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PENGKAJIAN SIFAT-SIFAT HIDROGEL UV-SAMBUNG SILANG 

BERDASARKAN PDMS UNTUK APLIKASI KEJURUTERAAN TISU 

ABSTRAK 

Kajian ini menunjukkan penghasilan hidrogel berdasarkan PDMS yang mempunyai 

sifat-sifat yang boleh disesuaikan. Dua UV-sambung silang PDMS yang mempunyai berat 

molekul (Mn=1k & 6k g/mol) disintesis dahulu dan kemudian disambung-silang dengan 

PEGDA (Mn =0.7k g/mol) pada pelbagai nisbah berat (wt.%), dengan irgacure sebagai 

pemula UV. Bagi PDMS yang mempunyai Mn yang sederhana (6k), alil metakrilat (AMA) 

digunakan sebagai pengubah reaktif untuk meningkatkan keserasian dua polimer yang sangat 

tidak saling melaruti. Campuran polimer akan menjadi hidrogel selepas terdedah kepada 

penyinaran UV yang mempunyai rantau panjang gelombang 315-400 nm pada intensiti 

purata ~ 8-10 mW / cm2 selama 30 minit. Sifat-sifat keserasian, termal, pembengkakkan, 

pembasahan, mekanikal, penjerapan protein dan sitotoksisiti hidrogel akan dinilaikan. 

Daripada kajian kalorimetri pengimbasan berbeza (DSC), walaupun dua Tg  didapati bagi 

hidrogel yang dihasilkan dari PDMS (1k) yang mempunyai Mn  rendah, hidrogel tersebut 

keserasian yang baik disebabkan oleh permukaan adalah homogen pada setiap PEG wt.% 

seperti yang ditunjukkan oleh keputusan daya atomic mikroskop (AFM). Hidrogel yang 

dihasilkan dari PDMS (6k) sangat tidak serasi terutamanya berlaku kepada 30 wt.% PEG 

dengan pemisahan fasa-makro berlaku. Permasalahan ini telah diselesaikan selepas AMA 

dimasukkan. Pemisahan fasa bagi hidrogel mempengaruhi sifat-sifat lain di mana permukaan 

hidrogel yang lebih hidrofobik telah menurunkan sifat pembengkakkan dan pembasahan 

disebabkan oleh jumlah domain PEG yang sedikit, lalu menjadikannya kurang hidrofilik, 

selepas kemasukan AMA. Penjerapan protein di permukaan hidrogel ini adalah lebih tinggi 

jika permukaannya dikuasai oleh permukaan PDMS, namun penjerapan masih rendah jika 

berbanding dengan PDMS murni. Kekakuan hidrogel bertepatan dengan rangkaian tisu 

lembut yang boleh diterima pada ~ 0.5-1 MPa, dan kekakuan hidrogel tersebut meningkat 

dengan peningkatan PEG wt.%, dan penurunan AMA wt.%. Digabungkan dengan 
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sitotoksisitas yang rendah, hidrogel yang dihasilkan berpotensi digunakan sebagai perancah 

dalam bidang kejuruteraan tisu. 
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EVALUATION OF PDMS-BASED UV-CROSSLINKED HYDROGELS 

PROPERTIES FOR TISSUE ENGINEERING APPLICATIONS  

ABSTRACT 

This work presents the fabrication of PDMS-based hydrogels with tunable properties 

via direct blending. Two UV-crosslinkable PDMS with different molecular weights (Mn=1k 

& 6k g/mol) were first synthesized and then UV-cured with PEGDA (Mn=0.7k g/mol) at 

various wt.% ratio, in the presence of Irgacure as photoinitiator. For the medium Mn PDMS 

(6k), allyl methacrylate (AMA) was used as reactive modifier to enhance compatibility of 

the two highly immiscible polymers. The liquid mixtures were converted into hydrogels after 

exposed to UV irradiation at a wavelength region of 315-400 nm at the average intensity of 

10 mW/cm2 for 30 minutes. Compatibility, thermal, swelling, wetting, mechanical, protein 

adsorption and cytotoxicity properties of these PDMS hydrogels were evaluated. From 

differential scanning calorimetry (DSC) study, although two Tg  were observed in the 

hydrogels fabricated from the low Mn  PDMS (1k), they were all compatible since the 

hydrogel surface was homogeneous at any PEG wt.% ratio, as supported by AFM result. The 

hydrogels fabricated from the PDMS (6k) were highly incompatible and this was especially 

the case for the 30 wt.% PEG with the occurrence of macrophase separation. This problem 

was solved with addition of AMA. The phase separation of these PDMS (6K) hydrogels 

affected other properties in which the more hydrophobic gel surface, after the addition of 

AMA, had lowered their swelling and wetting properties since there was a fewer amount of 

PEG domains to render the hydrophilic surface. Protein adsorption to these hydrogel was 

higher if the surface was dominated by the PDMS surfaces, yet the adsorption was still lower 

than the bare PDMS. Stiffness of the hydrogel was fall within an acceptable range of soft 

tissue at ~ 0.5-1 MPa, with the stiffness increased with the increased of PEG loading, and/or 

the decreased of AMA loading. Coupled with their non-cytotoxic property, the fabricated 

PDMS-based hydrogels could potentially be used as scaffolds for tissue engineering 

applications.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Research background 

Hydrogels are polymeric materials that have three-dimensional network structure 

with the ability of absorbing abundant water while maintain their integrity due to chemical 

and/or physical crosslinking (Xie et. al., 2017). Hydrogels have been widely investigated in 

the past few decades, due to their exceptional potential in wide range of applications, ranging 

from food industry (Xie et. al., 2017), agricultural (Vundavalli et. al., 2015), pharmaceutical 

(Peppas et. al., 1999) and tissue engineering (Munoz-Pinto et. al., 2012; Hou et. al, 2010). 

Among these applications, hydrogels for tissue engineering applications have become a 

major area of interest with several commercial products already developed, mostly in skin 

reconstruction (Chu et. al., 2002; Falanga & Sabolinski, 1999; Fitton et. al., 2001). Some 

unique properties that make hydrogels applicable in the field of tissue engineering include 

their excellent water-absorbing capabilities, a degree of softness that highly resemble to the 

natural tissues, biocompatibility and other attractive characteristic. During the last two 

decades, natural hydrogels were gradually replaced by synthetic hydrogels which has long 

service life, high capacity of water absorption, and high gel strength (Ahmed, 2015). In 

addition, synthetic hydrogels usually have well-defined structure that can be modified to 

yield tailorable functionality and degradability. Many synthetic hydrophilic polymers such as 

PEG, PVA, PAA, PNIPAAM and other synthetic polymers, well fits the definition of 

hydrogels. Among them, PEG which possess many unique properties likes hydrophilicity, 

flexibility, non-toxicity, non-immunogenicity and low non-specific proteins adsorption, has 

been widely employed as hydrogels in the field of tissue engineering (Varghese et. al., 2009).  

Compared with the single-component hydrogels, researchers nowadays prefer to use 

multi-component hydrogels, since single-component hydrogels cannot fulfil all the criteria 

required for an ideal scaffold, such as they are mechanically fragile and non-degradable. 
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Micro- or nano-composite hydrogels, copolymeric hydrogels, multipolymer interpenetrating 

polymeric hydrogels (IPN), semi-IPN hydrogels and polymer blends are some examples of 

promising multi-component hydrogels that are widely investigated due to their sustainability 

in the field of tissue engineering. In these hydrogels, new properties that are different from 

the intrinsic properties of the original materials can be easily endowed by combining two or 

more components together. For instance, organic-inorganic PEG/PDMS hydrogels has been 

fabricated by Hou et. al. (2010) and they found that these hydrogel scaffolds demonstrated 

the ability to guide mesenchymal stem cells (MSCs) towards osteogenic differentiation with 

increased levels of PDMS microparticles. Besides, a nanocomposite made up of PEG and 

clay has been developed by Varghese et. al. (2009) and they elucidated that the overall 

mechanical properties of PEG hydrogels were improved by adding up to 10 wt.% of clay. It 

is worth to mention that one of the similarity between both studies is that the hydrogels were 

prepared by photocrosslinking technique in their respective projects. As compared to thermal 

or redox initiated crosslink mechanisms, photo-induced free radical hydrogen crosslinking 

produces less heat while allowing for improved spatial and temporal control (Hou et. al, 

2010), due to short-term UV-exposure, i.e. within a minutes. Hence, photopolymerization is 

generally considered as a safe method to encapsulate cells. Another advantage of in situ 

polymerization is that specific shapes can be tailored made to fit exactly the tissue defects 

need to be repaired.  

UV-curable PDMS-based hydrogels is another class of hydrogels, which are widely 

used as contact lenses (Lin et. al., 2014). Compared to the hydrogels which made up of only 

hydrophilic chains, these hydrogels is mainly consisted of hydrophobic PDMS. They also 

possess the unique properties of PDMS, such as biocompatible, high gas permeability, low 

Tg and unique viscoelastic properties when lightly crosslinked. PDMS have been used in 

various biomedical applications, such as transdermal (Mikolaszek et. al., 2016), antifouling 

coating (Gu et. al., 2016), ultrafiltration, drug delivery system (Racles, 2013) and tissue 

engineering applications (Munoz-Pinto et. al., 2012; Sung et. al., 1999; Pedraza et. al., 2013; 
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Si et. al., 2016). Although the potential uses of PDMS as scaffolds have been widely studied, 

their hydrophobicity always hinders their applicability in biomedical applications, due to 

non-specific protein adsorption following implantation (Wong & Ho, 2009; Zhang & Chiao, 

2015). This phenomenon is highly unfavourable since protein adsorption to the hydrophobic 

surface is often irreversible and proteins will denature once they absorb to the surface. 

Surface modification of PDMS is a facile method to endow the surface hydrophilic, but it is 

often involved a complex process which consumes time and the uses of solvents which is 

toxic. Compared to surface modification, blending of PDMS with PEG is a simple and time 

saving method to impart hydrophilicity not only in the surface, but also within the bulk. 

Regard to this, this project focuses on the fabrication of two-component hydrogels that are 

comprised of two different acrylate-functionalized polymers, which is PDMSMA as the 

major phase and PEGDA as the minor phase, by means of photocrosslinking reaction. By the 

end, it should be able to translate the PDMS-PEG products into hydrogels by varying the 

number-average molecular weight (Mn) of PDMS and the composition of PDMS and PEG. 

1.2 Problem statement 

Controlled synthesis of PDMS with a well defined Mn  is a prerequisite for the 

success of this project since physical and chemical properties of a crosslinked polymer is 

mainly governed by the Mn of matrix. Cationic ring opening polymerization (CROP) is a 

facile method to obtain the predesigned molecular weight and the molecular architecture, as 

described elsewhere (Toskas et. al., 2006). D4 monomers is widely used to afford the linear 

homopolymer PDMS chains and the SiH containing endcappers is used to terminate the 

growing chains at the end of reaction (Bi et. al., 2007). Many groups have used this chemical 

scheme to synthesis a myriad of functionalized PDMS. For example, Hou et. al. (2010) had 

further functionalized the SiH-terminated PDMS chains with allyl methacrylate (AMA) via 

hydrosilylation reaction to endow them the photocrosslinking moieties. 

The fabrication of PDMS-based hydrogels via solution polymerization technique is 

highly unfavourable since aqueous solvent is not miscible with PDMS (Lee et. al., 2003). On 
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the other hand, organic solvent is not often used due to its cytotoxicity. Therefore, the 

crosslinking reaction of PDMS is usually done in bulk polymerization technique. Conversely, 

one issue dealing with the bulk technique is the effects of molecular weight and/or viscosity 

on the curing efficiency of a polymer, particularly referred to the high Mn homologs. Regard 

to this matter, reactive diluents has been widely used to induce dilution effect during the 

crosslinking reaction of a polymer, mostly in epoxy coating (Li et. al., 2014). However, only 

few research papers have been reported on the use of reactive diluents in PDMS, due to the 

fact that PDMS has limited miscibility with most reactive diluents, such as acrylate- and 

methacrylate based reactive diluents. Therefore, microphase separation was identified by the 

observation of two Tg due to the separated reactive diluent phases (Yu et. al., 1985; Pouget et. 

al., 2009). In this project, AMA is proposed to be incorporated into the PDMS curing 

formulation to facilitate the crosslinking reaction since it fulfils the basic definition of 

reactive diluent (Ash, 2007). AMA should be incorporated in the right amount to avoid the 

phase separation problem, even though the functionalized methacrylate (MA) moieties in the 

terminal ends of PDMS chains made it more miscible with the reactive diluent. 

PDMS is inherently hydrophobic, making it difficult for water to penetrate into its 

crosslinked structure. Therefore, PDMS should be blended with PEG in order to transform 

them into hydrogels. One of the issues dealing with this technique is the degree of miscibility 

or phase separation when blending the two polymers together. Macro-phase separation will 

occur if the PDMS-PEG blends suffer a change of composition, which force them into non-

stable region. To avoid the phase separation problem, the Mn of PDMS and the amount of 

PEG loading should be carefully designed to get a desirable compromise between swelling 

properties and material’s compatibility. Besides, PEG was used to switch the PDMS surface 

from hydrophobic to hydrophilic one. Nevertheless, micro-phase segregation of PEG to the 

surface remains a challenge since PEG tends to buried within the PDMS matrix for their low 

surface energy (Gu et. al., 2016; Wang et. al., 2011). Therefore, surface properties of these 
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hydrogels were carefully controlled by varying the PDMS-PEG composition, until PEG is 

micro-phase segregated to render the surface hydrophilic.  

1.3 Objectives of the study  

The objectives of this study are simplified as follows. 

1. To synthesize PDMSMA precursors with a well-defined molecular weight (Mn) 

2. To study the effects of different Mn of PDMS and different reactive diluent loading 

on the curing characteristics of the PDMSMA precursors 

3. To investigate the effects of different ratio of PDMS to PEG on the compatibility, 

swelling, surface, mechanical, protein adsorption and toxicity properties of the 

PDMS-PEG hydrogels  

1.4 Research scope 

The acid-catalyzed CROP process was used to synthesize PDMS precursors with 

low PDI value. The equilibrium chain redistribution during the reaction was likely to impart 

variations on the PDI value of the PDMS precursors, especially for the high Mn homologs 

(12000 g/mol). Therefore, the PDI value of PDMS precursor was first determined by GPC 

and 1H-NMR end group analysis, respectively. UV-crosslinking of the PDMS precursor was 

only further proceeded if the PDI value obtained was less than or equal to 1.5.  

Stickiness of the pristine PDMS gel can cause handling problem during sample 

characterization, especially referred to the PDMS with Mn of 6000 g/mol and 12000 g/mol. 

Besides, this issue might cause cytotoxicity in in-vitro testing as the stickiness of the gels 

also reflected to a considerable amount of leftover unreacted oligomer. The issue should be 

first addressed before it is further blended with PEG. Therefore, curing profile was first 

developed to determine the optimized curing time (tc) as the function of different Mn of 

PDMS and different reactive diluent loading, in order to fabricate the PDMS gels with the 

least unreacted oligomers in the shortest possible time. However, PDMS precursors with Mn 
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