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TEKNIK LANJUTAN JIRAN SENTROID TERDEKAT DENGAN 

PENGURANGAN SET LATIHAN UNTUK PENGELASAN 

ABSTRAK 

Jiran Sentroid k Terdekat (kNCN) adalah pengelas bukan parametrik yang terkenal 

yang menunjukkan prestasi yang luar biasa dalam pengelasan. Namun begitu, teknik 

ini mempunyai masalah daripada segi masa pengelasan yang perlahan dan pemilihan 

satu sisi jiran sentroid terdekat yang membawa kepada prestasi ketepatan pengelasan 

yang lemah. Tesis ini membentangkan empat varian teknik pengurangan set data 

latihan yang dipanggil Pengurangan Jiran Sentroid k Terdekat.v1 (RSkNCN.v1), 

Pengurangan Jiran Sentroid k Terdekat.v2 (RSkNCN.v2), Pengurangan Jiran 

Sentroid k Terdekat.v3 (RSkNCN.v3 ) dan Pengurangan Jiran Sentroid k Terdekat.v4 

(RSkNCN.v4) dicadangkan untuk mengurangkan masa pengelasan kNCN. Sampel 

atipikal dikeluarkan terlebih dahulu dengan menggunakan teknik Edit Wilson dan 

pecahan set latihan ditentukan menggunakan pangkat maksimum atau optimum 

sampel latihan (yang bersetuju dengan majoriti jiran sentroid k terdekatnya). Hasil 

eksperimen yang dijalankan ke atas tiga puluh data dunia-nyata dan data imej FV-

USM menunjukkan semua teknik pengurangan latihan yang dicadangkan mencapai 

prestasi terbaik daripada segi nisbah pengurangan dan masa pengelasan berbanding 

dengan teknik penanda aras (Wilson’s Edited, Iterative and Limited-kNCNs). Semua 

teknik pengurangan latihan yang dicadangkan mencapai keputusan yang memuaskan 

daripada segi ketepatan pengelasan kecuali untuk RSkNCN.v4. Teknik ini 

melakukan strategi penyingkiran sampel yang agresif. Oleh itu, ada kemungkinan 

bahawa sampel latihan yang mempunyai maklumat yang berguna telah disingkirkan 

menyebabkan kepada prestasi ketepatan pengelasan yang lemah. Berkenaan dengan 

masalah kedua kNCN, tesis ini mencadangkan Pengurangan Set Latihan Pengelas 
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