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Received: 11 October 2018 / Revised: 24 February 2020 / Published online: 24 March 2020
� The Author(s) 2020

Abstract
A pebbling move on a graph removes two pebbles from a vertex and adds one

pebble to an adjacent vertex. A vertex is reachable from a pebble distribution if it is

possible to move a pebble to that vertex using pebbling moves. The optimal peb-

bling number p opt is the smallest number m needed to guarantee a pebble distri-

bution of m pebbles from which any vertex is reachable. The optimal pebbling

number of the square grid graph PnhPm was investigated in several papers (Bunde

et al. in J Graph Theory 57(3):215–238, 2008; Xue and Yerger in Graphs Combin

32(3):1229–1247, 2016; Gy}ori et al. in Period Polytech Electr Eng Comput Sci

61(2):217–223 2017). In this paper, we present a new method using some recent

ideas to give a lower bound on p opt . We apply this technique to prove that

p opt ðPnhPmÞ� 2
13
nm. Our method also gives a new proof for

p opt ðPnÞ ¼ p opt ðCnÞ ¼ 2n
3

� �
.
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1 Introduction

Graph pebbling is a game on graphs. It was suggested by Saks and Lagarias to solve

a number theoretic problem, which was done by Chung [4]. The main framework is

the following: a distribution of pebbles is placed on the vertices of a simple graph. A

pebbling move removes two pebbles from a vertex and places one pebble on an

adjacent vertex. The goal is to reach any specified vertex by a sequence of pebbling

moves. This may be viewed as a transportation problem on a graph where the cost of

a move is one pebble. We begin with some notation needed to state our results.

Let G be a simple graph. We denote the vertex and edge set of G by V(G) and

E(G), respectively. A pebble distribution P is a function from V(G) to the

nonnegative integers. We say that G has P(v) pebbles placed at the vertex v under

the distribution P. We say that a vertex v is occupied if PðvÞ[ 0 and unoccupied

otherwise. The size of a pebble distribution P, denoted Pj j, is the total number of

pebbles placed on the vertices of G.

Let u be a vertex with at least two pebbles under P, and let v be a neighbor of u. A

pebbling move from u to v consists of removing two pebbles from u and adding one

pebble to v. That is, a pebbling move yields a new pebble distribution P0 with

P0ðuÞ ¼ PðuÞ � 2 and P0ðvÞ ¼ PðvÞ þ 1. A sequence of pebbling moves is

executable under a pebble distribution if we can apply its moves one after the

another so that the number of pebbles is nonnegative after each move on any vertex.

We call such a sequence a pebbling sequence. We say that a vertex v is k-reachable

under the distribution P if we can obtain, after a pebbling sequence, a distribution

with at least k pebbles on v. If k ¼ 1 we say simply that v is reachable under P. More

generally, a set of vertices S is k-reachable under the distribution P if, after a

pebbling sequence, we can obtain a distribution with at least a total of k pebbles on

the vertices in S.

A pebble distribution P on G is solvable if all vertices of G are reachable under

P. A pebble distribution on G is optimal if it is solvable and its size is minimal

among all of the solvable distributions of G. Note that optimal distributions are

usually not unique.

The optimal pebbling number of G, denoted by p opt ðGÞ, is the size of an optimal

pebble distribution. In general, the decision problem for this graph parameter is NP-

complete [5].

We denote with Pn and Cn the path and cycle on n vertices, respectively. The

Cartesian product GhH of graphs G and H is defined in the following way:

VðGhHÞ ¼ VðGÞ � VðHÞ and fðg1; h1Þ; ðg2; h2Þg 2 EðGhHÞ if and only if

fg1; g2g 2 EðGÞ and h1 ¼ h2 or fh1; h2g 2 EðHÞ and g1 ¼ g2.

Let u and v be vertices of graph G. The distance between v and u, namely the

number of edges contained in the shortest path between u and v, is denoted by

d(v, u). The distance k neighborhood of v contains the vertices whose distance from

v is exactly k. We denote this set with NkðvÞ.
The optimal pebbling number is known for several graphs including paths, cycles

[1, 6, 7], caterpillars [8] and m-ary trees [9]. The optimal pebbling number of grids

has also been investigated. Exact values were proved for PnhP2 [1] and PnhP3 [2].
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The question for bigger grids is still open. The best known upper bound for the

square grid can be found in [3]. Diagonal induced subgraphs of the square grid was

studied in [10].

Instead of the square grid on the plane it is easier to work with the square grid on

the torus. As the plane grid is a subgraph of this, any lower bound on the torus grid

will also give a lower bound on the plane grid as well. It is well known that the torus

grid is a vertex transitive graph, i.e. given any two vertices v1 and v2 of G, there is

some automorphism f : VðGÞ ! VðGÞ such that f ðv1Þ ¼ v2. Some of our statements

will be stated for all vertex transitive graphs.

In this paper we present a new method giving a lower bound on the optimal

pebbling number. We obtain 2
13
VðGÞ as a lower bound for the optimal pebbling

number of the square grid, which is better than the previously known bounds.Please

provide the complete details for reference [11].

In Sect. 2 we show that the concept of excess—introduced in [2]—can be used to

improve the fractional lower bound on the optimal pebbling number. The higher the

total excess, the better the obtained bound on the optimal pebbling number is. The

problem is that this method is not standalone, because excess can be zero and zero

excess does not give us any improvement. Therefore the main objective of the rest

of the paper is to give a lower bound on the excess using some other pebbling tools.

In Sect. 3 we study the concept of cooperation. Cooperation is the phenomenon

which makes pebbling hard. We show there, that if cooperation can be bounded

from above, then we can state a lower bound on the optimal pebbling number. We

invent the tool called cooperation excess, which is a mixture of cooperation and

excess. In this section we state and prove several small claims which will be

required later to prove Lemma 4.1. This lemma is the essence of our work. It shows

that if the total excess is small, then there is not much cooperation and if

cooperation is huge, then the total excess is also large. Therefore in each case one of

our two lower bounds works well.

Unfortunately, the proof of Lemma 4.1 is quite complicated. The third part of

Sect. 3 and the whole Sect. 4 contain the parts of this proof. In Sect. 5 we show a

general method which can be used to give a lower bound on the optimal pebbling

number. This method relies on Lemma 4.1. Using this method we show that

p opt ðPnhPmÞ� 2
13
nm. We also present a new proof for

p opt ðPnÞ ¼ p opt ðCnÞ ¼ 2n
3

� �
.

2 Improving the Fractional Lower Bound

The optimal pebbling number problem can be formulated as the following integer

programming problem [11], where v1; v2; . . .; vn are the vertices of the given graph:
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PðviÞ þ
X

x2NðviÞ
ðpiðx; viÞ � 2piðvi; xÞÞ� 1 8i 2 f1; 2; . . .ng

PðvjÞ þ
X

x2NðvjÞ
ðpiðx; vjÞ � 2piðvj; xÞÞ� 0 8i; j 2 f1; 2; . . .ng

PðviÞ� 0 integer 8i 2 f1; 2; . . .ng
piðvj; vkÞ� 0 integer 8i; j; k 2 f1; 2; . . .ng
min

X

v2VðGÞ
PðvÞ

Its fractional relaxation can be solved efficiently, and its solution is called the

fractional optimal pebbling number, which gives a lower bound on the optimal

pebbling number. Originally it was defined in a bit different way, but this is an

equivalent definition. You can find the details of fractional pebbling in [11].

Notice that some vertices must be 2-reachable in a solvable distribution if there is

an unoccupied vertex. Optimal distributions usually contain many unoccupied and

several 2-reachable vertices. However, in some sense, 2, 3, or more reachability

wastes the effect of pebbles. Also 3-reachability induces larger waste than

2-reachability. In order to measure this waste we use the notion called excess, which

was introduced in [2].

Definition Let Reach ðP; vÞ be the greatest integer k such that v is k-reachable

under P. The excess of v under P is Reach ðP; vÞ � 1 if v is reachable and zero

otherwise. It is denoted by Exc ðP; vÞ.

We are interested in the total amount of waste, therefore we define the notation of

total excess of P, which is TE ðPÞ ¼
P

v2V ðGÞ Exc ðP; vÞ.

Definition An effect of a pebble placed at v is the following:

ef ðvÞ ¼
Xdiam ðGÞ

i¼0

1

2

� �i

jNiðvÞj

.

Herscovici et al. proved that the fractional optimal pebbling number of a vertex-

transitive graph is jVðGÞj= ef ðvÞ, therefore it is a lower bound on the optimal

pebbling number. The corollary of the next theorem improves this bound.

Theorem 2.1 If P is a solvable distribution on G, then
X

v2VðGÞ
ef ðvÞPðvÞ� jVðGÞj þ TE ðPÞ:

Proof It is clear that if a vertex u is k-reachable under P, then it is mandatory that
P

v2VðGÞ
1
2

� � d ðv;uÞ
PðvÞ� k. Summing these inequalities for all the vertices, we have

that
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X

u2VðGÞ

X

v2VðGÞ

1

2

� � d ðv;uÞ
PðvÞ�

X

u2VðGÞ
Reach ðP; uÞ:

Exchange the summations on the left side and use the fact that P is solvable on the

right side, to obtain that

X

v2VðGÞ

X

u2VðGÞ

1

2

� � d ðv;uÞ
PðvÞ�

X

u2VðGÞ
ð1 þ Exc ðP; uÞÞ:

Group the elements of the second sum according to the distance i neighborhoods, to

acquire that

X

v2VðGÞ

Xdiam ðGÞ

i¼0

1

2

� �i

jNiðvÞjPðvÞ� jVðGÞj þ TE ðPÞ:

h

Corollary 2.2 If P is a solvable distribution on a vertex-transitive graph G, then

jPj � jVðGÞj þ TE ðPÞ
ef ðvÞ :

Naturally, this bound is useless without a proper estimate of total excess. To say

something useful about it we look at the optimal pebbling problem from a different

angle.

3 Cooperation Between Distributions

In this section we talk about cooperation, which makes pebbling hard.

3.1 Pebbling Cooperation

Definition Let P and Q be pebble distributions on graph G. Now Pþ Q is the

unique pebble distribution on G which satisfies ðPþ QÞðvÞ ¼ PðvÞ þ QðvÞ. P and

Q are disjoint when no vertex has pebbles under both distributions.

Definition The coverage of a distribution P is the set of vertices which are

reachable under P. We denote the size of this set with Cov ðPÞ.

A natural idea to find small solvable distributions is finding a distribution with

small size and huge coverage and make it solvable by placing some more pebbles.

In the rest of the section we assume that we add disjoint distributions P and Q

together. We would like to establish an upper bound using Cov ðPÞ þ Cov ðQÞ on

Cov ðPþ QÞ . Similarly, we are interested in some relation between TE ðPþ QÞ
and TE ðPÞ þ TE ðQÞ.
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Definition A cooperation vertex is neither reachable under P nor Q, but it is

reachable under Pþ Q. We denote the number of such vertices with Coop ðP;QÞ. A

double covered vertex is reachable under both P and Q, we denote the size of their

set with DC ðP;QÞ.

The following claim is a trivial consequence of the definitions.

Claim 3.1 Cov ðPþ QÞ ¼ Cov ðPÞ þ Cov ðQÞ þ Coop ðP;QÞ � DC ðP;QÞ.

Definition We say that a distribution U is a unit, if only one vertex has pebbles

under U.

Units are the building blocks of pebble distributions in the following sense: Any

distribution P can be written as
P

ujPðuÞ[ 0 Pu, where Pu is a unit having

P(u) pebbles at u. Units have two main advantages over other distributions. Their

coverage and total excess can be easily calculated:

Claim 3.2 Let U be a unit distribution which places pebbles at vertex u. Then we

have that

Cov ðUÞ ¼
Xlog2ðPðuÞÞb c

i¼0

jNiðuÞj;

TE ðUÞ ¼
Xlog2ðPðuÞÞb c

i¼0

jNiðuÞj
PðuÞ

2i

� 	
� 1

� �
:

3.2 Combining Cooperation and Excess

We would like to distinguish the sources of excess. Does it come from P or Q or

does it arise from the ‘‘cooperation of P and Q’’?

Definition The unit excess of P, denoted by UE ðPÞ, is
P

ujPðuÞ[ 0ðTEðPuÞÞ, where

Pu is a unit on u containing exactly P(u) pebbles and all of them are placed at u.

Definition The cooperation excess of a vertex v is

Exc ðPþ Q; vÞ � ðExc ðP; vÞ þ Exc ðQ; vÞÞ. If it is positive, then we say that

v has cooperation excess.

Similarly, the cooperation excess between P and Q is the total excess of Pþ Q

minus the total excesses of P and Q. Denote this with CE(P, Q).

We have mentioned previously, that we can split any pebbling distribution into

disjoint unit distributions. If we get t unit distributions, then the application of

Claim 3.1 and the definition of cooperation excess gives the following results.

Claim 3.3 Let P be a pebble distribution on G and let D be a disjoint

decomposition of P to unit distributions. Denote the elements of D with

U1;U2; . . .;Ut. Now
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TE ðPÞ ¼
Xt

i¼1

TE ðUiÞ þ
Xt

i¼1

CE
Xi�1

k¼1

Uk;Ui

 !

; ð3:1Þ

Cov ðPÞ ¼
Xt

i¼1

Cov ðUiÞ þ
Xt

i¼1

Coop
Xi�1

k¼1

Uk;Ui

 !

� DC
Xi�1

k¼1

Uk;Ui

 ! !

:

ð3:2Þ

Both
Pt

i¼1 TE ðUiÞ and
Pt

i¼1 Cov ðUiÞ can be calculated easily. The ‘‘effect’’ of

cooperation is calculated in the other, more complicated terms. Lemma 4.1 is going

to establish a connection between those quantities in a fruitful way.

3.3 Connection Between Cooperation and Excess

Now let us consider an arbitrary graph G, and let D be the maximum degree of G. In

the rest of the section we assume that Q ¼ U is a unit having pebbles only at vertex

u and its size is not zero. Now we state some basic claims about the recently defined

objects.

Claim 3.4 Each cooperation vertex c has a neighbor that has cooperation excess.

Proof A cooperation vertex c is not reachable under P or U. Therefore none of its

neighbors is 2-reachable under these distributions. On the other hand, c is reachable

under Pþ U, hence there is a neighbor n of c which is 2-reachable under this

distribution. This means that n has cooperation excess.h

Definition If a vertex is not a cooperation vertex and it does not have cooperation

excess, then we call it cooperation free.

This name is a somewhat misleading, because these vertices can participate in

cooperation in a sophisticated way. For an example see Fig. 1.

Definition Let r be a pebbling sequence. Pr denotes the pebble distribution which

is obtained by the application of r to distribution P. A vertex is utilized by a

pebbling sequence if there is a move in the sequence which removes or adds a

pebble to the vertex. Let M(v) be the minimal number of cooperation vertices,

including v if it is a cooperation vertex, which are utilized by a pebbling sequence r

11

1

2

2 1

u v

x

y w

Fig. 1 Vertices x and y are both
cooperation free, but v has
cooperation excess and w is a
cooperation vertex
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which satisfies that ðPþ UÞrðvÞ� 2. If v is not 2-reachable under Pþ U, then we

say that MðvÞ ¼ 1.

An example where M() is shown for each vertex can be seen in Fig. 2.

Claim 3.5 If there is an available pebbling move which removes a pebble from a

cooperation vertex c, then either two neighbors of c, say e and f, have cooperation

excess at least 1 with MðeÞ\MðcÞ and Mðf Þ\MðcÞ or a neighbor d has

cooperation excess at least 3 with MðdÞ\MðcÞ.

Proof The condition implies that c can obtain two pebbles by some pebbling moves

under Pþ U. Consider a pebbling sequence r which does this by utilizing M(c)

cooperation vertices. Either r moves the two pebbles to c from two different

neighbors e and f, or it can move both pebbles from the same neighbor d. None of

the neighbors are 2-reachable under P or U, but e, f and d has to be 2, 2 and 4

reachable under Pþ U, respectively. This means that e and f have cooperation

excess at least 1 and the cooperation excess of d is at least 3. Furthermore, r moves

two pebbles to e and f or to d, then it moves them to c with some more moves. This

shows that MðeÞ;Mðf Þ;MðdÞ\MðcÞ.h

Claim 3.6 If the cooperation excess of a vertex v is at least 3 and one of its

neighbors, say c, is a cooperation vertex, then there is a vertex w that is adjacent to

v and MðwÞ�MðvÞ.

Proof Note that v does not have two pebbles under Pþ U, otherwise c can not be a

cooperation vertex. Vertex v obtains pebbles from its neighbors, so one of them, say

w, can get two pebbles by utilizing at most M(v) cooperation vertices. If v is a

cooperation vertex, then a pebbling sequence resulting in two pebbles at v utilizes

more cooperation vertices than the sequence which does not make the final move

from w to v.h

Claim 3.7 If a vertex v has cooperation excess, then it has a neighbor which has

cooperation excess or reachable under P or U.

1

1

1

1

1

1

1

1

1

1

1

1

8

[0]

[0]

[0]

[0]

[1] [2] [∞]

[∞]

w

[0]

[0]

[0]

[0]
u

[0]

[0]

[0]

[0]

[0]

vx

y

z

Fig. 2 Vertices w, x, v and z are cooperation vertices. The M values are written in brackets
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Proof Vertex v gets a pebble under Pþ U, so a neighbor n is 2-reachable under

Pþ U. If n is not 2-reachable under P or U, then it has cooperation excess.h

Remark In fact, a stronger property holds. If a vertex v gains an extra pebble by

cooperation, then it can happen in two ways: A neighbor gained extra pebbles and it

passes one of them. Or there are two or more neighbors of v such that each of them

can give some pebbles to v, but these moves somehow blocks each other. The

advantage of the cooperation is that some previously blocked moves can be done

simultaneously. This is the way how cooperation free vertices can ‘‘help

cooperation’’.

3.4 Trajectories

Here we introduce a visualization of pebbling sequences, which is slightly different

from the signature digraph used in several pebbling papers (i.e. in [5]).

Definition The trajectory of a pebbling sequence r, denoted by TðrÞ, is a digraph

on the vertices of G without parallel edges, where (u, v) is a directed edge if and

only if a pebbling move u ! v is contained in the sequence.

Definition The size of a pebbling sequence is the total number of moves contained

in it. We say that r is a minimal pebbling sequence with property p if its size is

minimal among all pebbling sequences having property p.

In the next proof we need a lemma which is frequently used to solve pebbling

problems. It is called No-Cycle Lemma and proved in several papers [5, 12, 13]. We

state this lemma in the language of this paper.

Lemma 3.8 (No-Cycle [13]) Let P be a pebble distribution on graph G, and r be a

pebbling sequence. There is a subsequence d whose trajectory does not contain

directed cycles and PrðvÞ�PdðvÞ for each vertex v.

This implies the following corollary:

Corollary 3.9 If r is a minimal pebbling sequence which moves m pebbles to a

vertex v, then its trajectory is acyclic.

Claim 3.10 If u has cooperation excess under Pþ U, where jUj[ 0, then u is

double covered.

Proof The No-Cycle lemma yields that we can move the maximum possible

number of pebbles to u without removing a pebble from u. We can move

Reach ðU; uÞ þ 1 pebbles to u, which means that we move here a pebble of P while

we keep the pebbles of U, so u is double covered.h

The following definition will be crucial in the proof.

Definition We say that a path is a coopexcess path, if each inner vertex of the path

has cooperation excess.
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Lemma 3.11 Let v be a vertex which is not double covered but it has cooperation

excess. There is a coopexcess path between v and a double covered vertex or there

are at least two cooperation free vertices such that each of them is connected to v by

a coopexcess path. If v is not 2-reachable under both P and U, then these paths does

not contain a vertex whose M value is higher than M(v).

An example for the first case is shown in Fig. 2 where y is a double covered

vertex and v, x, y is a coopexcess path. The second case can be seen in Fig. 1, where

v, x and v, y are coopexcess paths connecting v to cooperation free vertices.

Proof Consider a pebbling sequence r moving Reach ðU; vÞ þ Reach ðP; vÞ þ 1

pebbles to v utilizing M(v) cooperation vertices. Consider some path in the

trajectory of r connecting u to v. We can assume that the only sink in the trajectory

of r is v. A cooperation vertex without cooperation excess can not be the tail of an

arc which is contained in the trajectory, therefore each vertex in the trajectory is

either cooperation free or it has cooperation excess.

If there is a path between u and v which is contained in the trajectory such that all

vertices of this path have cooperation excess, then according to Claim 3.10 u is

double covered and this path is a coopexcess path. If an u, v path which is included

in the trajectory contains a vertex d which is double covered and each vertex

between d and v has cooperation excess, then it is a coopexcess path which we are

looking for. Otherwise, all of the u, v paths which are contained in the trajectory

contain cooperation free vertices.

In each such path let wi denote the cooperation free vertex which is the closest

vertex to v. If wi 6¼ wj exist, then we have found 2 cooperation free vertices such

that each of them is connected to v by a coopexcess path.

In the remaining case there is only one such w. Either it is a cut vertex in the

trajectory or w ¼ u. Let T be the set of vertices which are included in the trajectory.

We divide T to three sets U, V and W in the following way:

We remove w from the trajectory obtaining some components, then we place a

vertex t of T to U if t is in the component containing u, similarly we place t to V if it

is in the component containing v and place the remaining vertices to W. Now we

add w to all of these sets. Let ru be the sequence of pebbling moves containing all

moves of r which acts only on the vertices of U. We define rw and rv similarly. The

sources of the latter two sequences are only w and vertices having pebbles under P.

If there is a cooperation free vertex in V which is not w, then the closest one to v

is connected to v by a coopexcess path. Hence, assume that all vertices in the

trajectory of dv have cooperation excess.

If w is reachable under U, then rw is empty (w is not double covered) and

ðPþ UÞruðwÞ� Reach ðU;wÞ. Since w is cooperation free, we can replace ru with a

pebbling sequence d which does not use any pebbles of P and

ðPþ UÞruðwÞ ¼ ðPþ UÞdðwÞ. Therefore drv is a pebbling sequence under Pþ U

and ðPþ UÞrðvÞ ¼ ðPþ UÞdrvðvÞ ¼ Reach ðP; vÞ þ Reach ðU; vÞ þ 1. rv must use

a pebble of P to do this, otherwise drv is executable under U which is a

contradiction. The trajectory of rv is connected, therefore there is a vertex which is

double covered, furthermore each vertex in this trajectory is connected by a
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coopexcess path to v, so we are done.

If w is not reachable under U, then ðPþ UÞrurwðwÞ� Reach ðP;wÞ. Thus, there is

a minimal pebbling sequence d which is executable under P and

PdðwÞ ¼ Reach ðPþ U;wÞ ¼ Reach ðP;wÞ. Clearly drv is not executable under

distribution P or ðPþ UÞdrvðvÞ\ðPþ UÞrðvÞ. Both cases require that d removes a

pebble from a vertex contained in V.

Let X � V be the set of vertices from which d removes a pebble. d is

executable under P so these vertices are 2-reachable under P. Consider the

trajectory of d. If any vertex x from X is connected in the trajectory with a vertex y

contained in U without pass-through w, then each vertex in such a connecting path is

2-reachable under P, therefore it is cooperation free or has cooperation excess. So

there is either an other cooperation free vertex connected by a coopexcess path to v,

or there is a coopexcess path between v and y which is connected to u by a path in

the trajectory of r which does not contain w, so that path has to contain a double

covered or a cooperation free vertex, which is not w.

The remaining case is when w separates all elements of X from U in the

trajectory of d.

Let duw be a maximal subset of d which is executable without using the pebbles

placed at X , and let dv be the remaining subsequence. duwrv is not executable under

Pþ U or ðPþ UÞduwrvðvÞ\ðPþ UÞrðvÞ ¼ ðPþ UÞrurwrvðvÞ. Therefore rurw
moves more pebbles to w than duw, but dv is executable under Prurw , thus

PrurwdvðwÞ[PdðwÞ, therefore w has cooperation excess.

To prove the second claim, consider the paths we have found. If they were part of

the trajectory of r, then all of them are 2-reachable under Pþ U, so their M value

can not be higher than M(v). Otherwise, the path consists of vertices from the

trajectory of r and some others whose M value is zero, since they are 2-reachable

under P. h

The following claim is a trivial consequence of the definitions.

Claim 3.12 If u contains at least two pebbles and it is double covered, then one of

its neighbors is also double covered.

In the rest of the section we assume, that u contains at least two pebbles, i. e.

jUj � 2. Therefore we can use the previous claim.

Lemma 3.13 Assume that U contains at least two pebbles. Then each double

covered vertex d is connected by a coopexcess path to an other double covered

vertex or a cooperation free vertex. Furthermore, each vertex of this coopexcess

path is 2-reachable under U.

Proof The previous claim handles the case when d is u, since the neighbor is

connected to d ¼ u. So assume that d 6¼ u.

Since d is double covered, it is reachable from U, so it is connected to u by a path,

whose vertices are 2-reachable under U. Therefore these vertices can not be

cooperation vertices. If there is a vertex on this path which does not have

cooperation excess, then the vertex closest to d satisfies the conditions of the second

type. Otherwise, u has cooperation excess which means that it is double covered.h
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We are getting closer to establish a connection between the number of

cooperation vertices and cooperation excess.

Definition We call a subset Q of V(G) a C-block, if

(1) each pair of vertices in Q is connected by a coopexcess path,

(2) it contains a vertex having cooperation excess

and it is maximal with these properties.

Notice that the intersection of two C-blocks cannot contain a vertex having

cooperation excess.

Lemma 3.14 Each C-block either

(3) contains at least two double covered vertices, or

(4) contains one double covered vertex and one cooperation free vertex, or

(5) contains at least two cooperation free vertices.

Proof Consider an arbitrary element v of Q which having cooperation excess. If the

C-block does not have a double covered vertex, then Lemma 3.11 guarantees that

two cooperation free vertices are connected to v by a coopexcess path, which means

that they are contained in Q, so (5) is satisfied.

Otherwise Q contains a double covered vertex. According to Lemma 3.13, either

there is an other double covered vertex in Q, or a cooperation free vertex. Thus

either (3) or (4) is satisfied.h

Later we generalize the notion of C-blocks, so that we keep the properties

of 3.14. The following statement will be useful for this.

Lemma 3.15 If a vertex v having cooperation excess is adjacent to a cooperation

vertex c such that MðvÞ\MðcÞ , then there are vertices e and f, such that each of

them is either double covered or cooperation free and they are connected to v by

coopexcess paths containing only vertices whose M values are smaller than M(c).

Proof Vertex v has a cooperation vertex neighbor, therefore v is not 2-reachable

under P or U. According to Lemma 3.11 there is a double covered vertex or there

are two cooperation free vertices who are connected to v by a coopexcess path

containing only vertices whose M values are at most MðvÞ\MðcÞ. In the latter case

we are done. Since the double covered vertex is connected to an other double

covered or cooperation free by a coopexcess path containing vertices whose M

value is zero, according to Lemma 3.13. The concatenation of these two coopexcess

paths fulfills the criteria.h

4 Connection Between Total Cooperation Excess, Number
of Cooperation Vertices and Maximum Degree

In this section we prove a crucial lemma. Unfortunately, the proof requires quite a

lot of effort, including many small claims.
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Lemma 4.1 Let P be an arbitrary pebble distribution on G and U be a unit having

at least two pebbles, such that P does not contain a pebble at u. Now we have

Coop ðP;UÞ � DC ðP;UÞ� ðD� 2ÞCE ðP;UÞ:

This lemma gives a connection between the total cooperation, the total number of

double covered vertices and total cooperation excess. The proof would be relatively

easy if the effect of a pebble would appear close to the location of the pebble. The

example on Fig. 3. shows, that unfortunately this is not always true.

Another difficulty arises from the fact that a cooperation vertex can have

cooperation excess. For such an example see Fig. 4. To prove Lemma 4.1 we get rid

of such vertices one by one.

So to prove the lemma we will change the graph in several steps. In the new

graph it will be easier to isolate these effects.

We introduce a sequence of auxiliary graphs A0;A1; . . .;Ak, whose vertices are

labeled with vectors of four coordinates. The first and fourth coordinate is always an

integer, while the other coordinates are binary. We denote the vertices of these

graphs with underlined letters and the ith coordinate of vertex b with bi. We encode

the parameters of the investigated pebbling problem in the auxiliary graph and in the

coordinates in the following way:

A0 is isomorphic to G. The first coordinate of each vector is the amount of the

cooperation excess of the corresponding vertex. The second coordinate is 1 iff the

corresponding vertex is a cooperation vertex. The third coordinate is 1 when the

vertex is double covered. Finally, the last coordinate is M(v), i.e. the minimum

number of cooperation vertices have to be utilized by a pebbling sequence to obtain

2 pebbles at v, where v is the corresponding vertex. So A0 is representation of the

original configuration, the labels give the values of the various quantities that we are

interested in. An example can be seen on Fig. 5.

The other graphs in the sequence A1; . . .;Ak will be obtained from A0 by applying

certain operations recursively, until we finally obtain Ak with some useful

properties. It is important to note that although the labels of A0 are obtained from

the pebble distribution on G, this will not be true any more for the other auxiliary

graphs. We are not trying to change the graph and the pebble distribution and then

obtain the new labels from these. We just apply the transformation on the abstract,

labeled graphs.

Now we translate the properties of the pebble distribution to properties of A0.

2 1 1 1 1 1
u

Fig. 3 The triangles are
cooperation vertices. Notice that
they can be far from the added
unit
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Definition We call a path P in A an A-path, if each inner vertex b of P satisfies

b1 [ 0. We say that B is an A-block iff

(6) there is a vertex b 2 B such that b1 [ 0,

(7) if a; b 2 B, then there is an A-path which connects them

and B is maximal to these properties.

Note that the concept of A-path and A-block are generalizations of coopexcess

path and C-block, respectively. In this language, the statement of Lemma 4.1 can be

formulated as:
X

a2A
a2 �

X

a2A
a3 �

X

a2A
a1ðD� 2Þ

We state four properties of A0 which will be inherited to later auxiliary graphs. The

significant properties are the first and the last. The other two are technical ones

which will help the proof of inheritance stated in Claim 4.5.

Claim 4.2 The following statements hold for A0:

(8) If c1c2 [ 0 then one of the following two cases hold:

(a) there exist a d which is adjacent to c, d1 � 3 and d4\c4, or

(b) there are vertices e and f such that they are neighbors of c, e1 and

f1 are both positive, e4\c4 and f4\c4.

(9) If a1 � 3 and a has a neighbor c such that c2 ¼ 1, then there is a b, which is

adjacent to a and a4 � b4.

(10) Let c be a vertex whose first and second coordinates are both positive. If a is

a neighbor of c such that a1 [ 0 and a4\c4, then there are vertices eand

f such that each of them is connected to a by A -paths containing only

vertices having their fourth coordinate smaller than c4, and their third

coordinate is either 1 or the first and second coordinates of them are 0.

(11) Each A -block contains either

(a) two vertices with third coordinate 1, or

(b) two vertices with first and second coordinates 0, or

4

1 1

1 1

yxu

Fig. 4 Both x and y are
cooperation vertices,
furthermore x has cooperation
excess
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(c) one vertex with third coordinate 1 and one vertex with first and second

coordinates 0.

1

1

1

1

1

1

1

1

1

1

1

1

8
u

b a

a

a

a

a

a

a

ba

b

b

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦

b

a

a

a

a

a

a

aa

b

b

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦

b =

⎡
⎢⎢⎣
2
0
1
0

⎤
⎥⎥⎦a =

⎡
⎢⎢⎣
1
0
1
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0
1
0
∞

⎤
⎥⎥⎦

⎡
⎢⎢⎣
3
1
0
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
1
0
2

⎤
⎥⎥⎦

wx

y

x2 w1x1

⎡
⎢⎢⎣
0
1
0
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
0
0
1

⎤
⎥⎥⎦

x3 w2

⎡
⎢⎢⎣
0
1
0
∞

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
0
0
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
0
0
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
0
0
1

⎤
⎥⎥⎦

x4

⎡
⎢⎢⎣
0
1
0
1

⎤
⎥⎥⎦

A0

A1

G

y

Fig. 5 An example graph G with a pebble distribution P, a unit U and the corresponding auxiliary graph
A0. A1 is obtained from A0 by using the first transformation. Note that A1 does not contain a saturated
vertex

123

Graphs and Combinatorics (2020) 36:803–829 817



This claim is equivalent to the following, previously proven, statements with the

new notation: Claim 3.5 ! (8), Claim 3.6 ! (9), Lemma 3.15 ! (10) and

Lemma 3.14 ! (11).

We will obtain Ai from Ai�1 by applying one of two transformations. Then we

repeat this until it is possible to apply at least one of the transformations. Both

transformations will preserve
P

a2A ai, ði 2 f1; 2; 3gÞ, the fourth coordinate of each

vertex and D, the maximum degree in the graph. The objective of the

transformations is to replace vertices satisfying a1a2 [ 0 (i.e. it has cooperation

excess and it is a cooperation vertex) with (one ore more) vertices satisfying

b1b2 ¼ 0. From this point, we call these vertices saturated vertices. Both

transformations will increase the number of vertices in the auxiliary graph.

Let w be a vertex where w1w2 [ 0 such that its fourth coordinate is maximal

among these vertices. By Claim 4.2 (8) there are two cases.

Case 1: If w has a neighbor x such that x1 � 3 and w4 [ x4, then we apply the

following transformation to Ai:

Transformation 1

– Choose a neighbor y of x such that its fourth coordinate is minimal among all

neighbors of x.

– Let R be the set of x’s neighbors without y where the product of the first and the

second coordinate is positive.

– Delete x and add three vertices x1, x2 and x3, such that x1
1 ¼ x3

1 ¼ 1 and

x2
1 ¼ x1 � 2. x1

2 ¼ x2
2 ¼ x3

2 ¼ 0, x1
3 ¼ x3

3 ¼ 0 and x2
3 ¼ x3. Connect x2 with y, x1

and x3.

– Delete each element r of R and add two vertices r1 and r2 and set the coordinates

as: r1
1 ¼ r1

3 ¼ 0, r1
2 ¼ 1, r1

4 ¼ r2
4 ¼ r4, r2

1 ¼ r1, r2
2 ¼ 0 and r2

3 ¼ r3. We connect

r1 to x1 and r2 to x3 and to each original neighbor of r.

– We connect the neighbors of x which are not included in R [ y to x3.

– Set x1
4 ¼ x2

4 ¼ x3
4 ¼ x4.

– If x2 ¼ 1, then add an extra vertex x4 and connect it only with x2. Set its vector to

ð0; 1; 0; x4Þ.

In other words, this transformation replaces each saturated neighbor of x

(excluding a chosen y) with two vertices such that one of them is a leaf with zero

first coordinate and the other one is act as the original vertex, but its second

coordinate is zero. To handle the increased degree of x, we triple it. Also, if x is

saturated then we add the additional x4 vertex. Note that this can be done when

D� 4. If D� 3, then we have to handle this case in a slightly different way.

Case 2: If w has two neighbors such that their first coordinates are positive and

their fourth coordinates are strictly less than w4, then we apply the second

transformation:

Transformation 2
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– We choose neighbors x and y whose fourth coordinate is minimal among all

neighbors and x4 � y4.

– We delete w and add vertices w1 and w2. We set the coordinates of these vectors

as: w1
1 ¼ w1

3 ¼ 0, w1
2 ¼ 1, w1

4 ¼ w2
4 ¼ w4, w2

1 ¼ w1, w2
2 ¼ 0 and w2

3 ¼ w3.

– We connect w1 only with x. In contrast, we connect w2 with all neighbors of w

except y.

Both transformation can be seen on Fig. 6.

Claim 4.3 Both transformations preserve
P

a2A ai i 2 f1; 2; 3g, and Dif D� 4.

Claim 4.4 Both transformations decrease the number of saturated vertices.

Claim 4.5 If the statements of Claim 4.2hold for an auxiliary graph, then they hold

for the new graph obtained by applying one of the above transformations.

Proof We say that a vertex v is created by the ith transformation if v ¼ zj is a vertex

of Ai and z is a vertex of Ai�1. In this situation we say that v is a descendant of z. A

vertex is involved in a transformation if either it is created by that or its vector is

y

x
x3

x2

x1

w1

y

w

w1

w2

x yx y

w r1 w2r2r

Fig. 6 Vertices denoted by squares are ‘‘cooperation vertices’’ so their second coordinates are one. Edges
are shown between vertices contained in the same C-block. The upper transformation is called first, and
the lower one is mentioned as the second transformation. Note that in the upper example R ¼ fw; rg
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changed by it.

Notice that the transformations keep the fourth coordinates of the vertices and if

two vertices are descendants of the same vertex, then their fourth coordinates are the

same.

(8): If c is a saturated vertex in Ai, then it is not created by the ith transformation

and it was saturated in Ai�1 also. If none of its neighbors were involved in the last

transformation, then the property is clearly holds. Therefore assume the opposite.

Assume that c had a neighbor d in Ai�1, such that d1 � 3 and d4\c4 in Ai�1.

If d is contained in Ai also, then the ith transformation did not change d1. In that

case d and c are adjacent in Ai and we are done.

Otherwise, the ith transformation created some descendants of d.

If it was Transformation 1 then a descendant of d is connected to c and either its

first coordinate equals d1 or it is d1 � 2. In the first case we are done and the latter

can happen if and only if d acted as x in that transformation. However, this is not

possible, because this would mean that c acted as y but y4 � x4 by (9) and the choice

of y in Transformation 1, therefore c4 ¼ y4 � x4 ¼ d4\c4 which is a contradiction.

The remaining case is that two descendants of d are created by Transformation 2.

Since d4\c4, vertex c can not be x or y in Transformation 2, therefore it is adjacent

to d2 ¼ w2 in Ai and the first coordinate of this vertex equals d1.

Now assume that there are neighbors e and f in Ai�1 such that their fourth

coordinates are smaller than c4 and e1; f1 [ 0. We may assume that e1; f1\3,

otherwise we obtain the previous case. Therefore neither e1 nor f1 can act as x in

Transformation 1.

If e is contained in Ai, then it is still adjacent to c. If e is replaced with some

descendants by the ith transformation, then one of its descendants keep its first

coordinate and that one is connected to c. Like in the previous case it cannot happen

that c ¼ y and e ¼ x in Transformation 1 or c ¼ x and e ¼ w in Transformation 2.

We can state the same for f .

(9): If a is contained in Ai�1 then a1 � 3 in Ai�1 also. Therefore according to (9)

there is a b which is adjacent to a and b4 � a4. Either b4 or one of its descendants is

adjacent to a in Ai, therefore we are done.

Otherwise, a is a descendant of a vertex v. v has a neighbor b whose fourth

coordinate is at most a4. There are several cases:

First case: v ¼ r in Transformation 1, where r 2 R. If we remove x from the

neighborhood of v and add x3 we obtains the neighborhood of a. Therefore a has a

neighbor whose fourth coordinate is not bigger.

Second case: v ¼ x in Transformation 1. y had the smallest fourth coordinate

among the neighbors of x, thus y4 � x2
4 ¼ a4 and y and a are adjacent in Ai.

Third case: v ¼ w in Transformation 2. Since a1 � 3, a ¼ w2 and y4 �w4 ¼ w2
4

according to (9).

(10): Transformation 1 keeps the A-paths, because it keeps connectivity and the

first coordinate becomes zero only at leaves. Transformation 2 destroys some A-

paths but all of them contain the saturated vertex which was handled by the

transformation and whose fourth coordinate was at least c4.
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(11): Transformation 1 does not split an A-block, furthermore it keeps the

number of vertices whose third coordinate is one and whose first and second

coordinate are both zero in each A-block.

Transformation 2 either does not split an A-block and keeps the investigated

quantities, or it splits an A-block to two A-blocks. But (10) guarantees that both

blocks contain enough vertices whose third coordinate is one or both first and

second coordinates are zero.h

Claim 4.6 If Claim 4.2 holds for Ai and there is a saturated vertex, then at least

one of the two transformations can be applied to Ai.

The first proposition of Claim 4.2 guarantees this.

Corollary 4.7 There is an Ak, such that there is no saturated vertex in Ak,

furthermore
P

a2A0
ai ¼

P
a2Ak

ai, i 2 f1; 2; 3g.

Lemma 4.8 If Ak does not contain any saturated vertices and Claim 4.2 holds, then

for each A-block B
X

a2B
a2 �

X

a2B
a3 �

X

a2B
a1ðD� 2Þ:

Definition Let B be an A-block in an auxiliary graph. We say that a vertex of B is

inner vertex if its first coordinate is positive otherwise, it is called a boundary

vertex.

Claim 4.9 Consider an A -block of an auxiliary graph A. Let the number of the

boundary and the number of inner vertices denoted by band i, respectively. If

a1a2 ¼ 0 holds for each a 2 Athen b�ðD� 2Þiþ 2 is satisfied.

Proof Proof by induction: The base case is an A-block with one inner vertex. This

A-block is the closed neighborhood of the only inner vertex, therefore the number of

boundary vertices is at most D. Now we assume that for any i\k the inequality is

true. Let i ¼ k. We take a spanning tree of the inner vertices and consider a leaf

vertex l. If we set l1 to zero, then l becomes a boundary vertex and at most D� 1

boundary vertices, which are neighbors of l, are dropped from the A-block. The

number of inner vertices is decreased by one, and the number of boundary vertices

is decreased by at most D� 2. Using the induction hypothesis the proof is

completed.h

Proof of Lemma 4.8: Consider an A-block B and a boundary vertex v of B. Either

v2 ¼ 1 or v1 ¼ v2 ¼ 0. Thus we have: b ¼
P

a2B a2 þ NðBÞ where NðBÞ is the

number of vertices in B whose first two coordinates are zero. It is also clear thatP
a2B a1 � i. Combining these observations and the previous claim:
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X

a2B
a2 þ NðBÞ ¼ b�ðD� 2Þiþ 2�ðD� 2Þ

X

a2B
a1 þ 2:

Claim 4.5 implies that Claim 4.2 (11) holds for Ak. Thus
P

a2B a3 þ NðBÞ � 2.

Therefore

X

a2B
a2 þ NðBÞ � ðD� 2Þ

X

a2B
a1 þ

X

a2B
a3 þ NðBÞ ;

X

a2B
a2 �

X

a2B
a3 �ðD� 2Þ

X

a2B
a1:

Proof of Lemma 4.1: We distinguish three cases depending on D.

Case 1: D� 4

Let Ak be the auxiliary graph which we obtained from A0 by applying

transformations until it does not contain any more saturated vertices. The last lemma

holds for each A-block, therefore:

X

B

X

a2B
a2 �

X

a2B
a3

0

@

1

A�
X

B
ðD� 2Þ

X

a2B
a1:

Only boundary vertices can be included in multiple blocks, and the first and third

coordinate of a boundary vertex is zero, thus:

X

a2Ak

a2 �
X

a2Ak

a3 �
X

B

X

a2B
a2 �

X

a2B
a3

0

@

1

A

�
X

B
ðD� 2Þ

X

a2B
a1 ¼ ðD� 2Þ

X

a2Ak

a1:

Using Claim 4.3 we obtain

X

a2A0

a2 �
X

a2A0

a3 �ðD� 2Þ
X

a2A0

a1:

Case 2: D ¼ 1; 2

If the graph consists of multiple connected components we may restrict our

attention to the component containing the unit. Let d be the number of double

covered vertices. We first verify the lemma in the case D ¼ 1. In this case, the graph

consists of a matching and isolated vertices. Thus, we must have Coop ðP;PuÞ ¼ 0,

and we must show that CEðP;PuÞ� d. If the unit, u, is isolated the result is trivial.

Suppose the unit is in an edge fx; ug. If PðxÞ ¼ 0, then CEðP;PuÞ ¼ d ¼ 0. If

PðxÞ ¼ 1, then CEðP;PuÞ ¼ d ¼ 1. Suppose that PðxÞ ¼ a� 2 and set Puj j ¼ b. We

have d ¼ 2 and
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CEðP;PuÞ ¼ ðaþ b=2b c � 1 þ bþ a=2b c � 1Þ � ða� 1 þ a=2b c � 1Þ
� ðb� 1 þ b=2b c � 1Þ ¼ 2:

This completes the proof in the D ¼ 1 case. If D ¼ 2, then we may assume that the

graph is a path or a cycle. In this case we have D� 2 ¼ 0 so we must show

Coop ðP;PuÞ� d. However, it is easy to see that in a path or a cycle every coop-

eration vertex is adjacent to a double covered vertex and, moreover, that double

covered vertex is on the path between the cooperation vertex and u (possibly u it-

self). It follows that there are at least as many double covered vertices as cooper-

ation vertices, as desired.

Case 3: D ¼ 3

We remind the reader that the problem with the D ¼ 3 case is that it is not

possible to add x4 in transformation 1.

x4 is needed when x is saturated in Ai�1. In that case Transformation 1 handles x

and substitutes it with unsaturated descendants. If the degree of any of the

descendants of x is smaller than D, then we can make x4 adjacent to this vertex and

the problem is eliminated. Otherwise x has three neighbors: y, v and w. The one

whose fourth coordinate is minimal among them is y, also v4 �w4 and both v and w

are saturated vertices.

Now we make one of x’s descendants saturated. We have to make sure that (8)

holds for this saturated descendant therefore we have to make a few new trans-

formations.

Case 1: (8) (a) holds for x in Ai�1. Consider vertex d, which is a neighbor of x in

Ai�1, d4\x4 and d1 � 3. If d ¼ y, then we set x2
2 to one, otherwise we set x3

2 to one

and the rest of the transformation is similar to Transformation 1.

Case 2: (8) (b) holds for x in Ai�1. Then we apply the following transformation:

Transformation 3

– Delete x and add three vertices x1, x2 and x3, such that x1
1 ¼ x3

1 ¼ 1 and

x2
1 ¼ x1 � 2. x1

2 ¼ x3
2 ¼ 0, x2

2 ¼ 1, x1
3 ¼ x3

3 ¼ 0 and x2
3 ¼ x3. Connect x2 with y

and x3 and connect x1 with x3.

– Delete v and w and add four vertices v1, v2, w1 and w2 and set the coordinates as:

v1
1 ¼ v1

3 ¼ 0, v1
2 ¼ 1, v1

4 ¼ v2
4 ¼ v4, v2

1 ¼ v1, v2
2 ¼ 0 and v2

3 ¼ v3. We set the

coordinates of w in the exact same way. We connect w1 and v1 to x1. We make

w2 adjacent to the neighbors of w and to x3. We make v2 adjacent to the

neighbors of v and to x2.

This transformation is shown on Fig. 7.

The new transformations are made in such a way that we immediately obtain that

(8) holds for the recently created saturated vertex. The proof of Claim 4.5 can be

repeated to prove that the statements of Claim 4.2 hold after we apply these recently

introduced transformations. Therefore all the statements following Claim 4.2 hold

in the D ¼ 3 case.
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5 Lower Bound on the Optimal Pebbling Number of Vertex
Transitive Graphs

Theorem 5.1 Let P be an arbitrary solvable pebble distribution on Gand let D be a

disjoint decomposition of Pto unit distributions. Denote the elements of D with

U1;U2; . . .;Ut, so that jUij � jUiþ1j. Now

Xt

i¼1

CE
Xi�1

k¼1

Uk;Ui

 !

� jVðGÞj �
Pt

i¼1 Cov ðUiÞ
D� 2

:

Proof We use Claim 3.3 (3.2) in the following inquality to obtain the second line.

To obtain the third line, notice that if jUij ¼ 1, then

Coop
Pi�1

k¼1 Uk;Ui


 �
¼ DC

Pi�1
k¼1 Uk;Ui


 �
¼ CE

Pi�1
k¼1 Uk;Ui


 �
¼ 0. Otherwise

jUij � 2 and we can apply Lemma 4.1.

jVðGÞj ¼ Cov ðPÞ ¼
Xt

i¼1

Cov ðUiÞ þ Coop
Xi�1

k¼1

Uk;Ui

 !

� DC
Xi�1

k¼1

Uk;Ui

 ! !

¼
Xt

i¼1

Cov ðUiÞ þ
Xt

i¼1

Coop
Xi�1

k¼1

Uk;Ui

 !

� DC
Xi�1

k¼1

Uk;Ui

 ! !

�
Xt

i¼1

Cov ðUiÞ þ ðD� 2Þ
Xt

i¼1

CE
Xi�1

k¼1

Uk;Ui

 !

h

This result together with the corollary of Theorem 2.1 and Claim 3.3 implies the

following:

Corollary 5.2 If Pis a solvable distribution on a vertex-transitive graph G, then

y

x

y

x2

x3

w1

x1
w2

v1

v w

v2

Fig. 7 Transformation 3 which is needed when D ¼ 3
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jPj �
D�1
D�2

jVðGÞj þ UE ðPÞ � 1
D�2

Pt
i¼1 Cov ðUiÞ

ef ðvÞ :

This is a tool that helps to prove lower bounds on optimal pebbling number. Also

notice that each element of the formula can be calculated efficiently.

5.1 Back to Square Grids

We would like to investigate finite square grids. It is easier to investigate torus

graphs instead of square grids, because they are vertex-transitive. Let Tm;n be the

torus graph which we obtain if we glue together the opposite boundaries of

Pmþ1hPnþ1.

Note that Tm;n ffi CmhCn.

PmhPn can be obtained from Tm;n by deleting some edges. Edge removal can not

decrease the optimal pebbling number, therefore p opt ðTm;nÞ� p opt ðPmhPnÞ.
Therefore we work with Tm;n in the rest of the section.

The size of the distance i neighborhood in Tm;n is at most 4i. Thus Claim 3.2

gives the following estimates on excess and coverage of any unit placed on Tm;n.

Claim 5.3 Let U be a single unit on Tm;n. Then:

Cov ðUÞ�

1 if jUj ¼ 1

5

2
jUj if 2� jUj � 3

13

4
jUj if jUj � 4

8
>>>><

>>>>:

Claim 5.4 Let Ube a single unit on Tm;n, where minðm; nÞ� 5. We have the

following estimate on the ratio of unit excess and the size of the unit:

Exc ðUÞ�

0 if jUj ¼ 1

1

2
jUj if 2� jUj � 3

8

5
jUj if 4� jUj

8
>>>><

>>>>:

To obtain these bounds it is enough to check small units and notice that the

distance 2 neighborhood of u contains at least 8
5
Uj j excess when Uj j[ 4.

Claim 5.5 Let v be a vertex of Tm;n. Then ef ðvÞ\9.

A similar result is proven in [2] for the square grid. We mimic that calculation.
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Proof We know that jN0ðvÞj ¼ 1, jN1ðvÞj ¼ 4 and Fig. 8 shows that

jNiðvÞj � jNi�1ðvÞj þ 4. Therefore jNiðvÞj� 4i.

ef ðvÞ ¼
Xdiam ðTm;nÞ

i¼0

1

2

� �i

jNiðvÞj\1 þ
X1

i¼1

1

2

� �i

4i

¼1 þ 4
X1

i¼1

X1

j¼i

1

2

� �j

¼ 1 þ 4
X1

i¼1

1

2

� �i�1

¼ 9

h

Now we can obtain our new lower bound on the optimal pebbling number of the

square grid:

Theorem 5.6 The optimal pebbling number of Tm;n is at least 2
13
nm, when m; n� 5.

Proof Let P be an optimal distribution of Tm;n and let D be a disjoint decomposition

of P to unit distributions. Denote the elements of D with U1;U2. . .Ut, such that

jUij � jUiþ1j. Let D� 4 be the subset of D which contains all units whose size is at

least four. Furthermore let D2;3 be the set which contains the units whose size is two

or three, and D1 be the set of units whose size is one. Denote the total number of

pebbles which are placed on vertices belonging to D1 by S1. Define S2;3 and S� 4

similarly. It is clear that S1 ¼ jPj � S2;3 � S� 4.

We start with Corollary 5.2 and use the estimates of Claims 5.3, 5.4 and 5.5.

v

Fig. 8 A mapping shows that
there are at most 4 more vertices
in the distance 3 neighborhood
than in the distance 2
neighborhood
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jPj �
D�1
D�2

jVðGÞj þ UE ðPÞ � 1
D�2

Pt
i¼1 Cov ðUiÞ

ef ðvÞ �

�
3
2
nmþ 1

2
S2;3 þ 8

5
S� 4 � 1

2
5
2
S2;3 þ 13

4
S� 4 þ ðjPj � S2;3 � S� 4Þ

� �

9
¼

¼
� 1

2
jPj þ 3

2
nm� 1

4
S2;3 þ 19

40
S� 4

9
;

which implies

jPj � 3

19
nm� 1

38
S2;3 þ

1

20
S� 4:

Consider the worst case when each of the units contains exactly two or three

pebbles:

jPj � 3

19
nm� 1

38
jPj;

thus

jPj � 2

13
nm:

h

Corollary 5.7 The optimal pebbling number of PnhPm is at least 2
13
nm when mand

nare at least 5.

5.2 New Proof for the Optimal Pebbling Number of the Path and Circle

To illustrate the power of Lemma 4.1 we give a short proof of the following well

known theorem. It was first proved in [6]. Later, essentially different proofs were

given in [1] and [7].

Theorem 5.8 p opt ðP3kþrÞ ¼ p opt ðC3kþrÞ ¼ 2k þ r when 0� k, 0� r� 2and k, rare

integers.

The new proof uses Lemma 4.1 when D ¼ 2. (Note that the proof of this case

was short and easy.)

Proof It is easy to construct solvable distributions with the desired size, so we

prove only the lower bound here.

Let u be a single unit on P3kþr or C3kþr. Then:

Cov ðPuÞ
jPuj

� 3

2

Assume that P is a solvable distribution. Now by Lemma 4.1
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3k þ r ¼ Cov ðPÞ�
Xt

i¼1

Cov ðUiÞ þ Coop
Xi�1

k¼1

Uk;Ui

 !

� DC
Xi�1

k¼1

Uk;Ui

 ! !

�
Xt

i¼1

Cov ðUiÞ�
3

2
jPj:

So 2k þ 2r
3
� jPj. |P| is integer, therefore this is equivalent to 2k þ r� jPj.h

6 Open questions

Question 1 Is there a constant k, which does not depend on n, such that in an

optimal distribution of PnhPn no pebble can be moved to the distance-k

neighborhood of its initial location?

Question 2 If the answer for Question 1 is yes, then how small can be k?

We think that the answer for Question 1 is yes and we conjecture that k can be 4.

Any finite k would improve our lower bound on poptðPnhPmÞ.
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