
Loop optimizations in C and C++
compilers: an overview

Réka Kovács, Zoltán Porkoláb

Eötvös Loránd University
rekanikolett@caesar.elte.hu

gsd@inf.elte.hu

Submitted: February 4, 2020
Accepted: July 1, 2020

Published online: July 23, 2020

Abstract

The evolution of computer hardware in the past decades has truly been
remarkable. From scalar instruction execution through superscalar and vector
to parallel, processors are able to reach astonishing speeds – if programmed
accordingly. Now, writing programs that take all the hardware details into
consideration for the sake of efficiency is extremely difficult and error-prone.
Therefore we increasingly rely on compilers to do the heavy-lifting for us.

A significant part of optimizations done by compilers are loop optimiza-
tions. Loops are inherently expensive parts of a program in terms of run time,
and it is important that they exploit superscalar and vector instructions. In
this paper, we give an overview of the scientific literature on loop optimiza-
tion technology, and summarize the status of current implementations in the
most widely used C and C++ compilers in the industry.

Keywords: loops, optimization, compilers, C, C++

MSC: 68N20 Compilers and interpreters

1. Introduction

The Illiac IV, completed in 1966, was the first massively parallel supercomputer
[13]. It marked the first milestone in a decades-long period that would see com-
puting machines become unbelievably fast and increasingly complex. To harness
the capabilities of such ever more parallel systems, researchers started writing tools

Annales Mathematicae et Informaticae
51 (2020) pp. 113–121
doi: 10.33039/ami.2020.07.003
https://ami.uni-eszterhazy.hu

113

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/328819944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


that could transform sequential programs (typically written in Fortran for scientific
applications) to their own parallel equivalents.

By the mid 70’s, a group of University of Illinois researchers led by David Kuck
developed the Parafrase [18] tool, which pioneered the most influential ideas on
automatic program transformations including dependence testing [19] and the first
loop transformations [32].

In the late 70’s, researchers led by Ken Kennedy at Rice University started the
Parallel Fortran Compiler (PFC) [2] project. The authors’ initial goal was to extend
Parafrase, but they ended up implementing a completely new system, furthering
the theory of data dependence [4] and inventing effective algorithms for a number
of transformations including vector code generation, the handling of conditional
statements [3], loop interchange, and other new transformations [5].

In this paper, we take a step aside, and instead of discussing the optimization
of Fortran programs, for which most of the classical algorithms have been invented,
we take a look at how C and C++ compiler writers are coping with the challenge.
C family languages are very similar to Fortran, but notorious for the lack of con-
straints imposed on the programmer, which makes their analysis and optimization
undoubtedly more difficult.

The structure of this paper is as follows. Section 2 describes the challenges C
and C++ compiler developers face in contrast to classic Fortran optimization, and
lists some of the strategies used to mitigate these issues. In Section 3, we give a
status report of loop optimizations in the two open-source compilers most heavily
used in the industry. Finally, in Section 4, we survey the latest research papers in
the field of loop optimizations.

2. Adapting classic algorithms for C/C++

2.1. Challenges in optimizing C/C++
In their 1988 paper, [6] Allen and Johnson pointed out a number of considerations
that make the vectorization and parallelization of C code difficult, as opposed to
Fortran, the language that inspired most of the classic loop transformations in the
literature. These concerns pose a challenge in optimizing programs written in C
and C++ to the present day:

• Pointers instead of subscripts. C/C++ programs often address memory
using pointer variables rather than arrays and explicit subscripts. Because
of this, it is extremely difficult to decide whether two statements refer to the
same section of memory or not.

• Sequential operators. Conditional operators and operators with side ef-
fects (e.g. ++) are inherently sequential. Vectorization of such operations
require them to be either transformed or removed.

• Loops. The for statement used in C family languages is less restricted than
the DO loop of Fortran, for which most of the classic loop transformations

114 R. Kovács, Z. Porkoláb



were developed. This makes its vectorization considerably more difficult. The
loop can contain operations that almost arbitrarily change the loop variable,
and the loop body can contain branching statements.

• Small functions. Function calls can hide information that is necessary
for optimization. Modern compilers often run optimizations together with
inlining in an iterative fashion, trying to regain some information lost to the
fine modularity encouraged in C and C++.

• Argument aliasing. Unline Fortran, function parameters in C and C++
are allowed to point into the same section of memory. Aliasing prohibits
vectorization, but can only be checked at run-time, resulting in a high run-
time cost.

• Volatile. In C, volatile variables represent values that may change outside
of the context of the program, even if the change cannot be “seen” from
the source code. Obviously, such language constructs are very difficult to
optimize.

• Address-of operator. The & operator allows the programmer to take the
address of any variable and modify it. This greatly increases the analysis
needed for optimization.

2.2. Compiler strategies for C/C++ optimization
Inlining. The problems listed in the previous section are relatively hard to handle
in compilers. Suprisingly, a large portion of the problems can be removed by the
judicious inlining of function calls. Some of the benefits of inlining:

• If the body of a function call is available in the caller function, the compiler
no longer has to calculate its effects conservatively, assuming the worst case.
It can use the actual function body, making the analysis more precise, and
allowing more optimizations to happen.

• Some of the argument aliasing problems disappear when the origins of arrays
become visible.

• Function calls are inherently sequential operations. Their removal helps vec-
torization in its own right.

A high-level IR. Low-level intermediate representations had long been the norm
for C [16] and Fortran [29] compilers before their vectorizing versions began gaining
ground. Lowering the code too early can introduce unnecessary complexity in the
analyses that precede optimizations. For example, the ability to analyze loops and
subscripts is crucial for loop optimizations, and breaking down the loop into gotos
and pointers would make it considerably more difficult. Other information such as
the volatile modifier also get lost or obfuscated after the lowering phase.

Loop optimizations in C and C++ compilers: an overview 115



Loop conversion. The C for loop is a fairly unconstrained language construct:
the increment and termination conditions can have side effects, bounds and strides
can change during execution, and control can enter and leave the loop body. Be-
cause of this, most C compilers perform a doloop conversion, when they attempt
to transform the unconstrained for loop into a more regular DO-like form. It often
makes sense to do the high-level transformations on this representation as well.

3. Loop optimization in modern compilers

The most widely used C and C++ compilers include both open-source (GCC,
LLVM) and commercial (Microsoft Visual C++, IBM XL, Intel C Compiler) prod-
ucts. Unfortunately, there is limited information available for closed-source appli-
cation, thus in this section we decided to review the status of loop transformations
in GCC and LLVM. Both of these compilers are heavily used in the industry, and
have a populous base of active contributors.

3.1. LLVM
The LLVM optimization pipeline [24] consists of 3 stages. The Canonicalization
phase removes and simplifies the IR as much as possible by running scalar opti-
mizations. The second part is called the Inliner cycle, as it runs a set of scalar
simplification passes, a set of simple loop optimization passes, and the inliner itself
iteratively. The primary goal of this part is to simplify the IR, through a cycle of
exposing and exploiting simplification opportunities. After the Inliner cycle, the
Target Specialization phase is run, which deliberately increases code complexity
in order to take advantage of target-specific features as make the code as fast as
possible on the target.

Figure 1: The LLVM optimization pipeline

LLVM supports various pragmas that allow users to guide the optimization
process, which saves them the trouble of performing the optimizations by hand.
Alternatively, they can rely on the heuristics in the compiler that strive to achieve
similar performance gains.

The optimization infrastructure is modular, passes can be switched on and off on
demand [17]. The currently available loop transformation passes are the following:
loop unrolling, loop unswitching, loop interchange, detection of memcpy and memset

116 R. Kovács, Z. Porkoláb



idioms, deletion side-effect-free loops, loop distribution, and loop vectorization.
Members of the open-source community are working on adding loop fusion to the
list [7].

As part of the modular structure of the optimizer, a common infrastructure
is available to optimizations in the form of certain passes that perform analy-
ses (LoopInfo, ScalarEvolution) and normalizing transformations (LoopRotate,
LoopSimplify, IndVarSimplify) on the loops.

Many of the mentioned loop transformations are disabled by default, as they
are either experimental in nature or not mature enough to be used by the wide
public. Such transformations are e.g. LoopInterchange and LoopUnrollAndJam.

The order of the loop optimizations is fixed within the pipeline. This may result
in conflicts or less profitable sequences of transformations. Additionally, because
scalar and loop passes are run in cycles, they often interfere with each other by
destroying canonical structures and invalidating analysis results.

A recent proposal plans to switch to a single integrated LoopOptimizationPass
that would not interact with scalar optimizations, making it simpler. Similarly, the
introduction of a loop tree intermediate representation could make loop modifica-
tions easier and might also help the profitability analysis. This idea is inspired by
red-green trees [23] used in the Roslyn C# compiler.

3.2. GCC
As the early days of GCC date back to the 80’s, its old monolithic structure made
it hard to keep it aligned with the forefront of optimization research for a long
time. However, its loop optimizer was almost completely re-written in the early
2000’s [11]. Its new modular structure is similar to that of LLVM’s, starting with
an initialization pass, followed by several optimization passes, and ended with a
trivial finalization phase that de-allocates any data structures used.

During initialization, the optimizer runs the induction variable, scalar evolution,
and data dependence analyses [8] to gather necessary information about the loop,
and performs preliminary transformations that simplify and canonicalize it. The
optimization passes include loop unswitching, loop distribution, and two types
of auto-vectorization [22]. The middle block of pass_graphite transformations
refers to the polyhedral framework GRAPHITE that comes with GCC, but is
unfortunately turned off by default, due to a lack of resources for maintenance.

In spite of its long history, GCC was still not very good at optimizing loop nests
in 2017 [9]. This was mainly caused by

• a lack of traditional loop nest transformations, including loop interchange,
unroll-and-jam, loop fusion and scalar expansion,

• transformations in need of a revision, and possibly

• a suboptimal arrangement of passes.

Loop optimizations in C and C++ compilers: an overview 117



Figure 2: The GCC optimization pipeline

Since 2017, members of the community have started adding some of the missing
transformations to the compiler, e.g. loop interchange [14], but others e.g. loop
fusion and scalar expansion are still future work.

Similarly to LLVM, the latest proposal to the pass arrangement problem is a
single loop transformation pass with a unified cost model.

4. Current trends in optimization research

Transformation ordering. One of the main research directions in the past few
years concerns the choice of loop transformations and their ordering. With ever
more complex machines, the performance gap between hand-tuned and compiler-
generated code is getting wider. [31] presents a system and language named Locus
that uses empirical search to automatically generate valid transformation sequences
and then return the list of steps to the best variant. The source code needs to
be annotated. [33] gives a template of scheduling algorithms with configurable
constraints and objectives for the optimization process. The template considers
multiple levels of parallelism and memory hierarchies and models both temporal
and spatial effects. [10] describes a similar loop transformation scheduling approach
using dataflow graphs. [30] recognizes that some combinations of loop optimizations
can create memory access patterns that interfere with hardware prefetching. They
give an algorithm to decide whether a loop nest should be optimized mainly for
temporal or mainly for spatial locality, taking hardware prefetching into account.

118 R. Kovács, Z. Porkoláb



Straight-line code vectorization. The past few years saw significant new de-
velopments in the field of straight-line code vectorization. The original Superword-
Level Parallelism algorithm (SLP) [20] was designed for contiguous memory access
patterns that can be packed greedily into vector instructions, without expensive
data reordering movements. Throttled SLP [26] attempts to identify statements
harmful to vectorization and stop the process earlier if that leads to better re-
sults. SuperGraph SLP [25] operates on larger code regions and is able to vectorize
previously unreachable code. Look-ahead SLP [28] extends SLP to commutative
operations, and is implemented in both LLVM and GCC. The latest development,
SuperNode SLP [27] enables straight-line vectorization for expressions involving a
commutative operator and its inverse.

Improving individual transformations. Other research efforts target the im-
provement of individual optimizations. [21] gives an algorithm to locate where to
perform code duplication in order to enable optimizations that are limited by con-
trol flow merges. [1] describes a software prefetching algorithm for indirect memory
accesses. [12] shows how to discover scalar reduction patterns and how it was im-
plemented in an LLVM pass. [15] created a framework to enable collaboration
between different kinds of dependency analyses.

5. Conclusion

In the age when hardware evolution makes machines ever more complex, compiler
optimizations become ever more important, even for the simplest applications. This
paper gave a short history of parallel hardware and compiler optimizations, followed
by a discussion of hardships that the C and C++ languages pose to compiler
writers. We gave a status report on the loop optimizing capabilities of the most
popular open-source compilers for these languages, GCC and LLVM. In the end,
we reviewed the latest research directions in the field of loop optimization research.

Acknowledgements. The publication of this paper is supported by the Euro-
pean Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-
2017-00002).

References

[1] S. Ainsworth, T. M. Jones: Software prefetching for indirect memory accesses, in: 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), IEEE,
2017, pp. 305–317,
doi: https://doi.org/10.1145/3319393.

[2] J. R. Allen, K. Kennedy: PFC: A program to convert Fortran to parallel form, tech. rep.,
1982.

Loop optimizations in C and C++ compilers: an overview 119



[3] J. R. Allen, K. Kennedy, C. Porterfield, J. Warren: Conversion of control depen-
dence to data dependence, in: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, 1983, pp. 177–189,
doi: https://doi.org/10.1145/567067.567085.

[4] J. R. Allen: Dependence Analysis for Subscripted Variables and Its Application to Program
Transformations, AAI8314916, PhD thesis, USA, 1983,
doi: https://doi.org/10.5555/910630.

[5] R. Allen: K. Kennedy, Automatic translation of FORTRAN programs to vector form. A
CM Transactzons on Programming Languages and Systems 9.2 (1987), pp. 491–542,
doi: https://doi.org/10.1145/29873.29875.

[6] R. Allen, S. Johnson: Compiling C for vectorization, parallelization, and inline expansion,
ACM SIGPLAN Notices 23.7 (1988), pp. 241–249.

[7] K. Barton: Loop Fusion, Loop Distribution and their Place in the Loop Optimization
Pipeline, LLVM Developers’ Meeting, 2019,
url: https://www.youtube.com/watch?v=-JQr9aNagQo.

[8] D. Berlin, D. Edelsohn, S. Pop: High-level loop optimizations for GCC, in: Proceedings
of the 2004 GCC Developers Summit, Citeseer, 2004, pp. 37–54.

[9] B. Cheng: Revisit the loop optimization infrastructure in GCC, GNU Tools Cauldron, 2017,
url: https://slideslive.com/38902330/revisit-the-loop-optimization-infrastructure-
in-gcc.

[10] E. C. Davis, M. M. Strout, C. Olschanowsky: Transforming loop chains via macro
dataflow graphs, in: Proceedings of the 2018 International Symposium on Code Generation
and Optimization, 2018, pp. 265–277,
doi: https://doi.org/10.1145/3168832.

[11] Z. Dvorák: A New Loop Optimizer for GCC, in: GCC Developers Summit, Citeseer, 2003,
p. 43.

[12] P. Ginsbach, M. F. O’Boyle: Discovery and exploitation of general reductions: a con-
straint based approach, in: 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), IEEE, 2017, pp. 269–280.

[13] R. M. Hord: The Illiac IV: the first supercomputer, Springer Science & Business Media,
2013.

[14] Introduce loop interchange pass and enable it at -O3. https://gcc.gnu.org/ml/gcc-
patches/2017-12/msg00360.html, Accessed: 2020-05-24.

[15] N. P. Johnson, J. Fix, S. R. Beard, et al.: A collaborative dependence analysis frame-
work, in: 2017 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), IEEE, 2017, pp. 148–159.

[16] S. C. Johnson: A portable compiler: theory and practice, in: Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, 1978, pp. 97–104,
doi: https://doi.org/10.1145/512760.512771.

[17] M. Kruse: Loop Optimizations in LLVM: the Good, the Bad, and the Ugly, LLVM Devel-
opers’ Meeting, 2018,
url: https://www.youtube.com/watch?v=QpvZt9w-Jik.

[18] D. J. Kuck: Automatic program restructuring for high-speed computation, in: International
Conference on Parallel Processing, Springer, 1981, pp. 66–84,
doi: https://doi.org/10.1007/BFb0105110.

[19] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, M. Wolfe: Dependence graphs and
compiler optimizations, in: Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 1981, pp. 207–218,
doi: https://doi.org/10.1145/567532.567555.

120 R. Kovács, Z. Porkoláb



[20] S. Larsen, S. Amarasinghe: Exploiting superword level parallelism with multimedia in-
struction sets, Acm Sigplan Notices 35.5 (2000), pp. 145–156,
doi: https://doi.org/10.1145/349299.349320.

[21] D. Leopoldseder, L. Stadler, T. Würthinger, et al.: Dominance-based duplication
simulation (DBDS): code duplication to enable compiler optimizations, in: Proceedings of
the 2018 International Symposium on Code Generation and Optimization, 2018, pp. 126–
137,
doi: https://doi.org/10.1145/3168811.

[22] D. Naishlos: Autovectorization in GCC, in: Proceedings of the 2004 GCC Developers Sum-
mit, 2004, pp. 105–118.

[23] Persistence, Facades and Roslyn’s Red-Green Trees, https://docs.microsoft.com/en-
gb/archive/blogs/ericlippert/persistence-facades-and-roslyns-red-green-trees,
Accessed: 2020-05-24.

[24] Polly: The Architecture. https://polly.llvm.org/docs/Architecture.html, Accessed:
2020-05-24.

[25] V. Porpodas: Supergraph-slp auto-vectorization, in: 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT), IEEE, 2017, pp. 330–342,
doi: https://doi.org/10.1109/PACT.2017.21.

[26] V. Porpodas, T. M. Jones: Throttling automatic vectorization: When less is more, in:
2015 International Conference on Parallel Architecture and Compilation (PACT), IEEE,
2015, pp. 432–444,
doi: https://doi.org/10.1109/PACT.2015.32.

[27] V. Porpodas, R. C. Rocha, E. Brevnov, L. F. Góes, T. Mattson: Super-Node SLP: op-
timized vectorization for code sequences containing operators and their inverse elements, in:
2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
IEEE, 2019, pp. 206–216,
doi: https://doi.org/10.1109/CGO.2019.8661192.

[28] V. Porpodas, R. C. Rocha, L. F. Góes: Look-ahead SLP: Auto-vectorization in the
Presence of Commutative Operations, in: Proceedings of the 2018 International Symposium
on Code Generation and Optimization, 2018, pp. 163–174,
doi: https://doi.org/10.1145/3168807.

[29] R. G. Scarborough, H. G. Kolsky: A vectorizing Fortran compiler, IBM Journal of
Research and Development 30.2 (1986), pp. 163–171,
doi: https://doi.org/10.1109/10.1147/rd.302.0163.

[30] S. Sioutas, S. Stuijk, H. Corporaal, T. Basten, L. Somers: Loop transformations
leveraging hardware prefetching, in: Proceedings of the 2018 International Symposium on
Code Generation and Optimization, 2018, pp. 254–264,
doi: https://doi.org/10.1145/3168823.

[31] S. T. Teixeira, C. Ancourt, D. Padua, W. Gropp: Locus: a system and a language for
program optimization, in: 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), IEEE, 2019, pp. 217–228,
doi: http://doi.acm.org/10.1145/2737924.2738003.

[32] M. J. Wolfe: High performance compilers for parallel computing, Addison-Wesley Longman
Publishing Co., Inc., 1995.

[33] O. Zinenko, S. Verdoolaege, C. Reddy, et al.: Modeling the conflicting demands of
parallelism and temporal/spatial locality in affine scheduling, in: Proceedings of the 27th
International Conference on Compiler Construction, 2018, pp. 3–13,
doi: https://doi.org/10.1145/3178372.3179507.

Loop optimizations in C and C++ compilers: an overview 121


