IMPROVED DISTRIBUTED WYNER-ZIV VIDEO CODING BASED ON REED SOLOMON ERROR CORRECTION SCHEME AND FRAME ESTIMATION FOR WIRELESS TRANSMISSION

CHIAM KIN HONN

IMPROVED DISTRIBUTED WYNER-ZIV VIDEO CODING BASED ON REED SOLOMON ERROR CORRECTION SCHEME AND FRAME ESTIMATION FOR WIRELESS TRANSMISSION

by

CHIAM KIN HONN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

ACKNOWLEDGEMENT

First, I would, with my heart, like to show and express the highest gratitude and appreciation to my supervisor, Associate Professor Dr. Mohd Fadzli Bin Mohd Salleh for his considered advice, patience, excellence, support, enthusiasm, and guidance for this research during my studies. Special thanks to all members, lecturers, and staffs of the School of Electrical and Electronics Engineering of Universiti Sains Malaysia. Most importantly, I am grateful to my family members, especially my parent and my siblings for their huge support and unconditional love. They helped and gave me power, strength, and patience to complete works and this thesis. Lastly, my token of appreciation went to all my friends and colleagues for their continuous idea and feedback that improve the quality of this thesis and also who have made daily life interesting and joyful.

TABLE OF CONTENTS

Acknowledgement ii
Table of Contents iii
List of Tables vii
List of Figures viii
List of Abbreviations xv
List of Symbols xvi
Abstrak xviii
Abstract xx
CHAPTER 1: INTRODUCTION
1.1 Preface 1
1.2 Problem Statement 3
1.3 Objectives of the Research 4
1.4 Research Scope 5
1.5 Thesis Organization 6
CHAPTER 2: LITERATURE REVIEW
2.1 State of the Art of Distributed Video Coding 10
2.1.1 Operation of Distributed Video Coding Model 10
2.1.2 Frame Transformation and Frame Compression 11
2.1.3 Overview of Theories of Distributed Video Coding 14
2.1.3 (a) Slepian-Wolf Theorem for Loseless
Distributed Compression 14
2.1.3 (b) Wyner-Ziv Coding for Lossy Distributed Compression 16
2.2 Basic of Techniques and Methods Used in Thesis Research 18
2.2.1 Reed Solomon Codes 18
2.2.1 (a) Galois Finite Field 19
2.2.1 (b) Reed Solomon Encoder 20
2.2.1 (c) Reed Solomon Decoder 21
2.2.2 Low Density Parity Check Codes 26
2.2.3 Linear Interpolation Method 29
2.3 Common Quality Metrics 30
2.3.1 Peak to Signal Noise Ratio 30
2.3.2 Bit Error Rate. 31
2.4 Review of Other Research Activities 32
2.4.1 Stanford Architecture of Distributed Video Coding Model 33
2.4.2 DISCOVER Architecture for The Distributed Video
Coding Model. 36
2.4.3 Distributed Video Coding with Adaptive Video
Splitter 38
2.4.4 Block Based Distributed Video Coding Architecture. 39
2.4.5 Rateless Distributed Video Coding Architecture with Skip and Intra Modes 42
2.4.6 Side Information Improvement for The Distributed Video Coding Model. 44
2.4.7 Summary of Distributed Video Coding Model 45
CHAPTER 3: PERFORMANCE EVALUATION OF DIFFERENT ENCODING TECHNIQUES IN DISTRIBUTED VIDEO CODING
3.1 Wyner-Ziv Encoder 48
3.1.1 Quantizer 51
3.1.2 Channel Encoder. 53
3.2 Wyner-Ziv Decoder. 53
3.2.1 Channel Decoder. 54
3.3 Simulation Setup 55
3.3.1 Performance Measurement 56
3.4 Experiment Results 59
3.4.1 Performance of Various Code Rates in AWGN Channel 59
3.4.2 Performance in Various Doppler Frequencies of Rayleigh Fading Channel 64
3.4.3 Performance of Various Code Rates in Rayleigh
Fading Channel 70
3.4.4 Evaluation of Rate Distortion of Output Video Sequence. 74
3.5 Summary 85
CHAPTER 4: DISTRIBUTED VIDEO CODING WITH FRAMEESTIMATION AT DECODER
4.1 Implementation of Proposed DVC Model 88
4.2 Detailed Operation of The Encoder Module 90
4.3 Separation of The Wyner-Ziv Frames with Frame Modulo. 92
4.4 Detailed Operation of The Decoder Module 93
4.5 Estimation of The Even-numbered Wyner-Ziv Frames 95
4.6 Simulation Setup 96
4.7 Experiment Results 98
4.7.1 Transmission Through a Perfect Channel. 99
4.7.2 Transmission Through Rayleigh Fading Channel. 107
4.8 Summary 115
CHAPTER 5: CONCLUSIONS AND FUTURE WORKS
5.1 Conclusions 116
5.2 Future Works 117

References

Appendices

LIST OF TABLES

PAGE
Table 2.1 Relationship between Quality Metrics 32
Table 3.1 Various Code Rates of LDPC Codes and RS Codes 56
Table 3.2 Simulation Parameters (AWGN Channel) 74
Table 3.3 Simulation Parameters (Rayleigh Fading Channel) 75
Table 3.4 Simulation Result with Hall Monitor Video Sequence (AWGN Channel) 83
Table 3.5 Simulation Result with Hall Monitor Video Sequence (Rayleigh Fading Channel) 83
Table 3.6 Average Processing Time in AWGN Channel 84
Table 3.7 Average Processing Time in Rayleigh Fading Channel 84
Table 4.1 Simulation Parameters 96
Table 4.2 Characteristics of Input Video Sequences 97
Table 4.3 PSNR Values for Some Frames of Hall Monitor
Video Sequence (Perfect Channel) 100
Table $4.4 \quad$ Average Processing Time 106
Table 4.5 PSNR Values for Some Frames of Hall Monitor Video Sequence (Rayleigh Fading Channel) 109

LIST OF FIGURES

PAGE

Figure 2.1 State of the Art of Typical Distributed Video Coding Model 11
Figure 2.2 Distributed Compression of Two Random and Statistically Dependent Data, X and Y 14
Figure 2.3 Achievable Rate Region for Distributed Compression of Two Statistically Independent Identically Distributed Sources, X and Y 16
Figure 2.4 Lossy Compression of a Sequence, X using Statistically Related Side Information, Y 17
Figure $2.5 \quad$ Typical Structure of a Reed Solomon Codeword 21
Figure 2.6 Tanner Graph Representation of the Low Density Parity Check Codes 28
Figure 2.7 Stanford Architecture of Distributed Video Coding Model 34
Figure $2.8 \quad$ Block Diagram for the DISCOVER Model 37
Figure 2.9 Distributed Video Coding Architecture with Adaptive Video Splitter 38
Figure 2.10 PRISM Architecture of Block Based Transform Domain 40
Figure 2.11 Wyner-Ziv Video Compression with Skip and Intra Mode Selection 43
Figure 3.1 Proposed Distributed Video Coding Model 49
Figure 3.2 Flowchart for the Proposed Distributed Video Coding Model 50
Figure 3.3 Compression in the Zig-zag Manner 52

Figure 3.4 Side Information Estimation 54
Figure 3.5a Comparison between LDPC Codes of Code Rate $1 / 2$ and RS Codes of Code Rate $15 / 31$ in AWGN Channel with Hall Monitor Video Sequence 60

Figure 3.5b Comparison between LDPC Codes of Code Rate $1 / 3$ and RS Codes of Code Rate 11/31 in AWGN Channel with Hall Monitor Video Sequence

Figure 3.5c Comparison between LDPC Codes of Code Rate $2 / 3$ and RS Codes of Code Rate 21/31 in AWGN Channel with Hall Monitor Video Sequence

Figure 3.5d Comparison between LDPC Codes of Code Rate 5/6 and RS Codes of Code Rate 25/31 in AWGN Channel with Hall Monitor Video Sequence 62

Figure 3.5e Comparison between LDPC Codes of Code Rate 8/9 and RS Codes of Code Rate 27/31 in AWGN Channel with Hall Monitor Video Sequence 62

Figure 3.6a Comparison of Various Code Rates of RS Codes in AWGN Channel with Hall Monitor Video Sequence 63

Figure 3.6b Comparison of Various Code Rates of LDPC Codes in AWGN Channel with Hall Monitor Video Sequence 64

Figure 3.7a Comparison of RS Codes of Code Rate 11/31 in Rayleigh Fading Channel with Hall Monitor Video Sequence 65

Figure 3.7b Comparison of LDPC Codes of Code Rate $1 / 3$ in Rayleigh Fading Channel with Hall Monitor Video Sequence 66

Figure 3.8a Comparison between LDPC Codes of Code Rate $1 / 3$ and RS Codes of Code Rate $11 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 1 Hertz with Hall Monitor Video Sequence

Figure 3.8b Comparison between LDPC Codes of Code Rate $1 / 3$ and RS Codes of Code Rate $11 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 2 Hertz with Hall Monitor Video Sequence

Figure 3.8c Comparison between LDPC Codes of Code Rate $1 / 3$ and RS Codes of Code Rate $11 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 6 Hertz with Hall Monitor Video Sequence

Figure 3.8d Comparison between LDPC Codes of Code Rate $1 / 3$ and RS Codes of Code Rate $11 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 10 Hertz with Hall Monitor Video Sequence

Comparison between LDPC Codes of Code Rate $1 / 3$ and RS Codes of Code Rate $11 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 20 Hertz with Hall Monitor Video Sequence

Figure 3.8f Comparison between LDPC Codes of Code Rate $1 / 3$ and RS Codes of Code Rate $11 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 80 Hertz with Hall Monitor Video Sequence

Figure 3.9a Comparison between LDPC Codes of Code Rate $1 / 2$ and RS Codes of Code Rate $15 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 1 Hertz with Hall Monitor Video Sequence

Figure 3.9b Comparison between LDPC Codes of Code Rate $2 / 3$ and RS Codes of Code Rate 21/31 in Rayleigh Fading Channel of Doppler Frequency of 1 Hertz with Hall Monitor Video Sequence

Comparison between LDPC Codes of Code Rate 5/6 and RS Codes of Code Rate $25 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 1 Hertz with Hall Monitor Video Sequence

Figure 3.9d Comparison between LDPC Codes of Code Rate 8/9 and RS Codes of Code Rate $27 / 31$ in Rayleigh Fading Channel of Doppler Frequency of 1 Hertz with Hall Monitor Video Sequence

Figure 3.10a Comparison of Various Code Rates of RS Codes in Rayleigh Fading Channel of Doppler Frequency of 1 Hertz with Hall Monitor Video Sequence

Figure 3.10b Comparison of Various Code Rates of LDPC Codes in Rayleigh Fading Channel of Doppler Frequency of 1 Hertz with Hall Monitor Video Sequence

Figure 3.11a Rate Distortion Curve in AWGN Channel of Signal-tonoise Ratio of 20.0 decibels with Hall Monitor Video Sequence
Figure 3.11b Rate Distortion Curve in AWGN Channel of Signal-tonoise Ratio of 22.5 decibels with Hall Monitor Video Sequence
Figure 3.11c Rate Distortion Curve in AWGN Channel of Signal-tonoise Ratio of 25.0 decibels with Hall Monitor Video Sequence 78
Figure 3.11d Rate Distortion Curve in AWGN Channel of Signal-tonoise Ratio of 27.5 decibels with Hall Monitor Video Sequence 79
Figure 3.11e Rate Distortion Curve in AWGN Channel of Signal-tonoise Ratio of 30.0 decibels with Hall Monitor Video Sequence
Figure 3.12a Rate Distortion Curve in Rayleigh Fading Channel of Doppler Frequency of 1 Hertz with Hall Monitor Video Sequence 80
Figure 3.12b Rate Distortion Curve in Rayleigh Fading Channel of Doppler Frequency of 2 Hertz with Hall Monitor Video Sequence 80
Figure 3.12c Rate Distortion Curve in Rayleigh Fading Channel of Doppler Frequency of 6 Hertz with Hall Monitor Video Sequence 81
Figure 3.12d Rate Distortion Curve in Rayleigh Fading Channel of Doppler Frequency of 10 Hertz with Hall Monitor Video Sequence 81
Figure 3.12e Rate Distortion Curve in Rayleigh Fading Channel of Doppler Frequency of 20 Hertz with Hall Monitor Video Sequence 82
Figure 3.12f Rate Distortion Curve in Rayleigh Fading Channel of Doppler Frequency of 80 Hertz with Hall Monitor Video Sequence 82
Figure 4.1 Flowchart for the Proposed Distributed Video Coding Model89
Figure 4.2 Encoder Part of the Proposed DVC Model 91
Figure 4.3 Decoder Part of the Proposed DVC Model 94
Figure $4.4 \quad$ Linear Interpolator Module 95
Figure 4.5 PSNR Values for Each Frame of Hall Monitor VideoSequence (Perfect Channel) 101Figure 4.6a Visual Comparison for Frame 23 of Hall Monitor Video
Sequence (Perfect Channel) 102
Figure 4.6b Visual Comparison for Frame 56 of Hall Monitor Video Sequence (Perfect Channel) 102
Figure 4.6c Visual Comparison for Frame 82 of Hall Monitor Video
Sequence (Perfect Channel) 103
Figure 4.6d Visual Comparison for Frame 110 of Hall Monitor Video Sequence (Perfect Channel) 103
Figure 4.6e Visual Comparison for Frame 125 of Hall Monitor Video Sequence (Perfect Channel) 104
Figure 4.6 f Visual Comparison for Frame 197 of Hall Monitor Video
Sequence (Perfect Channel) 104

Figure $4.6 \mathrm{~g} \quad$ Visual Comparison for Frame 268 of Hall Monitor Video
 Sequence (Perfect Channel)

Figure 4.6h Visual Comparison for Frame 289 of Hall Monitor Video Sequence (Perfect Channel)

Figure 4.7 PSNR Values for Each Frame of Hall Monitor Video Sequence (Rayleigh Fading Channel)

Figure 4.8a Visual Comparison for Frame 8 of Hall Monitor Video Sequence (Rayleigh Fading Channel)

Figure 4.8b Visual Comparison for Frame 17 of Hall Monitor Video Sequence (Rayleigh Fading Channel)

Figure 4.8c Visual Comparison for Frame 49 of Hall Monitor Video Sequence (Rayleigh Fading Channel)

Figure 4.8d Visual Comparison for Frame 71 of Hall Monitor Video Sequence (Rayleigh Fading Channel)

Figure 4.8e Visual Comparison for Frame 138 of Hall Monitor Video Sequence (Rayleigh Fading Channel)

Figure $4.8 \mathrm{f} \quad$ Visual Comparison for Frame 216 of Hall Monitor Video Sequence (Rayleigh Fading Channel)

Figure $4.8 \mathrm{~g} \quad$ Visual Comparison for Frame 240 of Hall Monitor Video Sequence (Rayleigh Fading Channel)

Figure 4.8h Visual Comparison for Frame 295 of Hall Monitor Video Sequence (Rayleigh Fading Channel)114

LIST OF ABBREVIATIONS

AWGN	Addition White Gaussian Noise
BER	Bit Error Rate
CRC	Cyclic Redundancy Check
DCT	Discrete Cosine Transform
DVC	Distributed Video Coding
FEC	Forward Error Correction
GF	Galois Field
GOP	Group of Pictures
LDPC	Low Density Parity Check Codes
MSE	Mean Square Error
PSNR	Peak Signal to Noise Ratio
RD	Rate Distortion
RS	Reed Solomon
SER	Symbol Error Rate
SI	Side Information
SNR	Signal to Noise Ratio
WZ	Wyner-Ziv

LIST OF SYMBOLS

R_{X}	Rate of compression of source data, X
$H(X)$	Entropy of compression of source data, X
\widehat{D}	Distortion between source data and reconstructed frame
Δ	Difference between source data and reconstructed frame
$D(i, j)$	DCT equation to calculate (i, j)-th element in DCT matrix
$d_{i j}$	(i, j)-th element in DCT matrix
N	Total number of pixels of a block of frame
$p(x, y)$	Grayvalue of the (x, y)-th pixel of a frame
Q_{τ}	Quantization matrix of predefined number of level, τ
$q_{i j}$	(i, j)-th element in quantization matrix
$b_{i j}$	(i, j)-th element in resultant block of frame after quantization
E	Number of errors in received RS codeword
A	Number of erasures in received RS codeword
T	Number of redundant symbols (RS codes) or bits (LDPC codes)
N	Number of codeword symbols (RS codes) or bits (LDPC codes)
K	Number of source symbols (RS codes) or bits (LDPC codes)
m	Number of bits per source or codeword symbols for RS codes
$r(z)$	Received codeword in polynomial form for RS codes
$c(z)$	Encoded codeword in polynomial form for RS codes
$e(z)$	Errors in received codeword in polynomial form
$g(z)$	Generator polynomial for RS codes
$s(z)$	Syndrome expressions

β	Primitive element in Galois field
$\sigma(z)$	Error locator polynomial for RS codes
Y	Degree of error locator polynomial for RS codes
Z	Locations of error vectors for RS codes
C	Encoded codeword vector for LDPC codes
U	Source data vector for LDPC codes
G	Generator matrix for LDPC codes
I_{τ}	Identity matrix of degree, τ
P	Coefficient matrix for LDPC codes
S	Parity check matrix for LDPC codes
$s_{i j}$	(i, j)-th element in S
w_{i}	Total number of 1 in every row of S
w_{j}	Total number of 1 in every column of S
F	Linear interpolation function
r_{e}	Total number of erroneous bits received
B	Total number of bits transmitted
ϕ	Index number of a frame in GOP
F_{ϕ}	ϕ-th frame in GOP
M	total number of frames in a video sequence
Ψ	Remainder
T	Time

PENGEKODAN VIDEO WYNER-ZIV TERAGIH DIPERBAIKI BERASASKAN SKIMA PEMBETULAN RALAT REED SOLOMON DAN PENGANGGARAN RANGKA UNTUK PENGHANTARAN TANPA WAYAR

Abstract

ABSTRAK

Semenjak beberapa tahun yang lalu, terdapat peningkatan terhadap permintaan untuk aplikasi komunikasi multimedia yang laju, cekap, dan berkualiti tinggi melalui kabel dan sistem tanpa wayar. Ini telah membuka jalan kepada penyelidikan dalam bidang pengekodan video teragih (DVC) untuk berkembang. Objektif tesis ini adalah menganalisis kecekapan pelbagai skim pembetulan ralat kehadapan dalam DVC untuk melindungi sumber data dan mengurangkan jumlah bingkai yang dihantar oleh pengekod. Terkini, kod pemeriksaan keseimbangan padatan rendah (LDPC) dipilih sebagai teknik pengekodan saluran untuk mengekod bingkai Wyner-Ziv dalam DVC kerana kod LDPC mempunyai prestasi pembetulan ralat yang lebih baik berbanding dengan kod turbo. Walau bagaimanapun, kod LDPC menggunakan algoritma pengekodan dan penyahkodan yang kompleks. Dalam tesis ini, kod LDPC digantikan dengan kod Reed Solomon (RS) untuk mengekod bingkai Wyner-Ziv. Prestasi kod RS dalam melindungi sumber maklumat akan dibandingkan dengan kod LDPC. Oleh sebab kod RS menggunakan algoritma pengekodan dan penyahkodan yang kurang kompleks, keseluruhan jumlah masa sistem dapat dikurangkan dan hasil dapat diperolehi dalam masa yang lebih singkat. Keputusan kajian menunjukkan model yang dicadangkan mencapai pengurangan masa pemprosesan sebanyak antara 9.3% hingga 9.4%, bergantung kepada jujukan video kemasukan dan kualiti jujukan video keluaran yang dapat diterima. Kod RS

adalah terkenal dengan kebolehan untuk membetulkan ralat ledakan, yang kebiasaannya wujud dalam saluran yang pudar. Bahagian kedua tesis ini adalah pengurangan jumlah bingkai yang dihantar oleh pengekod. Hanya sebahagian bingkai dari kumpulan gambar yang dihantar oleh pengekod untuk mengurangkan jumlah keseluruhan masa sistem penghantaran. Bingkai-bingkai yang tidak dihantar haruslah dianggar di penyahkod supaya terdapat kumpulan gambar yang lengkap untuk pembentukan semula video keluaran. Keputusan kajian menunjukkan model yang dicadangkan adalah lebih cekap kerana jujukan video keluaran dapat dibentuk dalam masa yang lebih singkat. Model yang dicadangkan mencapai pengurangan masa pemprosesan sebanyak antara 4.0% hingga 4.7%, bergantung kepada jujukan video kemasukan. Tambahan lagi, kualiti bingkai-bingkai yang dianggar oleh model yang dicadangkan mempunyai kualiti yang dapat diterima berbanding dengan bingkai-bingkai kemasukan yang asal.

IMPROVED DISTRIBUTED WYNER-ZIV VIDEO CODING BASED ON REED SOLOMON ERROR CORRECTION SCHEME AND FRAME ESTIMATION FOR WIRELESS TRANSMISSION

Abstract

Recent years have witnessed the increase in demand for fast, efficient, and high quality communication of multimedia applications through the wireless and wired transmission. This has opened up the research area in distributed video coding (DVC) to flourish. The objectives of this thesis are to evaluate efficiency of implementation of different channel encoding schemes in DVC in protecting the source data in channel impairment environment and also reduce the number of frames transmission from the encoder. Most recently, the low density parity check codes (LDPC) are chosen to be the forward error correction technique to encode the Wyner-Ziv frames in DVC as the LDPC has more superior error correction performance than the turbo codes. However, the LDPC involves complicated encoding and decoding algorithm. In this thesis, the LDPC is replaced with the Reed Solomon (RS) codes to encode the Wyner-Ziv frames. Performance of RS codes in protecting source message is compared with the LDPC codes. As the RS codes involve less complicated encoding and decoding algorithm, the overall system time is reduced and the output is obtained in a shorter time. Based on the experiment results, the proposed model achieves a reduction of about 9.3% to 9.4% in processing time, depending on the input video sequence, with acceptable quality of output video sequence. The RS codes are known for their capabilities to correct burst errors, which are common in fading channel. The second part of this thesis is

the reduction of the number of frames transmission from the encoder. Only certain frames in the group of picture are transmitted from the encoder to reduce the overall transmission time of the system. The frames that are not transmitted shall be estimated at the decoder so that there will be a complete set of the group of picture at the decoder for the output video reconstruction. Based on the experiment results, the proposed model seems more effective and efficient as output video sequence could be obtained in a shorter time. The proposed model achieves a reduction of about 4.0\% to 4.7% in processing time, depending on the input video sequence. Moreover, the estimated output frames of the proposed model are also with acceptable quality as compared to the original input frames.

CHAPTER 1

INTRODUCTION

1.1 Preface

The change in the video coding paradigm is motivated by the demand to reduce the computational power for video compression and transmission [1], [2]. In the traditional coding paradigm of digital video, the architecture of the encoder is very complicated and complex. This is mainly due to the task of motion estimation, as all the encoder needs to make all the coding decisions, whereas the decoder only acts as a pure executer based on the orders from the encoder [2], [3]. However, this approach is unsuitable for applications where the users have the interest to produce and transmit video and multimedia, using the lightweight devices, such as their cell phones or mobile devices. Moreover, these devices usually operate with batteries, and hence, the power consumption is a constraint if they need high computational power [4], [5].

As this scenario is rapidly evolving, it calls for a new multimedia coding paradigm, to shift the high computational power to the decoder, in order to keep the encoder as simple as possible for video compression and radio transmission [6]. Distributed video coding (DVC) offers an alternative predictive video coding paradigm, to fulfill this purpose. DVC encodes video frames separately but decodes them jointly as there is no complexity constraint at the decoder [6], [7], [8]. Based on the Slepian-Wolf and Wyner-Ziv theories, the degradation in performance of DVC for separately encoding the video frames is small [9]. In another words, it is indeed achievable to encode two correlated sources independently while obtaining
the same efficiency as if the encoder is exploiting the knowledge of both sources [10].

This research of DVC with promising result has eventually led to growing interest in various applications, especially in the wireless transmission [11]. An example of application of DVC is in the monitoring or surveillance systems. There is a network of video sensors or video cameras [12], [13]. Each sensor does not communicate to each other and will independently send the video frames to a common receiving station. There is a central decoder to jointly decode these frames, which are correlated to each other [12], [13], [14]. Therefore, the every potential complex computation is shifted from the sensor sources with limited battery power to a central decoder which is connected to a main power supply [11]. As a result, the constraint of critical power that directly determines the lifespan of a wireless sensor node is solved. Other similar applications of DVC are in the compression of secure biometric data, which requires robust wireless video transmission but the information exchange between the source nodes is neither impossible nor unpractical [11].

As this is a relative new field of study, there is no standard model yet for the DVC [6]. Each researcher is adopting his or her own models or methods, with their own advantages and disadvantages. One model is proposed after another to boost the performance of the previous model or to solve the limitations of the previous model. The state of the art of detailed architecture and operation of every DVC model are discussed in the next chapter in section 2.4 .

