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MODEL PENGANGGARAN BERDASARKAN RANGKAIAN NEURAL 

BAGI RELAU PEMECAHAN STIM UNTUK ETHANA 

 

ABSTRAK 

 

   Taburan hasil produk dari pemecahan ethana ditentukan melalui persampelan 

makmal dan alat penganalisis unsur untuk mengukur tahap pemecahan. Disebabkan 

alat penganalisis unsur mengambil masa untuk menghasilkan keputusan, hanya 

bergantung kepada alat penganalisis dan analisis makmal untuk menentukan hasil 

produk utama akan melambatkan tindakan kawalan segera kepada proses. Untuk 

menyelesaikan masalah ini, penderia penganggaran diperlukan. Dalam kajian ini, 

model penganggaran berdasarkan rangkaian neural telah dibangunkan 

   Proses pemecahan steam etana telah dimodelkan menggunakan ASPEN Plus 

dan disahkan dengan data industri yang diambil dari kepustakaan. Ralat relatif untuk 

keluaran model tersebut adalah kurang dari 10%. Model ASPEN Plus tersebut 

digunakan untuk pemilihan input, penilaian tidak-linear, dan penjanaan data untuk 

permodelan rangkaian neural. Pemilihan input menunjukkan yang lima pembolehubah 

memberi kesan yang penting kepada pengeluaran ethana dan etilina. Lima 

pembolehubah tersebut adalah tekanan reaktor, suhu keluaran reaktor, nisbah wap dan 

hidrokarbon, komposisi bahan masuk, dan komposisi bahan bakar. Penilaian ciri-ciri 

tidak linear proses tersebut menunjukkan yang proses itu mempunyai tidak balas yang 

tidak simetri dan mempunyai ciri-ciri kepelbagaian input. Oleh itu, proses ini boleh 

dikategorikan sebagai proses yang tidak linear. 

   Data yang dijana dari model ASPEN Plus digunakan untuk latihan, pengesahan, 

dan ujian. Dua kaedah telah digunakan untuk menghasilkan data tersebut iaitu secara 



xvi 

berturutan dan secara serentak. Empat pembolehubah diuji secara berturutan dan 

digabungkan menjadi profil berturutan. Data itu dibahagikan kepada bahagian untuk 

latihan dan pengesahan, dan data yang dihasilkan serentak digunakan untuk ujian. 

    Tiga model rangkaian neural, iaitu Rangkaian Neural Suap-depan (FFNN), 

Rangkaian Neural Regresi Teritlak (GRNN), dan Rangkaian Neural Mesin 

Pembelajaran Ekstrim (ELM-NN), telah dibangunkan dan dinilai melalui ketepatan 

ramalan dan masa pengiraan. Keputusan penilaian menunjukkan yang ketepatan 

ramalan ELM-NN adalah lebih tinggi dari FFNN dan GRNN. Untuk latihan pula, 

model terbaik untuk ELM-NN, GRNN, dan FFNN memerlukan masa 0.0068 saat, 0.35 

saat, dan 12 saat setiap satu. Dari segi masa pengiraan untuk sampel data yang terbaru, 

ketiga-tiga model memerlukan kurang dari 0.05 saat untuk mengira satu sampel data. 

Walaupun begitu, masa pengiraan untuk model GRNN yang telah dilatih meningkat 

secara eksponen dengan peningkatan jumlah sampel data manakala model FFNN dan 

model ELM-NN yang dilatih tidak menunjukkan peningkatan masa pengiraan yang 

ketara,  

   Dari tiga model ini, ELM-NN memberi prestasi terbaik dari segi ketepatan 

ramalan dan masa pengiraan. Nilai R2 untuk model ELM-NN adalah 91.3% dan 82.6% 

untuk ethana dan etilina setiap satu. Model tersebut memerlukan 0.0068 saat untuk 

latihan dan juga 0.0001 saat untuk mengira hasil ethana dan etilina dari data input yang 

baru. Ini membuatkan model tersebut sesuai untuk digunakan dalam aplikasi system 

kawalan penganggaran masa nyata. 
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NEURAL NETWORK BASED INFERENTIAL MODEL FOR ETHANE 

STEAM CRACKING FURNACE 

 

ABSTRACT 

 

   The product yield distribution of ethane steam cracking is typically obtained 

using analysers and lab sampling. Since both methods take time to produce results, 

primarily depending on them to determine main product yield will hinder immediate 

control action on the process. In order to resolve this issue, an inferential sensor is 

required. In this study, a neural network based inferential model is developed.  

   The ethane steam cracking process has been modelled using ASPEN Plus and 

validated with industrial data taken from literature. The relative error (RE) of the 

model outputs obtained are less than 10%. The ASPEN Plus model is used for input 

variable selection, nonlinearity assessment, and data generation for neural network 

modelling. The input variable selection study found that five variables are significantly 

influential to the ethane and ethylene yields, namely reactor pressure, coil outlet 

temperature, steam-hydrocarbon ratio, feed composition, and fuel composition. 

Nonlinearity assessment of the process shows that the process exhibit asymmetrical 

response and input multiplicities characteristics, and thus, can be classified as a 

nonlinear process.  

   Data generated from the ASPEN Plus model is used for training, validation, and 

testing. Two methods have been used to generate the data which are sequential 

excitation and simultaneous excitation. Four variables are individually excited and 

combined to make a sequential excitation profile. Data from sequential excitation is 
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divided into training and validation while data from simultaneous excitation is used 

solely for testing. 

   Three neural network model, namely the Feedforward Neural Network (FFNN), 

the Generalized Regression Neural Network (GRNN), and the Extreme Learning 

Machine Neural Network (ELM-NN) are developed and they are evaluated in terms 

of prediction accuracy and computational time. The evaluation results show that ELM-

NN prediction accuracy is higher than FFNN and GRNN. To train, the best model for 

ELM-NN, GRNN, and FFNN models require 0.0068 seconds, 0.35 seconds, and 12 

seconds respectively. In terms of computation time of new set of input data sample, all 

three models require less than 0.05 seconds to compute one sample of data. However, 

computation time of the trained GRNN model increases exponentially with the 

increasing amount of data samples in a batch while for trained FFNN and trained ELM-

NN model, the increment is not significant. 

   Out of the three models, the ELM-NN gives the best performance in terms of 

prediction accuracy and computational time. The R2 of the ELM-NN model is 91.3% 

and 82.6% for ethane and ethylene yield respectively. The model requires 0.0068 

seconds to train and 0.0001 seconds to compute ethane yield and ethylene yields from 

a new set of input data. This makes the model suitable for applications in real time 

inferential control system. 
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CHAPTER 1 

INTRODUCTION 

 

 Research background 

   Olefin is one of the most valuable products of the petrochemical industry. It is 

used as a feedstock in many petrochemical processes and serves as the building block 

for other value added products. The two most sought olefins are ethylene and 

propylene, with ethylene being in larger demand of the two. Among the derivatives of 

ethylene are polyethylene and ethylene oxide (Liu et al., 2010). Olefin is produced 

through a process called cracking, which in principle, converts long chains of 

hydrocarbons into lighter components.  

1.1.1 Steam cracking process 

   Cracking is a very important process as it has the ability to convert low value 

heavies such as heavy vacuum gas oil and atmospheric gas oil into high value ethylene 

and propylene. There are various commercial cracking processes, namely steam 

cracking, hydrocracking, and catalytic cracking. For ethane feedstock, steam cracking 

is the prominent process to convert ethane into higher value ethylene. A typical 

ethylene plant process schematic is shown in Figure 1.1. Fresh ethane is mixed with 

superheated steam, preheated upon entering the furnace before being supplied with 

extreme heat in the furnace to initiate the cracking reaction. The reaction is 

endothermic, and will continue in the cracking coil as long as it receives heat input 

along the furnace. Monitoring the reaction temperature is done at the coil outlet, which 

is called the Coil Outlet Temperature (COT).  Upon exiting the radiant section, the 

mixture will undergo rapid quenching in the transfer line exchanger (TLE) to stop the 
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cracking reaction by reducing the temperature. Then, the cracked gas composition is 

analysed at the TLE outlet by an online analyser and a laboratory test. This is the end 

of the section called the Hot Section. The main products are recovered via a series of 

compressions, refrigeration, and distillation systems. This section is called the Cold 

Section. Unreacted feed together with certain products are recycled back into the 

furnace to mix with the fresh feed.  

 

Figure 1.1: Process schematic of ethylene production plant (Samad and Annaswamy, 

2011) 

 

    Throughout the run length of the furnace, the dynamics of the process slowly 

change as the feed composition changes after fresh feed is mixed with recycled feeds 

(Zhuang and Yu, 2003), and coke is deposited along the reactor tubes. The presence 

of the coke layer reduces the overall heat transfer coefficient of the coil and increases 

the heat input requirement to the reactor (Masoumi et al., 2006a, Karimzadeh et al., 

2009). After a period of time, the coke deposition is thick enough to cause the heat 

input to the coil to be too high, making the coil temperature reach its mechanical limit, 
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known as the Maximum Tube Metal (MTM) temperature. The furnace operation is 

stopped and undergone a process called decoking to remove all the coke deposits in 

the coils (Zhang et al., 2009). Upon completion of decoking, the furnace is started up 

again with fresh feed. 

   The depth of the cracking reactions is called cracking severity - which is 

dependent on feed conversion, feed composition, product composition, reactor 

temperature, reactor pressure, and residence time. Monitoring the severity enables 

plant operators to evaluate the condition of the cracking process and allows them to 

optimize the cracking furnace accordingly. If the severity is allowed to be too high, it 

leads to over-cracking, which promotes the progression of secondary reactions and the 

production of by-products. If the severity is allowed to be too low, it causes the under-

cracking of the feedstock, producing an insufficient rate of the desired products and 

subsequently severing the economics of the plant. Thus, maintaining cracking severity 

continuously at target is paramount to ensure an optimum cracking process 

(Ghashghaee and Karimzadeh, 2011).  

   Based on the review of severity measures by Van Camp et al. (1985), the easiest 

method to analyse severity is by using the properties of the reactor effluent. Based on 

the effluent properties, two methods can be used to measure cracking severity. The 

first method is using a temperature-based index. Typically COT is chosen as the 

temperature-based severity measure due to its proportional relation to the feed 

conversion (Van Camp et al., 1985). The other method is by relating the severity index 

directly to product compositions such as Methane yield (Ymeth), Propylene/Ethylene 

ratio (PER) and Ethylene/Ethane ratio (EER) (Van Geem et al., 2005). There are pros 

and cons in using each severity index. While COT is the easiest to measure and control, 

it does not provide an accurate description of the product distribution (Van Camp et 
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al., 1985). Changes to the process parameters will change the distribution of the 

product yield even though COT is continuously maintained at target. Because of that, 

the furnace is not operating at optimum performance (Ghashghaee and Karimzadeh, 

2011). Since it is not able to accurately relate to product yield distribution, COT is not 

a good measure of severity.  

    Using a of composition-based severity index is the most informative way of 

measuring severity as it enables plant operators to gauge the effect of process 

parameters on product distributions. Setting the composition-based severity index as 

the control objective allows the reactor to be operated optimally in terms of production 

and cost, as demonstrated by Ghashghaee and Karimzadeh (2011) in their severity 

optimization study. Using the composition-based severity index as the control 

objective will also allow process adjustments towards maximum desirable products 

(Ghashghaee and Karimzadeh, 2011). Thus, a composition-based severity index is a 

better measure. In order to direct the ethane cracking severity index towards ethylene 

selectivity, the use of the Ethylene/Ethane ratio (EER) is proposed (Van Geem et al., 

2005). 

1.1.2 The need for soft sensor 

   The drawback of using a composition-based severity index is the dependency 

on the measurements from the analyser. The analyser data is infrequent and has a long 

sampling time, which could be up to 35 minutes per sample (Masoumi et al., 2006a). 

Obtaining real time product composition data that enables immediate control 

adjustment is not possible. One of the proposed methods to tackle this issue is by using 

a soft sensor (Masoumi et al., 2006a). The soft sensor is an inferential model capable 

of inferring the product composition of the process from secondary measurements such 

as temperature, pressure, and flow rate. Since the response time of the soft sensor is 
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much faster than the analyser, it can be used as a replacement for the analyser in the 

process monitoring system and the severity control system.  

   Many chemical processes are inherently nonlinear. Some processes exhibit 

stronger nonlinearity compared to others (Pearson, 2006). The steam cracking process 

is one of the processes that exhibit nonlinearity characteristics primarily due to the  

interaction between process parameters, the interaction between the process equipment 

(Fluegel et al., 1997), and the inherent nonlinearities that come from the cracking 

reaction system (Xu et al., 2011). In order to accurately model the steam cracking 

process, the first principle method (FPM) and nonlinear empirical methods are among 

the suitable methods to be used. The FPM suffers from complex development 

processes and high computational requirements to solve the set of differential 

equations present in the model (Bhutani et al., 2006). In order to reduce the 

computational requirements, many assumptions need to be made to simplify the 

physics and chemistry of the system. This greatly reduces the accuracy of the model 

and reduces its merit. The alternative for the FPM is the empirical model, which is 

built from actual operating data. One of the data-based modelling method which works 

well with the nonlinear system is the Artificial Neural Network (ANN) (Jin et al., 

2016). 

 

 Problem Statement 

The ethane cracking furnace is usually operated by controlling the coil outlet 

temperature (COT). However, apart from temperature, the cracking severity is also 

influenced by other factors. Maintaining COT at target does not take into account the 

effect of other influencing process parameters towards the product yield. The use of 
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the Ethylene/Ethane ratio (EER) as a severity index is a more accurate measure. 

Information on the actual product yield will enable adjustment of the process the 

parameters to maintain EER at target. However, due to the long sampling time, using 

the analyser data as feedback will make immediate control action not possible 

(Masoumi et al., 2006b). Thus, there is a need to develop an inferential model that can 

predict product composition based on the current operating condition. The predicted 

product yields will be used as the input to the severity controller until the analyser 

result is available (D'Hulster et al., 1980). Thus, this enables a quick response when 

deviation is detected in product quality. 

Among the methods that can be used to develop the inferential model is the 

Artificial Neural Network (ANN). This method is gaining attention due to its ability 

to learn from available data and its capability to model nonlinear systems. Since the  

cracking process is known to be nonlinear (Xu et al., 2011), the ANN is suitable to be 

used. Apart from nonlinearity, another characteristic of the cracking process is time-

variance. This is due to the changing process dynamic over time (Zhang et al., 2009). 

The same values of the process parameters will not produce the same product yield 

distribution several days later. In addition, the steam cracking furnace is never operated 

in full steady state condition (Ghashghaee and Karimzadeh, 2011). Thus, the 

inferential model has to be able to track the changing process condition (Slišković et 

al., 2013) and be able to update the model parameters (Iliyas et al., 2013), if necessary. 

In order to solve this issue, the ANN with a fast training capability is required. Among 

the techniques that are capable of fast trainings are the Generalized Regression Neural 

Network (GRNN) and the use of the Extreme Learning Machine (ELM) algorithm to 

train the Feedforward Neural Network (ELM-NN). Thus, the GRNN or the ELM-NN 

is used to develop the inferential model. 
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