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Abstract. In this paper, we investigate the finite approximate controllability of fractional semi-
linear differential equations involving the Hilfer derivative. We show that if the linear part is
approximate controllable, then under suitable conditions the semilinear system is finite approx-
imate controllable.
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1. INTRODUCTION

An important qualitative behaviour of a dynamic system is controllability. The
problem of exact controllability or controllability is to show the existence of a control
function, which steers the solution of the system from its initial state to the final state,
approximate controllability means that a system can be steered to an arbitrary small
neighbourhood of the final state, and finite approximate controllability means that
this system is approximate controllability and the chosen control function satisfies
simultaneously a finite number of constraints.

Fractional differential equations and inclusions are important because of their ap-
plications in various fields, such as physics, mechanics and engineering [3, 11, 14].
For existence results for fractional differential equations and inclusions involving the
Riemann-Liouville or the Caputo derivative we refer the reader to [4,12,23,27,30,32]
and the references therein. Note that Hilfer [11] proposed a generalized Riemann-
Liouville fractional derivative, for short, the Hilfer fractional derivative, which in-
cludes the Riemann-Liouville and the Caputo fractional derivatives. Furati et al. [1]
established the existence and uniqueness of a global solution in the space of weighted
continuous functions for a fractional differential equation involving the Hilfer deriv-
ative. Abbas et al. [20] adopted the weakly Picard operators theory to give Ulam
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stability results for Hilfer type fractional differential inclusions. Wang et al. [26]
considered a Hilfer-type fractional differential switched inclusion with noninstantan-
eous impulsive and nonlocal conditions. Gu and Trujillo [9] obtained some sufficient
conditions to ensure the existence of mild solutions of evolution equation with the
Hilfer fractional derivative. Yang and Wang [28, 29] investigated existence of mild
solutions of Hilfer evolution equations and the approximate controllability of Hilfer
fractional differential inclusions with nonlocal conditions and Du et al. [7] estab-
lished the approximate controllability of impulsive Hilfer fractional differential in-
clusions. Kamocki [13] derived an equivalent definition of the Hilfer derivative and
showed that such a derivative is very useful in practical applications. Wang et al.
[24, 25] studied the controllability of Caputo fractional noninstantaneous impulsive
differential inclusions without compactness in reflexive Banach spaces.

For works on controllability, approximate controllability, and finite approximate
controllability of differential and inclusions we refer the reader to [2, 5, 6, 8, 10, 15–
19, 21, 22, 31]. It is worth mentioning that Menezes et al. [19] investigated the finite
approximate controllability for the semilinear heat equation, Mahmudov [18] studied
the finite approximate controllability of a semilinear evolution equation in a Hilbert
space under the assumption that the linear part of the system is approximately con-
trollability and Mahmudov [16] established, under the assumption that the linear part
of the system is approximately controllability, the finite approximate controllability
of a nonlocal Sobolev-type evolution equation involving the Caputo fractional deriv-
ative.

In this paper, we study the finite approximate controllability of the following Hilfer
fractional evolution equation:{

Dα,β
0+ x(t) = Ax(t)+ f (t,x(t))+Bu(t), a.e. t ∈ (0,b],

I1−γ

0+ x(0+) = x0,
(1.1)

where 1
2 < α < 1, 0 ≤ β ≤ 1, γ = α+β−αβ, J = [0,b], b > 0, Dα,β

0+ x(t) is the left-
sided Hilfer derivative (see [11]) with lower limit at 0 of order α and type β,E is a
real Hilbert space, A is the infinitesimal generator of a strongly continuous semigroup
T (t), t > 0 and I1−γ

0+ is the left-sided Riemann-Liouville integral of order 1− γ with
lower limit at 0. Moreover, f : J×E→ E is a function, the control function u is given
in U = Lp(J,X), p > 1

α
a Banach space of admissible control functions, with X being

a real Hilbert space, B is a bounded linear operator from X into E and x0 is a fixed
point of E.

To the best of our knowledge, up to now, no work was reported on finite approxim-
ate controllability of fractional differential equation involving the Hilfer derivative,
and this is the main aim of this paper. The paper is organized as follows. In Section 2,
we collect some background material about multifunctions and fractional calculus to
be used later. We introduce a measure of noncompactness on the space of weighted
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continuous functions. In Section 3, we establish the finite approximate controllability
of (1.1). Finally, an example is provided to illustrate our results.

2. PRELIMINARIES AND NOTATION

Let J = [0,b], C(J,E) be the Banach space of all E valued continuous functions
from J to E with the norm ‖x‖C(J,E) = supt∈J ‖x(t)‖. For a ∈ [0,b) and 0 ≤ γ ≤ 1,
consider the weighted spaces of continuous functions

Cγ(J,E) = {x ∈C((a,b],E) : (t−a)γx(t) ∈C(J,E)}.
Now Cγ(J,E) is a Banach space with the norm

‖x‖Cγ(J,E) = sup
t∈(a,b]

‖(t−a)γx(t)‖.

Let Kα(t) = tα−1Pα(t), Pα(t) =
∫

∞

0 αθMα(θ)T (tαθ)dθ, and Sα,β(t) = Iβ(1−α)
0+ Kα(t),

t ≥ 0, where Mµ(θ) =
∞

∑
n=1

(−θ)n−1

(n−1)Γ(1−µn) ,µ ∈ (0,1),θ ∈ C satisfying
∫

∞

0 θτMµ(θ)dθ =

Γ(1+τ)
Γ(1+τµ) for θ≥ 0.

Definition 1 ([9, Definition 2.13]). Let f : [0,b]×E → E be a suitable function.
By a mild solution of{

Dα,β
a+ x(t) = Ax(t)+ f (t,x(t)), t ∈ (0,b],

I1−γ

0+ x(0+) = x0,
(2.1)

we mean a function x ∈C((0,b],E) which satisfies

x(t) = Sα,β(t)x0 +
∫ t

0
Kα(t− s) f (s,x(s))ds, t ∈ (0,b].

Remark 1. From [9, Remark 2.14], we have (i) Dβ(1−α)
0+ Sα,β(t) = Kα(t), t ∈ (0,b];

(ii) When β = 0, the fractional equation (2.1) reduces to the classical Riemann-
Liouville fractional equation which was studied by Zhou et al. [31]. Note Sα,0(t) =
Kα(t) = tα−1Pα(t); (iii) When β = 1, the fractional equation (2.1) reduces to the
classical Caputo fractional equation which has studied by Zhou et al. [28]. Note
Sα,1(t) = Sα(t), where Sα(t) is defined in [28].

In the following we collect the properties for Sα,β(t) and Kα(t) (see [9, Proposi-
tions 2.15, 2.16]).

We need the following condition.
(A1) T (t) is continuous for the uniform operator topology for t > 0, and there is a

M > 1 such that supt≥0 ‖T (t)‖ ≤M.

Lemma 1. If (A1) holds, then we have
(i) Pα(t) is continuous for the uniform operator topology for t > 0.
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(ii) For any fixed t > 0,Sα,β(t) and Kα(t) are linear bounded operators and for
any fixed x ∈ E,

‖Sα,β(t)x‖ ≤
Mtγ−1

Γ(γ)
‖x‖, γ = α+β−αβ, (2.2)

and

‖Kα(t)x‖ ≤
Mtα−1

Γ(α)
‖x‖. (2.3)

(iii) {Kα(t) : t > 0} and {Sα,β(t) : t > 0} are strongly continuous, which means
that, for any x ∈ E and 0 < t1 < t2 ≤ b, we have ‖Kα(t1)x−Kα(t2)x‖ → 0
and ‖Sα,β(t1)x−Sα,β(t2)x‖→ 0, as t1→ t2.

(iv) Sα,β(t) and Kα(t) are compact for t > 0 if T (t), t > 0 is compact.

In the text we denote the mild solution which corresponds to the control function
u by x(.,u) and to the value of it at the terminal point b by x(b,u).

Definition 2. Now (1.1) is said to be approximate controllable on J if for every
xb ∈ E, and any ε > 0, there exists a control function uε ∈ Lp(J,X) such that the
corresponding mild solution of (1.1), x(.,uε) satisfies ‖x(b,uε)− xb‖ ≤ ε.

Definition 3. Now (1.1) is said to be finite approximate controllable on J if for
every xb ∈ E, and any ε > 0, there exists a control function uε ∈ Lp(J,X) such that
the corresponding mild solution of (1.1), x(.,uε) satisfies ‖x(b,uε)− xb‖ ≤ ε and
πϒx(b,uε) = πϒxb, where ϒ is a given finite dimensional subspace of E and πϒ is the
orthogonal projection on ϒ.

3. FINITE APPROXIMATE CONTROLLABILITY FOR (1.1)

Let ε > 0 and xb ∈ E be a fixed point. In order to investigate the finite approximate
controllable for (1.1) we have the following assumptions:

(H1) f : J×E→E is a continuous and there is a function ϕ∈ Lp(J,R+), p> 1
α

and
a continuous nondecreasing function Ω : [0,∞)→ [0,∞) such that for every
x ∈C1−γ(J,E),‖ f (t,x(t)‖ ≤ ϕ(t)Ω(t1−γ‖x(t)‖), for t ∈ J and liminf

n→∞

‖Ω(n)‖
n =

υ < ∞.
(H2) {T (t) : t > 0} is compact semigroup.
(H3) The linear system associated with (1.1) is approximately controllable in J.

Remark 2. Similarly to that in [16,18], we can show that the linear system associ-
ated by (1.1) is approximate controllable in J if and only if the condition
B∗K∗α(b− s)z = 0, for all s ∈ J implies that z = 0.

To prove our main result we first present some preliminary lemmas.
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Lemma 2. Let r > 0 and B(0,r) = {ψ ∈C1−γ(J,E) : ‖ψ‖C1−γ(J,E) ≤ r}. The func-
tion

h : B(0,r)→ E,

h(ψ) = xb−Sα,β(b)x0−
∫ b

0
Kα(b− s) f (s,ψ(s))ds, (3.1)

is continuous and maps B(0,r) into a relatively compact subset of E.

Proof. Let (ψn) be a sequence in B(0,r) such that ψn → ψ in B(0,r). It follows
from (3.1) that

lim
n→∞
‖h(ψn)−h(ψ)‖ ≤ M

Γ(α)
lim
n→∞

∫ b

0
‖(b− s)α−1 f (s,ψn (s))− (b− s)α−1 f (s,ψ(s))‖ds.

Note that for any s ∈ J,

‖(b− s)α−1 f (s,ψn (s))− (b− s)α−1 f (s,ψ(s))‖
≤ (b− s)α−1

ϕ(s)Ω(t1−γ
ψn (s))+(b− s)α−1

ϕ(s)Ω(t1−γ
ψ(s))

≤ 2(b− s)α−1
ϕ(s)Ω(r) ∈ L1(J,R+).

Then the continuity of f (s, .) and the Lebesgue dominated convergence theorem im-
plies limn→∞ ‖h(ψn)−h(ψ)‖= 0, which proves the continuity of h.

Now we show that h maps B(0,r) into a relatively compact subset of E. Let σ ∈
(0,b). From the compactness of Kα(s),s > 0 and the continuity of f (s, .), the set
{
∫ b−σ

0 Kα(b− s) f (s,ψ(s))ds : ψ ∈ B(0,r)} is relatively compact in E. Furthermore,
for any ψ ∈ B(0,r) we have

lim
σ→0
‖
∫ b

0
Kα(b− s) f (s,ψ(s))ds−

∫ b−σ

0
Kα(b− s) f (s,ψ(s))ds‖

≤ lim
σ→0
‖
∫ b

b−σ

Kα(b− s) f (s,ψ(s))ds‖

≤ lim
σ→0

M
Γ(α)

∫ b

b−σ

(b− s)α−1
ϕ(s)Ω(r)ds

≤ lim
σ→0

Ω(r)M
Γ(α)

(
p−1

αp−1
)

p−1
p σ

α− 1
p ‖ϕ‖Lp(J,R+) = 0.

This means that the set {
∫ b

0 Kα(b− s) f (s,ψ(s))ds : ψ ∈ B(0,r)} is arbitrarily close
to a relatively compact set, and hence it is a relatively compact set. �

Next we define the functional

Jε : E×C1−γ(J,E)→ R,

Jε(z,ψ) =
1
2

∫ b

0
‖B∗K∗α(b− s)z‖2ds+ ε‖(I−πϒ)z‖−< z,h(ψ)>,

where B∗ and K∗α(b−·) are the Hilbert adjoint of B and Kα(b−·).



494 JINRONG WANG, A. G. IBRAHIM, AND DONAL O’REGAN

In the following lemma we prove some properties for the functional Jε.

Lemma 3. For any ψ ∈ C1−γ(J,E) the map z→ Jε(z,ψ) is strictly convex, con-
tinuous and for any r > 0,

lim inf
‖z‖→∞

inf
ψ∈B(0,r)

Jε(z,ψ)
‖z‖

≥ ε. (3.2)

Proof. Clearly Jε is strictly convex and the map z→ Jε(z,ψ) is continuous (see
[16, 18]). Assume that (3.2) is not true. Then there are two sequence (zn) of E and
(ψn) of B(0,r) such that limn→∞ ‖zn‖= ∞ and

lim inf
n→∞

Jε(zn,ψn)

‖zn‖
< ε. (3.3)

Next, for any n≥ 1 set z̃n =
zn
‖zn‖ . From the reflexivity of E, there is a subsequence,

denoted again by z̃n, which converges weakly to an element z̃ ∈ E, and hence it fol-
lows from the compactness of K∗α(b− s) and the continuity of B, that

lim
n→∞

B∗K∗α(b− s)z̃n = B∗K∗α(b− s)z̃. (3.4)

Moreover, according to Lemma 2, h(ψn) has a convergent subsequence, denoted
again by h(ψn), which converges strongly to z0,z0 ∈ E. Now

Jε(zn,ψn)

‖zn‖
=

1
2‖zn‖

∫ b

0
‖B∗K∗α(b− s)zn‖2ds+ ε‖(I−πϒ)

zn

‖zn‖
‖−<

zn

‖zn‖
,h(ψn)>

=
‖zn‖

2

∫ b

0
‖B∗K∗α(b− s)z̃n‖2ds+ ε‖(I−πϒ)z̃n‖−< z̃n,h(ψn)> .

We distinguish the following two cases:
Case 1. liminfn→∞

∫ b
0 ‖B∗K∗α(b − s)z̃n‖2ds > 0. When this holds we have

liminfn→∞
Jε(zn,ψn)
‖zn‖ = ∞, which contradicts (3.3).

Case 2. liminfn→∞

∫ b
0 ‖B∗K∗α(b− s)z̃n‖2ds = 0. When this holds we have from

(3.4) and Fatou’s lemma that∫ b

0
‖B∗K∗α(b− s)z̃‖2ds≤ lim inf

n→∞

∫ b

0
‖B∗K∗α(b− s)z̃n‖2ds = 0. (3.5)

This together assumption (H3) implies that z̃ = 0. On the other hand, since ϒ is
of finite dimensional πϒ is compact, we have limn→∞ πϒz̃n = πϒ0 = 0. Therefore,
limn→∞(I − πϒ)z̃n = limn→∞ z̃n, which implies that limn→∞ ‖(I − πϒ)z̃n‖2 =
limn→∞ ‖z̃n‖2 = 1.

Notice that since h(ψn)→ z0 strongly and z̃n,→ 0 weakly, limn→∞ < z̃n,h(ψn)>=

0. Then liminfn→∞
Jε(zn,ψn)
‖zn‖ = ε, which contradicts (3.3). �

Remark 3. According to Lemma 2, for any ψ ∈C1−γ(J,E) the map z→ Jε(z,ψ)
is strictly convex and continuous, and hence for any ψ ∈ C1−γ(J,E) the functional
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Jε(,ψ) admits a unique minimum zε,ψ. Then we can define a map Φε : C1−γ(J,E)→
E,Φε(ψ) = zε,ψ, that is zε,ψ = miny∈E Jε(y,ψ).

Next, we present some properties for Φε.

Lemma 4. For any r > 0, there is a positive real number R(ε,r) such that

‖Φε(ψ)‖ ≤ R(ε,r),∀ψ ∈ B(0,r). (3.6)

Moreover Φε is continuous on B(0,r).

Proof. Now (3.2) implies the existence of a real number R(ε,r) such that

‖z‖> R(ε,r) implies inf
ψ∈B(0,r)

Jε(z,ψ)
‖z‖

≥ ε

2
. (3.7)

From the definition of Φε it follows that Jε(Φε(ψ),ψ)≤ Jε(0,ψ)= 0,∀ψ∈C1−γ(J,E),
and hence

inf
ψ∈B(0,r)

Jε(Φε(ψ),ψ)

‖z‖
= 0. (3.8)

From (3.7) and (3.8) we get (3.6).
To prove the continuity of Φε on B(0,r), let ψn→ψ in B(0,r). In view of (3.6) the

sequence Φε(ψn) is bounded in the Hilbert space E which is reflexive, so Φε(ψn) has
a subsequence, denoted again by Φε(ψn), which converges weakly to z∗. Therefore,
from the definitions of Jε and Φε we get

Jε(Φε(ψ),ψ)≤ Jε(z∗,ψ)≤ lim inf
n→∞

Jε(Φε(ψn),ψn). (3.9)

and
lim sup

n→∞

Jε(Φε(ψn),ψn)≤ lim
n→∞

Jε(z∗,ψn) = Jε(z∗,ψ). (3.10)

It follows from (3.9) and (3.10) that limn→∞ Jε(Φε(ψn),ψn) = Jε(z∗,ψ).
This means that z∗ is a minimum for Jε(,ψ). By the uniqueness of the minimum

we conclude that Φε(ψ) = z∗. It remains to show that Φε(ψn) converges strongly to
Φε(ψ). Note that from the facts that ψn → ψ in B(0,r), Φε(ψn)→ Φε(ψ) weakly,
K∗α(t), t > 0 is compact and h is continuous we get

lim
n→∞

Jε(Φε(ψn),ψn) = Jε(Φε(ψ),ψ), (3.11)

lim
n→∞

∫ b

0
‖B∗K∗α(b− s)Φε(ψn)‖2ds =

∫ b

0
‖B∗K∗α(b− s)Φε(ψ)‖2ds, (3.12)

lim
n→∞

< Φε(ψn),h(ψn)>=< Φε(ψ),h(ψ)>, (3.13)

and
‖(I−πϒ)ψ‖ ≤ lim

n→∞
‖(I−πϒ)Φε(ψn)‖. (3.14)

Now (3.11), (3.12), (3.13) and (3.14) imply

‖(I−πϒ)ψ‖= lim
n→∞
‖(I−πϒ)Φε(ψn)‖. (3.15)
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Since E is a Hilbert space then (3.15) with the fact that Φε(ψn)→ Φε(ψ) weakly
assures us that Φε(ψn) converges strongly to Φε(ψ). �

In the following theorem we investigate the finite approximate controllability of
(1.1).

Theorem 1. Assume that α > 1
2 and conditions (A1), (H1), (H2) and (H3) hold.

Then (1.1) is finite approximately controllable provided that

lim
n→∞

R(ε,n)
n

= σ, (3.16)

Mηυb1−γ

Γ(α)
‖ϕ‖Lp(J,R+)+

M2‖B‖2b1−γ+α

α[Γ(α)]2
σ < 1, (3.17)

where η = bα− 1
p ( p−1

pα−1)
p−1

p .

Proof. According to Remark 3, for any x ∈ C1−γ(J,E) there is a unique element
Φε(x) ∈ E such that Jε(Φε(x),x)≤ Jε(z,x),∀z ∈ E, so we can define a function

Nε : C1−γ(J,E)→C1−γ(J,E),

(Nεx)(t) = Sα,β(t)x0 +
∫ t

0
Kα(t− s) f (s,x(s))ds+

∫ t

0
Kα(t− s)Buε,x(s)ds,

where
uε,x(s) = B∗K∗α(b− s)Φε(x). (3.18)

We now show that using the control function, defined by (3.18), any fixed point, xε,
for Nε is a mild solution for (1.1) and satisfies ‖xε(b)− xb‖ ≤ ε and πϒxε(b) = πϒxb.
In fact, for t ∈ (0,b]

xε(t) = Sα,β(t)x0 +
∫ t

0
Kα(t− s) f (s,xε (s))ds

+
∫ t

0
Kα(t− s)BB∗K∗α(b− s)Φε(xε)ds. (3.19)

Let z ∈ E and λ be a nonzero real number. From the definition of Φε(xε) we get
for t ∈ (0,b], Jε(Φε(xε),xε)≤ Jε(Φε(xε)+λz,xε).

It follows from the definition of Jε that
1
2

∫ b

0
‖B∗K∗α(b− s)Φε(xε)‖2ds+ ε‖(I−πϒ)Φε(xε)‖−< Φε(xε),h(xε)>

≤ 1
2

∫ b

0
‖B∗K∗α(b− s)(Φε(xε)+λz)‖2ds+ ε‖(I−πϒ)(Φε(xε)+λz)‖

−< Φε(xε)+λz,h(xε)> .

Now

λ < z,h(xε)>≤
λ2

2

∫ b

0
‖B∗K∗α(b− s)z‖2ds
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+λ

∫ b

0
< B∗K∗α(b− s)Φε(xε),B∗K∗α(b− s)z > ds+ ε|λ|‖(I−πϒ)z)‖.

(3.20)

If λ > 0, then (3.20) becomes

< z,h(xε)>≤
λ

2

∫ b

0
‖B∗K∗α(b− s)z‖2ds

+
∫ b

0
< B∗K∗α(b− s)Φε(xε),B∗K∗α(b− s)z > ds+ ε‖(I−πϒ)z)‖.

Let λ→ 0+ and one obtains

−ε‖(I−πϒ)z)‖ ≤
∫ b

0
< B∗K∗α(b− s)Φε(xε),B∗K∗α(b− s)z > ds−< z,h(xε)> .

(3.21)

If λ < 0, then (3.20) becomes

< z,h(xε)>≥
λ

2

∫ b

0
‖B∗K∗α(b− s)z‖2ds

+
∫ b

0
< B∗K∗α(b− s)Φε(xε),B∗K∗α(b− s)z > ds− ε‖(I−πϒ)z)‖.

Let λ→ 0− and one obtains∫ b

0
< B∗K∗α(b− s)Φε(xε),B∗K∗α(b− s)z > ds−< z,h(xε)>≤ ε‖(I−πϒ)z)‖.

(3.22)

Combining (3.21) and (3.22) and we have

|
∫ b

0
< B∗K∗α(b− s)Φε(xε),B∗K∗α(b− s)z > ds−< z,h(xε)> | ≤ ε‖(I−πϒ)z)‖.

Notice that < z,h(xε)>=< h(xε),z >. Then

|
∫ b

0
< Kα(b− s)BB∗K∗α(b− s)Φε(xε),z > ds−< h(xε),z > | ≤ ε‖(I−πϒ)z)‖.

(3.23)

From (3.23) and (3.1) (the definition of h) we get

|
∫ b

0
< Kα(b− s)BB∗K∗α(b− s)Φε(xε)+Kα(b− s) f (s,xε(s)),z > ds

−< xb,z >+< Sα,β(b)x0,z > | ≤ ε‖(I−πϒ)z)‖.
This inequality with (3.19) gives

|< xε(b)− xb,z > | ≤ ε‖(I−πϒ)z)‖, ∀z ∈ E. (3.24)

Observe that ‖(I−πϒ)z)‖= ‖z−πϒz‖= infθ∈ϒ d(z,θ).
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Since 0∈ϒ one obtains ‖(I−πϒ)z)‖≤‖z‖. Hence (3.24) yields < xε(b)−xb,z>≤
ε‖z‖, ∀z ∈ E.

Now taking z = xε(b)− xb, one obtains ‖xε(b)− xb‖ ≤ ε.
On the other hand if we take in (3.24) z in ϒ, then it follows that

< xε(b)− xb,z >= 0, ∀z ∈ ϒ, which means that πϒxε(b) = πϒxb.
Therefore the control function, defined by (3.18) is the desired control function,

so it is sufficient to show that Nε has a fixed point. We use Schauder’s fixed point
theorem and divide the proof into steps.

Step 1. In this step we show that there is a natural number n0 such that Nε maps
B(0,n0) into itself. Suppose the contrary. Then there are two sequence (xn) and
(yn) in C1−γ(J,E) such that yn = Nε(xn), ‖xn‖C1−γ(J,E) ≤ n and ‖yn‖C1−γ(J,E) > n. Re-
call the definition of Nε and we have

yn(t) = Sα,β(t)x0 +
∫ t

0
Kα(t− s) f (s,xn (s))ds

+
∫ t

0
Kα(t− s)BB∗Kα(b− s)Φε(xn)(s)ds, t ∈ (0,b].

Then, if t ∈ (0,b], we get from (H1), (2.2), (2.3) and Hölder’s inequality that

t1−γ‖yn(t)‖ ≤ t1−γ‖Sα,β(t)x0‖+
Mt1−γΩ(‖xn‖C1−γ(J,E))

Γ(α)

∫ t

0
(t− s)α−1

ϕ(s)ds

+
M2‖B‖2b1−γ‖Φε(xn)‖

[Γ(α)]2

∫ t

0
(t− s)α−1(b− s)α−1ds

≤ M
Γ(γ)
‖x0‖+

Mb1−γ

Γ(α)
Ω(n)‖ϕ‖Lp(J,R+)η

+
M2‖B‖2b1−γ‖Φε(xn)‖

[Γ(α)]2

∫ t

0
(t− s)2α−2ds.

Notice that t1−γ‖yn (0)‖= limt→0 t1−γ‖yn (t)‖. Then, from (3.6) and (3.17) we have

n < ‖yn‖C1−γ(J,E) ≤
M

Γ(γ)
‖x0‖+

Mb1−γ

Γ(α)
Ω(n)‖ϕ‖Lp(J,R+)η+

M2‖B‖2b2α−γR(ε,n)
(2α−1)[Γ(α)]2

.

Divide both sides by n and let n→ ∞, and we obtain

1≤ Mηυb1−γ

Γ(α)
‖ϕ‖Lp(J,R+)+

M2‖B‖2b2α−γ

(2α−1)[Γ(α)]2
σ,

which contradicts (3.17). Thus we deduce that there is a natural number n0 such that
Nε(B(0,n0))⊆ B(0,n0).

Step 2. Nε is continuous on B(0,n0).
Consider a sequence (xn)n≥1 in B(0,n0) with xn→ x in B(0,n0) and let yn =Nε(xn)

and y = Nε(x). We show that yn→ y in C1−γ(J,E). Recall the definition of Nε and
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we get for t ∈ (0,b],

‖t1−γyn(t)− t1−γy(t)‖= Mt1−γ

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,xn (s))− f (s,x(s)‖ds

+ t1−γ

∫ t

0
Kα(t− s)BB∗Kα(b− s)‖Φε(xn)−Φε(xn)‖ds.

Note that for any t ∈ J, and any s ∈ (0, t),

‖(t− s)α−1 f (s,xn (s))− (t− s)α−1 f (s,x(s))‖
≤ (t− s)α−1

ϕ(s)Ω(t1−γxn (s))+(t− s)α−1
ϕ(s)Ω(t1−γx(s))

≤ 2(t− s)α−1
ϕ(s)Ω(n0) ∈ L1(J,R+).

Then the continuity of f (s, .) and the Lebesgue dominated convergence theorem
gives

lim
n→∞

Mt1−γ

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,xn (s))− f (s,x(s)‖ds = 0.

Moreover, in view of Lemma 1, for any t ∈ J, and any s ∈ (0, t),

‖Kα(t− s)BB∗Kα(b− s)‖Φε(xn)−Φε(xn)‖ ≤ 2
M2‖B‖2R(ε,n0)

[Γ(α)]2
(t− s)α−1(b− s)α−1

≤ 2
M2‖B‖2R(ε,n0)

[Γ(α)]2
(t− s)2α−2 ∈ L1(J,R+).

Again by Lemma 4, Φε is continuous, and hence by using the Lebesgue dominated
convergence theorem we have

lim
n→∞

∫ t

0
Kα(t− s)BB∗Kα(b− s)‖Φε(xn)−Φε(xn)‖ds = 0,

so, Nε is continuous on B(0,n0).
Step 3. For any t ∈ J, the set {Nε(x) : x ∈ B(0,n0)} is a relatively compact subset

in E.
Let t ∈ J be fixed and δ ∈ (0,b) be enough small and put

W1,δ = {
∫ t−δ

0
Kα(t− s) f (s,x(s))ds : x ∈ B(0,n0)},

and

W2,δ = {
∫ t−δ

0
Kα(t− s)Buε,x(s)ds : x ∈ B(0,n0)}.

Notice that for any x∈ B(0,n0), t ∈ (0,b] and s∈ (0, t−δ], ‖ f (s,x(s))‖≤ ϕ(s)Ω(n0).
This inequality with the compactness of K(λ),λ > 0, implies that W1,δ and W2,δ are
relatively compact subset in E.

Next,

‖
∫ t

0
Kα(t− s) f (s,x(s))ds−

∫ t−δ

0
Kα(t− s) f (s,x(s))ds‖
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≤ ‖
∫ t

t−δ

Kα(t− s) f (s,x(s))ds‖

≤ MΩ(n0)

Γ(α)

∫ t

t−δ

(t− s)α−1
ϕ(s)ds.

The last term tends to zero as δ→ 0. Hence the set {
∫ t

0 Kα(t − s) f (s,x(s))ds : x ∈
B(0,n0)} is arbitrarily close to a relatively compact subset in E. Similarly,

‖
∫ t

0
Kα(t− s)Buε,x(s)ds−

∫ t−δ

0
Kα(t− s)Buε,x(s)ds‖

≤ ‖
∫ t

t−δ

Kα(t− s)Buε,x(s)ds‖

≤ M2‖B‖2R(ε,n0)

[Γ(α)]2

∫ t

t−δ

(t− s)α−1(b− s)α−1ds

≤ M2‖B‖2R(ε,n0)

[Γ(α)]2

∫ t

t−δ

(t− s)2α−2ds

=
M2‖B‖2R(ε,n0)

[Γ(α)]2
δ2α−1

2α−1
.

Since α ∈ (1
2 ,1) the last term tends to zero as δ → 0. Hence the set

{
∫ t

0 Kα(t− s)Buε,x(s)ds : x ∈ B(0,n0)} is arbitrarily close to a relatively compact sub-
set in E. Hence our claim follows.

Step 3. Set

K = {z ∈C(J,E) : z(t) = t1−γNεx(t), t ∈ (0,b],z(0) = z(0+),x ∈ B(0,n0)}.

We check that K is equicontinuous.
Let z ∈ K. Then there is x ∈ B(0,n0) such that for t ∈ (0,b], z(t) = t1−γy(t), where

y(t) = Sα,β(t)x0 +
∫ t

0
Kα(t− s)( f (s,x(s))+Buε,x(s))ds,

and z(0) = limt→0+ t1−γy(t). It follows for t = 0,δ ∈ (0,b] that

lim
δ→0+

z(δ) = lim
δ→0+

δ
1−γy(δ) = lim

t→0+
t1−γy(t) = z(0)

Let t, t +δ be two points in (0,b]. Then

‖z(t +δ)− z(t)‖ ≤ ‖(t +δ)1−γSα,β(t +δ)x0− t1−γSα,β(t)x0‖

+‖(t +δ)1−γ

∫ t+δ

0
Kα(t +δ− s)( f (s,x(s))+Buε,x(s))ds

− t1−γ

∫ t

0
Kα(t− s)( f (s,x(s))+Buε,x(s))ds‖

≤ (t +δ)1−γ‖Sα,β(t +δ)−Sα,β(t)‖‖x0‖
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+ |(t +δ)1−γ− t1−γ|‖Sα,β(t)x0‖

+‖(t +δ)1−γ

∫ t+δ

t
Kα(t +δ− s) f (s,x(s))ds‖

+‖
∫ t

0
(t +δ)1−γKα(t +δ− s) f (s)− t1−γ(t− s)α−1Pα(t +δ− s) f (s,x(s))]ds‖

+‖
∫ t

0
[t1−γ(t− s)α−1Pα(t +δ− s)− t1−γKα(t− s)] f (s,x(s))ds‖

+‖(t +δ)1−γ

∫ t+δ

t
Kα(t +δ− s)Buε,x(s))ds‖

+‖
∫ t

0
[(t +δ)1−γKα(t +δ− s)− t1−γ(t− s)α−1Pα(t +δ− s)]Buε,x(s)ds‖

+‖
∫ t

0
t1−γ(t− s)α−1Pα(t +δ− s)− t1−γKα(t− s)]Buε,x(s)ds‖

=
i=8

∑
i=1

Ii.

In view of Lemma 1 we have

lim
δ→0

I1 = lim
δ→0

(t +δ)1−γ‖Sα,β(t +δ)−Sα,β(t)‖‖x0‖= 0,

and

lim
δ→0

I2 = lim
δ→0
|(t +δ)1−γ− t1−γ|‖Sα,β(t)x0‖

≤ M tγ−1

Γ(γ)
‖x0‖ lim

δ→0
|(t +δ)1−γ− t1−γ|= 0.

Again by Lemma 1, (H1) and the absolute integral of the Lebesgue integral we get

lim
δ→0

I3 = lim
δ→0
‖(t +δ)1−γ

∫ t+δ

t
Kα(t +δ− s) f (s,x(s))ds‖

≤ M Ω(n0)

Γ(α)
lim
δ→0

(t +δ)1−γ

∫ t+δ

t
(t +δ− s)α−1

ϕ(s)ds = 0.

Similarly,

lim
δ→0

I4 ≤ lim
δ→0
‖
∫ t

0
(t +δ)1−γKα(t +δ− s) f (s)− t1−γ(t− s)α−1Pα(t +δ− s) f (s,x(s))]ds‖

= lim
δ→0
‖
∫ t

0
(t +δ)1−γ(t +δ− s)α−1Pα(t +δ− s) f (s,x(s))

− t1−γ(t− s)α−1Pα(t +δ− s) f (s,x(s))]ds‖

≤ M Ω(n0)

Γ(α)
lim
δ→0

∫ t

0
|(t +δ)1−γ(t +δ− s)α−1− t1−γ(t− s)α−1|ϕ(s)ds.



502 JINRONG WANG, A. G. IBRAHIM, AND DONAL O’REGAN

Since ϕ ∈ Lp(J,R+),
∫ t

0 [(t +δ)1−γ(t +δ− s)α−1− t1−γ(t− s)α−1]ϕ(s)ds exists, then
by the Lebesgue dominated convergence theorem, we obtain that limδ→0 I4 = 0.

Next,

lim
δ→0

I5 = lim
δ→0
‖
∫ t

0
t1−γ(t− s)α−1Pα(t +δ− s)− t1−γKα(t− s)] f (s,x(s))ds‖

= lim
δ→0
‖
∫ t

0
t1−γ(t− s)α−1Pα(t +δ− s)− t1−γ(t− s)α−1Pα(t− s)] f (s,x(s))ds‖.

To find this limit, let ε > 0 be enough small. We have

lim
δ→0

I5 ≤Ω(n0)t1−γ lim
δ→0

∫ t−ε

0
(t− s)α−1

ϕ(s) sup
s∈[0,t−ε]

‖Pα(t +δ− s)−Pα(t− s)‖ds

+ lim
δ→0

∫ t

t−ε

t1−γ(t− s)α−1‖Pα(t +δ− s) f (s)−Pα(t− s) f (s)ds‖

≤Ω(n0)t1−γ lim
δ→0

∫ t−ε

0
(t− s)α−1

ϕ(s) sup
s∈[0,t−ε]

‖Pα(t +δ− s)−Pα(t− s)‖ds

+
2M Ω(n0)

Γ(α)
lim
δ→0

∫ t

t−ε

t1−γ(t− s)α−1
ϕ(s)ds

≤Ω(n0)t1−γ lim
δ→0

∫ t−ε

0
(t− s)α−1

ϕ(s) sup
s∈[0,t−ε]

‖Pα(t +δ− s)−Pα(t− s)‖ds

+
2M Ω(n0)t1−γ

Γ(α)
‖ϕ‖Lp(J,R+)(

p−1
αp−1

)
p−1

p ε
αp−1

p .

From Lemma 1, lim
δ→0

sups∈[0,t−ε] ‖Pα(t + δ− s)− Pα(t − s)‖ = 0, and since ϕ ∈
Lp(J,R+), then by the Lebesgue dominated convergence theorem, we obtain that
I5→ 0 as δ→ 0 and ε→ 0.

For I6, it follows from (3.6) that

lim
δ→0

I6 = lim
δ→0

(t +δ)1−γ‖
∫ t+δ

t
Kα(t +δ− s)Buε,x(s)ds‖

≤ lim
δ→0

M(t +δ)1−γ‖B‖
Γ(α)

∫ t+δ

t
(t +δ− s)α−1‖B∗Kα(b− s)Φε(x)‖ds

≤ lim
δ→0

M2(t +δ)1−γ‖B‖2R(ε,n0)

[Γ(α)]2

∫ t+δ

t
(t +δ− s)α−1(b− s)α−1ds

≤ lim
δ→0

M2(t +δ)1−γ‖B‖2R(ε,n0)

[Γ(α)]2

∫ t+δ

t
(t +δ− s)2α−2ds = 0.

For I7 from the Lebesgue dominated convergence theorem we have that

lim
δ→0

I7 ≤ lim
δ→0
‖
∫ t

0
[(t +δ)1−γKα(t +δ− s)− t1−γ(t− s)α−1Pα(t +δ− s)]Buε,xds‖
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= lim
δ→0

∫ t

0
|(t +δ)1−γ(t +δ− s)α−1− t1−γ(t− s)α−1|‖Pα(t +δ− s)Buε,x)‖ds

≤ ‖B‖M
Γ(α)

lim
δ→0

∫ t

0
|(t +δ)1−γ(t +δ− s)α−1− t1−γ(t− s)α−1|‖B∗Kα(b− s)Φε(x)‖ds

≤ ‖B‖
2M2 R(ε,n0)

[Γ(α)]2
lim
δ→0

∫ t

0
|(t +δ)1−γ(t +δ− s)α−1− t1−γ(t− s)α−1|(b− s)α−1ds

= 0.

Next,

lim
δ→0

I8 = lim
δ→0
‖
∫ t

0
t1−γ(t− s)α−1Pα(t +δ− s)− t1−γKα(t− s)]Buε,x(s)ds‖

≤ ‖B‖
2 MR(ε,n0)

Γ(α)

× lim
δ→0
‖
∫ t

0
t1−γ(t− s)α−1Pα(t +δ− s)− t1−γ(t− s)α−1Pα(t− s)](b− s)α−1ds‖.

To find this limit, let ε > 0 be enough small, and one has

lim
δ→0

I8 ≤
‖B‖2M R(ε,n0)

Γ(α)
t1−γ lim

δ→0

∫ t−ε

0
(t− s)2α−2 sup

s∈[0,t−ε]

‖Pα(t +δ− s)−Pα(t− s)‖ds

+
‖B‖2M R(ε,n0)

Γ(α)
lim
δ→0

∫ t

t−ε

t1−γ(t− s)2α−2‖Pα(t +δ− s)−Pα(t− s)‖ds

≤ ‖B‖
2M R(ε,n0)

Γ(α)
t1−γ lim

δ→0

∫ t−ε

0
(t− s)2α−2 sup

s∈[0,t−ε]

‖Pα(t +δ− s)−Pα(t− s)‖ds

+
2M2‖B‖2 R(ε,n0)

[Γ(α)]2
lim
δ→0

∫ t

t−ε

t1−γ(t− s)2α−2ds

≤ ‖B‖
2M R(ε,n0)

Γ(α)
t1−γ lim

δ→0

∫ t−ε

0
(t− s)2α−2 sup

s∈[0,t−ε]

‖Pα(t +δ− s)−Pα(t− s)‖ds

+
2M2‖B‖2 R(ε,n0)

[Γ(α)]2
(

p−1
2α− p−1

)
p−1

p ε
2αp−p−1

p .

From Lemma 1, lim
δ→0

sups∈[0,t−ε] ‖Pα(t +δ− s)−Pα(t− s)‖= 0, and since 2αp− p−
1 > 0, then by the Lebesgue dominated convergence theorem, we obtain that I8 → 0
as δ→ 0 and ε→ 0.

As a consequence of Step 1, Step 2, Step 3, and from Schauder’s fixed point the-
orem we see that Nε has a fixed point. �

Remark 4. If the function f is uniformly bounded, then (3.16) and (3.17) hold. In
fact, suppose that ‖ f (t,z)‖ ≤ ξ, ∀(t,z) ∈ J×E. Then υ = 0. Moreover, for any r > 0
and any ψ ∈ B(0,r) we have

‖h(ψ)‖ ≤ ‖xb‖+
Bbγ−1

Γ(γ)
‖x0‖+

Mξ

Γ(α)

∫ b

0
(b− s)α−1ds
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≤ ‖xb‖+
Bbγ−1

Γ(γ)
‖x0‖+

Mξbα

Γ(α+1)
= ζ.

Then for any r > 0, any ψ ∈ B(0,r) and any z ∈ E,

|Jε(z,ψ)| ≤
‖B‖2M2‖z‖2

2[Γ(α)]2

∫ b

0
(b− s)2α−2ds+ ε‖z‖+‖z‖ζ.

Therefore, Jε(z,ψ) takes its minimum at z = 0, and hence Φε(ψ) = 0,∀ψ ∈ B(0,r).
Consequently, R(ε,r) = 0, for any r > 0, so (3.16) is satisfied with σ = 0. From this
and the fact that υ = 0, (3.17) holds.

We now give an example to illustrate our theory.

Example 1. Take α = 2
3 , 0 ≤ β ≤ 1, γ = α+ β−αβ, J = [0,1] and E = U =

L2[0,1]. Now E is a separable Hilbert space. Let B : E → E, B = Id , where Id
is the identity operator. Define A : D(A) ⊆ L2[0,1]→ L2[0,1] by Ax = xyy, where
the domain of A is given by: D(A) = {x ∈ L2[0,1] : x,xy are absolutely continuous,
xyy ∈ L2[0,1],x(t,0) = x(t,1) = 0}.

Consider the following fractional control system:{
D

2
3 ,β

s+i
x(t,y) = xyy(t,y)+ f (t,x(t,y))+B(u(t)), a.e. t ∈ (0, b],

I1−γ

0+ x(0,y) = x0

(3.25)

where u ∈ L2(J,L2(J)).
Notice that A can be written as Ax = ∑

∞
n=1 n2 < x,xn > xn,x∈D(A), where xn(y) =√

2sinny,n = 1,2, · · · is the orthonormal basis of E. Moreover, for any x ∈ L2[0,1],
we have T (t)(x) = ∑

∞
n=1 e−n2t < x,xn > xn.

Clearly, A is the infinitesimal generator of the compact C0-semigroup
{T (t) : t ≥ 0}.

Moreover, for any x ∈ E

Pα(1− s)x =
∫

∞

0
αθMα(θ)T ((1− s)

2
3 θ)xd θ

=
2
3

∫
∞

0
θMα(θ)

∞

∑
n=1

e−n2θ(1−s)
2
3
< x,xn > xndθ.

Consider the Mittag-Leffler function E 2
3
(m) = 2

3
∫

∞

0 θM 2
3
(θ)e−mθd θ,m ∈ R. Then

Pα(1− s)x =
∞

∑
n=1

E 2
3
(−n2(1− s)

2
3 )< x, xn > xn.

It follows that

Kα(1− s)x = (1− s)α−1
∞

∑
n=1

E 2
3
(−n2(1− s)

2
3 )< x,xn > xn,
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which leads to

K∗α(1− s)x = (1− s)α−1
∞

∑
n=1

E 2
3
(−n2(1− s)

2
3 )< x,xn > xn.

Next assume that for some x ∈ E, K∗α(1− s)x = 0,∀s ∈ [0,1]. This means that for any
natural number n, E 2

3
(−n2(1− s)

2
3 ) < x,xn >= 0,∀s ∈ (0,1). If x 6= 0, then there is

a n0 ∈ N such that < x,xn0 >6= 0, and hence E 2
3
(−n2

0(1− s)
2
3 ) = 0,∀s ∈ (0,1). Thus

0= lims→1− E 2
3
(−n2

0(1−s)
2
3 ) =E 2

3
(0) = 1

Γ( 2
3 )
, a contradiction. Therefore (H3) holds.

Let f : J×E → E be a continuous function satisfying (H1). Then (3.25) is finite
approximate if (3.16) and (3.17) hold.

4. CONCLUSION

Motivated by finite approximate controllability for memory problems in mechan-
ics and engineering, we study finite approximate controllability for a class of Hil-
fer fractional semilinear evolution equations, which is an extension of the work in
[16–18]. We establish sufficient conditions to guarantee that the semilinear problem
is finite approximate controllable by requiring that the associated linear system is ap-
proximately controllable via semigroup theory. For future research, it is of interest to
extend the results to non-instantaneous impulsive evolution equation.

ACKNOWLEDGEMENTS

The authors thank the referees for their careful reading and comments on the ma-
nuscript.

REFERENCES

[1] K. M. Furati, M. D. Kassi, and N. E. Tatar, “ Existence and uniqueness for a problem in-
volving Hilfer fractional derivative.” Comput. Math. Appl., vol. 64, pp. 1616–1526, 2012, doi:
10.1016/j.camwa.2012.01.009.

[2] K. Aissani and M. Benchohra, “Controllability of impulsive fractional differential equations with
infinite delay.” Libertas Math., vol. 34, pp. 1–18, 2014, doi: doi:10.14510/xxxxx.

[3] E. Bajlekova, Fractional evolution equations in Banach spaces. (Ph.D. thesis). Cairo: Eindhoven
University of Technology, 2001.

[4] K. Balachandran, S. Kiruthika, and J. J. Trujillo, “On fractional impulsive equations of Sobolev
type with nonlocal condition in Banach spaces.” Comput. Math. Appl., vol. 62, pp. 1157–1165,
2011, doi: 10.1016/j.camwa.2011.03.031.

[5] K. Balachandran and J. Y. Park, “Controllability of fractional integro-differential sys-
tems in Banach spaces.” Nonlinear Anal.: Hybrid Sys., vol. 3, pp. 363–367, 2009, doi:
10.1016/j.nahs.2009.01.014.

[6] A. Debbouche and V. Antonov, “Approximate controllability of semilinear Hilfer fractional dif-
ferential inclusions with impulsive control inclusion conditions in Banach spaces.” Chaos Solit.
Fract., vol. 102, pp. 140–148, 2017, doi: 10.1016/j.chaos.2017.03.023.

http://dx.doi.org/10.1016/j.camwa.2012.01.009
http://dx.doi.org/doi:10.14510/xxxxx
http://dx.doi.org/10.1016/j.camwa.2011.03.031
http://dx.doi.org/10.1016/j.nahs.2009.01.014
http://dx.doi.org/10.1016/j.chaos.2017.03.023


506 JINRONG WANG, A. G. IBRAHIM, AND DONAL O’REGAN

[7] J. Du, W. Jiang, and A. U. K. Niazi, “Approximate controllability of impulsive Hilfer frac-
tional differential inclusions.” J. Nonlinear Sci. Appl., vol. 10, pp. 595–6118, 2017, doi:
10.22436/jnsa.010.02.23.
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