.
- Figure 5.1 Distribution of the I-4I data set. 171
- Figure 5.2 Region of interest (ROI) of finger vein image. 173
- Figure 5.3 Comparison of the average reduction ratio on 30 sets of the 185 Real-world data for different values of neighborhood, *k*.
- Figure 5.4 Average reduction vs average accuracy (%) graph on 30 sets of 186 the Real-world data for different values of k. (a) k = 3. (b) k = 5. c) k = 7.
- Figure 5.5 Comparison of the average classification time (s) on 30 sets of 189 the Real-world data for different values of neighborhood, *k*.
- Figure 5.6 Average classification time (s) vs average accuracy (%) graph on 190 30 sets of the Real-world data for different values of k. (a) k = 3. (b) k = 5. (c) k = 7.
- Figure 5.7 Classification accuracy (%) performance via different values of 192 *k* on the FV-USM image database.
- Figure 5.8 Classification time (s) performance via different values of k on 194 the FV-USM image database.
- Figure 5.9 Reduction ratio performance via different values of *k* on the FV- 195 USM image database.

- Figure 5.10 Classification accuracy (%) via different values of k on 30 sets 199 of the Real-world data.
- Figure 5.11 Average set size via different values of neighborhood, k on 30 200 sets of the Real-world data.
- Figure 5.12 Average classification accuracy (%) vs average set size on 30 202 sets of Real-world data for different values of k. (a) k = 3. (b) k = 5. (c) k = 7. (d) k = 9.
- Figure 5.13 Average classification accuracy (%) vs average time (s) graph on 205 30 sets of Real-world data for different values of k. (a) k = 3. (b) k = 5. (c) k = 7. (d) k = 9.
- Figure 5.14 Classification accuracy (%) via different values of k on the FV- 207 USM image database.
- Figure 5.15 Comparison of the set size for different values of neighborhood, 208 *k* on the FV-USM image database.
- Figure 5.16 Comparison of the classification time (s) for different values of 209 neighborhood, *k* on the FV-USM image database.
- Figure 5.17 Performance comparison of different classifiers on 30 sets of the 220 Real-world data using the Bonferroni-Dunn test. All classifiers that are significantly different at $\alpha_s = 0.05$ have ranking outside of the marked interval.
- Figure 5.18 Classification accuracies (%) of kNN, kNCN, DWkNCN, ENN, 222 DWkNN, FkNN, kGNN, MkNN and RSENCN classifiers on the I-4I data set for different values of neighborhood size, *k*.
- Figure 5.19 Classification accuracies (%) of the kNN, kNCN, DWkNCN, 223 ENN, DWkNN, FkNN, kGNN, MkNN and RSENCN classifiers on the I-4I data set for different values of training samples size, N.(a) k = 7. (b) k = 9.
- Figure 5.20 Classification accuracies (%) of the kNN, kNCN, DWkNCN, 224 ENN, DWkNN, FkNN, kGNN, MkNN and RSENCN classifiers on the I-4I data set for different values of noise. (a) k = 7. (b) k = 9.
- Figure 5.21 Classification accuracies (%) of the kNN, kNCN, DWkNCN, 225 ENN, DWkNN, FkNN, kGNN, MkNN and RSENCN classifiers on the FV-USM image database by varying the number of features.
- Figure 5.22 Classification accuracies (%) of the kNN, kNCN, DWkNCN, 237 ENN, DWkNN, FkNN, kGNN, MkNN and RSENCN classifiers on the FV-USM image database by varying the neighborhood size, *k*.

LIST OF ABBREVIATIONS

CA	Classification Accuracy
CD	Critical Diagram
DWkNN	Distance Weighted k - Nearest Neighbor
ENCN	Extended Nearest Centroid Neighbor
ENN	Extended Nearest Neighbor
FkNCN	Fuzzy k - Nearest Centroid Neighbor
FkNN	Fuzzy k - Nearest Neighbor
FV-USM	Finger Vein Universiti Sains Malaysia
HWkNCN	Heated Weight k - Nearest Centroid Neighbor
IBG	Intelligent Biometric Group
KEEL	Knowledge Extraction Evolutionary Learning
kGNN	k - General Nearest Neighbor
kNCN	k - Nearest Centroid Neighbor
kNN	k - Nearest Neighbor
LMkNCN	Local Mean k - Nearest Centroid Neighbor
MkNN	Mutual k - Nearest Neighbor
NCN	Nearest Centroid Neighbor
NN	Nearest Neighbor
PCA	Principle Component Analysis
PNCN	Pseudo Nearest Centroid Neighbor
ROI	Region of Interest
RSENCN	Reduced Set Extended Nearest Centroid Neighbor
RSkNCN.v1	Reduced Set k - Nearest Centroid Neighbor.v1

RSkNCN.v2	Reduced Set k - Nearest Centroid Neighbor.v2
RSkNCN.v3	Reduced Set <i>k</i> - Nearest Centroid Neighbor.v3
RSkNCN.v4	Reduced Set k - Nearest Centroid Neighbor.v4
SE	Standard Error
UCI	University of California Irvine
USM	Universiti Sains Malaysia
UWkNCN	Uniform Weight k - Nearest Centroid Neighbor
WkNCN	Weighted k - Nearest Centroid Neighbor

LIST OF SYMBOLS

$\delta(c_j = c_x^i)$	Kronecker delta function
μ_i	Mean vector
α	Percentage of training samples with atypical samples as one of its k - nearest centroid neighbors
α_s	Statistical significance level
α_{adj}	The adjusted statistical significance level
μ_i	Mean vector
Σ_i	Covariance
C _x	Class of the test sample, <i>x</i>
C _i	Class i
d_j	The distance of the <i>j</i> -th nearest neighbor
$d(x, y_i)$	Distance between the test sample and training sample
f_{v1}	The fraction of training set by using the Limited-kNCN.v1
f_{v2}	The fraction of training set by using the Limited-kNCN.v2
fsubset.v1	The fraction of training set by using the RSkNCN.v1
fsubset.v2	The fraction of training set by using the RSkNCN.v2
f _{subset.v3}	The fraction of training set by using the RSkNCN.v3
fsubset.v4	The fraction of training set by using the RSkNCN.v4
$f_{j,v4}$	The fraction of training set for <i>j</i> -th nearest centroid neighbor by using the RSkNCN.v4
$f_{j,v3}$	The fraction of training set for <i>j</i> -th nearest centroid neighbor by using the RSkNCN.v3
f _{enn,ci}	Target function of ENN for class c_i
f _{encn,ci}	Target function of ENCN for class c_i

$I_r(y_i,T)$	Indicator functions
k	Size of the neighborhood
k _{NN,ci}	Number of nearest neighbors of the test sample, x from class c_i
k _{NCN,ci}	Number of nearest centroid neighbors of the test sample, x from class c_i
M_{opt}	Optimum rank
M _{opt,j}	Optimum rank, $M_{opt,j}$ for <i>j</i> -th nearest centroid neighbor
M _{rank,j}	Maximum rank of <i>j</i> -th nearest centroid neighbor
M _{rank}	The largest rank
m	Number of classes
m _w	A parameter to determine the weighted of the distance between the test sample, x and k - nearest neighbors
m _{robust}	Robust rank
m _{max,i}	Maximum rank for the training sample, y_i
Ν	Number of training samples
$N^{\delta_X}(x)$	Neighborhood information of the test sample, x
$NCN_k(x,T)$	Set of k - nearest centroid neighbors of the test sample, x
$NCN'_k(x,T)$	A new set of the k - nearest centroid neighbors of the test sample, x
$NN_k(x,T)$	Set of k - nearest neighbors of the test sample, x
$NN_k'(x,T)$	A new set of k - nearest neighbors of the test sample, x
ncn_x^r	r –th centroid neighbor of the test sample, x
<i>n</i> ₂	Number of data sets
n_1	Number of classifiers
n _{ci}	Total number of training samples from the same class

$\Delta n_{c_i}^{c_j}$	Number of number of training samples of class c_i which has an increased (decreased) number of samples from class c_i in its k - nearest neighbors or k centroid neighbors
p_n	Non-parametric density estimation
Ρ	Statistical significant value
q	Total number of the targeted classes
\overline{R}	Mean rank
R^{-}	Negatives rank
R^+	Positives rank
R _i	Set of the rank for the training sample, y_i
R^p	Feature space
r _{nn,j}	Rank of <i>j</i> -th nearest centroid neighbor
S_k	Total test samples in the <i>k</i> -th fold
S	Subset
S _{ci}	Subset of training samples from class c_i
$T_{NCN}{}^{c_j}_{c_i}$	Generalized class-wise statistic of ENCN for class, c_i when the test sample, x is assumed to belong to the class, c_j
$T_{NN}{}^{c_j}_{c_i}$	Generalized class-wise statistic for ENN for class, c_i when the test sample, x is assumed to belong to the class, c_j
TP_k	Number of true positives the <i>k</i> -th fold
TN_k	Number of true negatives the <i>k</i> -th fold
Т	Training set
t	Width of the Heat Kernel function
T_{NCN,c_i}	Generalized class-wise statistic of ENCN for class, c_i
T_{NN,c_i}	Generalized class-wise statistic of ENN for class, c_i
U_j	Membership of <i>j</i> -th nearest neighbor

V_j	Vote of the <i>j</i> -th nearest neighbor
V	Volume that contains k training samples
w _j	Weight, w_j for a <i>j</i> -th nearest neighbor
w _i ^{NCN}	Weight of <i>j</i> -th nearest centroid neighbors
X_F^2	Friedman statistics
x	Test sample
y_{ri}^c	Centroid point
${\mathcal Y}_i$	<i>i</i> -th training sample
Ζ	Statistical significant value

TEKNIK LANJUTAN JIRAN SENTROID TERDEKAT DENGAN PENGURANGAN SET LATIHAN UNTUK PENGELASAN

ABSTRAK

Jiran Sentroid k Terdekat (kNCN) adalah pengelas bukan parametrik yang terkenal yang menunjukkan prestasi yang luar biasa dalam pengelasan. Namun begitu, teknik ini mempunyai masalah daripada segi masa pengelasan yang perlahan dan pemilihan satu sisi jiran sentroid terdekat yang membawa kepada prestasi ketepatan pengelasan yang lemah. Tesis ini membentangkan empat varian teknik pengurangan set data latihan yang dipanggil Pengurangan Jiran Sentroid k Terdekat.v1 (RSkNCN.v1), Pengurangan Jiran Sentroid k Terdekat.v2 (RSkNCN.v2), Pengurangan Jiran Sentroid k Terdekat.v3 (RSkNCN.v3) dan Pengurangan Jiran Sentroid k Terdekat.v4 (RSkNCN.v4) dicadangkan untuk mengurangkan masa pengelasan kNCN. Sampel atipikal dikeluarkan terlebih dahulu dengan menggunakan teknik Edit Wilson dan pecahan set latihan ditentukan menggunakan pangkat maksimum atau optimum sampel latihan (yang bersetuju dengan majoriti jiran sentroid k terdekatnya). Hasil eksperimen yang dijalankan ke atas tiga puluh data dunia-nyata dan data imej FV-USM menunjukkan semua teknik pengurangan latihan yang dicadangkan mencapai prestasi terbaik daripada segi nisbah pengurangan dan masa pengelasan berbanding dengan teknik penanda aras (Wilson's Edited, Iterative and Limited-kNCNs). Semua teknik pengurangan latihan yang dicadangkan mencapai keputusan yang memuaskan daripada segi ketepatan pengelasan kecuali untuk RSkNCN.v4. Teknik ini melakukan strategi penyingkiran sampel yang agresif. Oleh itu, ada kemungkinan bahawa sampel latihan yang mempunyai maklumat yang berguna telah disingkirkan menyebabkan kepada prestasi ketepatan pengelasan yang lemah. Berkenaan dengan masalah kedua kNCN, tesis ini mencadangkan Pengurangan Set Latihan Pengelas