

A VISION-BASED VEHICLE FOLLOWER NAVIGATION USING FUZZY LOGIC CONTROLLER

NURUL IZZATI MOHD. SALEH

UNIVERSITI SAINS MALAYSIA

2017

A VISION-BASED VEHICLE FOLLOWER NAVIGATION USING FUZZY LOGIC CONTROLLER

by

NURUL IZZATI MOHD. SALEH

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

August 2017

ACKNOWLEDGEMENTS

Firstly I would like to thank Allah s.w.t for giving me the strength to complete this thesis. My deepest gratitude goes to my supervisor Dr. Wan Mohd. Yusof Rahiman Wan Abdul Aziz for his guidance throughout the execution of the project.

To the technicians in charge of the Mechatronic Laboratory, Mr Amir Ahmad and Mr Azhar Zabidin, also the technician in charge of PCB fabrications, Mr Elias Zainuddin I'm thankful for their help in providing the infrastructure and space for me to assemble my project equipments.

Finally I would like to thank my parents for providing their unconditional emotional support throughout my studies in USM as without their help I would not be able to overcome the challenges and grow as a person.

TABLE OF CONTENTS

		Page
ACK	KNOWLEDGEMENTS	ii
TAB	LE OF CONTENTS	iii
LIST	Γ OF TABLES	viii
LIST	Γ OF FIGURES	х
LIST	Γ OF PLATES	xiii
LIST	Γ OF ABBREVIATIONS	xiv
LIST	Γ OF SYMBOLS	xvi
ABS	TRAK	xix
ABS	TRACT	XX
CHA	APTER ONE: INTRODUCTION	
1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	5
1.4	Project Scope	5
1.5	Research Contribution	6
1.6	Report Outline	6
CHA	APTER TWO: LITERATURE REVIEW	
2.1	Vision System	8
	2.1.1 Vision Sensor	8
	2.1.2 Camera Calibration	11

	2.1.3	Image processing	12
	2.1.4	Colour Space Conversion	13
		2.1.4(a) HSV Colour Space	13
		2.1.4(b) YCrCb Colour Space	15
		2.1.4(c) Histogram Backprojection	15
	2.1.5	Feature Detection and Description	16
		2.1.5(a) Moments	17
	2.1.6	Tracking & Navigation	18
	2.1.7	Distance Estimation	21
2.2	Fuzzy	Logic Control System	23
	2.2.1	Fuzzy Control Methods	24
	2.2.2	The Representation of Membership Functions	24
	2.2.3	Fuzzy Inference	25
	2.2.4	Defuzzification Methods	26
2.3	Design of Experiment 2		
2.4	Motor	Control	29
	2.4.1	Brushless DC Motor	29
	2.4.2	Electronic Speed Controller (ESC)	31
2.5	Gearii	ng	32
2.6	Summ	nary	34
CHA	APTER	THREE: METHODOLOGY	
3.1	Hardv	vare Specification	36
3.2	System Architecture 3		

3.3 Methodology of Hardware 37

	3.3.1	3.1 Speed Control 3		39
		3.3.1(a) Hardw	vare Modifications	40
		3.3.1(b) ESC F	ïrmware Modifications	41
		3.3.1(c) Sensor	red Feedback using Microcontroller	42
	3.3.2	Development of	Prototype	43
3.4	Metho	dology of Softwar	re	46
	3.4.1	Vision System C	Component	46
	3.4.2	Image Processing	g	46
		3.4.2(a) Image	Input	46
		3.4.2(b) Pilot T	Test (Image Detection)	48
		3.4.2(c) Target	Selector	51
		3.4.2(d) Equaliz	zation of Luminance (Y) Component	52
		3.4.2(e) Camsh	ift Tracker Error with Occlusion	54
		3.4.2(f) Signal	Conditioning	55
	3.4.3	Vision-Based Di	stance Approximation	55
		3.4.3(a) Safety	Features	58
	3.4.4	Steering and Spe	eed Control using Fuzzy Logic	58
		3.4.4(a) Fuzzy	Sets: Method A	60
		3.4.4(b) Fuzzy	Sets: Method B	63
		3.4.4(c) Fuzzy	Rules: Method A	65
		3.4.4(d) Fuzzy	Rules: Method B	65
3.5	Comn	unication between	n Microprocessor and Microcontroller	66
	3.5.1	I^2C Communicat	tion	67
3.6	Testin	g and Evaluation M	Methods	68

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Calibr	ated Image	Input	71	
4.2	Pilot 7	Test Finding	gs	72	,
	4.2.1	Numerica	ll Analysis	74	
	4.2.2	Conclusio	on	75	
4.3	Unit T	est: Distan	ce Estimation	77	,
4.4	Integr	ated Test		79	•
	4.4.1	Experime	ent 1: Straight Path	80)
		4.4.1(a)	Straight Path: Method A	80)
		4.4.1(b)	Straight Path: Method B	82	,
	4.4.2	Experime	ent 2: Curved Path (Right)	82	,
		4.4.2(a)	Curved Path (Right): Method A	82	,
		4.4.2(b)	Curved Path (Right): Method B	84	
	4.4.3	Experime	ent 3: Curved Path (Left)	85	
		4.4.3(a)	Curved Path (Left): Method A	85	
		4.4.3(b)	Curved Path (Left): Method B	86	
	4.4.4	Vision Sy	stem Performance Analysis	87	,
4.5	Vision	System Re	eliability Analysis	89	,
	4.5.1	Straight F	Path	89	,
	4.5.2	Curve Rig	ght Path	89	,
	4.5.3	Curve Le	ft Path	92	,
4.6	Summ	ary		94	

70

CHAPTER FIVE: CONCLUSION

5.1	Limitations	96	
5.2	Future Works	97	
REF	ERENCES	98	
APP	APPENDICES		
Арре	endix A: P-Value Indicator		

Appendix B: ESC Programmed Values

Appendix C: Tracking without Illumination Compensation

Appendix D: Tracking with Illumination Compensation

Appendix E: I^2C Communication Flowchart (Raspberry Pi)

Appendix F: I^2C Communication Flowchart (Arduino)

Appendix G: Motor Calibration

Appendix H: Hall Sensor Datasheet

Appendix I: Code Flow

Appendix J: Raspberry Pi GPIO

Appendix K: Arduino Mega Schematics

LIST OF PUBLICATIONS

LIST OF TABLES

Table 2.1	Design Matrix	28
Table 3.1	Gear characteristics	40
Table 3.2	Comparison of n_F between pinions	41
Table 3.3	Selection of Factors and Levels	42
Table 3.4	Types of Batteries used	45
Table 3.5	Selection of Factors and Levels	48
Table 3.6	Adaptive Smoothing Condition	56
Table 3.7	Selected Deviation Notations and Range	60
Table 3.8	Selected Distance Notations and Range	61
Table 3.9	Selected Speed Notations and Range	61
Table 3.10	Selected Steering Notations and Range	62
Table 3.11	Fuzzy Hedges Notations	64
Table 3.12	Fuzzy Rule (Steer)	65
Table 3.13	Fuzzy Rule (Speed)	65
Table 3.14	Additional Fuzzy Rules (Steer)	66
Table 3.15	Additional Fuzzy Rules (Speed)	66
Table 4.1	Camera Calibration Values	71
Table 4.2	Camera Field of View	72
Table 4.3	Factors Interaction with the Corresponding p-value	74
Table 4.4	Time taken	76
Table 4.5	Signals and Notations	80
Table 4.6	Performance Analysis	88

Table 4.7	Percentage Error (Method A, Straight)	93
Table 4.8	Percentage Error (Method B, Straight)	93
Table 4.9	Percentage Error (Method A, Curve Right)	94
Table 4.10	Percentage Error (Method B, Curve Right)	94
Table 4.11	Percentage Error (Method A, Curve Left)	94
Table 4.12	Percentage Error (Method B, Curve Left)	94

LIST OF FIGURES

Figure 2.1	Fundamental steps in image processing	9
Figure 2.2	Sensor integration levels	10
Figure 2.3	Example of histogram backprojection	16
Figure 2.4	Meanshift	21
Figure 2.5	Camshift Tracker Flowchart	22
Figure 2.6	Defuzzification	26
Figure 2.7	Example of clipped membership functions	27
Figure 2.8	BLDC Motor diagram	30
Figure 2.9	ESC Wiring Diagram	31
Figure 2.10	Pulse Width Modulation (PWM) Diagram	32
Figure 2.11	Gear train	33
Figure 3.1	Research Activity	35
Figure 3.2	System Architecture	38
Figure 3.3	Throttle diagram	39
Figure 3.4	Throttle diagram range	39
Figure 3.5	Comparison of Speed for Different Pinion Teeth (N)	41
Figure 3.6	Hall Sensor Mechanism	43
Figure 3.7	Speed Control Decision Making	44
Figure 3.8	Bounding Box	50
Figure 3.9	Equalization of Intensity Component	52
Figure 3.10	Image Histogram for Y-channel	54
Figure 3.10(a)	Y	54

Figure 3.10(b)	Y_e	54
Figure 3.11	Geometry model in determining distance	56
Figure 3.12	Fuzzy System	59
Figure 3.13	Fuzzy sets of Deviation	60
Figure 3.14	Fuzzy Sets of Distance	61
Figure 3.15	Output 1 (Speed)	62
Figure 3.16	Output 2 (Steering)	62
Figure 3.17	Fuzzy Hedges	63
Figure 3.18	Connections for Logic-Level Shifter	67
Figure 3.19	I^2C Diagram	67
Figure 3.20	Straight Path	68
Figure 3.21	Curved Path (Right)	69
Figure 3.22	Curved Path (Left)	69
Figure 3.23	Track Example and Path (not to scale)	70
Figure 4.1	Main Effects Plot for Each Factors	72
Figure 4.2	Interaction Plot for AB with C fixed	73
Figure 4.2(a)	C=+1	73
Figure 4.2(b)	C=-1	73
Figure 4.3	Interaction Plot for AC with B fixed	74
Figure 4.3(a)	B=+1	74
Figure 4.3(b)	B=-1	74
Figure 4.4	Cube Plot	75
Figure 4.5	Distance Plot	77
Figure 4.6	Graph for fitted plot	78

Figure 4.6(a)	linear	78
Figure 4.6(b)	quad	78
Figure 4.6(c)	cubic	78
Figure 4.7	Corrected estimated distance plot	79
Figure 4.8	Straight Path: Method A(steering)	81
Figure 4.9	Straight Path: Method A(speed)	81
Figure 4.10	Straight Path: Method B(steering)	82
Figure 4.11	Straight Path: Method B(speed)	83
Figure 4.12	Curved Path (Right): Method A(steering)	83
Figure 4.13	Curved Path (Right): Method A(speed)	84
Figure 4.14	Curved Path (Right): Method B(steering)	84
Figure 4.15	Curved Path (Right): Method B(speed)	85
Figure 4.16	Curved Path (Left): Method A(steering)	86
Figure 4.17	Curved Path (Left): Method A(speed)	86
Figure 4.18	Camshift Tracker Fail	87
Figure 4.19	Curved Path (Left): Method B(steering)	87
Figure 4.20	Curved Path (Left): Method B(speed)	88
Figure 4.21	Vision Test: Method A	90
Figure 4.22	Vision Test : Method B	90
Figure 4.23	Vision Test: Method A	91
Figure 4.24	Vision Test: Method B	91
Figure 4.25	Vision Test: Method A	92
Figure 4.26	Vision Test: Method B	93

LIST OF PLATES

Plate 3.1	RC Car Body	37
Plate 3.2	Hall Sensor & Magnet Position	43
Plate 3.3	Prototype Specification	45
Plate 3.4	Calibration in Progress	45
Plate 3.5	Pictures taken for Calibration Purposes	47

LIST OF ABBREVIATIONS

AF	Area Factor
BLDC	Brushless DC Motor
DP	Diametrical Pitch
ESC	Electronic Speed Controller
FOV	Field of View
FV	Follower Vehicle
GUI	Guided User Interface
HSV	Hue Saturation Value
I2C	Inter-Integrated Circuit (alt. I^2C)
ICT	Information and Communications Technologies
ITS	Intelligent Transport System
LV	Lead Vehicle
NumPy	Numerical Python
OpenCV	Open Source Computer Vision Library
PPM	Pulse Position Modulation
PWM	Pulse Width Modulation
RC	Remote Controlled
RMS	Root Mean Square
ROI	Region of Interest

RPM	Revolutions per Minute
SBC	Single Board Computer
SCL	Serial Clock
SDA	Serial Data
USM	Universiti Sains Malaysia

LIST OF SYMBOLS

A	Determined Area
AF	Accuracy Factor
A_m	Measured Area
α	aspect ratio
$lpha_s$	smoothing weightage parameter
β_s	trend weightage parameter
b _{roi}	ROI box
C_x	Centroid in x-coordinate
d	distance
d_{δ}	distance error
δ_{x_i}	raw input difference
ε	Error
е	gear train value
f	focal length
fov_x	field of view in x-plane
fov_y	field of view in y-plane
γ	camera tilt angle in radians
γs	seasonality weightage parameters
h	height in metre

h_f	frame height
k	regressor variable
k_1, k_2	radial distortion coefficients
κ	image-bit dependent constant
lim	limit
n	number of replicates
Ν	gear teeth number
n_F	speed of first gear
n_L	speed of last gear
Ν	pinion teeth number
p_1, p_2	tangential distortion coefficients
Р	period
p_s	summation of coordinate points
p_w	pulse width
p_i	periodic component
<i>P</i> 00	minimum sum index
<i>p</i> ₁₁	maximum sum index
Proi	ROI points
θ	PWM angle
ρ	regression response variable
R_p	pull-up resistor

S	pixel highest sum
Si	smoothed signal
SS	sum of squares
τ	motor torque
t_i	smoothed trend
u_0	optical center at x-coordinate in pixel
v ₀	optical center at x-coordinate in pixel
Wf	frame width
x_0, y_0	origin
X _i	raw input
<i>x</i> _{dr}	radial distortion (x-plane)
x _{dr} Ydr	radial distortion (x-plane) radial distortion (y-plane)
<i>Ydr</i>	radial distortion (y-plane)
Ydr X _{dt}	radial distortion (y-plane) tangential distortion (x-plane)
Ydr X _{dt} Ydt	radial distortion (y-plane) tangential distortion (x-plane) tangential distortion (y-plane)
y_{dr} x_{dt} y_{dt} x_i, y_i	radial distortion (y-plane) tangential distortion (x-plane) tangential distortion (y-plane) coordinate for the <i>i</i> th bounding box
y_{dr} x_{dt} y_{dt} x_{i}, y_{i} x_{i+h}	radial distortion (y-plane) tangential distortion (x-plane) tangential distortion (y-plane) coordinate for the i^{th} bounding box forecast of i^{th} data
y_{dr} x_{dt} y_{dt} x_{i}, y_{i} x_{i+h} x, y	radial distortion (y-plane) tangential distortion (x-plane) tangential distortion (y-plane) coordinate for the i^{th} bounding box forecast of i^{th} data current coordinate

NAVIGASI PENGIKUT KENDERAAN BERASASKAN PENGLIHATAN MENGGUNAKAN PENGAWAL LOGIK FUZI

ABSTRAK

Kajian ini membentangkan pendekatan berasaskan visi untuk navigasi pengikut kenderaan darat. Sistem ini menggunakan pengawal logik fuzi untuk mengamudi secara berautonomi. Terdapat dua komponen untuk prototaip ini yang merupakan komponen sistem penglihatan dan komponen penggerak. Komponen sistem penglihatan dikawal oleh mikropemproses Raspberry Pi. Komponen penggerak pula dikawal oleh mikropengawal, Arduino Mega. Sistem penglihatan komponen menggunakan pengesanan Camshift dan pencahayaan tidak konsisten telah dibetulkan menggunakan histogram penyamaan. Parameter ini yang diperolehi daripada kajian rintis yang digunakan untuk mereka bentuk fungsi pengawal logik fuzi serta peraturan-peraturan yang sesuai. Terdapat dua kaedah peraturan fuzi yang diuji. Kaedah pertama iaitu kaedah A menggunakan 15 peraturan logik fuzi manakala kaedah kedua yang merupakan kaedah B memperkenalkan tiga peraturan nilai tambahan kepada 15 peraturan yang sedia ada. Keputusan kajian menunjukkan bahawa kedua-dua kaedah menghasilkan keputusan yang wajar kerana prototaip mampu untuk mengemudi sendiri untuk mengikuti kenderaan utama, dengan Kaedah B menghasilkan hasil yang terbaik.

A VISION-BASED VEHICLE FOLLOWER NAVIGATION USING FUZZY LOGIC CONTROLLER

ABSTRACT

This research presents the vision-based approach to ground vehicle follower navigation. The system utilize fuzzy logic controller to navigate itself. There are two components of the prototype which is the vision system component and the actuating component. The vision system component is controlled by a microprocessor, Raspberry Pi. The actuating component is controlled by the microcontroller, Arduino Mega. The vision system component utilizes Camshift tracking and the illumination inconsistency is corrected using histogram equalization. The consequent parameters obtained from the pilot test is used to design the appropriate fuzzy membership functions and rules. The are two type of rules tested. The first one which is method A utilized 15 rules of fuzzy logics whereas the second method which is method B introduced three additional hedges rules to the existing 15 rules. The results show that both methods produce desirable results as the prototype is able to navigate itself to follow the lead vehicle with Method B produces the best results.

CHAPTER ONE

INTRODUCTION

1.1 Background

With the recent global alteration of economic emphasis towards Asia and the introduction of One Belt One Road initiative, there will be vast movement of goods and services which will jumpstart the initiation of a more efficient infrastructure networks within the Asian Region. The main transportation modes will nevertheless be sea route, rail and highways. Amid these common modes of transportation, the Asian Highway network is anticipated to play a significant role in the mobility of goods and personnel taking grasp of great production capacity of China, India and the up-and-coming economies around ASEAN countries. Example of One Belt One Road programme is the construction of new highways from China into Laos and Cambodia (Mooi, 2016).

Policies and issues related to the development of the Asian Highway and road transport continue to attract the interest of policymakers and experts attending legislative and expert group meetings and workshop organised by the secretariat. As a part of the initiative to achieve inclusive and sustainable development through regional cooperation and integration in transport in the Asia Pacific region several objective have been set:

(a) Establishment of road safety facility infrastructure standards

This objective emphasizes on above the ground installations which include road

safety - such as acceleration and deceleration lanes, warning signs, regulatory signs and speed reduction devices and roadside safety features. User-friendliness aspect is highlighted in order to ease drivers' vehicle operations. For that purpose, the predictability of events should be implemented uniformly along the regions.

(b) Development of model intelligent transport systems deployment

Intelligent Transport System (ITS) is a combination of technologies based on the new capabilities offered by modern Information and Communications Technologies (ICT). The deployment of intelligent transport systems permits enhanced traffic management, more fluid traffic flows and higher levels of safety and security. Predictably intelligent transport systems can cope with traffic congestion , reduce traffic accidents and alleviate environmental externalities generated by road transport.

This project provides opportunity to study the experience of selected member countries (in this case Malaysia) in implementing intelligent transport system to improve road infrastructure management and operation. Also to promote the spread use of related technologies through the development of model intelligent transport system of the region.

1.2 Problem Statement

Road injuries and fatalities have been a growing concern in Malaysia. Statistics shows that more than 6,000 motoring fatalities are recorded each year (Pfordten, 2014). The number of death due to road accidents has also increased from 6,286 in 2003 to 6,917 in 2012 and it has been observed that car accidents had contributed to 22% of the

total number of fatalities on the road in recent year (Abdul Rahman, 2013). Looking at the details of traffic crashes in 2012, about 23% of fatal crashes were related to speeding (Syed, Mohamed, Musa, Isah, & Wong, 2014). In urban driving environment accidents or collisions usually occur due to human errors such as misjudged distance, loss of control, poor manoeuvring and sudden braking. Drivers tend to misjudge the distance between their cars and the vehicles in front of them during heavy traffic such as rush hour or road congestion due to road works, resulting in collisions when the driver in the vehicles in front of them apply the brakes without warning.

With the rising number of road accidents and fatalities at local road networks, the Malaysian Government has recently announced the implementation of the Automated Awareness Safety System and Kejara Demerit Point System (Mooi, 2016). Observations show that significant progress in reducing road accidents occur in countries that adopt a multi-prong approach to tackling what WHO defines as the five pillars of road safety namely:

- (a) road safety management
- (b) safer roads
- (c) safer vehicles
- (d) safer road users
- (e) post-crash response

While it is not feasible to address these five elements simultaneously, systems that are expected to be achieved on a short-term basis can only be safer vehicle; as those