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Abstract

We study a continuous time network evolution model. We consider the
collaboration of three individuals. In our model, it is described by three
connected vertices, that is by a triangle. During the evolution new collabora-
tions, that is new triangles are created. The reproduction of the triangles is
governed by a continuous time branching process. The long time behaviour
of the number of triangles, edges and vertices is described. In this paper, we
highlight the asymptotic behaviour of the network by simulation results.
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1. Introduction

In the past two decades network science became a popular and important topic,
see [2]. It describes large real-life networks as the Internet, the WWW, social,
biological and energy networks. Large networks have several common properties,
therefore it is worth to study theoretical models of networks. Usually, networks
are described by graphs. The nodes of the network are the vertices of the graph

∗This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The
project was supported by the European Union, co-financed by the European Social Fund.

Annales Mathematicae et Informaticae
51 (2020) pp. 7–15
doi: 10.33039/ami.2020.07.005
https://ami.uni-eszterhazy.hu

7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/328819935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and the connections are the edges. The meaning of connection can be cooperation
or any interaction. A most cited paper in network science is [3]. It studies the
famous preferential attachment model which leads to scale free networks. A deep
mathematical study of discrete time network evolution models can be found in [6].

However, in our paper, we turn to a continuous time network evolution model.
An interesting continuous time model is presented in [7]. In that paper the theory
of general branching processes, so called Crump-Mode-Jagers processes (see [8])
is applied to obtain asymptotic theorems. In paper [9], the idea of preferential
attachment is combined with the evolution mechanism of a multi-type continuous
time branching process.

In this paper we apply certain ideas of papers [1] and [7]. Paper [1] describes
the interaction (or co-operation) of three persons. It creates a discrete time net-
work evolution model which relies on the preferential attachment rule and three-
interactions. In [7], however, a continuous time network evolution model based
on a branching process evolution rule is presented. In that model only the usual
interaction of two vertices is included and triangles have no role in the evolution
rule. Neither [1] nor [7] offer numerical results. In our paper we combine the above
ideas of three interactions with the continuous time branching process evolution
mechanism. We focus on numerical studies of our model.

In this paper, in Section 2, we offer a detailed description of the evolution rules
of our network. Then, in Section 3, we give a brief summary of our theoretical
results. Their detailed mathematical proofs are given in a separate paper (see [5]).
Here, in Section 4, we present our numerical results. We show that our formulae are
numerically tractable, so we can calculate the values of the important parameters
and other features of our process. Then we show our simulation program and a
certain part of our simulation results. These results support our mathematical
theorems.

2. The network evolution model

We shall study the following evolving random graph model. At the initial time
𝑡 = 0 we start with a single triangle. During the evolution new triangles are born.
Every triangle has its own evolution process. We assume that during the evolution
of the network the life processes of the triangles are identically distributed and
independent of each other.

We denote the reproduction process of the generic triangle by 𝜉(𝑡) and its birth
times by 𝜏1, 𝜏2, . . . . We assume that 𝜏1, 𝜏2, . . . are the jumping time points of a
Poisson process Π(𝑡), 𝑡 ≥ 0, where the rate of Π is equal to 1. Then the point process
𝜉(𝑡) gives the total number of offspring up to time 𝑡. However, at a birth time not
only triangles can be created but new edges and vertices can be added to the graph.
Here we describe the details of an evolution step. At every birth time 𝜏𝑖 a new
vertex is added to the graph which can be connected to its ancestor triangle with 𝑗
edges, where 𝑗 = 0, 1, 2, 3. The vertices of the ancestor triangle to be connected to
the new vertex are chosen uniformly at random. Let 𝑝𝑗 denote the probability that
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the new vertex will be connected to 𝑗 vertices of the ancestor triangle. It follows
from the definition of the evolution process that at each birth step the possible
number of the new triangles can be 0, 1 or 3. On Figure 1 we represent these
possibilities. The initial triangle is drawn by solid lines while the new ingredients
by dashed lines. Denote the litter sizes belonging to the birth times 𝜏1, 𝜏2, . . . by

Figure 1: Possible birth events (0, 1, 2 or 3 new edges)

𝜀1, 𝜀2, . . . . Then 𝜀1, 𝜀2, . . . are independent identically distributed discrete random
variables with distribution P(𝜀𝑖 = 𝑗) = 𝑞𝑗 , 𝑗 ≥ 0. In our model the distribution of
the litter size 𝜀𝑖 is given by

P(𝜀𝑖 = 0) = 𝑞0 = 𝑝0 + 𝑝1, P(𝜀𝑖 = 1) = 𝑞1 = 𝑝2, P(𝜀𝑖 = 3) = 𝑞3 = 𝑝3,

P(𝜀𝑖 = 𝑗) = 𝑞𝑗 = 0, if 𝑗 /∈ {0, 1, 3}.
We assume that the litter sizes are independent of the birth times 𝜏1, 𝜏2, . . . , too.
Denote by 𝜆 the life length of the generic triangle. 𝜆 is a finite nonnegative random
variable. After its death the triangle does not produce offspring, therefore 𝜉(𝑡) =
𝜉(𝜆) when 𝑡 > 𝜆. Then the reproduction process of a triangle is

𝜉(𝑡) =
∑︁

𝜏𝑖≤𝑡∧𝜆

𝜀𝑖 = 𝑆Π(𝑡∧𝜆),

where 𝑆𝑛 = 𝜀1 + · · · + 𝜀𝑛 gives the total number of offspring before the (𝑛 + 1)th
birth event and 𝑥 ∧ 𝑦 denotes the minimum of {𝑥, 𝑦}.

Let 𝐿(𝑡) be the distribution function of 𝜆. We assume that the survival function
of the triangle’s life length is

1− 𝐿(𝑡) = P(𝜆 > 𝑡) = exp

⎛
⎝−

𝑡∫︁

0

𝑙(𝑢) d𝑢

⎞
⎠ ,

where 𝑙(𝑡) is the hazard rate of the life span 𝜆. Moreover, we assume that the
hazard rate depends on the number of offspring as

𝑙(𝑡) = 𝑏 + 𝑐𝜉(𝑡)

with positive constants 𝑏 and 𝑐.
The whole evolution process is the following. The life and the reproduction pro-

cess of the initial triangle is the same as that of the above described generic triangle.
When a child triangle is born, then it starts its own life and reproduction process
which is also defined by the same way as its parent triangle. The same applies to
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the grandchildren, etc. Therefore the evolution of the network is described by a
continuous time branching process. We underline that the life and reproduction
process of any triangle have the same distribution as those of the generic triangle,
but the reproduction processes of different triangles are independent.

3. Theoretical results

Here we summarize the theoretical results of our paper [5].
Let 𝜇(𝑡) = E𝜉(𝑡) be the expectation of the number of offspring of a triangle

up to time 𝑡. The total number of offspring of a triangle is 𝜉(∞). The expected
offspring number of a triangle can be calculated as

𝜇(∞) = E𝜉(∞) = (𝑞1 + 3𝑞3)E(𝜆) =

(𝑞1 + 3𝑞3)
1

𝑐

1∫︁

0

(1− 𝑢)
𝑏+1−𝑞0

𝑐 −1𝑒
𝑢
3𝑐 (𝑞3𝑢

2−3𝑞3𝑢+3(𝑞1+𝑞3)) d𝑢.

The probability of extinction is 1 if 𝜇(∞) ≤ 1.

Theorem 3.1. If 𝜇(∞) > 1, then the probability of the extinction of the triangles
is the smallest non-negative solution of equation

𝑞1 + 𝑞3(𝑦2 + 𝑦 + 1)

𝑐

1∫︁

0

(1− 𝑢)
1+𝑏−𝑞0

𝑐 −1𝑒(
𝑞1𝑦+𝑞3𝑦3

𝑐 𝑢− 𝑞3𝑦3

𝑐 𝑢2+
𝑞3𝑦3

3𝑐 𝑢3) d𝑢 = 1. (3.1)

Assume that 𝜇(∞) > 1, that is our branching process is supercritical. Then the
Malthusian parameter 𝛼 is the only positive solution of equation

∫︀∞
0

𝑒−𝛼𝑡𝜇(𝑑𝑡) = 1.
We can see that

𝑞1 + 3𝑞3 − 𝑏− 1 < 𝛼 < 𝑞1 + 3𝑞3 − 𝑏.

In our model the Malthusian parameter 𝛼 satisfies the equation

1 =
(𝑞1 + 3𝑞3)

𝑐

1∫︁

0

(1− 𝑢)
𝛼+(𝑏+1)

𝑐 − 𝑞0
𝑐 −1𝑒

3𝑞1𝑢+𝑞3𝑢(𝑢2−3𝑢+3)
3𝑐 d𝑢. (3.2)

Now we give the asymptotic behaviour of the number of triangles. Let us denote by
𝑍(𝑡) the number of triangles alive at time 𝑡. Let 𝛼 be the Malthusian parameter.

Theorem 3.2. We have

lim
𝑡→∞

𝑒−𝛼𝑡𝑍(𝑡) = 𝑌∞𝑚∞

almost surely and in 𝐿1, where the random variable 𝑌∞ is nonnegative, it is positive
on the event of non-extinction, it has expectation 1 and

𝑚∞ =
1

(𝑞1 + 3𝑞3)2
∫︀∞
0

𝑡𝑒−𝛼𝑡(1− 𝐿(𝑡))𝑑𝑡
.
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Now we turn to the asymptotic behaviour of vertices and edges. Let us denote
by 𝑉 (𝑡) the total number of vertices (dead or alive) up to time 𝑡. Let 𝑊 (𝑡) be the
number of edges (dead or alive) up to time 𝑡. Let 𝛾 denote the number of new
edges at a birth. Then its distribution is P(𝛾 = 𝑗) = 𝑝𝑗 , 𝑗 = 0, 1, 2, 3.

Theorem 3.3. We have

𝑉 (𝑡)

𝑍(𝑡)
→ 1

𝛼
and

𝑊 (𝑡)

𝑍(𝑡)
→ E𝛾

𝛼

as 𝑡→∞ almost surely on the event of non-extinction.

4. Numerical and simulation results

To get a closer look on the theoretical results, we made some simulations about
them. We generated our code in Julia language [4]. We chose Julia, because of
the great implementation of priority queues. The simulation time of our code was
significantly faster in Julia than in other programming languages. We handled the
main objects (the triangles) of our model as arrays with 3 elements. The elements
were the indices of the edges that formed an individual for the process. We put all
triangles in a priority queue with the priority of its birth time, because we can pop
out the element with the lowest priority. After we have got the triangle with the
lowest birth time, we can handle its birth process with the predefined parameters
𝑏, 𝑐, 𝑞1, 𝑞3. In the birth process we generated an exponential time step for the next
birth step of our triangle. After that we checked if the triangle is still alive by
calculating the survival function. If the triangle is dead, we move to the next one.
If it is alive, then we generate 1 or 3 new triangles and put them into the priority
queue with the calculated birth time priorities. After this step we moved to the
next birth event. The pseudocode of the birth process is seen at Algorithm 1.

We made several simulation experiments. Here we show only some typical
results. For the above demonstration first we used the parameter set 𝑏 = 0.2, 𝑐 =
0.2, 𝑝0 = 0.05, 𝑝1 = 0.05, 𝑝2 = 𝑞1 = 0.6, 𝑝3 = 𝑞3 = 0.3. On Figure 2a the solid
curve shows the number of triangles. According to Theorem 3.2 it has asymptotic
rate 𝑒𝛼𝑡. Therefore we put logarithmic scale on the vertical axis, so the function
𝑍(𝑡) is a straight line for large values of 𝑡. On the figure one can see that the shape
of the curve is close to a straight line, so it supports our Theorem 3.2.

Then we checked the value of the Malthusian parameter 𝛼. We can find it in
two ways. On the one hand, the slope of the line on Figure 2a is 𝛼 for large values
of the time. This slope can be approximated by the differences of the function. So
on Figure 2b we present these differences (solid line). On the other hand, 𝛼 can
be calculated numerically from equation (3.2). This 𝛼 value is shown of Figure 2b
by the horizontal dashed line. The fit of the differences to this 𝛼 can be seen for
large values of 𝑡. To get a closer look on the Malthusian parameter 𝛼, we fixed
5 parameter sets. Then we calculated 𝛼 from equation (3.2) for each case. It
is shown in the fifth column of Table 1. Then for each of the parameter sets we
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Figure 2: Simulation results for 𝑏 = 0.2, 𝑐 = 0.2, 𝑞1 = 0.6, 𝑞3 = 0.3

simulated our process 𝑍(𝑡) five times. Then we calculated the differences of log𝑍(𝑡)
which should be good approximations of 𝛼 according to Theorem 3.2. In Table 1,
̂︁𝛼1, ̂︁𝛼2, ̂︁𝛼3, ̂︁𝛼4, ̂︁𝛼5 show the values of these approximations for large 𝑡. One can
see that each ̂︀𝛼𝑖 is close to the corresponding 𝛼. We calculated numerically the

𝑏 𝑐 𝑞1 𝑞3 𝛼 ̂︁𝛼1 ̂︁𝛼2 ̂︁𝛼3 ̂︁𝛼4 ̂︁𝛼5

0.2 0.4 0.7 0.1 0.5628 0.5651 0.5730 0.5701 0.5611 0.5594
0.2 0.4 0.8 0.1 0.6531 0.6537 0.6497 0.6570 0.6510 0.6589
0.4 0.4 0.8 0.1 0.4531 0.4503 0.4519 0.4584 0.4541 0.4524
0.4 0.4 0.7 0.2 0.6545 0.6533 0.6517 0.6548 0.6534 0.6574
0.4 0.4 0.6 0.3 0.8535 0.8519 0.8489 0.8559 0.8547 0.8566

Table 1: 𝛼 from equation (3.2) and ̂︀𝛼𝑖 from simulations

probability of extinction from equation (3.1). It is shown in the column ‘Numerical’
of Table 2. In the column ‘Simulation’ the relative frequency of the extinction is
shown using our computer experiment. For each parameter sets, we simulated
104 processes and counted the number of extinctions occured. The value of the
relative frequency is close to the corresponding value of the probability in each
case. So Table 2 supports the result of Theorem 3.1. To investigate how our
difference process approximates 𝛼 for large values of time 𝑡, we simulated around
500 independent processes with the same parameters 𝑏 = 0.2, 𝑐 = 0.2, 𝑝0 =
0.05, 𝑝1 = 0.05, 𝑝2 = 𝑞1 = 0.6, 𝑝3 = 𝑞3 = 0.3 and same running time. Then
we checked the differences of the last two values in the numbers of triangles that
we simulated and made a histogram, seen in Figure 3. From equation (3.2) we
obtained that the value of 𝛼 is 0.3365. We see that the values of the differences are
in [0.332, 0.340], so they are very close to 0.3365.
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𝑏 𝑐 𝑞1 𝑞3 Simulation Numerical

0.0 0.2 0.4 0.4 0.0 0.0
0.1 0.2 0.4 0.4 0.1304 0.1282
0.1 0.2 0.5 0.4 0.1165 0.1158
0.1 0.2 0.5 0.5 0.1097 0.1025
0.2 0.2 0.5 0.4 0.2227 0.2180
0.2 0.2 0.6 0.4 0.2038 0.2002
0.3 0.3 0.5 0.4 0.3231 0.3185
0.4 0.4 0.5 0.4 0.3966 0.4020

Table 2: The relative frequency and the probability of
the extinction of the triangles

Figure 3: Histogram of differences

To get some information about the random variable 𝑌∞𝑚∞ represented in Theo-
rem 3.2, we calculated the value of 𝑍(𝑡)𝑒−𝛼𝑡 for 103 independent repetitions of the
process for the same time 𝑡 and same parameters 𝑞1 = 0.3, 𝑞3 = 0.6, 𝑏 = 0.2, 𝑐 =
0.2. On Figure 4 we represent the histogram and the empirical cumulative dis-
tribution function (ECDF) calculated from the simulation. We obtained that the
empirical cumulative distribution function of 𝑌∞𝑚∞ fits to a gamma distribution,
as the Kolmogorov–Smirnov test gave us 𝑝 value 0.6713.
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Figure 4: Simulation results for 𝑍(𝑡)𝑒−𝛼𝑡
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5. Summary

In this paper and in [5] we offer a network evolution model which describes col-
laborations of 3 persons. Our model grasps certain features of real collaborations
as emerging and disappearing collaborations, moreover collaborations of 2 persons
are also allowed. Our numerical results confirm the theoretical ones. The present
results prepare our future research on more complicated collaborations.

Algorithm 1 Birth process of a triangle
1: procedure Birth process
2: 𝑌 ← non-empty Priority Queue
3: 𝑏, 𝑐, 𝑞1, 𝑞3 ← parameters of the survival function
4: 𝑥← dequeue Y
5: if 𝑥 is a new triangle then
6: 𝑡0 ← the birth time of 𝑥 in the whole process
7: 𝑡← 0, lifetime of 𝑥
8: 𝑙← 1, life variable
9: while 𝑙 = 1 do

10: 𝑡← 𝑡 + 𝐸𝑥𝑝(1)
11: 𝑝← the calculated survival function
12: if 𝑝 > 𝑈𝑛𝑖(0, 1) then
13: 𝑝0 ← 𝑈𝑛𝑖(0, 1)
14: if 𝑝0 < 𝑞1 then
15: take a new triangle with 𝑡0 + 𝑡 birth time to 𝑌
16: offspring number is 1 at birth time 𝑡
17: else if 𝑝0 > 1− 𝑞3 then
18: take three new triangles with 𝑡0 + 𝑡 birth times to 𝑌
19: offspring number is 3 at birth time 𝑡

20: else
21: 𝑙← 0
22: take 𝑡 as the death time of 𝑥 to 𝑌
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