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Abstract. In this paper, interval estimation for the parameters of the Kumaraswamy distribution
is studied based on progressively censoring scheme and the record values. Some pivotal quant-
ities and Theorems are proposed to construct the exact confidence interval for the one-shape
parameter and the joint confidence region for the two-shape parameters. Simulation study is per-
formed to investigate the coverage probabilities of the proposed confidence under progressively
censored sample and upper record data. Finally, the proposed intervals and regions have been
studied based on two real data sets as the illustrative examples. The first data set contains the
strength characterization of brittle material and the second data set consists of the daily average
wind speeds.
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1. INTRODUCTION

The Kumaraswamy (KU) distribution was introduced in the literature by Kumaras-
wamy ([11]) in connection with a problem in hydrology. This distribution has many
similarities to the Beta distribution but it has a number of advantages. The KU dis-
tribution can be better suited than the Beta distribution for computation-intensive
activities like simulation modeling and the estimation of models by simulation-based
methods [15]. It has an invertible closed form cumulative distribution function which
makes it more useful than the Beta distribution. Due to its practicality, it can be used
for many applications, including atmospheric temperatures, wind speeds, scores ob-
tained on a test, daily rainfall, daily stream flow, hydrological data and etc. The prob-
ability density function and the cumulative distribution function of KU distribution
are given by:

f (x;α,β) = αβxβ−1(1− xβ)
α−1

; 0 < x < 1 , α > 0, β > 0, (1.1)
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and
F(x;α,β) = 1− (1− xβ)

α

; 0 < x < 1 (1.2)
respectively. The corresponding quantile function is:

Q(p;α,β) =
(

1− (1− p1/α)
)1/β

; 0 < p < 1

The KU distribution is unimodal, uniantimodal, increasing, decreasing or constant
depending (in the same way as the Beta distribution) on the values of its parameters
[10]. If the parameters are greater than one, the density function is unimodal. It
is uniantimodal if two parameters are less than one. The density function increases
(decreases) for β > 1 and α ≤ 1 (β ≤ 1 and α > 1) and finally, it is constant for
α = β = 1. In Figure 1, we have displayed probability density function of the KU
distribution for some arbitrarily selected parameter values.
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FIGURE 1. The probability density function for different values of
α and β.

Several author studied different aspects of the KU distribution. For example the
distribution of order statistics from the KU model has been introduced and studied by
[8]. The different estimation methods for the unknown parameters of the KU distri-
bution have been considered by [6]. The point estimations for this distribution under
complete and record samples have been studied by [13, 16]. Furthermore, for more
details about the other extensions of this distribution, see [7,22,25]. Although several
articles have been done on the KU distribution but we have not come across any art-
icle about the exact confidence interval (ECI) and the joint confidence region (JCR)
under progressively censored sample and record data. The main aim of this paper is
two fold. First we try to introduce the ECI and JCR for parameter(s) on the basis of
progressively Type II (PII) censoring using the appropriate pivotal quantities. Censor-
ing is common in life tests because of time limits and other restrictions on data. Two
of the commonly used censoring schemes are Type I and Type II censoring schemes.
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A mixture of Type I and Type II censoring schemes is known as the hybrid censoring
scheme (see, [4,12,19] and [18]). These censoring schemes do not allow for removal
of units at points other than the terminal point of the experiment. To overcome this
problem, progressively censoring scheme which enables us to use live units, removed
early, in other tests has been introduced. The PII censoring scheme can be implemen-
ted as follows: Suppose n units are placed on a life test and the experimenter decides
beforehand the quantity m, the number of units to be failed. Now at the time of the
first failure, R1 of the remaining n− 1 surviving units are randomly removed from
the experiment. Continuing on, at the time of the second failure, R2 of the remaining
n− 2−R1 units are randomly with-drawn from the experiment. Finally, at the time
of the mth failure, all the remaining Rm = n−m−R1−R2− ...−Rm−1 surviving units
are removed from the experiment. The Ri

′s are fixed prior to the study. Some of the
work on PII censoring was conducted by [14, 20] and [1].

Moreover, the study of record values and associated statistics are important in
different multiple real life situations such as manufacturing industry, hydrology, seis-
mology, sporting and stock market analysis. Since then, numerous papers on record
values and their distributional properties have been focus of investigation for many
authors, see for example,[5, 9, 23] and [21]. A record values can be explained as
follows. Suppose that {Xi; i≥ 1} denote a sequence of independent and identic-
ally distributed random variables with probability density function f (x,θ). Then, an
observation Xi is called an upper record if its value is greater than all preceding obser-
vations, that is, if Xi > X j for every i > j. The lower record value can also be defined
in a similar manner. Also, the sequence

{
XU(n); n≥ 1

}
is a sequence of upper record

statistics, where

U(n) = min
{

i : i >U(n−1), Xi > XU(n−1)
}

; n≥ 2, U(1) = 1.

So, the second aim of this paper is to construct the ECI and JCR based on upper
record values using the two Theorems. The rest of the paper is organized as follows.
In Section 2, the ECI for the parameter β and JCR for (α,β) are obtained by using
some pivotal quantities. Based on record values, the exact and joint confidence are
presented in Section 3. Section 4 deals with Monte Carlo simulation study. For
illustration, two real data sets are discussed in Section 5 and finally we conclude the
paper in Section 6.

2. THE ECI AND JCR BASED ON PROGRESSIVELY CENSORED SAMPLE

This section deals with constructing the ECI and JCR under PII censoring scheme.
Let X1:m:n < X2:m:n < ... < Xm:m:n denote the PII censored order statistics from KU
distribution with censoring scheme R = (R1, ...,Rm). Let, Yi = − log(1−Xβ

i:m:n)
α

;
i = 1,2, ...,m, it can be observed that Y1:m:n < ... < Ym:m:n are the PII censored order
statistics from a standard exponential distribution. Now, we consider the following
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transformation
∆1 = nY1:m:n,

∆2 = (n−R1−1)(Y2:m:n−Y1:m:n),

∆3 = (n−R1−R2−2)(Y3:m:n−Y2:m:n),

...

∆m = (n−R1− ...−Rm−1−m+1)(Ym:m:n−Ym−1:m:n).

It is observed that ∆1,∆2, ...,∆m are independent and identically distributed as an
exponential distribution with mean 1. We introduce the following quantities:

υ1 = 2∆1 = 2nY1:m:n =−2n log(1−Xβ

1:m:n)
α

∼ χ
2(2),

and

υ2 = 2(∆2 +∆3 + ...+∆m) = 2
m

∑
i=1

(Ri +1)(Yi:m:n−Y1:m:n)∼ χ
2(2m−2).

We can find that υ1 and υ2 are independent. Now, suppose that

W1 = υ1 +υ2 = 2
m

∑
i=1

(Ri +1)Yi =−2
m

∑
i=1

(Ri +1) log(1−Xβ

i:m:n)
α

∼ χ
2(2m), (2.1)

and

W2 =
2υ2

2(m−1)υ1

=

m
∑

i=1
(Ri +1)(log(1−Xβ

i:m:n)
α

− log(1−Xβ

1:m:n)
α

)

n(m−1) log(1−Xβ

1:m:n)
α ∼ F(2m−2,2). (2.2)

It is also clear that W1 and W2 are independent. The following Lemma and Theorems
enable us to construct the ECI and JCR for the PII censored sample.

Lemma 1. For a PII censored sample X1:m:n,X2:m:n, ...,Xm:m:n, the

W2(β;data) =

m
∑

i=1
(Ri +1)( log(1−Xβ

i:m:n)

log(1−Xβ

1:m:n)
−1)

n(m−1)

is a strictly increasing function of β, where β > 0. Furthermore, there is a unique
solution for the given equation W2(β;data) = t.

Proof. The proof follows using similar arguments of [24] and therefore it is omit-
ted. �
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Theorem 1. Suppose that Xi:m:n; i = 1, ...,m are PII censored order statistics from
KU distribution with censoring scheme R = (R1, ...,Rm). Then, based on the pivotal
quantities W1 and W2, a 100(1− γ)% ECI for β can be written as:

ϕ
(
X1:m:n,X2:m:n, ...,Xm:m:n,R1, ...,Rm,F1−γ/2(2m−2,2)

)
< β

< ϕ
(
X1:m:n,X2:m:n, ...,Xm:m:n,R1, ...,Rm,Fγ/2(2m−2,2)

)
where, ϕ(X1:m:n,X2:m:n, ...,Xm:m:n,R1, ...,Rm, t) is the solution of β for the following
equation

m
∑

i=1
(Ri +1)( log(1−Xβ

i:m:n)

log(1−Xβ

1:m:n)
−1)

n(m−1)
= t.

Proof of Theorem 1. From (2.2), we know that the quantity

W2(β;data) =

m
∑

i=1
(Ri +1)( log(1−Xβ

i:m:n)

log(1−Xβ

1:m:n)
−1)

n(m−1)
,

has a F distribution with 2m− 2 and degrees of freedom. So, using the Lemma, we
can conclude that W2(β;data) = t, has a unique solution for any β > 0 ([17]). Hence
the event

t1 <

m
∑

i=1
(Ri +1)( log(1−Xβ

i:m:n)

log(1−Xβ

1:m:n)
−1)

n(m−1)
< t2, (2.3)

is equivalent to

ϕ
(
X1:m:n,X2:m:n, ...,Xm:m:n,R1, ...,Rm,F1−γ/2(2m−2,2)

)
< β

< ϕ
(
X1:m:n,X2:m:n, ...,Xm:m:n,R1, ...,Rm,Fγ/2(2m−2,2)

)
�

Now we want to obtain the JCR for (α,β) using the following Theorem.

Theorem 2. Suppose that Xi:m:n; i = 1, ...,m are PII censored order statistics from
KU distribution with censoring scheme R = (R1, ...,Rm).Then, the following inequal-
ities determine a 100(1− γ)% JCR for (α,β).

βL < β < βU

−
χ2

(1+
√

1−γ)/2
(2m)

2
m
∑

i=1
(Ri +1) log(1−Xβ

i:m:n)
< α <−

χ2
(1−
√

1−γ)/2
(2m)

2
m
∑

i=1
(Ri +1) log(1−Xβ

i:m:n)
, (2.4)

where,

βL = ϕ(X1:m:n,X2:m:n, ...,Xm:m:n,R1, ...,Rm,F(1+√1−γ)/2(2m−2,2)),
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and
βU = ϕ(X1:m:n,X2:m:n, ...,Xm:m:n,R1, ...,Rm,F(1−√1−γ)/2(2m−2,2)).

Also, ϕ(X1:m:n,X2:m:n, ...,Xm:m:n,R1, ...,Rm, t) is introduced in Theorem 1.

Proof of Theorem 2. The W1 = −2
m
∑

i=1
(Ri +1) log(1−Xβ

i:m:n)
α

has a χ2 distribu-

tion with 2m degrees of freedom, and it is independent of W2 ∼ F(2m−2,2). There-
fore,

P
(

χ
2
(1+
√

1−γ)/2(2m)<W1 < χ
2
(1−
√

1−γ)/2(2m)
)
=
√

1− γ,

and

P
(

F(1+√1−γ)/2(2m−2,2)<W2 < F(1−√1−γ)/2(2m−2,2)
)
=
√

1− γ.

So, we can write

1− γ =
√

1− γ×
√

1− γ

= P
(

F(1+√1−γ)/2(2m−2,2)<W2 < F(1−√1−γ)/2(2m−2,2)
)

×P
(

χ
2
(1+
√

1−γ)/2(2m)<W1 < χ
2
(1−
√

1−γ)/2(2m)
)

= P
(

F(1+√1−γ)/2(2m−2,2)<W2 < F(1−√1−γ)/2(2m−2,2),

χ
2
(1+
√

1−γ)/2(2m)<W1 < χ
2
(1−
√

1−γ)/2(2m)
)

= P

(
βL < β < βU , −

χ2
(1+
√

1−γ)/2
(2m)

κi
< α <−

χ2
(1−
√

1−γ)/2
(2m)

κi

)
,

where, κi = 2
m
∑

i=1
(Ri +1) log(1−Xβ

i:m:n). This completes the proof. �

3. THE ECI AND JCR UNDER THE UPPER RECORD VALUES

In this section based on the upper record values, the exact confidence interval for
β and the JCR for (α,β) are introduced. Suppose that XU(1) < XU(2) < ... < XU(m) is
the first m upper record values from the KU distribution. Similarly to the previous
section, let

Yi =− log(1−Xβ

U(i))
α

; i = 1, ...,m.

It can be seen that Y1 < ... < Ym are the first m upper record values from an expo-
nential distribution with mean 1. We know that the following generalized spacings
are independent and identically distributed as a standard exponential distribution [2].

Y ∗1 = Y1 =− log(1−Xβ

U(1))
α

Y ∗2 = Y2−Y1 = log(1−Xβ

U(2))
α

− log(1−Xβ

U(1))
α
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...

Y ∗m = Ym−Ym−1 = log(1−Xβ

U(m))
α

− log(1−Xβ

U(m−1))
α

Hence, W1 = 2Y ∗1 = 2Y1 and W2 = 2
m
∑

i=2
Y ∗i = 2(Ym−Y1), have the chi-squared distri-

bution with 2m and 2m−2 degrees of freedom respectively. In order to construct the
ECI of β and JCR for (α,β), we define

ϖ =
W2

(m−1)W1
=

Ym−Y1

(m−1)Y1
,

and
ξ =W1 +W2 = 2Ym.

It is clear that ϖ ∼ χ2(2m−2)
χ2(2) ∼ F(2m− 2,2) and ξ ∼ χ2(2m) and also they are inde-

pendent.

Theorem 3. Let XU(i); i = 1,2, ...,m are first ith upper record values from a se-
quence of iid random variables following the KU distribution with probability density
function in (1.1). We consider φ(XU(1),XU(2), ...,XU(m), t) as a solution of β for the
equation

log(1−Xβ

U(m))− log(1−Xβ

U(1))

(m−1) log(1−Xβ

U(1))
= t, (3.1)

Therefore, the 100(1− γ)% ECI for β is:[
φ
(
XU(1),XU(2), ...,XU(m),F1−γ/2(2m−2,2)

)
,

φ
(
XU(1),XU(2), ...,XU(m),Fγ/2(2m−2,2)

)]
Proof of Theorem 3. We know that the

ϖ =
1

(m−1)

 log(1−Xβ

U(m))

log(1−Xβ

U(1))
−1

 ,

has a F distribution with 2m− 2 and 2m degrees of freedom. Also, from Lemma 1,
ϖ = t has a unique solution. So, analogous to Theorem 1, the proof follows. �

Theorem 4. Suppose we observe first m upper record values, XU(1),XU(2) , ...,
XU(m) from the KU distribution, a 100(1− γ)% JCR for (α,β) can be obtained by
considering the following inequalities:

φ(XU(1),XU(2), ...,XU(m),F(1+√1−γ)/2(2m−2,2))< β

< φ(XU(1),XU(2), ...,XU(m),F(1−√1−γ)/2(2m−2,2))

−
χ2

(1+
√

1−γ)/2
(2m)

2log(1−Xβ

U(1))
< α <−

χ2
(1−
√

1−γ)/2
(2m)

2log(1−Xβ

U(1))
. (3.2)
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Proof of Theorem 4. Using the ϖ and ξ and further similar to the Theorem 2, we
can conclude that

P
[

φ(XU(1),XU(2), ...,XU(m),F(1+√1−γ)/2(2m−2,2))< β

< φ(XU(1),XU(2), ...,XU(m),F(1−√1−γ)/2(2m−2,2)),

−
χ2

(1+
√

1−γ)/2
(2m)

2log(1−Xβ

U(m))
< α <−

χ2
(1−
√

1−γ)/2
(2m)

2log(1−Xβ

U(m))

]
= 1− γ.

�

4. SIMULATIONS

The goal of this simulation study is to examine the performance of the all pro-
posed intervals or regions in terms of coverage probability with nominal level 0.95.
The coverage probability (CP) is the probability that the interval or region contains
the true parameters. All the computations were done using the R programming lan-
guage. We reported results from two simulation studies that we carried out. First, we
generated a progressively censored sample from the KU distribution with arbitrarily
true values α = 2,β = 1 and different combination of n and m. In our study we have
used three different censoring schemes (C.S.), namely:
Scheme I: R1 = n−m,Ri = 0; i 6= 1.
Scheme II: Rm = n−m,Ri = 0; i 6= m.
Scheme III: R1 = R4 = (n−m)/2,Ri = 0; i 6= 1,4.

We computed the CPs for the ECI and JCR based on 10000 progressively censored
samples generated from the KU(2,1) distribution of size m. The results are presented
in Table 1.

It is observed that from Table 1, the CPs of the ECI for and JCR for (α,β) are all
close to the desired level of 0.95. In the second simulation study, we obtained the
CPs for the intervals and regions based on the upper record values. We simulated
the upper record values XU(i); i = 1,2, ...,m from the KU distribution with different
values of m. We considered two cases for parameter values as:

Case 1: α = 2,β = 1 and Case 2: α = 2,β = 2.

The CPs of ECI and JCR for Case 1 (ECI1 and ECI1) and Case 2 (ECI2 and ECI2)
are summarized in Table 2.
From Table 2, we observe that the CPs of the exact confidence interval and region are
close to the desired level of 0.95 for different parameters and different values of m.
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TABLE 1. The coverage probability for ECI and JCR under differ-
ent censoring schemes.

n m C.S. ECI JCR

20 16 Scheme I 0.9465 0.9414
16 Scheme II 0.9488 0.9515
16 Scheme III 0.9489 0.9509

30 20 Scheme I 0.9537 0.9522
20 Scheme II 0.9531 0.9531
20 Scheme III 0.9542 0.9493

50 30 Scheme I 0.9489 0.9541
30 Scheme II 0.9482 0.9522
30 Scheme III 0.9542 0.9519

TABLE 2. The coverage probability for ECIs and JCRs under dif-
ferent upper record values.

m ECI1 JCR1 ECI2 JCR2

5 0.9543 0.9495 0.9475 0.9544
6 0.9475 0.9525 0.9486 0.9489
7 0.9536 0.9530 0.9532 0.9527
8 0.9518 0.9489 0.9529 0.9493
9 0.9486 0.9493 0.9482 0.9530
10 0.9538 0.9545 0.9485 0.9548
11 0.9527 0.9528 0.9537 0.9494
12 0.9514 0.9496 0.9529 0.9522

5. REAL DATA ANALYSIS

In this section, we first examine the suitability of the KU distribution to the two
real data sets and then obtain the ECI for β and JCR for (α,β) under PII censored
sample and record values.



328 HANIEH PANAHI

Example 1. Brittle materials have many useful properties like stiffness, high
strength retention at elevated temperatures, corrosion resistance associated with chem-
ical inertness. Also, strength properties of brittle material are usually scattered; there-
fore, a statistical analysis is needed for the understanding of the mechanical charac-
terization of this material. So, in this example, we consider the data of the strength
property of extremely brittle solid ([3]). This dataset is reported to be recorded from
the brittle glass. We have divided each data point by 100 and listed in Table 3.

TABLE 3. The strength data of the glass ceramic.

0.477, 0.502, 0.524, 0.525, 0.529, 0.538, 0.539, 0.546, 0.547,
0.549, 0.555, 0.564,0.575, 0.590, 0.600, 0.611, 0.614, 0.624, 0.627,

0.632, 0.635, 0.642, 0.654, 0.654, 0.656, 0.663, 0.666, 0.666,
0.668, 0.672, 0.675, 0.676, 0.680, 0.684, 0.696, 0.704, 0.707,

0.726, 0.744.

FIGURE 2. The P-P plot for the data of the strength property of
brittle solid.

First we want to check whether the KU distribution fits the data or not and that
we have applied only the complete data. The Kolmogorov-Smirnov (KS) distance
between the empirical and the fitted distribution function and the associated p-value
(in brackets) is 0.1125 (0.7065). It clearly indicates that the KU provides a good fit
to this data. We also present the P-P plot for the data in Figure 2. Figure 2 shows that
the data do not deviate dramatically from the line. Therefore, the KU distribution
provides a reasonable fit. Moreover, the strength properties of materials are com-
monly characterized by Weibull, log-normal and gamma strength distribution func-
tion. So, for comparison purposes, we present fitting of three other proposed distribu-
tions. The maximum likelihood estimates, Akaike’s information criterion (AIC) and
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the associated second-order information criterion (AICc), Bayesian information cri-
terion (BIC) and Kolmogorov-Smirnov (KS) statistic are presented in Table 4. From

TABLE 4. Estimated parameters, AICs, AICcs, BICs and K-S dis-
tances for different models.

Models MLE AIC AICc BIC KS

Kumaraswamy α = 104.459 -96.81415 -96.48082 -93.48703 0.112569
β = 10.7564

Weibull shape = 10.8193 -96.79048 -96.45715 -93.46336 0.113163
scale = 0.64867

Log-normal meanlog = 1.000 -94.33432 -94.00099 -91.00719 0.144718
sdlog = 0.000061

Gamma shape = 81.8871 -94.88559 -94.55226 -91.55847 0.141601
scale = 0.00756

Table 4, the KU distribution gives a better fit than other proposed distribution for this
dataset. To use this data set under PII censoring schemes, we have created the PII
censoring schemes as:
Censoring Scheme: n = 39,m = 17,R1 = R2 = ...= R11 = 2,Ri = 0; i = 1,2, ...,11.
For computing the ECI for β under complete (xcomplete) and PII censored (xPII) sample,
we need the following percentiles;

F0.975(2(39)−2,2) = 0.25814, F0.025(2(39)−2,2) = 39.4847,

F0.975(2(17)−2,2) = 0.24103, F0.025(2(17)−2,2) = 39.4667.
Based on the above percentiles, the lower and upper bound for the 95% ECI of β

under xcomplete and xPII can be obtained as:

βL = ϕ(xcomplete,0.25814) = 7.96316

βU = ϕ(xcomplete,39.4847) = 21.6431
and

βL = ϕ(xPII,R1 = R2 = ...= R11 = 2,0.24103) = 5.8566
βU = ϕ(xPII,R1 = R2 = ...= R11 = 2,39.4667) = 20.1307.

respectively. Therefore under xcomplete and xPII the 95% ECI of β are:

7.96316 < β < 21.6431,

and
5.8566 < β < 20.1307.
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respectively. Also, to obtain the 95% JCR for (α,β), we present the following per-
centiles:

F0.9873(2(39)−2,2) = 0.2161, F0.0127(2(39)−2,2) = 78.2259,

F0.9873(2(17)−2,2) = 0.1992, F0.0127(2(17)−2,2) = 78.2079,

χ
2
0.0127(78) = 108.5374, χ

2
0.9873(78) = 52.7792,

χ
2
0.0127(34) = 55.0243, χ

2
0.9873(34) = 18.2764.

So, for xcomplete and xPII , we have

βL = ϕ(xcomplete,0.2161) = 7.4648 & βU = ϕ(xcomplete,78.2259) = 23.4040,

and
βL = ϕ(xPII,R1 = R2 = ...= R11 = 2, 0.1992) = 5.3276

& βU = ϕ(xPII,R1 = R2 = ...= R11 = 2, 78.2079) = 21.912.
respectively. So, the 95% JCR for (α,β) under xcomplete and xPII can be written as:

7.4648 < β < 23.4040
− 52.7792

2
39
∑

i=1
log(1−Xβ

i:39)
< α <− 108.5374

2
39
∑

i=1
log(1−Xβ

i:39)
,

and 
5.3276 < β < 21.912

− 18.2764

2
17
∑

i=1
(Ri+1) log(1−Xβ

i:17:39)
< α <− 55.0243

2
17
∑

i=1
(Ri+1) log(1−Xβ

i:17:39)
,

respectively. Also, the confidence region for (α,β) under the complete and PII cen-

FIGURE 3. Joint confidence regions for (α,β) based on complete
data in Example 1.

sored samples are displayed in Figures 3 and 4 respectively. It is easy see that the
region is large when β is large.
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FIGURE 4. Joint confidence regions for (α,β) based on censored
data in Example 1.

Example 2. The wind energy is an alternative clean energy source compared with
the fossil fuels that pollute the lower layer of the atmosphere. As the wind speed is
random phenomenon, the statistical distribution is required for the wind speed. For
this reason, we consider the daily average wind speeds from 2001-2006 for Manjil
city (http://www.chaharmahalmet.ir/stat/archive/iran/gil/MANJIL/36.asp). The data
after dividing by 100 are given in Table 5.

TABLE 5. The data of the daily average wind speeds.

0.063, 0.081, 0.120, 0.125, 0.169, 0.227, 0.221, 0.207, 0.172, 0.119, 0.065,
0.067, 0.136, 0.064, 0.074, 0.096, 0.139, 0.169, 0.211, 0.211, 0.234, 0.148,
0.106, 0.052, 0.059, 0.130, 0.052, 0.059, 0.117, 0.123, 0.130, 0.214, 0.219,
0.166, 0.163, 0.085, 0.061, 0.040, 0.120, 0.042, 0.060, 0.113, 0.10, 0.111,
0.175, 0.192, 0.178, 0.152, 0.095, 0.043, 0.048, 0.110, 0.032 0.049 0.084,
0.110, 0.101, 0.194, 0.197, 0.185, 0.164, 0.100, 0.048, 0.044, 0.109, 0.046,

0.042, 0.088, 0.090, 0.127, 0.179, 0.187, 0.125, 0.143, 0.082, 0.055, 0.039, 0.100.

Here, we restricted ourselves to fitting the KU distribution to this dataset and de-
termining the adequacy of KU distribution using the Kolmogorov-Smirnov statistic
between the fitted and the empirical distributions. This statistic and the associated p-
value are 0.0899 and 0.5528. Therefore, based on the p-value we can say that the KU
distribution fits to this data. Now, we extract a sample of upper record values from
this data set as: 0.063, 0.081, 0.120, 0.125, 0.169, 0.227 and 0.234. To demonstrate
interval methods, we consider the following percentiles:

F0.025(12,2) = 39.4146,F0.975(12,2) = 0.1962,F0.9873(12,2) = 0.1557,

F0.0127(12,2) = 78.1558,χ2
0.0127(14) = 28.3704,χ2

0.9873(14) = 4.889.
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Based on upper record values, we have:

φ
(
XU(1),XU(2), ...,XU(7),0.1962

)
= 0.4569

and
φ
(
XU(1),XU(2), ...,XU(7),39.4146

)
= 4.1678.

So by using Theorem 3, the 95% ECI of β is (0.4569, 4.1678). Also using Theorem
4,

φ
(
XU(1),XU(2), ...,XU(7),0.1557

)
= 0.35426

and
φ
(
XU(1),XU(2), ...,XU(7),78.1558

)
= 4.68839.

Therefore, the 95% JCR for (α,β) is:{
0.35426 < β < 4.68839

− 4.889
2log(1−Xβ

U(m))
< α <− 28.3704

2log(1−Xβ

U(m))
.

Figure 5 shows the 95% confidence region for (α,β). It is easy to see that the region
is large when β is large.

FIGURE 5. Joint confidence regions for (α,β) based on record val-
ues in Example 2.

6. CONCLUSION

The subject of progressively censoring and the record values have been received
considerable attention in the past few years. The KU distribution and its new family
can be applied in different sciences because of various forms of its hazard function.
We computed the ECI of β and the JCR for (α,β) under the PII censored sample and
upper record values using different pivotal quantities. The simulation study shows
that the proposed intervals work well and the CPs of the intervals and regions are
close to the desired level of 0.95. Finally, two real data sets contain the strength
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of glass ceramic and the daily average wind speeds are analyzed to illustrate our
methods.
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