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Abstract. In this article, we introduce the generalized Euler-Lagrange radical functional equa-
tions of type sextic and quintic. Also, we obtain their general solution and investigate the gen-
eralized Hyers-Ulam-Rassias stability in modular spaces using fixed point concept with suitable
counter examples.

2010 Mathematics Subject Classification: 39B52; 39B72; 39B82; 46B03

Keywords: Modular space, quintic and sextic functioanl equations, Hyers- Ulam- Rassias stabil-
ity, fixed point theorem

1. INTRODUCTION

Ulam [13] raised the infamous stability problem of functional equations in 1940
at the University of Wisconsin. The solution for the Ulam problem garnered world
wide attention and finally came to be identified as generalized Hyers-Ulam, gener-
alized Hyers-Ulam-Rassias, Ulam-Găvruta-Rassias and JMR stabilities of functional
equations. One can refer ([1, 7, 8, 10–12]).

In the probabilistic normed spaces, Mohammad Bagher Ghaemi et al. [6] analyzed
the stability for the sextic and quintic mappings.

In the quasi-β-normed spaces via fixed point method, Tian Zhou Xu et al. [15]
introduced the following functional equation of quintic type

g(m+3n)−5g(m+2n)+10g(m+n)−10g(m)

+5g(m−n)−g(m−2n) = 120g(n)

and sextic type

g(m+3n)−6g(m+2n)+15g(m+n)−20g(m)+15g(m−n)

−6g(m−2n)+g(m−3n) = 720g(n)

and also investigated their stabilities related to Ulam problem.
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In Felbin spaces, Pasupathi Narasimman et al. [9] introduced generalized sextic
and quintic functional equations

g(am+n)+g(am−n)+g(m+an)+g(m−an)

= (a4 +a2)[g(m+n)+g(m−n)]+2(a6−a4−a2 +1)[g(m)+g(n)]

a[g(am+n)+g(am−n)]+g(m+an)+g(m−an)

= (a4 +a2)[g(m+n)+g(m−n)]+2(a6−a4−a2 +1)g(m)

with general solution and stability for a ∈ R−{0,±1}.
Using fixed point theory, Zamani Eskandani and John Michael Rassias [5], Kitti-

pong Wongkum [14] are obtained modular stability of γ−quartic and cubic functional
equations.

In quasi-β-normed spaces, In Goo Cho et al. [3] analyzed the Ulam stability prob-
lem for the quintic functional equation of the form

2g(2m+n)+2g(2m−n)+g(m+2n)+g(m−2n)

= 20[g(m+n)+g(m−n)]+90g(m).

In 2015, Abasalt Bodaghi et al.[2] analyzed the general solution and stability of a
mixed type of quintic-additive functional equation of the form

g(3m+n)−5g(2m+n)+g(2m−n)+10g(m+n)−5g(m−n)

= 10g(n)+4g(2m)−8g(m)

in real numbers.
Motivated from the above investigations on sextic and quintic functional equa-

tions, in this paper we introduce the following new generalized Euler-Lagrange rad-
ical quintic and sextic functional equations

f (ax+ y)+ f (ax− y)+ f (x+ay)+ f (x−ay) (1.1)

= (a+a2){ f (x+ y)+ f (x− y)}−2(a+a2−a5−1) f (x)

+10(a4−a2) f ( 5
√

xy4)+20(a3−a) f ( 5
√

x3y2),

f (ax+ y)+ f (ax− y)+ f (x+ay)+ f (x−ay) (1.2)

= (a+a2){ f (x+ y)+ f (x− y)}−2(a+a2−a6−1){ f (x)+ f (y)}

+30(a4−a){ f ( 6
√

x4y2)+ f ( 6
√

x2y4)},
for a fixed real a and a 6= 0,±1. Mainly we obtain their general solution and in-
vestigate their stabilities related to Ulam problem in modular spaces. The definitions
related to modular space and fixed point theory to establish our main theorem can be
referred in [4].

The paper structured as follows: In Section-2, we obtain the general solution of the
functional equations (1.1) and (1.2). In Section-3 and in Section 4, authors discuss
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generalized Hyers-Ulam-Rassias, Hyers-Ulam and Hyers-Ulam-Rassias stabilities of
quintic and sextic functional equations respectively in modular spaces using fixed
point theory. Finally the conclusion given in section-5.

2. GENERAL SOLUTION OF (1.1) AND (1.2)

Theorem 1. If f satisfies (1.1), then a mapping f : X → Y is quintic and odd.

Proof. Consider f satisfies (1.1). Setting (x,y) = (0,0) in (1.1), we get f (0) = 0.
Replacing (x,y) by (x,0) in (1.1), we arrive

f (ax) = a5 f (x) (2.1)

for all x ∈ X . Therefore f is quintic. Setting (x,y) by (0,x) in (1.1) and using (2.1)
leads

f (−x) =− f (x) (2.2)
for all x ∈ X and hence f is odd. �

Theorem 2. If f satisfies (1.2), then a mapping f : X → Y is sextic and even.

Proof. Consider f satisfies (1.2). Setting (x,y) = (0,0) in (1.2), we get f (0) = 0.
Replacing (x,y) by (x,0) in (1.2), we arrive

f (ax) = a6 f (x) (2.3)

for all x ∈ X . Therefore f is sextic. Setting (x,y) by (0,x) in (1.2) and using (2.3)
leads

f (−x) = f (x) (2.4)
for all x ∈ X and hence f is even. �

3. STABILITY OF FUNCTIONAL EQUATION(1.1)

In this section, we determine the generalized Hyers-Ulam stability concerning
the generalized Euler-Lagrange radical quintic functional equation (1.1) in modular
spaces by using fixed point theory.

For mapping ρ : M→ Xξ, consider

Dq f (x,y) := f (x+ay)+ f (x−ay)+ f (ax+ y)+ f (ax− y)

− (a+a2){ f (x+ y)+ f (x− y)}+2(a+a2−a5−1) f (x)

−10(a4−a2) f ( 5
√

xy4)−20(a3−a) f ( 5
√

x3y2)

for all x,y ∈M with a 6= 0,±1

Theorem 3. Consider a mapping ρ : M2→ [0,+∞) such that

lim
n→∞

1
a5n aρ{anx,any}= 0, (3.1)
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and

ρ{ax,ay} ≤ a5
ψρ{x,y},∀x,y ∈M, (3.2)

for ψ < 1. If f : M→ Xξ fulfill the inequality

ξ(Dq f (x,y))≤ ρ(x,y), (3.3)

∀x,y ∈M. Then Qa : M→ Xξ a unique quintic mapping exists, such that

ξ(Qa(x)− f (x))≤ 1
2a5(1−ψ)

ρ(x,0), ∀x ∈M. (3.4)

Where M is linear space and Xξ is modular space which is complete with Fatou
property.

Proof. Consider N = ξ′ and define ξ′ on N as,

ξ
′(q) =: inf{a > 0 : ξ( f (y))≤ aρ(x,0),∀x ∈M}.

One can easily prove ξ′ is convex modular with Fatou property on N and Nξ′ is
ξ−complete, see [5]. Consider the function σ : Nξ′ → Nξ′ defined by

σ f (x) =
1
a5 f (ax), (3.5)

for all x∈M and a∈Nξ′ . Let p,r ∈Nξ′ and a∈ [0,1] with ξ′(p−r)< a. By definition
of ξ′, we get

ξ(p(x)− r(x))≤ aρ(x,0) (3.6)

for all x ∈M. By (3.2) and (3.6), we obtain

ξ

(
p(ax)

a5 − r(ax)
a5

)
≤ 1

a5 ξ(p(ax)− r(ax))≤ 1
a5 aρ(ax,0)≤ aψρ(x,0),

for all x ∈M. Hence, σ is a ξ′−contraction. From (3.3), we obtain

ξ

(
f (ax)

a5 − f (x)
)
≤ 1

2a5 ρ(x,0), (3.7)

for all x ∈M. Substituting x by ax in (3.7), we get

ξ

(
f (a2x)

a5 − f (ax)
)
≤ ρ(ax,0)

2a5 , ∀x ∈M. (3.8)

We obtain from (3.7) and (3.8) that

ξ

(
f (a2x)

a10 − f (x)
)

(3.9)

≤ ξ

(
f (a2x)

a10 − f (ax)
a5

)
+ξ

(
f (ax)

a5 − f (x)
)

≤ 1
2a10 ρ(ax,0)+

1
2a5 ρ(x,0), ∀x ∈M.
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We get by induction,

ξ

(
f (anx)

a5n − f (x)
)
≤

n

∑
i=1

1
2a5i ρ(ai−1x,0)

≤ 1
2ψa5 ρ(x,0)

n

∑
i=1

ψ
i

≤ 1
2a5(1−ψ)

ρ(x,0), ∀x ∈M. (3.10)

We obtain from (3.10),

ξ

(
f (anx)

a5n − f (asx)
a5s

)
≤ 1

2
ξ

(
2

f (anx)
a5n −2 f (x)

)
+

1
2

ξ

(
2

f (asx)
a5s −2 f (x)

)
(3.11)

≤ κ

2
ξ

(
f (anx)

a5n − f (x)
)
+

κ

2
ξ

(
f (asx)

a5s − f (x)
)

≤ κ

2a5(1−ψ)
ρ(x,0), ∀x ∈M

where n,s ∈N. Thus

ξ
′(σn f −σ

s f )≤ κ

2a5(1−ψ)
,

hence the boundedness exists of an orbit of σ at f . {τn f} is ξ′−converges to Qa ∈Nξ′

by Theorem 1.5 in [5]. By ξ′−contractivity of σ, we get

ξ
′(σn f −σQa)≤ ψξ

′(σn−1 f −Qa).

Allowing n→ ∞ and by Fatou property of ξ′, we get

ξ
′(σQa−Qa)≤ lim

n→∞
infξ

′(σQa−σ
n f )

≤ ψ lim
n→∞

infξ
′(Qa−σ

n−1 f ) = 0.

Hence, Qa is a fixed point of σ. In (3.3), changing (x,y) by (anx,any), we obtain

ξ

(
1

a5n Da f (anx,any)
)
≤ 1

a5n ρ(anx,any), ∀x,y ∈M. (3.12)

By Theorem 1 and allowing n→ ∞, Qa is quintic and using (3.10), we arrive (3.4).
For the uniqueness of Qa, consider another quintic mapping Q : M→ Xξ satisfying
(3.4). So that, Q is fixed point of σ.

ξ
′(Qa−Q) = ξ

′(σQa−σQ)≤ ψξ
′(Qa−Q). (3.13)

From (3.13), we get Qa = Q. Hence the proof. �

Proof of following Corollaries 1 and 2 follows that, all normed space implies mod-
ular space of modular ξ(x) = ‖x‖.
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Corollary 1. Assume ρ is a mapping from M2 to [0,+∞) for

lim
n→∞

1
a5n ρ{anx,any}= 0, (3.14)

and

ρ{ax,ay} ≤ a5
ψρ{x,y}, ∀x,y ∈M, ψ < 1. (3.15)

If f : M→ X satisfies the condition for X is Banach space

‖Dq f (x,y)‖ ≤ ρ(x,y), (3.16)

∀x,y ∈M. Then a unique Qa : M→ X quintic mapping exists, hence

‖Qa(x)− f (x)‖ ≤ ρ(x,0)
2a5(1−ψ)

, (3.17)

for all x ∈M.

Theorem 4. Assume that,

lim
n→∞

κ
5n

ρ

( x
an ,

y
an

)
= 0, (3.18)

where ρ is a mapping from M2 to [0,+∞) and

ρ

( x
a
,

y
a

)
≤ ψ

2a5 ρ{x,y}, ∀x,y ∈M,ψ < 1. (3.19)

If f : M→ Xξ fulfills the inequality

ξ(Dq f (x,y))≤ ρ(x,y), (3.20)

∀x,y ∈M. Then a unique Qa : M→ Xξ quintic mapping exists, such that

ξ(Qa(x)− f (x))≤ ψ

2a5(1−ψ)
ρ(x,0), ∀x ∈M. (3.21)

Proof. Considering x by x
a in (3.5) of Theorem 3 and proceeding similar to that of

Theorem 3, we complete the proof. �

Corollary 2. Assume that,

lim
n→∞

σ
5n

ρ

( x
an ,

y
an

)
= 0, (3.22)

where ρ is a mapping from M2 to [0,+∞) and

ρ

( x
a
,

y
a

)
≤ ψ

a5 ρ{x,y}, ∀x,y ∈M,ψ < 1. (3.23)

If f : M→ X fulfills the inequality

‖Dq f (x,y)‖ ≤ ρ(x,y), (3.24)

∀x,y ∈M. Then a unique Qa : M→ X quintic mapping exists, such that

‖Qa(x)− f (x)‖ ≤ ψ

2a5(1−ψ)
ρ(x,0), ∀x ∈M. (3.25)



GENERALIZED EULER-LAGRANGE TYPE RADICAL FUNCTIONAL EQUATIONS 357

Using Corollaries 1 and 2, the Hyers-Ulam and generalized Hyers-Ulam stabilities
of (1.1) are obtain in the following corollaries.

Corollary 3. Assume ρ is a mapping from M2 to [0,+∞), X be a Banach space
and ε≥ 0 be a real number such that

lim
n→∞

1
a5n ρ{anx,any}= 0, (3.26)

and

ρ{ax,ay} ≤ a5
ψρ{x,y}, ∀x,y ∈M,ψ < 1. (3.27)

If f : M→ X fulfills

‖Dq f (x,y)‖ ≤ ε, (3.28)

∀x,y ∈M. Then a unique Qa : M→ X quintic mapping exists and defined by Qa(x) =
limn→∞

f (anx)
a5n so that

‖Qa(x)− f (x)‖ ≤ ε

2(a5−1)
, (3.29)

for all x ∈M and a 6= 0,±1.

Corollary 4. If f : M→ X fulfills the inequality for M and X are linear space and
Banach space, respectively.

‖Dq f (x,y)‖ ≤ ε(‖x‖p +‖y‖q) , (3.30)

∀x,y∈M with 0≤ p,q< 5 or p,q> 5 for some ε≥ 0. Then a unique quintic mapping
Qa : M→ X exists and defined by Qa(x) = limn→∞

f (anx)
a5n , so that

‖Qa(x)− f (x)‖ ≤ ε

|2(a5−ap)|
‖x‖p , ∀x ∈M, a 6= 0,±1. (3.31)

For p = 5 in Corollary 4, we will provide an counter example to prove that the
functional equation (1.1) is not stable.

Example 1. If ψ : M→ X fulfills the inequality for M and X are linear space and
Banach space, respectively. Let k ≥ 0 be a real number such that

ψ(x) =

{
kx5, if |x|< 1,
k, otherwise,

and a function f : M→ X is defined by

f (x) =
∞

∑
s=0

ϕ(asx)
(a5)s

for all x ∈M. Then f satisfies the functional inequality∣∣ f (ax+ y)+ f (ax− y)+ f (x+ay)+ f (x−ay)
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− (a+a2){ f (x+ y)+ f (x− y)}+2(a+a2−a5−1) f (x)

−10(a4−a2) f ( 5
√

xy4)−20(a3−a) f ( 5
√

x3y2)
∣∣

≤
(

2a10−16a11−6a12 +20a13 +10a14−2a15

a5−1

)
k
(
|x|5 + |y|5

)
(3.32)

for all x,y ∈M. Then there do not exist a quintic mapping Q : M→ X and a constant
α > 0 such that

| f (x)−Q(x)| ≤ α|x|5 for all x ∈M. (3.33)

Proof. Now

| f (x)| ≤
∞

∑
s=0

|ψ(asx)|
|a5s|

=
∞

∑
s=0

k
a5s =

a5 k
a5−1

.

Therefore we see that f is bounded. We are going to prove that f satisfies (3.32).
If x= y= 0, then (3.32) is trivial. If |x|5+ |y|5≥ 1

a5 , then the left-hand side of (3.32)

is less than
(

2a5−16a6−6a7+20a8+10a9−2a10

n5−1 k
)

. Now suppose that 0 < |x|5 + |y|5 < 1
a5 .

Then there exists a positive integer t such that
1

(a5)t+1 ≤ |x|
5 + |y|5 < 1

(a5)t , (3.34)

so that

(a5)t−1x5 <
1
a5 , (a

5)t−1y5 <
1
a5

and, consequently,

at−1(x),at−1(ax+ y), at−1(ax− y), at−1(x+ay), at−1(x−ay), at−1(x+ y),

at−1(x− y), at−1( 5
√

xy4), at−1( 5
√

x3y2) ∈ (−1,1).

Therefore for each s = 0,1, . . . , t−1, we have

as(x),as(ax+ y), as(ax− y), as(x+ay), as(x−ay), as(x+ y),

as(x− y), as( 5
√

xy4), as( 5
√

x3y2) ∈ (−1,1).

and

ψ
(
as(ax+ y)

)
+ψ

(
as(ax− y)

)
+ψ

(
as(x+ay)

)
+ψ

(
as(x−ay)

)
− (a+a2)

{
ψ
(
as(x+ y)

)
+ψ

(
as(x− y)

)}
+2(a+a2−a5−1)ψ

(
asx
)

−10(a4−a2)ψ
(

5
√

as(xy4)
)
−20(a3−a)ψ

(
5
√

as(x3y2)
)
= 0

for s = 0,1, . . . , t−1. From the definition of f and (3.34), we obtain that∣∣∣ f (ax+ y)+ f (ax− y)+ f (x+ay)+ f (x−ay)

− (a+a2){ f (x+ y)+ f (x− y)}+2(a+a2−a5−1) f (x)
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−10(a4−a2) f ( 5
√

xy4)−20(a3−a) f ( 5
√

x3y2)
∣∣∣

≤
∞

∑
s=0

1
a5s

∣∣∣ψ(as(ax+ y)
)
+ψ

(
as(ax− y)

)
+ψ

(
as(x+ay)

)
+ψ

(
as(x−ay)

)
− (a+a2)

{
ψ
(
as(x+ y)

)
+ψ

(
as(x− y)

)}
+2(a+a2−a5−1)ψ

(
asx
)

−10(a4−a2)ψ
(
as 5
√

xy4
)
−20(a3−a)ψ

(
as 5
√

x3y2
)∣∣∣

≤
∞

∑
s=t

1
a5s

∣∣∣ψ(as(ax+ y)
)
+ψ

(
as(ax− y)

)
+ψ

(
as(x+ay)

)
+ψ

(
as(x−ay)

)
− (a+a2)

{
ψ
(
as(x+ y)

)
+ψ

(
as(x− y)

)}
+2(a+a2−a5−1)ψ

(
asx
)

−10(a4−a2)ψ
(
as 5
√

xy4
)
−20(a3−a)ψ

(
as 5
√

x3y2
)∣∣∣

≤
∞

∑
s=t

1
a5s (−2a5 +10a4 +20a3−6a2−16a+2) k

=
(−2a10 +10a9 +20a8−6a7−16a6 +2a5)k

a5−1
× 1

a5t

=
(−2a15 +10a14 +20a13−6a12−16a11 +2a10) k

a5−1
(
|x|5 + |y|5

)
.

Thus f satisfies (3.32) for all x,y ∈M with 0 < |x|5 + |y|5 < 1
a5 .

In Corollary 4, our claim is to prove (1.1) is not stable for p = 5. Since f is
continuous and bounded for all x ∈M, Q is continuous and bounded at the origin. In
view of Corollary 4, Q(x) must have the form Q(x) = tx5 for any x in M. Thus we
obtain

| f (x)| ≤ (α+ |t|)×|x|5. (3.35)

But nk > α+ |t|, n is positive integer.
If x ∈

(
0, 1

an−1

)
, then asx ∈ (0,1) for all s = 0,1, . . . ,n−1. Therefore, we get

f (x) =
∞

∑
s=0

ψ(asx)
a5s ≥

n−1

∑
s=0

k(asx)5

a5s = nkx5 > (α+ |t|)× x5,

which contradicts (3.35). Hence (1.1) is not stable if p = 5 in the inequality (3.30).
�

4. STABILITY OF FUNCTIONAL EQUATION(1.2)

In this section, we determine the generalized Hyers-Ulam stability concerning the
generalized Euler-Lagrange radical sextic functional equation (1.2) in modular spaces
by using fixed point theory. In this section we will not provide the proof of theorems
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and corollaries, since it is similar to that of proof of Theorems and Corollaries in
section 3.

For mapping ρ : M→ Xξ, consider

Ds f (x,y) := f (ax+ y)+ f (ax− y)+ f (x+ay)+ f (x−ay)

− (a+a2){ f (x+ y)+ f (x− y)}+2(a+a2−a6−1){ f (x)+ f (y)}

−30(a4−a){ f ( 6
√

x4y2)+ f ( 6
√

x2y4)}

for all x,y ∈M with a 6= 0,±1

Theorem 5. Consider a mapping ρ : M2→ [0,+∞) such that

lim
n→∞

1
a6n aρ{anx,any}= 0, (4.1)

and

ρ{ax,ay} ≤ a6
ψρ{x,y},∀x,y ∈M, (4.2)

for ψ < 1. If f : M→ Xξ fulfill the inequality

ξ(Ds f (x,y))≤ ρ(x,y), (4.3)

∀x,y ∈M. Then Sa : M→ Xξ a unique sextic mapping exists, such that

ξ(Sa(x)− f (x))≤ 1
2a6(1−ψ)

ρ(x,0), ∀x ∈M. (4.4)

Where M is linear space and Xξ is modular space which is complete with Fatou
property.

All normed space implies modular space of modular ξ(x) = ‖x‖ gives the follow-
ing Corollaries 5 and 6

Corollary 5. Assume ρ is a mapping from M2 to [0,+∞) for

lim
n→∞

1
a6n ρ{anx,any}= 0, (4.5)

and

ρ{ax,ay} ≤ a6
ψρ{x,y}, ∀x,y ∈M, ψ < 1. (4.6)

If f : M→ X satisfies the condition for X is Banach space

‖Ds f (x,y)‖ ≤ ρ(x,y), (4.7)

∀x,y ∈M. Then a unique Sa : M→ X sextic mapping exists, hence

‖Sa(x)− f (x)‖ ≤ ρ(x,0)
2a6(1−ψ)

, (4.8)

for all x ∈M.
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Theorem 6. Assume that,

lim
n→∞

κ
6n

ρ

( x
an ,

y
an

)
= 0, (4.9)

where ρ is a mapping from M2 to [0,+∞) and

ρ

( x
a
,

y
a

)
≤ ψ

2a6 ρ{x,y}, ∀x,y ∈M,ψ < 1. (4.10)

If f : M→ Xξ fulfills the inequality

ξ(Ds f (x,y))≤ ρ(x,y), (4.11)

∀x,y ∈M. Then a unique Sa : M→ Xξ quintic mapping exists, such that

ξ(Sa(x)− f (x))≤ ψ

2a6(1−ψ)
ρ(x,0), ∀x ∈M. (4.12)

Corollary 6. Assume that,

lim
n→∞

σ
6n

ρ

( x
an ,

y
an

)
= 0, (4.13)

where ρ is a mapping from M2 to [0,+∞) and

ρ

( x
a
,

y
a

)
≤ ψ

a6 ρ{x,y}, ∀x,y ∈M,ψ < 1. (4.14)

If f : M→ X fulfills the inequality

‖Ds f (x,y)‖ ≤ ρ(x,y), (4.15)

∀x,y ∈M. Then a unique Sa : M→ X sextic mapping exists, such that

‖Sa(x)− f (x)‖ ≤ ψ

2a6(1−ψ)
ρ(x,0), ∀x ∈M. (4.16)

The Hyers-Ulam and generalized Hyers-Ulam stabilities are obtain in the follow-
ing corollaries using Corollaries 5 and 6.

Corollary 7. Assume ρ is a mapping from M2 to [0,+∞), X be a Banach space
and ε≥ 0 be a real number such that

lim
n→∞

1
a6n ρ{anx,any}= 0, (4.17)

and

ρ{ax,ay} ≤ a6
ψρ{x,y}, ∀x,y ∈M,ψ < 1. (4.18)

If f : M→ X fulfills

‖Ds f (x,y)‖ ≤ ε, (4.19)
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∀x,y ∈M. Then a unique Sa : M→ X sextic mapping exists and defined by Sa(x) =
limn→∞

f (anx)
a6n so that

‖Sa(x)− f (x)‖ ≤ ε

2(a6−1)
, (4.20)

for all x ∈M and a 6= 0,±1.

Corollary 8. If f : M→ X fulfills the inequality for M and X are linear space and
Banach space, respectively.

‖Ds f (x,y)‖ ≤ ε(‖x‖p +‖y‖q) , (4.21)

∀x,y ∈M with 0≤ p,q < 6 or p,q > 6 for some ε≥ 0. Then a unique sextic mapping
Sa : M→ X exists and defined by Sa(x) = limn→∞

f (anx)
a6n , so that

‖Sa(x)− f (x)‖ ≤ ε

|2(a6−ap)|
‖x‖p , ∀x ∈M, a 6= 0,±1. (4.22)

In Corollary 8, we are providing counter example for (1.2) is not stable for p = 6 .

Example 2. If ψ : M→ X fulfills the inequality for M and X are linear space and
Banach space, respectively. Let k ≥ 0 be a real number such that

ψ(x) =

{
kx6, if |x|< 1,
k, otherwise,

and a function f : M→ X is defined by

f (x) =
∞

∑
s=0

ϕ(asx)
(a6)s

for all x ∈M. Then f satisfies the functional inequality∣∣ f (ax+ y)+ f (ax− y)+ f (x+ay)+ f (x−ay)

− (a+a2){ f (x+ y)+ f (x− y)}+2(a+a2−a6−1){ f (x)+ f (y)}

−30(a4−a){ f ( 6
√

x4y2)+ f ( 6
√

x2y4)}
∣∣

≤ (−54a13 +6a14−4a18 +60a16) k
a6−1

(
|x|6 + |y|6

)
(4.23)

for all x,y ∈M. Then there do not exist a sextic mapping S : M→ X and a constant
α > 0 such that

| f (x)−S(x)| ≤ α|x|6 for all x ∈M. (4.24)

Proof. Now

| f (x)| ≤
∞

∑
s=0

|ψ(asx)|
|a6s|

=
∞

∑
s=0

k
a6s =

a6 k
a6−1

.

Therefore we see that f is bounded. We are going to prove that f satisfies (4.23).
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If x = y = 0, then (4.23) is trivial. If |x|6 + |y|6 ≥ 1
a6 , then the left-hand side of

(4.23) is less than
(
−54a7+6a8−4a12+60a10

a6−1 k
)

. Now suppose that 0 < |x|6 + |y|6 < 1
a6 .

Then there exists a positive integer t such that
1

(a6)t+1 ≤ |x|
6 + |y|6 < 1

(a6)t , (4.25)

so that

(a6)t−1x6 <
1
a6 , (a

6)t−1y6 <
1
a6

and, consequently,

at−1(x),at−1(y),at−1(ax+ y), at−1(ax− y), at−1(x+ay),

at−1(x−ay), at−1(x+ y), at−1(x− y),

at−1( 6
√

x4y2), at−1( 6
√

x2y4) ∈ (−1,1).

Therefore for each s = 0,1, . . . , t−1, we have

as(x),as(y),as(ax+ y), as(ax− y), as(x+ay), as(x−ay), as(x+ y),

as(x− y), as( 6
√

x4y2), as( 6
√

x2y4) ∈ (−1,1).

and

ψ
(
as(ax+ y)

)
+ψ

(
as(ax− y)

)
+ψ

(
as(x+ay)

)
+ψ

(
as(x−ay)

)
− (a+a2)

{
ψ
(
as(x+ y)

)
+ψ

(
as(x− y)

)}
+2(a+a2−a6−1)ψ

(
asx+asy

)
−30(a4−a)

{
ψ
(
as 6
√

x4y2
)
+ψ

(
as 6
√

x2y4
)}

= 0

for s = 0,1, . . . , t−1. From the definition of f and (3.34), we obtain that∣∣∣ f (ax+ y)+ f (ax− y)+ f (x+ay)+ f (x−ay)

− (a+a2){ f (x+ y)+ f (x− y)}
+2(a+a2−a6−1)

{
f (x)+ f (y)

}
−30(a4−a)

{
f ( 6
√

x4y2)+ f ( 6
√

x2y4)
}∣∣∣

≤
∞

∑
s=0

1
a6s

∣∣∣ψ(as(ax+ y)
)
+ψ

(
as(ax− y)

)
+ψ

(
as(x+ay)

))
+ψ

(
as(x−ay)− (a+a2)

{
ψ
(
as(x+ y)

)
+ψ

(
as(x− y)

)}
+2(a+a2−a6−1)ψ

(
asx+asy

)
−30(a4−a)

{
ψ
(
as 6
√

x4y2
)
+ψ

(
as 6
√

x2y4
)}∣∣∣
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≤
∞

∑
s=t

1
a6s

∣∣∣ψ(as(ax+ y)
)
+ψ

(
as(ax− y)

)
+ψ

(
as(x+ay)

)
+ψ

(
as(x−ay)

)
− (a+a2)

{
ψ
(
as(x+ y)

)
+ψ

(
as(x− y)

)}
+2(a+a2−a6−1)ψ

(
asx+asy

)
−30(a4−a)

{
ψ
(
as 6
√

x4y2
)
+ψ

(
as 6
√

x2y4
)∣∣∣

≤
∞

∑
s=t

1
a6s (−54a+6a2−4a6 +60a4) k

=
(−54a7 +6a8−4a12 +60a10)k

a6−1
× 1

a6t

=
(−54a13 +6a14−4a18 +60a16) k

a6−1
(
|x|6 + |y|6

)
.

Thus f satisfies (4.23) for all x,y ∈M with 0 < |x|6 + |y|6 < 1
a6 .

The remaining part of proof is similar to that of previous Example 1. �

5. CONCLUSION

Mainly, we introduced new generalized Euler-Lagrange radical sextic and quintic
functional equations with their general solution and investigated their generalized
Hyers-Ulam stability in modular spaces by using fixed point theory with suitable
counter examples.
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