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Abstract. In this paper, we introduce a certain class H λ,α
m,q (ζ,M ) of normalized analytic functions

of complex order connected with a q-analogue of integral operators. For this complex-order ana-
lytic function class, we determine a sufficient condition in terms of the coefficients, estimates for
the coefficients and a maximization theorem concerning the coefficients. Various consequences
and applications of our main results are also considered. A brief remark about the demonstrated
equivalence of the q-calculus and the so-called (p,q)-calculus is also presented.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

The theory of q-calculus plays an important rôle in many areas of mathematical,
physical and engineering sciences. Jackson (see [8] and [9]) was the first to have
some applications of the q-calculus and introduced the q-analogue of the classical
derivative and integral operators (see also [1]). Let A denote the class of functions
f (z) of the following normalized form:

f (z) = z+
∞

∑
k=2

akzk (z ∈ U), (1.1)

which are analytic in the open unit disk U given by

U= {z : z ∈ C and |z|< 1}).

We also let S denote the subclass of A consisting of normalized analytic functions
which are univalent in U.
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For a function f (z) given by (1.1) and the g(z) given by

g(z) = z+
∞

∑
k=2

bkzk (z ∈ U), (1.2)

the Hadamard product (or convolution) of f (z) and g(z) is defined here by

( f ∗g)(z) := z+
∞

∑
k=2

akbkzk =: (g∗ f )(z). (1.3)

We use Ω to denote the class of Schwarz functions w(z), which are analytic in U
and satisfy the conditions

w(0) = 0 and |w(z)|< 1 (z ∈ U).

We now define the integral operator K α
m,n : A→A for α > 0 and m= 0 as follows:

K 0
m f (z) = f (z)

and

K α
m f (z) =

(m+1)α

Γ(α)zm

∫ z

0
tm−1

(
log

z
t

)α−1
f (t)dt. (1.4)

For f ∈ A , it can be easily verified that

K α
m f (z) = z+

∞

∑
k=2

(
m+1
m+ k

)α

akzk. (1.5)

Next, for 0 < q < 1, the q-derivative of the function K α
m f (z) ∈ A is defined by

Dq {K α
m f (z)}= K α

m f (z)−K α
m f (qz)

z(1−q)
(z 6= 0) , (1.6)

so that

Dq

{
z+

∞

∑
k=2

(
m+1
m+ k

)α

akzk

}
= 1+

∞

∑
k=2

(
m+1
m+ k

)α

[k]q akzk−1,

where

[k]q :=
1−qk

1−q
= 1+

k−1

∑
j=1

q j and [0]q = 0.

Remark 1. The first usage of the above-defined q-derivative operator Dq in Geo-
metric Function Theory was made in 1990 by Ismail et al. [7] (see also [1]). Moreover,
a firm footing of the usage of the q-calculus in the context of Geometric Function
Theory was actually provided and the basic (or q-) hypergeometric functions were
first used in Geometric Function Theory in a 1989 book-chapter by Srivastava (see,
for details, [21]). Several recent developments on various applications of the the q-
derivative operator Dq in Geometric Function Theory can be found in (for example)
[2, 13, 14, 16, 18, 22–24, 26].
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It is easily seen from (1.6) that

z Dq {K α
m f (z)}= z+

∞

∑
k=2

(
m+1
m+ k

)α

[k]q akzk. (1.7)

For any non-negative integer n, the q-factorial [n]q! is given by

[n]q! =


1 (k = 0)

[1]q [2]q [3]q · · · [n]q (n ∈ N),
(1.8)

where N denotes the set positive integers. Also the q-Pochhammer symbol [λ]q,n
(ν ∈ C) is defined by

[ν]q,n =


1 (n = 0)

[ν]q [ν+1]q · · · [ν+n−1]q (n ∈ N).
(1.9)

For λ >−1, we define the operator N λ,α
m,q by

N λ,α
m,q f (z)∗Mq,λ+1(z) = z Dq {K α

m f (z)} , (1.10)

where the function Mq,λ+1(z) is given by

Mq,λ+1(z) = z+
∞

∑
k=2

[λ+1]q,k−1

[k−1]q!
zk.

We thus obtain

N λ,α
m,q f (z) = z+

∞

∑
k=2

(
m+1
m+ k

)α [k]q [k−1]q!

[λ+1]q,k−1
akzk

= z+
∞

∑
k=2

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk (1.11)

(α > 0; λ >−1; m= 0; 0 < q < 1).

We can easily verify from (1.11) that

[λ+1]q N λ,α
m,q f (z) = [λ]q N λ+1,α

m,q f (z)+qλ z Dq

{
N λ+1,α

m,q f (z)
}
. (1.12)

We also note that

lim
q→1−

N λ,α
m,q f (z) = I λ,α

m f (z) = z+
∞

∑
k=2

k!
(λ+1)k−1

(
m+1
m+ k

)α

akzk. (1.13)

In the special case when α = 0, we have

N λ,0
m,q f (z) =: Jλ

q f (z).

The operator in Jλ
q f (z) was studied by Arif et al. [5].
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Definition 1. We say that a function f (z) belonging to A is in the normalized
complex-order analytic function class

H λ,α
m,q (ζ,M )

(
ζ ∈ C∗ := C\{0}; M >

1
2

)
if and only if ∣∣∣∣∣∣∣1−

1
ζ
+

z
(

N λ,α
m,q f (z)

)′
ζ N λ,α

m,q f (z)
−M

∣∣∣∣∣∣∣< M (1.14)

(α > 0; λ >−1; m= 0; 0 < q < 1; z ∈ U) .

By letting q→ 1−, it follows from the work of Kulshrestha [11] that

g(z) ∈H 1,0
m,q(1,M ) = F(1,M )

if and only if

zg′(z)
g(z)

=
1+w(z)

1−mw(z)

(
m = 1− 1

M
; M >

1
2

; w(z) ∈Ω

)
(1.15)

for z ∈ U.
It can easily be shown that f (z)∈H λ,α

m,q (ζ,M ) if and only if there exists a function

g(z) ∈ lim
q→1−

H 1,0
m,q(1,M ) = F(1,M )

such that

N λ,α
m,q f (z) = z

[
g(z)

z

]ζ

. (1.16)

Thus, from (1.15) and (1.16), it follows that f (z) ∈H λ,α
m,q (ζ,M ) if and only if

z
(
N λ,α

m,q f (z)
)′

N λ,α
m,q f (z)

=
1+[ζ(1+m)−m]w(z)

1−mw(z)
(1.17)(

m = 1− 1
M

; M >
1
2

; w(z) ∈Ω

)
for z ∈ U.

By giving specific values to the parameters λ, α and ζ, we obtain the following
interesting subclasses:

(i) lim
q→1−

H 1,0
m,q(ζ,M ) = F(ζ,M ) (see Nasr and Aouf [17]);

(ii) lim
q→1−

H 1,0
m,q(1,M ) = F(1,M ) (see Singh and Singh [19]);

(iii) lim
q→1−

H 1,0
m,q(cosλe−iλ,M ) = Fλ,M

(
|λ|< π

2

)
(see Kulshrestha [11]);
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(iv) lim
q→1−

H 1,0
m,q((1−α)cosλe−iλ,∞) = Sλ (α)

(
|λ|< π

2
; 05 α < 1

)
(see Libera [12]; see also Chichra [6] and Sižuk [20]);

(v) lim
q→1−

H 1,0
m,q
(
(1−α)cosλe−iλ,M

)
= FM (λ,α)

(
|λ|< π

2
; 05 α < 1

)
(see Aouf [3] and Aouf [4]).

We also have the following presumably new function classes:

(i) lim
q→1−

H λ,α
m,q (ζ,M ) =: S λ,α

m (ζ,M ), where

S λ,α
m (ζ,M ) :=

{
f : f (z) ∈ A and

∣∣∣∣∣1− 1
ζ
+

z
(
I λ,α

m f (z)
)′

ζ I λ,α
m f (z)

−M

∣∣∣∣∣< M

(
M >

1
2

; ζ ∈ C∗; α > 0; λ >−1; m= 0; z ∈ U
)}

;

(ii) H λ,0
m,q (ζ,M ) =: F λ

q (ζ,M ), where

F λ
q (ζ,M ) :=

{
f : f (z) ∈ A and

∣∣∣∣∣1− 1
ζ
+

z
(
Jλ

q f (z)
)′

ζ Jλ
q f (z)

−M

∣∣∣∣∣< M

(
M >

1
2

; ζ ∈ C∗; λ >−1; m= 0; 0 < q < 1; z ∈ U
)}

.

From the above definitions of the function classes F(ζ,M ) and H λ,α
m,q (ζ,M ), we note

that
f (z) ∈H λ,α

m,q (ζ,M ) ⇐⇒ N λ,α
m,q f (z) ∈ F(ζ,M ). (1.18)

The purpose of the present paper is to determine a sufficient condition in terms
of the coefficients for functions belonging to the normalized complex-order analytic
function class H λ,α

m,q (ζ,M ), estimates for the coefficients and a maximization theorem
involving

∣∣a3−µa2
2

∣∣ for the class H λ,α
m,q (ζ,M ) for complex values of the parameter µ.

2. SUFFICIENT CONDITION FOR A FUNCTION TO BE IN THE CLASS H λ,α
m,q (ζ,M )

Unless otherwise mentioned, we assume throughout this paper that

α > 0, λ >−1, m= 0, 0 < q < 1, ζ ∈ C∗,

m = 1− 1
M

, M >
1
2

and z ∈ U.
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Theorem 1. Let the function f (z) be defined by (1.1). Also let the following in-
equality holds true:

∞

∑
k=2

{
(k−1)+ |ζ(1+m)+m(k−1)|

}
|ak|

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

|ζ(1+m)| .

(2.1)

Then f (z) belongs to the class normalized complex-order analytic function class
H λ,α

m,q (ζ,M ).

Proof. Suppose that the inequality (2.1) holds true. Then we find for z ∈ U that∣∣∣∣z(N λ,α
m,q f (z)

)′
−N λ,α

m,q f (z)
∣∣∣∣− ∣∣∣ζ(1+m)N λ,α

m,q f (z)+m
{

z
(
N λ,α

m,q f (z)
)′−N λ,α

m,q f (z)
}∣∣∣

=

∣∣∣∣∣ ∞

∑
k=2

(k−1)
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

∣∣∣∣∣
−

∣∣∣∣∣ζ(1+m)

{
z+

∞

∑
k=2

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

}

+m

{
∞

∑
k=2

(k−1)
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

}∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
k=2

(k−1)
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

∣∣∣∣∣
−

∣∣∣∣∣ζ(1+m)z+
∞

∑
k=2
{ζ(1+m)+m(k−1)} ·

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

∣∣∣∣∣
5

∞

∑
k=2

(k−1)
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

|ak| rk

−

{
|ζ(1+m)|r−

∞

∑
k=2
{|ζ(1+m)|+m(k−1)} ·

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

|ak| rk

}

=
∞

∑
k=2
{(k−1)+ |ζ(1+m)|+m(k−1)} ·

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

|ak| rk−|ζ(1+m)| r.

Letting r→ 1− in the above equation, we get∣∣∣z(N λ,α
m,q f (z)

)′−N λ,α
m,q f (z)

∣∣∣− ∣∣∣ζ(1+m)N λ,α
m,q f (z)+m

{
z
(
N λ,α

m,q f (z)
)′−N λ,α

m,q f (z)
}∣∣∣

5
∞

∑
k=2
{(k−1)+ |ζ(1+m)|+m(k−1)}|ak| ·

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

−|ζ(1+m)|5 0,
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where we have made use of the assertion (2.1) of Theorem 1. Consequently, we
obtain ∣∣∣∣∣∣∣∣∣∣

z
(
N λ,α

m,q f (z)
)′

N λ,α
m,q f (z)

−1

ζ(1+m)+m

(
z
(
N λ,α

m,q f (z)
)′

N λ,α
m,q f (z)

−1

)
∣∣∣∣∣∣∣∣∣∣
< 1 (z ∈ U).

If we now set

w(z) =

z
(
N λ,α

m,q f (z)
)′

N λ,α
m,q f (z)

−1

ζ(1+m)+m

(
z
(
N λ,α

m,q f (z)
)′

N λ,α
m,q f (z)

−1

) ,

then w(0) = 0, w(z) is analytic in the open unit disk U and

|w(z)|< 1 (z ∈ U).

Hence we have
z
(
N λ,α

m,q f (z)
)′

N λ,α
m,q f (z)

=
1+[ζ(1+m)−m]w(z)

1−mw(z)
,

which shows that the function f (z) belongs to the class H λ,α
m,q (ζ,M ). �

In the limit when q→ 1− in Theorem 1, we obtain the following corollary.

Corollary 1. Let the function f (z) be defined by (1.1). Also let the following
inequality holds true:

∞

∑
k=2
{(k−1)+ |ζ(1+m)+m(k−1)|} |ak| ·

k!
(λ+1)k−1

(
m+1
m+ k

)α

5 |ζ(1+m)| .

(2.2)

Then the function f (z) belongs to the class S λ,α
m (ζ,M ).

If we set α = 0 in Theorem 1, we obtain the following corollary.

Corollary 2. Let the function f (z) be defined by (1.1). Also let the following
inequality holds true:

∞

∑
k=2
{(k−1)+ |ζ(1+m)+m(k−1)|} |ak|

[k]q!

[λ+1]q,k−1
5 |ζ(1+m)| . (2.3)

Then the function f (z) belongs to the class F λ
q (ζ,M ).
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3. COEFFICIENT ESTIMATES

In this section, we first state and prove the following result.

Theorem 2. Let the function f (z) given by (1.1) be in the normalized complex-
order analytic function class H λ,α

m,q (ζ,M ).
(a) If

2m(k−1)ℜ(ζ)> (k−1)2(1−m)−|ζ|2 (1+m),

let

G =

[
2m(k−1)ℜ(ζ)

(k−1)2(1−m)−|ζ|2 (1+m)

]
(k = 2,3,4, · · · , j−1) ,

where N = [G ] (the Gaussian symbol) and [G ] is the greatest integer not greater
than G . Then∣∣a j

∣∣5 [λ+1]q, j−1

[ j]q!
(

m+1
m+ j

)α

( j−1)!

j

∏
k=2
|ζ(1+m)+m(k−2)| (3.1)

( j = 2,3,4, · · · ,N +2)

and ∣∣a j
∣∣5 [λ+1]q, j−1

[ j]q! ( j−1)
(

m+1
m+ j

)α

(N +1)!
·

N +3

∏
k=2
|ζ(1+m)+m(k−2)| . (3.2)

( j > N +2)

(b) If
2m(k−1)ℜ(ζ)5 (k−1)2(1−m)−|ζ|2 (1+m),

then ∣∣a j
∣∣5 [λ+1]q, j−1 (1+m) |ζ|(

m+1
m+ j

)α

[ j]q! ( j−1)
( j = 2) . (3.3)

The inequalities (3.1) and (3.3) are sharp.

Proof. Let us assume that f (z) ∈H λ,α
m,q (ζ,M ). Then we find from (1.16) that

∞

∑
k=2

(k−1)
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

=

{
ζ(1+m)z+

∞

∑
k=2
{ζ(1+m)+m(k−1)} ·

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

}
w(z), (3.4)
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which is equivalent to
j

∑
k=2

(k−1)
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk +
∞

∑
k= j+1

ckzk

=

{
ζ(1+m)z+

j−1

∑
k=2
{ζ(1+m)+m(k−1)} ·

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

}
w(z),

where the coefficients c j are some complex numbers and the series
∞

∑
k= j+1

ckzk con-

verges when z ∈ U. Then, since

|w(z)|< 1 (z ∈ U),
we have∣∣∣∣∣ j

∑
k=2

(k−1)
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk +
∞

∑
k= j+1

ckzk

∣∣∣∣∣
5

∣∣∣∣∣ζ(1+m)z+
j−1

∑
k=2
{ζ(1+m)+m(k−1)} ·

[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk

∣∣∣∣∣. (3.5)

Squaring both sides of (3.5), we get

j

∑
k=2

(k−1)2

(
[k]q!

[λ+1]q,k−1

)2 (
m+1
m+ k

)2α

|ak|2 r2k +
∞

∑
k= j+1

|ck|2 r2k

5

{
(1+m)2 |ζ|2 r2 +

j−1

∑
k=2
|ζ(1+m)+m(k−1)|2

(
[k]q!

[λ+1]q,k−1

)2

·
(

m+1
m+ k

)2α

|ak|2 r2k

}
.

We now let r→ 1−. Then, on some simplification, we obtain

( j−1)2 ∣∣a j
∣∣2( [ j]q!

[λ+1]q, j−1

)2 (
m+1
m+ j

)2α

5 (1+m)2 |ζ|2 +
j−1

∑
k=2

{
|ζ(1+m)+m(k−1)|2− (k−1)2

}
· |ak|2

(
[k]q!

[λ+1]q,k−1

)2(
m+1
m+ k

)2α

. (3.6)

The following two cases arise:
(a) Let

2m(k−1)ℜ(ζ)> (k−1)2(1−m)−|ζ|2 (1+m).
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Suppose also that j 5N +2. Then, for j = 2, the equation (3.6) gives

|a2|5
(1+m) [λ+1]q,1 |ζ|

[2]q!
(

m+1
m+2

)α ,

which yields (3.1) for j = 2. We establish the assertion (3.1) by appealing to the
principle of mathematical induction. Suppose (3.1) is valid for k = 2,3,4, · · · , j−1.
Then, clearly, it follows from (3.6) that

( j−1)2 ∣∣a j
∣∣2( [ j]q!

[λ+1]q, j−1

)2 (
m+1
m+ j

)2α

5 (1+m)2 |ζ|2 +
j−1

∑
k=2

(
[k]q!

[λ+1]q,k−1

)2(
m+1
m+ k

)2α

·
{
|ζ(1+m)+m(k−1)|2− (k−1)2

}
·

(
[λ+1]q,k−1

)2

(
[k]q!

)2
(

m+1
m+ k

)2α

((k−1)!)2

k

∏
p=2
|ζ(1+m)+m(p−2)|2

=
1

(( j−2)!)2

j

∏
k=2
|ζ(1+m)+m(k−2)|2 .

We thus find that∣∣a j
∣∣5 [λ+1]q, j−1

[ j]q!
(

m+1
m+ j

)α

( j−1)!

j

∏
k=2
|ζ(1+m)+m(k−2)| ,

which completes the proof of the assertion (3.1) of Theorem 2.
We next suppose that j > N +2. Then (3.6) gives

( j−1)2 ∣∣a j
∣∣2( [ j,q]!

[λ+1]q, j−1

)2(
m+1
m+ j

)2α

5 (1+m)2 |ζ|2 +
N +2

∑
k=2

(
[k]q!

[λ+1]q,k−1

)2(
m+1
m+ k

)2α

·
{
|ζ(1+m)+m(k−1)|2− (k−1)2

}
|ak|2

+
j−1

∑
k=N +3

(
[k]q!

[λ+1]q,k−1

)2(
m+1
m+ k

)2α
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·
{
|ζ(1+m)+m(k−1)|2− (k−1)2

}
|ak|2

5 (1+m)2 |ζ|2 +
N +2

∑
k=2

(
[k]q!

[λ+1]q,k−1

)2(
m+1
m+ k

)2α

·
{
|ζ(1+m)+m(k−1)|2− (k−1)2

}
|ak|2 .

Upon substituting the above-derived upper estimates for a2,a3, · · · ,aN +2 if we sim-
plify the resulting equations, we obtain the assertion (3.2) of Theorem 2.

(b) If we let
2m(k−1)ℜ(ζ)5 (k−1)2(1−m)−|ζ|2 (1+m),

then it follows from (3.6) that(
[ j]q!

[λ+1, ]q, j−1

)2(
m+1
m+ j

)2α

( j−1)2 ∣∣a j
∣∣2 5 (1+m)2 |ζ|2 ( j = 2) ,

which proves the assertion (3.3) of Theorem 2. �

Taking q→ 1− in Theorem 2, we obtain the following corollary.

Corollary 3. Let the function f (z) defined by (1.1) be in the class S λ,α
m (ζ,M ).

(a) If
2m(k−1)ℜ(ζ)> (k−1)2(1−m)−|ζ|2 (1+m),

let

G =

[
2m(k−1)ℜ(ζ)

(k−1)2(1−m)−|ζ|2 (1+m)

]
(k = 2,3,4, · · · , j−1) ,

where N = [G ] (the Gaussian symbol) and [G ] is the greatest integer not greater
than G . Then ∣∣a j

∣∣5 (λ+1)k−1(
m+1
m+ j

)α

k!( j−1)!

j

∏
k=2
|ζ(1+m)+m(k−2)| (3.7)

( j = 2,3,4, · · · ,N +2)

and ∣∣a j
∣∣5 (λ+1)k−1

( j−1)k!
(

m+1
m+ j

)α

(N +1)!

N +3

∏
k=2
|ζ(1+m)+m(k−2)| (3.8)

( j > N +2) .
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(b) If

2m(k−1)ℜ(ζ)5 (k−1)2(1−m)−|ζ|2 (1+m),

then ∣∣a j
∣∣5 (λ+1)k−1 (1+m) |ζ|(

m+1
m+ j

)α

k!( j−1)
( j = 2) . (3.9)

The inequalities (3.7) and (3.9) are sharp.

If we set α = 0 in Theorem 2, then we obtain the following corollary.

Corollary 4. Let the function f (z) be defined by (1.1) be in the class F λ
q (ζ,M ).

(a) If

2m(k−1)ℜ(ζ)> (k−1)2(1−m)−|ζ|2 (1+m),

let

G =

[
2m(k−1)ℜ(ζ)

(k−1)2(1−m)−|ζ|2 (1+m)

]
(k = 2,3,4, · · · , j−1) ,

where N = [G ] (the Gaussian symbol) and [G ] is the greatest integer not greater
than G . Then ∣∣a j

∣∣5 [λ+1]q, j−1

[ j]q! ( j−1)!

j

∏
k=2
|ζ(1+m)+m(k−2)| (3.10)

( j = 2,3,4, · · · ,N +2)

and ∣∣a j
∣∣5 [λ+1]q, j−1

[ j]q!( j−1)(N +1)!

N +3

∏
k=2
|ζ(1+m)+m(k−2)| (3.11)

( j > N +2) .

(b) If

2m(k−1)ℜ(ζ)5 (k−1)2(1−m)−|ζ|2 (1+m),

then ∣∣a j
∣∣5 [λ+1]q, j−1 (1+m) |ζ|

[ j]q! ( j−1)
( j = 2) . (3.12)

The inequalities (3.10) and (3.12) are sharp.
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4. MAXIMIZATION OF
∣∣a3−µa2

2

∣∣
In this section, we shall need the following lemma in our discussion.

Lemma 1 ([10]). Let

w(z) =
∞

∑
k=1

ckzk ∈Ω.

If µ is any complex number, then∣∣c2−µc2
1
∣∣5max{1, |µ|} (4.1)

for any complex number µ. Equality in (4.1) may be attained with the functions
w(z) = z2 and w(z) = z for |µ|< 1 and |µ|= 1, respectively.

We now state and prove our main result in this section.

Theorem 3. Let the function f (z) defined by (1.1) be in the normalized complex-
order analytic function class H λ,α

m,q (ζ,M ). Suppose also that µ is any complex num-
ber. Then ∣∣a3−µa2

2
∣∣5 |ζ(1+m)|

2
[3]q!

[λ+1]q,2

(
m+1
m+3

)α
max{1, |δ|} , (4.2)

where

δ =

2
[3]q!

[λ+1]q,2

(
m+1
m+3

)α

µζ(1+m)(
[2]q!

[λ+1]q

)2(
m+1
m+2

)2α

− [ζ(1+m)+m] . (4.3)

The result is sharp.

Proof. Since f (z) ∈H λ,α
m,q (ζ,M ), we have

w(z) =
z
(
N λ,α

m,q f (z)
)′−N λ,α

m,q f (z)

[ζ(1+m)−m]N λ,α
m,q f (z)+mz

(
N λ,α

m,q f (z)
)′

=

∞

∑
k=2

(k−1)
[3]q!

[λ+1]q,2

(
m+1
m+3

)α

akzk−1

ζ(1+m)+
∞

∑
k=2

[ζ(1+m)+m(k−1)]
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk−1

=

∞

∑
k=2

(k−1)
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk−1

ζ(1+m)
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·

1+

∞

∑
k=2

[ζ(1+m)+m(k−1)]
[k]q!

[λ+1]q,k−1

(
m+1
m+ k

)α

akzk−1

ζ(1+m)


−1

. (4.4)

We now compare the coefficients of z and z2 on both sides of the last equation (4.4).
We thus obtain

a2 =
ζ(1+m) [λ+1]q c1

[2]q!
(

m+1
m+2

)α (4.5)

and

a3 =
ζ(1+m)

2 [3]q!

[λ+1]q,2

(
m+1
m+3

)α

{
c2 +[ζ(1+m)+m]c2

1
}
. (4.6)

Hence

a3−µa2
2 =

ζ(1+m)

2 [3]q!

[λ+1]q,2

(
m+1
m+3

)α

{
c2−φc2

1
}
, (4.7)

where

φ =

2 [3]q!

[λ+1]q,2

(
m+1
m+3

)α

µζ(1+m)(
[2]q!

[λ+1]q

)2(
m+1
m+2

)2α

− [ζ(1+m)+m] . (4.8)

Taking the modulus on both sides of (4.7), we have

∣∣a3−µa2
2
∣∣5
∣∣∣∣∣∣∣∣∣

ζ(1+m)

2 [3]q!

[λ+1]q,2

(
m+1
m+3

)α

∣∣∣∣∣∣∣∣∣ ·
∣∣c2−φc2

1
∣∣ . (4.9)

Now, by using the above lemma in (4.9), we have

∣∣a3−µa2
2
∣∣5
∣∣∣∣∣∣∣∣∣

ζ(1+m)

2 [3]q!

[λ+1]q,2

(
m+1
m+3

)α

∣∣∣∣∣∣∣∣∣ max{1, |φ|} ,

where φ is given by (4.8).
Finally, the assertion (4.2) of Theorem 3 is sharp in view of the fact that the asser-

tion (4.1) of the above lemma is known to be sharp. �
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5. CONCLUDING REMARKS AND OBSERVATIONS

In our present investigation, we have introduced and systematically studied the
general class H λ,α

m,q (ζ,M ) of normalized analytic functions of complex order, which
are connected with a q-analogue of integral operators. For this complex-order ana-
lytic function class, we have successfully determined a sufficient condition in terms
of the coefficients and the estimates for the coefficients and a maximization theorem
concerning the coefficients. Our main results are stated and proved as theorems (see
Theorems 1, 2 and 3). Various interesting consequences and applications of our main
results are stated as corollaries.

In conclusion, it seems to worthwhile to reiterate the now well-understood fact
that the results for the q-calculus, which we have considered in this presentation for
0 < q < 1, can easily be translated into the corresponding results for the so-called
(p,q)-calculus (with 0 < q < p 5 1) by applying some obviously trivial parametric
and argument variations, the additional parameter p being redundant. As a matter of
fact, the so-called (p,q)-number [n]p,q is given (for 0 < q < p5 1) by

[n](p,q) :=


pn−qn

p−q
(n ∈ {1,2,3, · · ·})

0 (n = 0)

(5.1)

=: pn−1 [n] q
p
, (5.2)

where, for the classical q-number [n]q, we have (see also Section 1 above)

[n]q :=
1−qn

1−q
(5.3)

= p1−n
(

pn− (pq)n

p− (pq)

)
= p1−n [n](p,pq). (5.4)

Furthermore, the so-called (p,q)-derivative or the so-called (p,q)-difference of a
suitable function f (z) is denoted by (Dp,q f )(z) and defined, in a given subset of
C, by

(Dp,q f )(z) =


f (pz)− f (qz)

(p−q)z
(z ∈ C\{0}; 0 < q < p5 1)

f ′ (0) (z = 0; 0 < q < p5 1),

(5.5)

so that, clearly, we have the following connection with the familiar q-derivative
(Dq f )(z) used in (1.6):

(Dp,q f )(z) =
(

D q
p

f
)
(pz) and (Dq f )(z) = (Dp,pq f )

(
z
p

)
(5.6)



432 H. M. SRIVASTAVA AND SHEZA M. EL-DEEB

(z ∈ C; 0 < q < p5 1).

Remarkably, therefore, any claimed extensions of at least some investigations in-
volving the classical q-calculus to the corresponding obviously straightforward in-
vestigations involving the (p,q)-calculus are somewhat inconsequential. The inter-
ested reader will find a recent investigation [25] which is intended here to provide an
illustration of such transitions from the classical q-calculus to the (p,q)-calculus.

Further investigations on the applications of the q-calculus to meromorphic uni-
valent and meromorphic multivalent functions along the lines of a recent work [15]
may be worthy of consideration.
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