L

View metadata, citation and similar papers at core.ac.uk brought to you byf/\: CORE

provided by Repository of the Academy's Library

Annales Mathematicae et Informaticae
51 (2020) pp. 105-111

DOI: 10.33039/ami.2020.07.007
https://ami.uni-eszterhazy.hu

A comprehensive review on software
comprehension models*

Anett Fekete, Zoltan Porkolab

Eo6tvos Lorand University, Faculty of Informatics
{hutche, gsd}@inf.elte.hu

Submitted: February 4, 2020
Accepted: July 9, 2020
Published online: July 23, 2020

Abstract

Software comprehension is one of the most important among software de-
velopment tasks since most developers do not start a brand new software
every time they switch jobs or get transferred from one project to another
but join long-running software projects. Every experienced and expert devel-
oper has their own established methods of understanding complex software
systems. These methods might be different for everyone but they still have
common aspects by which multiple well-defined code comprehension models
can be constructed. Furthermore, the degree of understanding of a software
can be categorized as well, according to the ability of the programmer to mod-
ify or develop a certain part of the software system. This paper is intended
to provide a review of the cognitive software comprehension models estab-
lished by extensive research in this topic as well as describe the dimensions
of understanding software. It also determines the editor support of cognition
models by examining common editor functionalities and categorizing code
editors based on the availability of functionalities of each cognition approach.

Keywords: code comprehension, comprehension model, code cognition, tax-
onomy

MSC': 68N99

*This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The pro-
ject was supported by the European Union, co-financed by the European Social Fund.

103


https://core.ac.uk/display/328819943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

104 A. Fekete, Z. Porkolab

1. Introduction

Since the very inception of computer science, software comprehension has been an
ongoing challenge for everyone that ever tried to understand any unfamiliar code.
Each programmer, even the ones with the least experience possesses some kind of
— either conscious or subconscious — way of understanding source code. Naturally,
more experienced developers have more sophisticated methods and workflows, since
they are more familiar with the language, framework and architecture they work
with.

Throughout the history of computer science, several researchers tried to grasp
how a programmer approaches software comprehension and constructed high-level
abstraction models from the collected information. There have been several em-
pirical experiments done in this area where researchers observed the process of
understanding unfamiliar source code and tried to draw comprehension patterns
from the results. The acquired information was used to define mental models that
determine a certain direction of thinking while a developer is executing code com-
prehension tasks. As a result of decades of research, several complete cognition
models were constructed which can be classified as being one of two determinant
approaches, or a combination of them.

Cognition models are easily applicable in everyday software development. If
we consider code editor functionalities, we can see that they can be categorized
into one or both approaches according to their individual purpose. Based on this
classification, we can also determine which approach is supported by code editors.

Sec. 2 provides an overview of the common elements of comprehension models,
followed by a comprehensive review on comprehension approaches illustrated by
the most well-designed mental models of each category. We classify the common
software comprehension features in standalone comprehension tools and code ed-
itors in Sec. 3 by the categories discussed in Sec. 2 and decide about the most
popular editors which category they fit in based on their available features. Sec. 4
concludes our paper.

2. Models of code comprehension

Although computer science is a relatively new discipline, it has always been a great
interest of software programmers to find a decent way to understand program code
that has been written by fellow developers. One of the most frequent activities of
a programmer is comprehending the code others wrote from the very beginning of
their careers. Several prestigious companies tried to measure exactly how much
time is spent looking at or searching for code: IBM found in 1989 that more than
50% of working hours are consumed by static analysis [3]. A research conducted by
Microsoft in 2007 [2] showed that 95% of developers thought code comprehension
was an important part of their daily tasks while 65% said that they engage in
software comprehension activities at least once a day.



A comprehensive review on software comprehension models 105

Every programmer, no matter how little experience they have, has their own,
conscious or subconscious way of getting familiar with unknown source code. Young
programmers at the beginning of their career often try to understand code in an
ad hoc way, e.g. jumping from one part of the code to another while running the
program. On the other hand, experienced programmers usually don’t just hop
into the middle of a code but tries understanding in a more structured, thus more
effective way:.

The methods applied by different programmers provide us with information
about the workflow of software comprehension, from which several different struc-
tures can be extracted. A structure constitutes a mental model which is an abstrac-
tion of the software comprehension process. Several comprehension models have
been constructed since the beginning of software production and multiple excel-
lent research papers tried to collect and classify them based on similar viewpoints.
Comprehensive research was done by von Mayrhauser [19] who also constructed
their own mental model (see Sec. 2.4). Another similar review was done by Storey
[18]. The paper of O’Brien [12] presents a somewhat different review as he compares
the models based on their data collection methods. They all determined two main
directions for software comprehension: top-down (see Sec. 2.2) and bottom-up (see
Sec. 2.3).

As noticed by Levy [10], top-down models serve the purpose of learning about
architecture and system components first, then move onto finer details. On the
other hand, the bottom-up approach is the exact opposite, intended to obtain
knowledge about smaller code snippets of a feature. However, the two directions
can be switched between in an opportunistic way, thus creating combined compre-
hension models.

2.1. Common elements in comprehension models

All research on the subject revealed that comprehension models have common ele-
ments of which the models’ components are built up. Practically, the elements are
telltale code snippets and conjectures about the programming goals, and activities
that brings the developer closer to the complete mental model.

e Static elements include recognizable patterns and clues in the source code as
well as domain knowledge and conjectures.

— Beacons [20] are signs standing close to human thinking that may give
a hint for the programmer about the purpose of the examined code, e.g.
function or variable identifiers.

— Chunks [4] are coherent code snippets that describe some level of ab-
straction in the program (e.g. an algorithm).

— Hypotheses [9] are assumptions about the source code based on domain
knowledge that are a result of applying various comprehension tech-
niques. They are classified by Letovsky [9] according to whether they



106 A. Fekete, Z. Porkoldb

are aimed at the purpose (why), implementation method (how) or type
(what) of a source code detail like a function.

— Plans [17] include characteristic features of the source code that are so
frequently used that they are easily recognizable.

* Domain plans include high-level abstractions about the problem do-
main and its environment. It contains the mapping of real-world ob-
jects to programming objects (not necessarily meaning the objects
of the object-oriented paradigm).

* Programming plans describe typical practical concepts, e.g. data
structures and their operations or significant details of algorithms.

— Rules of programming discourse are the consensus about coding that are
intended to facilitate comprehension by not having to adapt to other
programmers’ coding habits like coding style. Rules may determine
coding conventions or data structure and algorithm implementations.

— Text-structure knowledge [19] contains information about statements
and commands in the source code and their relationships. It includes
familiarity with control statement syntax and semantics.

e Dynamic elements are comprehension activities that bring the developer
closer to the complete mental model.

— Strategies include methods in the comprehension process to move from
low-level abstractions to high-level ones.

* Chunking [4] is the process of producing higher level chunks from
lower level chunks. After repeating the process multiple times, high-
level abstractions can be built.

* Cross-referencing connects different abstraction levels by mapping
the elements of source code to level description elements. Cross-
referencing is the key step in building a mental model of the existing
abstractions.

2.2. Top-down approach

Generally speaking, when applying a model that belongs to the set of top-down
approach models means that the programmer starts the comprehension process
from “the big picture” and gradually moves on to the smaller details of the project.
The first step is to acquire a comprehensive system overview e.g. by running the
program and placing breakpoints through which the programmer can trace the
running process and locate the significant parts.

The developer in this case is usually equipped with some previous domain knowl-
edge. In the theory of Brooks [1], comprehension is built upon the domain knowl-
edge by constituting an initial hypothesis about the source code. This is later
refined into follow-up hypotheses that are either proved right or wrong.



A comprehensive review on software comprehension models 107

When the developer comes across a familiar algorithm, the same algorithm
should be easily understandable for them in a different programming language or
framework. This serves as a base to the cognitive model of Soloway, Adelson and
Ehrlich [17], who also focus on the hierarchical structure of programming plans and
goals. The plans are also ordered in their own hierarchical upbuilding. They say
that programmers also make use of beacons and rules of programming discourse
during the comprehension process.

2.3. Bottom-up approach

The bottom-up approach is the opposite of the top-down approach, as in when
applied, programmers first try to understand the details of the code, then move
towards the larger units by chunking the code statements. Shneiderman and Mayer
[16] present a theory that consists of two main knowledge areas: the language de-
pendent syntactic knowledge and the semantic knowledge that, although indepen-
dent of any particular programming language, relies heavily on general program-
ming knowledge. The semantic knowledge is built up of hierarchically structured
layers from low-level details to the actual, high-level mental model.

Pennington [14] describes a similar, two-component model in her paper. How-
ever, unlike the previous model, the components here are rather coordinative than
completing each other like the syntactic and semantic knowledge. According to
Pennington, a program model is built first in the programmer’s mind by observing
the control-flow of the program. Then, a situation model is built while refining the
program model in parallel, which incorporates the programming goals.

2.4. Combined approaches

Some cognition models apply both the top-down and bottom-up approach in some
form; either they have a component that opportunistically applies one direction
(or switch between them if needed) or utilize elements of other models from both
approaches in their own components. An example for the former case is Letovsky’s
[9] model. Beside the knowledge base and the internal representation, it consists
of a third component, the assimilation process which follows the discursive human
thinking as it tries to acquire the most knowledge possible in the shortest possible
time. During the assimilation process, the developer soaks up as much information
as possible with the help of the knowledge base and external representations of the
code (like documentation).

Another similarly high-level combined mental model was described by von
Mayrhauser et al. [19], called the integrated metamodel. Four major components
build up this model, two of them borrowed from Pennington’s bottom-up model
[14] (the program and situation model) and one borrowed from the top-down model
of Soloway, Adelson and Ehrlich [17] (the top-down model). These three compo-
nents are supported by a knowledge base. Any of the components can be activated
at any time during the comprehension process.



108 A. Fekete, Z. Porkoldb

3. Tool support for understanding the comprehen-
sion process

Other than domain knowledge like language syntax or coding conventions, program-
mers are aided by various software features during code comprehension activities.
There are standalone tools that were made for specifically this purpose such as
CodeCompass [15], CodeSurveyor [6] or OpenGrok [13]. These software provide a
wide range of textual and/or visual information about the source code. However,
most modern integrated development environments (IDEs) and code editors are
also rich in code comprehension supporting functionalities [11, 18]. These can be
categorized according to the cognition approach they support, top-down, bottom-
up, or even both, when a functionality serves multiple actions in the comprehension
process.

3.1. Editor functionalities

e Call hierarchy views support the top-down approach since they offer a
well-structured view of the program’s control-flow.

e Code browsing: top-down comprehension is intuitively helped by searching
for previously captured beacons in the software files. On the other hand,
control-flow and data-flow is also supported by code browsing which are key
elements of bottom-up comprehension.’

e Find all references is an obvious tool for bottom-up comprehension since
it serves as a navigation tool when the developer tries to get a hint of the
usage of a symbol thus helps in chunking. Control-flow is also supported by
this feature.

e Go to definition supports top-down comprehension because its main pur-
pose is to find the definition (source) of a beacon thus helps the programmer
move from higher to lower abstraction level.

e Intelligent code completion supports top-down comprehension as it offers
the possibility to capture beacons by providing intuitive perspective of the
various classes, functions and variables of a program.

e Split view provides top-down perspective as it makes the developer able to
grasp beacons from multiple files at the same time. This functionality also
supports typical bottom-up elements like data-centric views.

e UML diagrams are in support of top-down comprehension as their pur-
pose is to provide a high-level visualization of the code structure (e.g. class
diagram, activity diagram) and the program domain (e.g. use-case diagram).

1By code browsing we mean high-level navigation across files, classes, symbols etc., not a
simple text search.



A comprehensive review on software comprehension models

109

Functionality

Top-down

Bottom-up

Call graphs

Code browsing

Find all references

Go to definition

Code completion

Split view

UML diagrams

NN NN X NS

S RN EIEIA N AN AW

Table 1: Classification of editor functionalities based on cognition

approaches

3.2. Editors and comprehension models

As Table 1 shows, most functionalities primarily support top-down comprehension.
If we investigate the available tools in the most popular IDEs [11], we can determine
which cognition approach is supported by a certain IDE.

Top-down Bottom- Both
up
Call Go to Code UML Find all Code Split

Editor 2 defini- com- dia- refer- brows- P

graphs . . . view

tion pletion grams ences ng

Atom X v v X v X v
Eclipse v v v v v v v
JetBrains v v v v v v v
NetBeans v v v X v v v
Notepad++ X X v X X X v
Sublime X v v X v v v
Text
vim X v v X v v v
Visual Stu-
dio Code v v v X v v v

Table 2: Editor support of cognition approaches

Table 2 shows that the most popular IDEs and code editors support every
software comprehension approach in general by providing the previously classified
functionalities. All-purpose IDEs support most if not all examined features. Open-
source IDEs like Eclipse and Visual Studio code are further extendable by software

comprehension supporting plugins [5, 11].

It is also worth noticing that IDEs

generally perform poorly regarding visual features such as call graphs or diagrams.



110 A. Fekete, Z. Porkolab

4. Conclusion

In this paper, we gave a comprehensive review on the various types of code compre-
hension models and their influence on software editors. We discussed their common
elements, and categorized the cognition models based on their components and the
direction of their workflow. We investigated several widespread code editor features
and classified them considering whether they support a comprehension approach
or not. This investigation allowed us to determine which of the most popular IDEs
support the described approaches based on the availability of functionalities. We
determined that the majority of IDEs support all approaches.

It is worth considering that well-defined cognition models seem to be overly
strict regarding the human thinking process. Multiple research has shown that
developers do not usually follow a rigorous pattern or a concrete model during
their understanding activities, they rather apply opportunistic strategies [7]. For
example, Koenemann et al. [8] concluded that programmers perform best in com-
prehension tasks when they try to understand only the relevant parts of the code
in an as-needed manner. This means that cognition models work well as abstrac-
tions about the comprehension process and are also provide a good basis for IDE
functionalities but they shouldn’t be considered the only ways of ’correct’ compre-
hension workflows.

References

[1] R. Brooks: Towards a theory of the cognitive processes in computer programming, Interna-
tional Journal of Man-Machine Studies 9.6 (1977), pp. 737751,
Dol: https://doi.org/10.1016/50020-7373(77)80039-4.

[2] M. CrEruBINI, G. VENoLIA, R. DELINE, A. J. Ko: Let’s go to the whiteboard: how and
why software developers use drawings, in: Proceedings of the SIGCHI conference on Human
factors in computing systems, 2007, pp. 557-566,

DoI: https://doi.org/10.1145/1240624.1240714.

[3] T. A. Corsr: Program understanding: Challenge for the 1990s, IBM Systems Journal 28.2
(1989), pp. 294-306,
DOI: https://doi.org/10.1147/sj.282.0294.

[4] J. S. Davis: Chunks: A basis for complezity measurement, Information Processing & Man-
agement 20.1-2 (1984), pp. 119-127,
pol: https://doi.org/10.1016/0306-4573(84)90043-8.

[5] L. Harrori, M. D’AMmBRos, M. Lanza, M. Lunau: Software evolution comprehension:
Replay to the rescue, in: 2011 IEEE 19th International Conference on Program Comprehen-
sion, IEEE, 2011, pp. 161-170,
por: https://doi.org/10.1109/ICPC.2011.39.

[6] N. Hawes, S. MarsHALL, C. AnsLow: Codesurveyor: Mapping large-scale software to aid
in code comprehension, in: 2015 IEEE 3rd Working Conference on Software Visualization
(VISSOFT), IEEE, 2015, pp. 96-105,

DoI: https://doi.org/10.1109/VISSOFT.2015.7332419.



A comprehensive review on software comprehension models 111

[7]

(8]

[9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

A. J. Ko, B. UrTL: Individual differences in program comprehension strategies in unfamiliar
programming systems, in: 11th IEEE International Workshop on Program Comprehension,
2003. IEEE, 2003, pp. 175-184,

por: https://doi.org/10.1109/WPC.2003.1199201.

J. KoENEMANN, S. P. RoBERTSON: Ezpert problem solving strategies for program com-
prehension, in: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM, 1991, pp. 125-130,

DoI: https://doi.org/10.1145/108844.108863.

S. LETovsky: Cognitive processes in program comprehension, Journal of Systems and soft-
ware 7.4 (1987), pp. 325-339,
Dol: https://doi.org/10.1016/0164-1212(87)90032-X.

O. Levy, D. G. FeiTELsoN: Understanding large-scale software: a hierarchical view, in:
Proceedings of the 27th International Conference on Program Comprehension, IEEE Press,
2019, pp. 283293,

DOI: https://doi.org/10.1109/ICPC.2019.00047.

M. MEszArRos, M. CsErREP, A. FEKETE: Delivering comprehension features into source code
editors through LSP, in: 2019 42nd International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO), IEEE, 2019, pp. 1581-1586,
Dol: https://doi.org/10.23919/MIPRO.2019.8756695.

M. P. O’BRrIEN: Software comprehension—a review & research direction, Department of
Computer Science & Information Systems University of Limerick, Ireland, Technical Report
(2003).

ORACLE: OpenGrok: “A wicked fast source browser”,
URL: https://oracle.github.io/opengrok/.

N. PENNINGTON: Stimulus structures and mental representations in expert comprehension
of computer programs, Cognitive psychology 19.3 (1987), pp. 295-341,
DOI: https://doi.org/10.1016/0010-0285(87)90007-7.

Z. PorkoLAB, T. BRUNNER, D. Kruprp, M. CsorDAs: Codecompass: an open software
comprehension framework for industrial usage, in: Proceedings of the 26th Conference on
Program Comprehension, 2018, pp. 361-369,

DOI: https://doi.org/10.1145/3196321.3197546.

B. SHNEIDERMAN, R. MAYER: Syntactic/semantic interactions in programmer behavior: A
model and experimental results, International Journal of Computer & Information Sciences
8.3 (1979), pp. 219-238,

Dol: https://doi.org/10.1007/BF00977789.

E. Soroway, K. EHRLICH: Empirical studies of programming knowledge, IEEE Transactions
on software engineering 5 (1984), pp. 595-609,
Dol: https://doi.org/10.1109/TSE. 1984.5010283.

M.-A. STorEY: Theories, methods and tools in program comprehension: Past, present and
future, in: 13th International Workshop on Program Comprehension (IWPC’05), IEEE, 2005,
pp. 181-191,

pol: https://doi.org/10.1109/WPC.2005. 38.

A. VoN MAYRHAUSER, A. M. Vans: Program comprehension during software maintenance
and evolution, Computer 28.8 (1995), pp. 44-55,
DoI: https://doi.org/10.1109/2.402076.

S. WIEDENBECK: Beacons in computer program comprehension, International Journal of
Man-Machine Studies 25.6 (1986), pp. 697—709,
Dpol: https://doi.org/10.1016/50020-7373(86)80083-9.



