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MTA-BME Lendület Research Group on Cyber-Physical Systems

Email: szarnyas@mit.bme.hu

Abstract—Graphs are increasingly important for modelling
and analysing connected data sets. Traditionally, graph an-
alytical tools targeted global fixed-point computations, while
graph databases focused on simpler transactional read operations
such as retrieving the neighbours of a node. However, recent
applications of graph processing (such as financial fraud detection
and serving personalized recommendations) often necessitate a
mix of the two workload profiles. A potential approach to tackle
these complex workloads is to formulate graph algorithms in the
language of linear algebra. To this end, the recent GraphBLAS
standard defines a linear algebraic graph computational model
and an API for implementing such algorithms. To investigate
its usability and efficiency, we have implemented a GraphBLAS
solution for the “Social Media” case study of the 2018 Transfor-
mation Tool Contest. This paper presents our solution along with
an incrementalized variant to improve its runtime for repeated
evaluations. Preliminary results show that the GraphBLAS-based
solution is competitive but implementing it requires significant
development efforts.

I. CASE STUDY

This paper presents a GraphBLAS [8] solution for the
“Social Media” case study of the 2018 Transformation Tool
Contest [7]. The case study is defined using a familiar social
network-like data model (Fig. 1), based on the schema of the
LDBC Social Network Benchmark [5], and consists of Users
and their Submissions. These submissions form a tree where
the root node is a Post and the rest of the nodes are Comments.
Users can like Comments and form “friends” relations with
each other. Additionally, Comments have a direct pointer to
the root Post to allow quick lookups. Fig. 3a shows an example
graph with two Posts (p1, p2), three Comments (c1, c2,
c3) and four Users (u1, . . . , u4). Solutions are required to
compute two queries, denoted as Q1 and Q2.

Fig. 1: Graph schema of the case study.

(a) Q1: influential posts.

(b) Q2: influential comments.

Fig. 2: Queries in the case study.

Q1: influential posts. Assign a score to each Post, defined
as 10 times the number of their (direct or indirect) Comments
plus the number of Users liking those Comments (Fig. 2a).
Sort Posts according to their score and return the top 3.
Q2: influential comments. Assign a score to each Comment,
based on the friendships of the Users who like that
Comment (Fig. 2b). Based on the graph formed by the User
nodes and their friends edges, for every comment we define
an induced subgraph which contains the Users who like the
Comment and their “friends” relations. The subgraph contains
connected components, i.e. groups of users who know each
other directly or via friends. The score is defined as the sum
of squared component sizes.
Updating the graph. The case study requires solutions to
perform a number of inserts in the graph and return the results
of the queries on the updated graph. Insertions are performed
repeatedly, which favours solutions that use incremental main-
tenance techniques and avoid full recomputations.

Fig. 3 shows the initial graph and the updated graph with
the result scores of Q1 and Q2.

II. THE GRAPHBLAS

A directed graph can be stored as a square adjacency matrix
A ∈ Nn×n, where rows and columns both represent nodes of
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(a) Initial graph and scores. Comment c2 has two components: c2/a
consists of User u1, while c2/b consists of Users u3 and u4. Its
total score is the sum of the component sizes, i.e. 12 + 22 = 5.

(b) Graph after performing an update that inserted six entities: (1) a
friends edge between Users u1 and u4, (2) a likes edge from
User u2 to Comment c2, (3) a Comment node c4 with (4) an
outgoing rootPost edge to Post p1, (5) an outgoing commented
edge to Comment c1, and (6) an incoming likes edge from User
u4. The changes have increased the score of Post p1 and resulted
in Comment c2 having a single component of size 4, therefore
receiving a score of 42 = 16. Comment c4 got a score of 12 = 1.

Fig. 3: Example graphs: initial and updated versions.

the graph and cell Aij contains the number of edges from
node i to node j. If the graph is undirected, the matrix is
symmetric. If the graph nodes and edges have type constraints,
edges are stored per type, and the rows and columns of the
matrix can represent source and target nodes of edges (resp.),
whose number can differ.

An undirected graph can be stored as an incidence matrix
B ∈ {0, 1}n×m, where rows and columns represent nodes and
edges (resp.). Each column contains 1 for the source and the
target vertex of the edge, otherwise 0.

GraphBLAS is a recently proposed standard built on the
theoretical framework of matrix operations on arbitrary semir-
ings [8], which allows defining graph algorithms in the lan-
guage of linear algebra. The goal of GraphBLAS is to create
a layer of abstraction between the graph algorithms and the
graph analytics framework, separating the concerns of the
algorithm developers from those of the framework developers
and hardware designers. The GraphBLAS standard defines a
C API that can be implemented on a variety of hardware
components (including GPUs and FPGAs).

GraphBLAS stores graphs as sparse matrices which contain

GraphBLAS method name notation
GrB_mxm matrix-matrix multiplication C〈M〉 = A⊕.⊗B

GrB_vxm vector-matrix multiplication wT〈mT〉 = uT ⊕.⊗A
GrB_mxv matrix-vector multiplication w〈m〉 = A⊕.⊗ u
GrB_eWiseAdd element-wise, C〈M〉 = A⊕B

set union w〈m〉 = u⊕ v
GrB_eWiseMult element-wise, C〈M〉 = A⊗B

set intersection w〈m〉 = u⊗ v
GrB_extract extract submatrix C〈M〉 = A(I , J)

extract subvector w〈m〉 = u(I )
GrB_apply apply unary operator C〈M〉 = f(A)

w〈m〉 = f(u)
GxB_select apply select operator C〈M〉 = f(A, k)

w〈m〉 = f(u, k)
GrB_reduce reduce to vector w〈m〉 = [⊕jA(:, j)]

reduce to scalar s = [⊕ijA(i, j)]

GrB_transpose transpose C〈M〉 = AT

GrB_build matrix from tuples C 7→{〈i, j, Cij〉}
vector from tuples w 7→{〈i, wi〉}

GrB_extractTuples extract 〈i, j, Aij〉 tuples {〈i, j, Aij〉} 7→A
extract 〈i, ui〉 tuples {〈i, ui〉} 7→u

TABLE I: Notation of the GraphBLAS operations used in this
paper (based on [3]). Matrix A contains scalar elements Aij ,
vector u contains scalar elements ui, i and j are row and
column indices, I and J are subset of indices, ⊕ and ⊗ are
addition and multiplication operators of an arbitrary semiring,
mask 〈M〉 is used to selectively write to the result.

elements as 〈i, j, Aij〉 tuples. An optional mask can be used
for operations, which limits the evaluation to the non-empty
positions of the mask. Table I contains the list of GraphBLAS
operations used in this paper.

III. SOLUTION

Q1 Batch. Alg. 1 computes the score for every post, then
selects the top 3 posts. In Line 6 row-wise summation of
RootPost matrix produces the number of comments per post,
then a GrB_apply operation multiplies the vector elements
by 10. Line 8 sums up the number of likes the post has via
its comments. For each post, the RootPost adjacency matrix
selects the cells of likesCount vector corresponding to the
comments of the post, then sums up the values. The score for
each post is the element-wise sum of the vectors (Line 9).
Fig. 4a shows an example calculation.

Algorithm 1 Calculate scores of query 1
1: Input
2: RootPost ∈ B|posts|×|comments| . adjacency matrix
3: likesCount ∈ N|comments| . # of incoming likes

4: Output
5: scores ∈ N|posts|
6: sum←

[
⊕j RootPost(:, j)

]
. row-wise sum

7: repliesScores← 10× sum . apply mul-by-10 op.
8: likesScore← RootPost⊕.⊗ likesCount
9: scores← repliesScores⊕ likesScore

10: return scores

Q1 Incremental. To incrementally evaluate Q1, Alg. 2 updates
the scores for next evaluations and returns the posts with new
scores. Merging the previous top 3 scores and the new ones
yields the new result (new scores overwrite existing ones).
Lines 9 and 10 compute the increment of the score induced by
new comments. In Line 11 the number of likes the comments
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Fig. 4: Execution of the algorithms on the example graph: initial evaluation and incremental maintenance. Recall that the
update in the example inserts the following relevant entities (highlighted with grey background): a friends edge between Users
u1 and u4, a likes edge from User u2 to Comment c2, a Comment node c4 with an outgoing rootPost edge to Post p1
and an incoming likes edge from User u4.

newly received are summed up per post. Two types of incre-
ments are summed up in Line 12. For subsequent evaluations
the scores are updated using the increment vector (Line 13). To
find the top 3 scores only the previous maximum values and
the posts with updated scores are considered. Line 14 yields
the score values which changed by assigning the scores′

vector via the scores+ increment vector as a mask, which
allows values in the result only if the mask has a value at the
corresponding position. Fig. 4a shows an example calculation.

Algorithm 2 Update scores of query 1
1: Input
2: scores ∈ N|posts′| . previous scores
3: likesCount+ ∈ N|comments′| . new incoming likes
4: ∆RootPost ∈ B|posts′|×|comments′| . new rootPost edges
5: RootPost′ ∈ B|posts′|×|comments′| . all rootPost edges
6: Output
7: ∆scores ∈ N|posts′| . only changed scores
8: scores′ ∈ N|posts′| . all scores
9: sum←

[
⊕j ∆RootPost(:, j)

]
. # of new comments

10: repliesScores+ ← 10× sum
11: likesScore+ ← RootPost′ ⊕.⊗ likesCount+

12: scores+ ← repliesScores+ ⊕ likesScore+ . score increment
13: scores′ ← scores⊕ scores+ . update scores
14: ∆scores〈scores+〉 ← scores′ . updated scores where changed
15: return ∆scores, scores′

Q2 Batch. The batch evaluation of Q2 is depicted in the upper
part of Fig. 4b. The algorithm computes the score for every
comment, then selects the top 3 comments. To collect the users
of each subgraph, Step 1 extracts the elements of Likes
matrix as 〈c, u, 1〉 tuples and collects them into sets of user
IDs (u) per comment (c). To produce the subgraph, for each
comment Step 2 extracts a submatrix based on the users
selected. Step 3 finds connected components in the subgraph
using the FastSV algorithm [11] of the LAGraph library [9].
This produces a vector containing the component id for every
user. Step 4 yields the squared sum of component sizes, i.e.
the score for each comment.

Q2 Incremental. The incremental evaluation of Q2 is de-
picted in the lower part of Fig. 4b. The algorithm returns
the comments with new scores (∆scores) by reevaluating
the comments which the updates might impact on. Merging
the previous top 3 scores and the new ones yields the new
result (new scores overwrite existing ones). The first phase of
the algorithm (Steps 1 – 5 ) collects the comments which
might be affected by the updates (ac set), then the second
phase (Steps 6 – 9 ) computes the new scores of these
comments using the batch algorithm already mentioned.

A comment might be affected by an update if (1) it is
a new comment, (2) the comment receives a new incoming
likes edge from a user, resulting in a new component or the
expansion of an existing one, or (3) two users who like the
comment become friends, which merges the components the
users belong to (if the components differ). Step 5 collects
the IDs of these comments.

Steps 1 – 4 compute the comments which might be
affected by new friends edges. NewFriends incidence matrix
represents each new friendship by a column having two
1-valued cells for the two users. For every new friendship (i.e.
pair of users) Step 1 computes how many user of the pair
likes each comment (0, 1, or 2). During the matrix-matrix
multiplication each new column of friendships selects two
columns of Likes′ matrix and sums them up into AC matrix.
Step 2 keeps only 2-valued cells, i.e. where both users of
a friendship liked the comment, so they are present in the
subgraph and the new friendship might merge components.
Then Step 3 produces a row-wise sum using binary or oper-
ation. Step 4 extracts 〈c, 1〉 tuples from the result vector and
collects the comment IDs from these tuples. Step 5 collects
all the comments which might be affected by the update. The
next steps reevaluate the scores of these comments.

IV. EVALUATION

To evaluate the performance and scalability of our solution,
we have used the benchmark framework of the case study [7].
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1 2 4 8 16 32 64 128 256 512 1024

#nodes 1274 2071 4350 7530 15k 30k 58k 115k 225k 443k 859k
#edges 2533 4207 9118 18k 35k 71k 143k 287k 568k 1.1M 2.3M
#inserts 67 120 132 104 110 117 68 86 45 112 74

TABLE II: Graph sizes w.r.t. to the scale factor.

Our GraphBLAS solution was implemented using Suite-
Sparse:GraphBLAS [3]. The complete solution consists of
approx. 1100 lines of C++ of code and is available open-
source1. As a performance baseline, we used the reference
implementation of the case study, written in the .NET Model-
ing Framework [6] (NMF Batch) and its incremental version
(NMF Incremental). As described in Sec. III, we have imple-
mented two variants: GraphBLAS Batch always performs a
full evaluation, while GraphBLAS Incremental performs a full
evaluation during the first step, then switches to incremental
maintenance for the subsequent steps. We compared single-
and multi-threaded performance of our GraphBLAS solution
using 8 threads for the latter. The GraphBLAS implementation
we used has built-in parallelization of the operators [1], addi-
tionally, we parallelized Q2 using OpenMP constructs at the
granularity of comments. We ran the benchmark on synthetic
graphs of increasing sizes following powers of 2. The elements
in the graphs follow the Facebook-like distribution enforced
by the LDBC Datagen [5]). For each graph, the number of
nodes/edges and the number of inserted elements are shown
in Table II. We ran the computation on each graph size 5 times
and report the geometric mean value of these runs.

1https://github.com/TransformationToolContest/ttc2018liveContest/

We executed the benchmark on a cloud virtual machine with
a 24-core Intel R© Xeon R© Platinum 8167M CPU with Hyper
Threading at 2.00 GHz, 320 GB RAM, and HDD storage.
The machine was running the Ubuntu 18.04 operating system,
and the .NET Core 3.1.100 runtime. The GraphBLAS solu-
tion was using SuiteSparse:GraphBLAS 3.2.0draft20 compiled
with GCC/G++ 7.4.0.

The execution times are shown in Fig. 5. Both tools scale
similarly for the load and initial evaluation phase. Graph-
BLAS is the fastest, while the incremental NMF variant is the
slowest as it initially builds a dependency graph from the query
to assist incremental change propagatation. During the update
and reevaluation, both tools gain significant performance
benefits from incrementalization as they scale better for large
graph sizes. GraphBLAS has similar execution times for Q1
as NMF, and outperforms NMF for Q2. Parallel processing
of updates in GraphBLAS has a small performance gain for
the incremental version as the updates are small. However,
for GraphBLAS Batch, the difference is half of an order of
magnitude in favour of the parallel version as it requires a
costly recomputation over the whole graph, which negates the
parallelization overhead.

V. CONCLUSION AND FUTURE WORK

This paper presented a linear algebraic solution for the
“Social Media” case study of the 2018 Transformation Tool
Contest. While the presented solution already exhibits good
performance and scalability compared to the reference im-
plementation, a number of optimizations could be applied
as future work: (1) using updatable compressed matrix rep-
resentation formats such as faimGraph [10] or Hornet [2]
and (2) running an incremental connected components al-
gorithm [4] in Step 8 of Q2. Additionally, it would be
interesting to investigate the performance of the solution in the
presence of more realistic update operations, including both
insertions and removals.
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