DEVELOPMENT OF GENERATIVE COMPUTER-AIDED PROCESS PLANNING FOR CNC MILLING PARTS

By

PRAMODKUMAR S KATARAKI

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

February 2019

ACKNOWLEDGEMENT

I express my deepest and most sincere gratitude to my supervisor, Senior Lecturer DR. Mohd Salman bin Abu Mansor, for his support, supervision and endless patience throughout the performance of thesis. The supervisor's motivations and encouragement helped me to focus on my goals. Thank you for the priceless knowledge and experience.

I would also like to extend my appreciations to the technical assistants and supports given by Mr. Fariz, Mr. Baharom, and Mr. Jamari for providing the assistances in using the school equipment and facilities during the research.

I express my deepest gratitude to the officials of High Commission of India, Kuala Lumpur, Malaysia and Ministry of Tribal Affairs, New-Delhi, India for their financial support throughout my doctoral programme in the form of National Overseas Scholarship.

I heartily acknowledge my father, mother, brother, sister, and in-laws for their deep love, care, motivation and support throughout my doctoral programme which would not have been possible without them. I also thank my little angels Niyati and Ahana for their overwhelming love to me.

I heartily acknowledge my dearest wife for her wonderful and ever ending support by reliving me from the family burdens. I also thank my loving son for being my stress buster by his loving smile.

I also thank Kavita, Parushram, Ayub, Ahmed, Amrik, Barathy, Faiz, Dipesh for their humble support in all forms throughout my stay in Malaysia.

TABLE OF CONTENTS

Page

ACK	KNOWLEDGEMENT	п
TAB	BLE OF CONTENTS	III
LIST	Г OF TABLES	VIII
LIST	Γ OF FIGURES	X
LIST	Γ OF SYMBOLS	XV
LIST	Γ OF ABBREVIATIONS	XVI
ABS	TRAK	XVIII
ABS	ABSTRACT	
CHA	APTER ONE: INTRODUCTION	
1.1	Research overview	1
1.2	Research background	1
1.3	Problem statement	4
1.4	Objectives	5
1.5	Scope of research	5
1.6	Research approach	5
1.7	Thesis organization	6
CHA	APTER TWO: LITERATURE REVIEW	
2.1	Chapter Overview	7
2.2	Computer-aided process planning	7

2.2 Computer-aided process planning

2.3	Automatic feature recognition	8
2.4	Regular form feature recognition	10
2.4.1	Rule based approach	10
2.4.2	Volume decomposition method	12
2.4.3	Knowledge based approach	14
2.4.4	Graph and hint based approaches	14
2.4.5	Graph and rule based approaches	15
2.4.6	Fuzzy logic	15
2.4.7	Neural network	16
2.4.8	Genetic algorithm	16
2.4.9	Edge boundary classification (EBC)	17
2.4.1	0 Slicing method	17
2.4.1	1 Intelligent feature recognition methodology (IFRM)	17
2.4.1	2 Decoupling feature representation and recognition	18
2.5	Freeform feature recognition	18
2.5.1	Freeform surface based features	19
2.5.2	Freeform volumetric features	21
2.6	Level of complexity	21
2.7	Summary	23

CHAPTER THREE: METHODOLOGY

3.1 C	Chapter overview	25
3.1.1	Face categorization	25
3.1.2	Type of loops	26
3.1.3	Regular form features and classification	26
3.1.4	Freeform features and classification	28
3.1.5	Minimal and final stock models	30
3.1.6	DV and classification	30
3.1.7	Colour coding concept	31
3.1.8	Level of complexity and machine selection criteria	32
3.2	Recognition of regular form volumetric features	33
22 0	unfore and unlumentation for the many more an itigen	26
s.s s	urface and volumetric features recognition	30
3.3.1	Validation of input model	37

	3.3.2	Recognition of regular form face	37
	3.3.3	Regional segmentation of regular form faces	37
	3.3.4	Identification of loops	39
3	.4 M	laterial removal volume generation	40
	3.4.1	Face covering of loop if face has circular or non-circular holes or both	40
	3.4.2	Copying of face	41
	3.4.3	Transformation of copied face	41
	3.4.4	Vector assessment conditions	42
	3.4.5	Generation of DV	44
	3.4.6	Sub-delta volume for finishing process (SDVF) filled region	45
	3.4.7	Sub-delta volume for finishing process (SDVF) without overlapping volume	46
	3.4.8	Sub-delta volume for volumetric feature (SDV-VF) for edge based, edge and	
	vertex	based features	46
	3.4.9	Sub-delta volume for volumetric feature (SDV-VF) for within face features	46
	3.4.10	Sub-delta volume for roughing process (SDVR)	47
3	.5 R	ecognition of interacting and compound volumetric features	47
	3.5.1	Part model	49
	3.5.2	Face and its segmentation	49
	3.5.3	Loop	50
	3.5.4	Outermost face	51
	3.5.5	Generation of sub-delta volume for outermost face (SDVF _o)	51
	3.5.6	Feature face	53
	3.5.7	Generation of sub-delta volume for feature face (SDVF _f)	54
	3.5.8	Overlapping of sub-delta volume for finishing process (SDVF)	54
	3.5.9	Boolean subtraction	54
	3.5.10	Volume for features	55
	3.5.11	Identification of volumetric features	55
	3.5.12	Generation of sub-delta volume for finishing process (SDVF) filled region	57
	3.5.13	Generation of sub-delta volume for roughing process (SDVR) and exploded	
	view		58
	3.5.14	Generation of tables	59
	3.5.15	Generation of labels	60
3	.6 R	ecognition of freeform volumetric features	60
	3.6.1	Computer-aided design (CAD) part model	62
	3.6.2	Faces and their regional segmentation	63

	3.6.3	Identification of loops	65
	3.6.4	Recognition of faces of feature surface (FS) and boundary surface (BS)	66
	3.6.5	Generation of sub-delta volume for outermost face (SDVF $_{o}$) and sub-delta volu	me
	for trai	nsition (SDVT)	67
	3.6.6	Generation of sub-delta volume for feature face $(SDVF_f)$	68
	3.6.7	Generation of volume for features and feature identification	68
	3.6.8	Generation of volume for features	72
	3.6.9	Overlapping of sub-delta volume for feature face $(SDVF_f)$ layers	73
	3.6.10	Generation of sub-delta volume for finishing process (SDVF) filled region	73
	3.6.11	Generation of sub-delta volume for roughing process (SDVR)	74
	3.6.12	Generation of result tables	75
	3.6.13	Labelling of sub-delta volumes	77
	3.6.14	Level of complexity and milling machine selection	77
3	.7 N	lachining operation type selection	78
3	.8 A	uto-allocation of SDV-VF	78
CHAPTER FOUR: RESULTS AND DISCUSSION			
Δ	1 V	alidation of algorithm	80

4.1	Validation of algorithm	80
4.2	Implementation and verification of the algorithm for recognition of regula	r form
volum	etric features	80
4.2.	1 Case study 1	80
4.2.	2 Case study 2	89
4.2.	3 Case study 3	98
4.3	Implementation and verification of the algorithm for recognition of regula	r form
interac	cting and compound volumetric features	107
4.3.	1 Case study 4	107
4.3.	2 Case study 5	117
4.4	Implementation and verification of the algorithm for recognition of freefor	rm
volum	etric features	124
4.4.	1 Case study 6	124
4.4.	2 Case study 7	131
4.4.	3 Case study 8	134

4.5	Milling machine selection	136
4.6	Machining	138
4.7	Discussion	154
CHAPTER FIVE: CONCLUSION		
5.1	Conclusion	160
5.2	Contribution	162
5.3	Future works	162
REFE	RENCES	163

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 3.1	Geometrical shape and face category	25
Table 3.2	Geometrical shapes and their colour codes	32
Table 3.3	Machine selection criteria	33
Table 3.4	Vector assessment conditions for X and Y vector components	42
Table 3.5	Vector assessment conditions for X and Y vector components of spherical or cylindrical or conic face	43
Table 3.6	Segmentation of a face	49
Table 3.7	Recognition of outermost planar face	51
Table 3.8	Recognition of feature face	53
Table 3.9	Identification of features	56
Table 3.10	Segmentation of a categorized face	63
Table 3.11	Classification of a face	65
Table 3.12	Recognition of face of FS and BS	66
Table 3.13	Details of SDV-VF	76
Table 3.14	Details of SDV-VF generated	77
Table 4.1	Details of volumetric features and faces	88
Table 4.2	Shows difference in algorithm and manual calculations of ODV	88
Table 4.3	Details of volumetric features and their respective faces	97
Table 4.4	Percentage difference in algorithm and manual calculations	97
Table 4.5	Faces having volumetric features, and details of these features	105
Table 4.6	Percentage difference in algorithm and manual calculations of ODV	106
Table 4.7	Calculation of DVs for regular form part model	117
Table 4.8	Calculation of percentage error for regular form part model	117
Table 4.9	Values of DVs for V-block part model	123
Table 4.10	Percentage error calculations for V-block part model	124

Table 4.11	Details of algorithm generated SDV-VF	128
Table 4.12	Details of SDV-VF	129
Table 4.13	Details of ODV and percentage error (%) for part model	131
Table 4.14	Details of ODV and percentage error (%) for telephone mould cavity	134
Table 4.15	Details of ODV and percentage error (%) for impeller	136
Table 4.16	Milling machine selection for parts based on their level of complexity	137
Table 4.17	Machining processes for opener	139
Table 4.18	Machining processes for V-block	144
Table 4.19	Machining processes for test part	150

LIST OF FIGURES

		Page
Figure 1.1	CAD part models (a) engineering part (b) impeller (c) sink die	2
Figure 1.2	Volume decomposition for bottle opener (a) stock model (b) DV	4
Figure 2.1	Scope of CAPP	8
Figure 2.2	Generation of DV	13
Figure 2.3	Classification of freeform sheet metal features	20
Figure 3.1	Regular form volumetric features of a part model	27
Figure 3.2	Classification of regular form features	28
Figure 3.3	Classification of freeform features	29
Figure 3.4	Freeform volumetric features of a part model	30
Figure 3.5	Classification of ODV _{algorithm}	31
Figure 3.6	Flow chart of algorithm for surface and volumetric features recognition, and DV generation	34
Figure 3.7	(a) part model considered as an example (b) Each face of part model is bound by 2D bounding box in parametric space ST having coordinates (s, t) (c) Part model mapped in 3D object space coordinate (X, Y, Z). (d) Vector diagram of Face 1	38
Figure 3.8	(a) Part model with non-circular through hole (b) Identification of peripheral and inner loops	40
Figure 3.9	(a) Front view (b) Isometric view of part model and two copied faces generated from original regular form face of part model	42
Figure 3.10	Step wise generation of delta volume (SVDF, SDVF filled region, SDV-VF and SDVR) for regular form CAD part model	44
Figure 3.11	Explode view of SDVF, SDVF filled region, SDV-VF and SDVR for regular form CAD part model	45
Figure 3.12	Flow chart of algorithm interacting and compound features recognition, and DV generation	48
Figure 3.13	Depicts step wise generation of SDVF for explode view	53
Figure 3.14	Overlapping of SDVF layers	54
Figure 3.15	Boolean subtraction operation	55

Figure 3.16	(a) Discontinuity problem occurring between adjacent SDVF's(b) Algorithm generated SDVF filled region for SDVF (c)Explode view	58
Figure 3.17	(a) SDVR (b) Sliced view of SDVR (c) Explode view of SDV layers	59
Figure 3.18	Flow chart of the algorithm	61
Figure 3.19	(a) BS of part model and its $SDVF_o$ (b) Generation of SDVT (c) SDVT for bottom freeform face	67
Figure 3.20	Part model with algorithm generated finishing layers for faces of a hole feature	68
Figure 3.21	(a) Generation of SDV-VF (b) Colour coding of SDV-VF	69
Figure 3.22	(a) New form of SDVF-VF generated (b) Colour coding of SDV-VF	72
Figure 3.23	Algorithm generated $SDVF_f$ for faces with no overlapping	73
Figure 3.24	(a) Part model with algorithm generated finishing layers (b) SDVF filled region for voids (c) SDVF filled region to overcome step formation	74
Figure 3.25	Algorithm generated SDVR	75
Figure 3.26	(a) Part model with SDV-VF's allocated to top face (b) allocation of SDV-VF's to bottom faces	79
Figure 4.1	Isometric view of V-block	81
Figure 4.2	(a) Algorithm generated SDVF for regular form V-block (b) Isometric view of regular form V-block and its SDVF's	81
Figure 4.3	Delta volume for finishing operation details	83
Figure 4.4	Side, front and top views of SDVF, and SDVF filled region, SDVR without upper unit of regular form V-block	84
Figure 4.5	Regular form V-block's CAD volume is determined from mass properties	85
Figure 4.6	(a) Exploded view of ODV for regular form V-block (b) Top view of exploded ODV	86
Figure 4.7	Isometric view of regular form cube	89
Figure 4.8	Algorithm generated SDVF for regular form cube	90
Figure 4.9	(a) Isometric views of regular form cube and its SDVF's (c) Isometric view of SDVF	91
Figure 4.10	Delta volume for finishing operation details	93

Figure 4.11	Algorithm generated SDVF, SDVF filled region, SDVR without upper unit	94
Figure 4.12	Algorithm generated exploded view of ODV for regular form part model	95
Figure 4.13	Regular form cube volume is determined from mass properties	96
Figure 4.14	Isometric view of regular form switch board	98
Figure 4.15	 (a) Algorithm generated SDVF for regular form switch board (b) Isometric top view of regular form switch board and its SDVF's (c) Isometric bottom view of regular form switch board and its SDVF's 	100
Figure 4.16	Delta volume for finishing operation details	101
Figure 4.17	SDVF, SDVF filled region, SDVR without upper unit	102
Figure 4.18	(a) Exploded view of ODValgorithm for switch board (b) Front view of exploded view	103
Figure 4.19	Mass properties of regular form switch board	104
Figure 4.20	CAD part model	107
Figure 4.21	(a) $SDVF_{o}$ (b) $SDVF_{f}$ and designation to recognized features	108
Figure 4.22	Results of loop type detection	109
Figure 4.23	(a) Top view of SDVF and designations of feature faces (b) Isometric bottom view of SDVF and designations of feature faces	110
Figure 4.24	Blind UV-slot	112
Figure 4.25	Blind U-slot	112
Figure 4.26	Shell	112
Figure 4.27	Shell	113
Figure 4.28	Through U-slot and notch	113
Figure 4.29	Isometric view of SDV-VF	113
Figure 4.30	(a) Top view (b) Front view (c) Right view	114
Figure 4.31	(a) SDVF filled region and SDVR (b) Exploded view of $ODV_{algorithm}$	115
Figure 4.32	(a) Results in TXT file format (b) Mass properties of part model	116
Figure 4.33	(a) V-block and SDVF $_{o}$ (b) Feature faces and SDVF $_{f}$	118
Figure 4.34	Loop type detection	119

Figure 4.35	Top and bottom views of SDVF with designations	120
Figure 4.36	SDV-VF, SDVF filled region and SDVR	121
Figure 4.37	(a) TXT file format showing the details of delta volumes and $ODV_{algorithm}$ (b) Mass properties of V-block	122
Figure 4.38	Exploded view of ODV _{algorithm}	123
Figure 4.39	(a) Part model (b) $SDVF_0$, $SDVT$ (c) Isometric bottom view of $SDVT$ for freeform faces in top region	125
Figure 4.40	(a) SDV-VF and its colour coded faces (b) Generation of SDV-VF and its colour coded faces (c) SDVF filled region	126
Figure 4.41	Exploded view of ODV _{algorithm}	127
Figure 4.42	(a) Mass properties of part model (b) TXT file format of details of stock model	129
Figure 4.43	ODV _{algorithm} distribution chart for part model	131
Figure 4.44	(a) Isometric view and top view of telephone mould cavity (b) SDV-VF, SDVF $_{\rm f}$	132
Figure 4.45	(a) Exploded view of $ODV_{algorithm}$ (b) Mass properties of part model	133
Figure 4.46	CAD part model of impeller	134
Figure 4.47	(a) SDVF and SDV-VF (b) Exploded view of $ODV_{algorithm}$	135
Figure 4.48	CAD part model of opener	138
Figure 4.49	(a) Stock model details (b) Aluminium work piece	140
Figure 4.50	(a) CNC milling machine and its machining process (b) Opener	141
Figure 4.51	Feature recognition in SOLIDWORKS	142
Figure 4.52	Stock model generation in AUTODESK FUSION 360	143
Figure 4.53	CAD part model of V-block	144
Figure 4.54	(a) CNC milling machine (b) V-block	147
Figure 4.55	Feature recognition in SOLIDWORKS	148
Figure 4.56	Stock model generation in AUTODESK FUSION 360	149
Figure 4.57	CAD part model of Test part	150
Figure 4.58	(a) CNC milling machine (b) Test part	151

Figure 4.59	Feature recognition in SOLIDWORKS	153
Figure 4.60	Stock model generation in AUTODESK FUSION 360	154
Figure 4.61	Comparison chart for level of complexity	159

LIST OF SYMBOLS

Ν	Number of loops
$ODV_{algorithm}$	Overall delta volume generated by algorithm
ODV _{manual}	Overall delta volume determined by manual calculation
OV	Overlapping volume
P_{low}	Bottom profile
P_{up}	Top profile
<i>SDVF</i> _i	SDVF of internal faces
$SDVF_p$	SDVF of peripheral faces
VCAD	Boundary representation

LIST OF ABBREVIATIONS

2D	Two-dimensional
2.5D	Two-and-a-half dimensional
3D	Three-dimensional
AAG	Attributed adjacency graph
AFR	Automatic feature recognition
API	Application programming interface
B-rep	Boundary representation
B-spline	Basis spline
BEFG	Base Explicit Feature Graphs
BS	Boundary surface
CAD	Computer aided design
CAI	Computer aided inspection
CAM	Computer aided manufacturing
CAPP	Computer-aided process planning
CIM	Computer integrated manufacturing
CNC	Computer numerical control
CSG	Constructive solid geometry
DFA	Design for assembly
DV	Delta volume
DXF	Drawing exchange format
EBC	Edge boundary classification
FAG	Face Adjacency Graphs
FF	Feature face
FL	Finishing layer
FR	Filled region

FS	Feature surface
FSC	Feature shape complexity
FSV	Final stock model volume
GA	Genetic algorithm
IFRM	Intelligent feature recognition methodology
IGES	Initial Graphics Exchange Specification
MF	Machining features
MSV	Minimal stock model volume
MRV	Material removal volume
NURBS	Non uniform rational B-spline
OPF	Outermost planar face
ODV	Overall delta volume
RBM	Rule based method
RL	Roughing layer
SAT	Standard ACIS text format
SDV	Sub-delta volume
SDVF	SDV for finishing process
SDVF _o	SDV for outermost face
SDV F _f	SDV for feature face
SDV-VF	SDV for volumetric feature
SDVR	SDV for roughing process
STEP	Standard for the Exchange of Product
TL	Transition layer
TXT	Text
VDM	Volume decomposition method
VF	Volumetric feature

PEMBANGUNAN PERANCANGAN PROSES BERBANTU KOMPUTER YANG GENERATIF UNTUK BAHAGIAN PENGISARAN CNC

ABSTRAK

Aspek penting dalam perancangan proses berbantu komputer (CAPP) adalah untuk mengenali permukaan dan ciri-ciri bahagian bagi membantu pembuatan pintar hiliran. Pengecaman automatik bagi permukaan dan ciri-ciri dan akan membawa kepada kejayaan pencapaian CAPP generatif. Kerja pengecaman ciri dan bentuk yang dilakukan setakat ini tidak melakukan pengecaman terhadap semua ciri bentuk biasa dan bentuk bebas dan tidak mengahasilkan isipadu delta (DV) bagi pengecaman yang dilakukan. Oleh itu, terdapat keperluan untuk membuat klasifikasi baru bagi ciri-ciri dan pendekatan untuk mengencam ciri-ciri secara automatik supaya DV dijana secara automatik untuk setiap ciri yang dicam bagi pencapaian CAPP generatif. Satu usaha telah dibuat untuk mengklasifikasikan ciri-ciri baru ke dalam bentuk biasa dan ciri-ciri bentuk bebas yang selanjutnya diklasifikasikan ke dalam ciri-ciri permukaan dan ciri-ciri volumetrik. Isipadu delta keseluruhan (ODV) dikelaskan kepada SDVF, SDVT, SDVF dipenuhi kawasan dan SDV-VF dan SDVR. Algoritma dibangunkan untuk mengecam secara automatik bentuk dan permukaan bentuk bagi bahan mesin canai dan menjana ODV secara automatik. Algoritma ini menjana secara automatik pecahan pandangan ODV, melabel secara automatik isipadu sub-delta dan menentukan tahap kerumitan untuk menghasilkan bahagian. ODV yang dihasilkan disahkan oleh ralat peratusan (%) dan pemesinan produk. Algoritma ini memilih jenis operasi pemesinan yang akan dilakukan dan memperuntukkan secara automatik SDV-VF masing-masing ke permukaan yang dimilikinya. Ciri permukaan dan isipadu dari suatu bahagian yang berjaya dicam secara automatik oleh algoritma yang dibangunkan dan anggaran DV, jadual hasil yang memperincikan data kuantitatif setiap isipadu dihasilkan secara automatik. SDVT yang dibangunkan bersebelahan dengan SDVF untuk bentuk bebas, mengatasi DV kompleks bagi proses roughing. Kekangan kekurangan DV yang berlaku dalam beberapa kajian dapat dihindarkan. Penamaan ciri dan pengekodan warna permukaan SDV-VF menyatakan jenis ciri yang terdapat di bahagian tersebut. Pengesahan algoritma yang dibangunkan oleh ralat peratusan (%) menunjukkan kesilapan kurang daripada 0.1% dan kriteria pemilihan mesin mencadangkan pengguna jenis mesin pencanai yang diperlukan untuk menghasilkan bahagian berdasarkan tahap kerumitan.

DEVELOPMENT OF GENERATIVE COMPUTER-AIDED PROCESS PLANNING FOR CNC MILLING PARTS

ABSTRACT

The important aspect of computer-aided process planning (CAPP) is to recognize part's surfaces and features to aid downstream intelligent manufacturing. The automatic recognition of surfaces and features will lead to successful attainment of generative CAPP. Feature recognition works performed so far do not recognize all regular form and freeform volumetric features, and do not generate delta volume (DV) for the recognized features. The works do not address the classification of freeform volumetric features. So there is a need for novel classification of features and approach to auto-recognize features so as to auto-generate DV for each recognized feature for the attainment of generative CAPP. An effort has been made to novel classify the features into regular form and freeform features which are further sub-classified into surface features and volumetric features. The overall delta volume (ODV) is classified into SDVF, SDVT, SDVF filled region, SDV-VF, and SDVR. Algorithm is developed to auto-recognize surfaces of a milling part and auto-generate ODV. The algorithm auto-generates exploded view of ODV, auto-labels the sub-delta volumes (SDVs) and determines the level of complexity to manufacture a part. The generated ODV is validated by percentage error (%) and machining of parts. The algorithm selects the type of machining operation to be performed and auto-allocates each SDV-VF to the face it belongs to. The surface and volumetric features of a part are successfully auto-recognized and estimated DV, results table are auto-generated. The SDVT developed contiguous to SDVF for freeform faces, overcomes the complex DV for roughing process. The DV discontinuity and overlap limitation that occurred in few studies are eliminated. The designation of feature faces and colour coding of faces of SDV-VF expresses the type of feature present in a part. The validation of developed algorithm by percentage error (%) shows error less than 0.1% and the machine selection criteria suggests user the type of milling machine needed to manufacture a part based on level of complexity.

CHAPTER ONE

INTRODUCTION

1.1 Research overview

The research was into computer-aided process planning (CAPP) and mainly focused on attainment of generative CAPP by dealing with computer-aided design (CAD) model to manipulate its data structure to auto-generate delta volume (DV) for finishing process, roughing process and for volume decomposition to obtain feature volume for regular form volumetric feature, freeform volumetric feature. Feature classification, DV classification, surface and feature recognition, DV generation, level of complexity, selection of machining operations and auto-allocation of each sub-delta volume for volumetric feature (SDV-VF) to the face it belongs to are the stages performed in data manipulation.

1.2 Research background

To manufacture a product, pre-generated novel product concept must be prototyped by detailed design, wherein the concept is outlined in two-dimensional (2D) engineering drawing or three-dimensional (3D) engineering drawing. With the origin of computer era, the shape and geometry of engineering drawing are started being exhibited electronically within the modelling space of a modelling software in a computer. This exhibition is known as CAD and the output obtained is known as CAD model containing geometrical structure and topological information. The planar, cylindrical, conical, spherical, torus, spline, and ellipse are different types of geometrical shapes and a CAD model can be of any one or a combination of these geometrical shapes. The CAD model and its features are categorized into regular form, freeform and two-and-a-half dimensional (2.5D) form based on their geometrical shapes, for example an engineering part CAD model (Figure 1.1(a)) made of planar and cylindrical surfaces is a regular form model, and an impeller CAD model (Figure 1.1(b)) made of 3D B-spline surface or Non uniform rational B-spline (NURBS) surface is a freeform model. A sink die CAD model (Figure 1.1(c)) is categorized as 2.5D model since it's made of a spline surface on the top and planar, cylindrical surfaces on the side and planar surface on the bottom.

(c)

Figure 1.1. CAD part models (a) engineering part (b) impeller (c) sink die

With the advancement of freeform feature modeling concepts, freeform products are being introduced widely in the consumer market. Nowadays the requirements of a consumer are moving towards the products having aesthetical features due to the incorporation of ergonomic and freeform feature modeling technique in designing of a product. Therefore, with the trend of consumer requirements moving toward aesthetical-based designed product, it is important to capture the ever growing market by producing a higher quality product that is freeform in shape and at the same time reduced the lead time and manufacturing cost in manufacture out the product. Time and cost reduction are made possible in the early stage of design by analyzing the CAD model for its manufacturability in term of machining process, especially the process involved in transforming from the initial raw stock model into final product. To be able to develop an optimum process planning for manufacturing a product, CAPP is a necessary tool in bridging the CAD and computer-aided manufacturing (CAM) through computerized integration to facilitate computer integrated manufacturing (CIM) system. The role of CAPP is to make use of the information available in CAD model and transform it into usable data for CAM application. This research is placed in the field of CAPP by developing workable algorithms to assist proper planning of CAM. Automatic feature recognition (AFR) holds the crucial key element in realization of this integration system. Recognized features can then be utilized for various engineering purpose.

The interpretation of digital representation of concept of feature is important to understand the actual environmental application of automatic feature recognition (AFR). A feature is defined as a set of geometrical entity having corresponding relationship among the entities that perform an engineering function and the feature of a CAD model must be definable by its linear dimensions such as length, width and height so as to recognize it by pre-set recognition rules. The developed feature recognition system can recognize surfaces and features of a CAD model by utilizing the topology of CAD model, geometry of entity and linear dimensions.

After the recognition process, there must be material removing processes that are performed to machine out the features. In order to obtain the required features, material removal volume must be calculated to enable the machine to manufacture the final product according to the designed features from the raw stock model. The material removal volume is then further decomposed into several individual volumes according to the type of form feature. As a product may have different features on it, there is a need for volume decomposition for machining purpose to fulfill the engineering requirements of the surface feature. The volume decomposition is sub division of a stock model into two or more DV and the decomposition of a stock model into DV for finishing process, roughing process and recognized features after feature recognition gives quantified values to manufacture a product from the stock model. For example, the decomposition of stock model (Figure 1.2(a)) for a bottle opener product

gives DV for pocket feature, finishing process and roughing process (Figure 1.2(b)) and the so obtained DV can be quantified to manufacture bottle opener.

Figure 1.2. Volume decomposition for bottle opener (a) stock model (b) DV

1.3 Problem statement

Based on the research works reviewed, feature recognition works were found to be performed on regular form features and freeform features with limitations. The regular form feature recognition works performed so far by approaches (such as ruled based approach, graph based approach and volume decomposition method) do not recognize all the interacting and non-interacting features, compound features, and also do not generate DV for the recognized features. The freeform feature recognition works have classified freeform features and recognized them, but the classification and recognition was limited to freeform surface based features and do not address the classification and recognition of freeform volumetric features. The generation of DV for freeform volumetric features, surface based features is also found to be lacking, and other scarce works that focused on the generation of DV for recognized faces of a CAD model resulted in following drawbacks (i) occurrence of discontinuity between two adjacent DV's generated for recognized faces of CAD model that form convex geometry (ii) overlapping between two adjacent DVs generated for recognized faces of CAD model that form concave geometry (iii) the generated DV for roughing process is complex. The machining operation type selection cannot be performed without successful attainment of machining feature recognition in CAPP system.