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PENGEKODAN VIDEO WYNER-ZIV TERAGIH DIPERBAIKI 

BERASASKAN SKIMA PEMBETULAN RALAT REED SOLOMON DAN 

PENGANGGARAN RANGKA UNTUK PENGHANTARAN TANPA WAYAR  

 

ABSTRAK 

Semenjak beberapa tahun yang lalu, terdapat peningkatan terhadap 

permintaan untuk aplikasi komunikasi multimedia yang laju, cekap, dan berkualiti 

tinggi melalui kabel dan sistem tanpa wayar. Ini telah membuka jalan kepada 

penyelidikan dalam bidang pengekodan video teragih (DVC) untuk berkembang. 

Objektif tesis ini adalah menganalisis kecekapan pelbagai skim pembetulan ralat 

kehadapan dalam DVC untuk melindungi sumber data dan mengurangkan jumlah 

bingkai yang dihantar oleh pengekod. Terkini, kod pemeriksaan keseimbangan 

padatan rendah (LDPC) dipilih sebagai teknik pengekodan saluran untuk mengekod 

bingkai Wyner-Ziv dalam DVC kerana kod LDPC mempunyai prestasi pembetulan 

ralat yang lebih baik berbanding dengan kod turbo. Walau bagaimanapun, kod 

LDPC menggunakan algoritma pengekodan dan penyahkodan yang kompleks. 

Dalam tesis ini, kod LDPC digantikan dengan kod Reed Solomon (RS) untuk 

mengekod bingkai Wyner-Ziv. Prestasi kod RS dalam melindungi sumber maklumat 

akan dibandingkan dengan kod LDPC. Oleh sebab kod RS menggunakan algoritma 

pengekodan dan penyahkodan yang kurang kompleks, keseluruhan jumlah masa 

sistem dapat dikurangkan dan hasil dapat diperolehi dalam masa yang lebih singkat. 

Keputusan kajian menunjukkan model yang dicadangkan mencapai pengurangan 

masa pemprosesan sebanyak antara 9.3% hingga 9.4%, bergantung kepada jujukan 

video kemasukan dan kualiti jujukan video keluaran yang dapat diterima. Kod RS 
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adalah terkenal dengan kebolehan untuk membetulkan ralat ledakan, yang 

kebiasaannya wujud dalam saluran yang pudar. Bahagian kedua tesis ini adalah 

pengurangan jumlah bingkai yang dihantar oleh pengekod. Hanya sebahagian 

bingkai dari kumpulan gambar yang dihantar oleh pengekod untuk mengurangkan 

jumlah keseluruhan masa sistem penghantaran. Bingkai-bingkai yang tidak dihantar 

haruslah dianggar di penyahkod supaya terdapat kumpulan gambar yang lengkap 

untuk pembentukan semula video keluaran. Keputusan kajian menunjukkan model 

yang dicadangkan adalah lebih cekap kerana jujukan video keluaran dapat dibentuk 

dalam masa yang lebih singkat. Model yang dicadangkan mencapai pengurangan 

masa pemprosesan sebanyak antara 4.0% hingga 4.7%, bergantung kepada jujukan 

video kemasukan. Tambahan lagi, kualiti bingkai-bingkai yang dianggar oleh model 

yang dicadangkan mempunyai kualiti yang dapat diterima berbanding dengan 

bingkai-bingkai kemasukan yang asal.          
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IMPROVED DISTRIBUTED WYNER-ZIV VIDEO CODING BASED ON 

REED SOLOMON ERROR CORRECTION SCHEME AND FRAME 

ESTIMATION FOR WIRELESS TRANSMISSION 

 

ABSTRACT 

Recent years have witnessed the increase in demand for fast, efficient, and 

high quality communication of multimedia applications through the wireless and 

wired transmission. This has opened up the research area in distributed video coding 

(DVC) to flourish. The objectives of this thesis are to evaluate efficiency of 

implementation of different channel encoding schemes in DVC in protecting the 

source data in channel impairment environment and also reduce the number of 

frames transmission from the encoder. Most recently, the low density parity check 

codes (LDPC) are chosen to be the forward error correction technique to encode the 

Wyner-Ziv frames in DVC as the LDPC has more superior error correction 

performance than the turbo codes. However, the LDPC involves complicated 

encoding and decoding algorithm. In this thesis, the LDPC is replaced with the Reed 

Solomon (RS) codes to encode the Wyner-Ziv frames. Performance of RS codes in 

protecting source message is compared with the LDPC codes. As the RS codes 

involve less complicated encoding and decoding algorithm, the overall system time 

is reduced and the output is obtained in a shorter time. Based on the experiment 

results, the proposed model achieves a reduction of about 9.3% to 9.4 % in 

processing time, depending on the input video sequence, with acceptable quality of 

output video sequence. The RS codes are known for their capabilities to correct 

burst errors, which are common in fading channel. The second part of this thesis is 
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the reduction of the number of frames transmission from the encoder. Only certain 

frames in the group of picture are transmitted from the encoder to reduce the overall 

transmission time of the system. The frames that are not transmitted shall be 

estimated at the decoder so that there will be a complete set of the group of picture at 

the decoder for the output video reconstruction. Based on the experiment results, the 

proposed model seems more effective and efficient as output video sequence could 

be obtained in a shorter time. The proposed model achieves a reduction of about 4.0% 

to 4.7 % in processing time, depending on the input video sequence. Moreover, the 

estimated output frames of the proposed model are also with acceptable quality as 

compared to the original input frames.     
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CHAPTER 1 

INTRODUCTION 

 

1.1 Preface 

The change in the video coding paradigm is motivated by the demand to reduce the 

computational power for video compression and transmission [1], [2]. In the 

traditional coding paradigm of digital video, the architecture of the encoder is very 

complicated and complex. This is mainly due to the task of motion estimation, as all 

the encoder needs to make all the coding decisions, whereas the decoder only acts as 

a pure executer based on the orders from the encoder [2], [3]. However, this 

approach is unsuitable for applications where the users have the interest to produce 

and transmit video and multimedia, using the lightweight devices, such as their cell 

phones or mobile devices. Moreover, these devices usually operate with batteries, 

and hence, the power consumption is a constraint if they need high computational 

power [4], [5]. 

As this scenario is rapidly evolving, it calls for a new multimedia coding 

paradigm, to shift the high computational power to the decoder, in order to keep the 

encoder as simple as possible for video compression and radio transmission [6]. 

Distributed video coding (DVC) offers an alternative predictive video coding 

paradigm, to fulfill this purpose. DVC encodes video frames separately but decodes 

them jointly as there is no complexity constraint at the decoder [6], [7], [8]. Based 

on the Slepian-Wolf and Wyner-Ziv theories, the degradation in performance of 

DVC for separately encoding the video frames is small [9]. In another words, it is 

indeed achievable to encode two correlated sources independently while obtaining 
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the same efficiency as if the encoder is exploiting the knowledge of both sources 

[10]. 

This research of DVC with promising result has eventually led to growing 

interest in various applications, especially in the wireless transmission [11]. An 

example of application of DVC is in the monitoring or surveillance systems. There 

is a network of video sensors or video cameras [12], [13]. Each sensor does not 

communicate to each other and will independently send the video frames to a 

common receiving station. There is a central decoder to jointly decode these frames, 

which are correlated to each other [12], [13], [14]. Therefore, the every potential 

complex computation is shifted from the sensor sources with limited battery power 

to a central decoder which is connected to a main power supply [11]. As a result, the 

constraint of critical power that directly determines the lifespan of a wireless sensor 

node is solved. Other similar applications of DVC are in the compression of secure 

biometric data, which requires robust wireless video transmission but the 

information exchange between the source nodes is neither impossible nor 

unpractical [11]. 

As this is a relative new field of study, there is no standard model yet for the 

DVC [6]. Each researcher is adopting his or her own models or methods, with their 

own advantages and disadvantages. One model is proposed after another to boost the 

performance of the previous model or to solve the limitations of the previous model. 

The state of the art of detailed architecture and operation of every DVC model are 

discussed in the next chapter in section 2.4.  
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