
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 21 (2020), No. 1, pp. 3–18 DOI: 10.18514/MMN.2020.2644

A NOTE ON SKEW LIE PRODUCT OF PRIME RING WITH
INVOLUTION

ADNAN ABBASI, MUZIBUR RAHMAN MOZUMDER, AND NADEEM AHMAD DAR

Received 05 June, 2018

Abstract. Let R be a ring with involution. The skew Lie product of a,b∈R is defined byO[a,b] =
ab−ba∗. In the present paper we study prime ring with involution satisfying identities involving
skew Lie product and left centralizers.
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1. INTRODUCTION

Through out this paper R will be a prime ring with involution ∗, Qmr and C denotes
the maximal right ring of quotient and the extended centroid of R, H(R) will be the
set of hermitian elements and S(R) will be the set of skew hermitian elements of R.
If char(R) 6= 2, involution ∗ is said to be of the first kind if Z(R)⊂H(R), otherwise it
is said to be of second kind. In the second case S(R)∩Z(R) 6= (0). We refer reader to
[6, 13] for justification and amplification for the above mentioned notations and key
definitions.

Following [22], an additive mapping T : R→ R is said to be a left (resp. right)
centralizer (multiplier) of R if T (xy) = T (x)y (resp. T (xy) = xT (y)) for all x,y ∈ R.
If T is both left as well as the right centralizer of R, it is said to be the centralizer of
R. Considerable work has been done on left (resp. right) centralizers (multipliers)
in prime and semiprime rings during the last few decades (see for example [2, 5,
12, 17, 21, 22]) where further references can be found. The relationship between
the commutativity of the ring R and certain specific types of maps on R has been
extensively studied over the last few decades. The first result in this direction is
due to Divinsky [11], who proved that a simple artinian ring is commutative if it
has a commuting non-trivial automorphism. Further refinements and extension has
been done by a number of authors in various directions (viz., [1, 3, 4, 7–10, 14, 18]).
Recently, Ali and Dar [2] proved that if a prime ring with involution of char(R) 6= 2
admits a left centralizer T : R→ R satisfying any one of the following conditions: (i)
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T ([x,x∗]) = 0 (ii) T (xox∗) = 0 (iii) T ([x,x∗])± [x,x∗] = 0 (iv) T (xox∗)± (xox∗) = 0
for all x ∈ R, then R is commutative.

Let R be a ring with an involution ∗. For a,b ∈ R, denote by O[a,b] = ab−ba∗ the
skew Lie product. This kind of product is found playing a more and more important
role in some research topics such as representing quadratic functionals with sesqui-
linear functionals, and its study has attracted many authors attention (see [19,20] and
the references therein). Motivated by the theory of rings (and algebras) equipped
with a Lie product or a Jordan product, Molnár [15] initiated the systematic study
of this skew Lie product, and studied the relation between subspaces and ideals of
B(H), the algebra of all bounded linear operators acting on a Hilbert space H. Here,
an additive map f on R is skew centralizing if O[a, f (a)] ∈ Z(R) holds for all a ∈ R.
The purpose here is to study the skew centralizing left centralizer on prime ring with
involution. Moreover some other results involving skew Lie product with respect to
left centralizers in prime rings with involution have also been studied.

We shall restrict our attention on left centralizers, since all results presented in this
article are also true for right centralizers because of left-right symmetry.

2. RESULTS

We begin with the following lemmas, which are essential to prove our main results.

Lemma 1 ([16]). Let R be a prime ring with involution of the second kind. Then
[x,x∗] ∈ Z(R) for all x ∈ R if and only if R is commutative.

Lemma 2 ([16]). Let R be a prime ring with involution of the second kind. Then
x◦ x∗ ∈ Z(R) for all x ∈ R if and only if R is commutative.

Lemma 3 ([13]). Suppose that the elements ai,bi in the central closure of a prime
ring R satisfy ∑aixbi = 0 for all x∈R. If bi 6= 0 for some i, then a′is are C-independent.

Lemma 4. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If O[x,x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have O[x,x∗] ∈ Z(R) for all x ∈ R. On linearizing, we get

O[x,y∗]+O[y,x∗] ∈ Z(R) for all x,y ∈ R. (2.1)

Replacing y by ky, where k ∈ S(R)∩Z(R) in (2.1) and using (2.1), we obtain 2yx∗k ∈
Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R). Replacing x by x∗ and y by h ∈ H(R)∩
Z(R), we get 2xhk ∈ Z(R) for all x ∈ R, h ∈ H(R)∩Z(R) and k ∈ S(R)∩Z(R). Since
char(R) 6= 2 and S(R)∩Z(R) 6= (0), this implies that x ∈ Z(R) for all x ∈ R. That is,
R is commutative. �

Lemma 5. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a nonzero left centralizer T : R→ R such that T (x) ◦ x∗ ∈
Z(R) for all x ∈ R, then R is commutative.
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Proof. By the given hypothesis we have

T (x)◦ x∗ ∈ Z(R) for all x ∈ R. (2.2)

Linearizing (2.2), we get

T (x)◦ y∗+T (y)◦ x∗ ∈ Z(R) for all x,y ∈ R. (2.3)

Replacing y by ky in (2.3) and use (2.3), we get

2(T (y)◦ x∗)k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R). (2.4)

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), this implies that T (y) ◦ x∗ ∈ Z(R) for all
x,y∈R. Replacing x by h, where h∈H(R)∩Z(R), we get 2T (y)h∈ Z(R) for all y∈R
and h ∈ H(R)∩Z(R). Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get T (y) ∈ R.
This can be further written as [T (y),r] = 0 for all y,r ∈ R. Replacing y by yw and
using the last relation, since T 6= 0, we get R is commutative. �

Theorem 1. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a non zero left centralizer T : R → R such that
O[x,T (x∗)] ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. By the given hypothesis

O[x,T (x∗)] ∈ Z(R) for all x ∈ R. (2.5)

Linearizing (2.5), we get

O[x,T (y∗)]+O[y,T (x∗)] ∈ Z(R) for all x,y ∈ R. (2.6)

That is,

xT (y∗)−T (y∗)x∗+ yT (x∗)−T (x∗)y∗ ∈ Z(R) for all x,y ∈ R.

This further implies that

[xT (y∗),r]− [T (y∗)x∗,r]+ [yT (x∗),r]− [T (x∗)y∗,r] = 0 for all x,y,r ∈ R.

Thus

x[T (y∗),r]+ [x,r]T (y∗)−T (y∗)[x∗,r]− [T (y∗),r]x∗+ y[T (x∗),r]+ [y,r]T (x∗)

−T (x∗)[y∗,r]− [T (x∗),r]y∗ = 0 for all x,y,r ∈ R. (2.7)
Replacing y by ky in (2.7), where k ∈ S(R)∩Z(R) and using (2.7), we get

2(y[T (x∗),r]+ [y,r]T (x∗))k = 0 for all x,y,r ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), this implies that

y[T (x∗),r]+ [y,r]T (x∗) = 0 for all x,y,r ∈ R.

Taking y = z, where z ∈ Z(R), we get [T (x∗),r]z = 0. Then by the primeness of R and
the fact that S(R)∩Z(R) 6= (0), we have [T (x∗),r] = 0 for all x,r ∈ R. Taking x = x∗,
we obtain

[T (x),r] = 0 for all x,r ∈ R. (2.8)
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Replacing x by xy in (2.8), where y ∈ R and using (2.8), we get T (x)[y,r] = 0 for all
x,y,r∈R. Replacing x by xw, where w∈R. We get T (x)w[y,r] = 0 for all x,y,w,r∈R.
Thus by the primeness of R, we have either T (x) = 0 for all x ∈ R or [y,r] = 0 for all
y,r ∈ R. Since T 6= 0, we get R is commutative. �

Theorem 2. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a non zero left centralizer T : R → R such that
T (O[x,x∗]) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have
T (O[x,x∗]) ∈ Z(R) for all x ∈ R. (2.9)

Linearizing (2.9), we get

T (O[x,y∗])+T (O[y,x∗]) ∈ Z(R) for all x,y ∈ R. (2.10)

That is,
T (xy∗− y∗x∗)+T (yx∗− x∗y∗) ∈ Z(R) for all x,y ∈ R.

This can be further written as

T (x)[y∗,r]+ [T (x),r]y∗−T (y∗)[x∗,r]− [T (y∗),r]x∗+T (y)[x∗,r]

+ [T (y),r]x∗−T (x∗)[y∗,r]− [T (x∗),r]y∗ = 0 for all x,y,r ∈ R. (2.11)
Replacing y by ky in (2.11) where k ∈ S(R)∩Z(R) and using (2.11), we get

2(T (y)[x∗,r]+ [T (y),r]x∗)k = 0 for all x,y,r ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we arrive at

T (y)[x∗,r]+ [T (y),r]x∗ = 0 for all x,y,r ∈ R.

Taking x = h, where h ∈ H(R)∩ Z(R), we get [T (y),r] = 0 for all y,r ∈ R. Since
S(R)∩ Z(R) 6= (0), primeness of R implies that [T (y),r] = 0 for all y,r ∈ R which
is same as (2.8). Thus proceeding as we did in the Theorem 1, we get the required
result. �

Theorem 3. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a left centralizer T : R→ R such thatO[x,T (x∗)]±O[x,x∗]∈
Z(R) for all x ∈ R, then either T is centralizer or R is commutative.

Proof. We have

O[x,T (x∗)]±O[x,x∗] ∈ Z(R) for all x ∈ R. (2.12)

If T = 0, then by Lemma 4, we get R is commutative. Now consider T 6= 0. On
linearizing (2.12), we get

O[x,T (y∗)]+O[y,T (x∗)]±O[x,y∗]±O[y,x∗] ∈ Z(R) for all x,y ∈ R. (2.13)

Replacing y by ky in (2.13), where k ∈ S(R)∩Z(R), we have

−∗ [x,T (y∗)]k+ yT (x∗)k+T (x∗)y∗k∓∗[x,y∗]k± yx∗k± x∗y∗k ∈ Z(R)
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for all x,y ∈ R and k ∈ S(R) ∩ Z(R). Making use of (2.13), we get
2(yT (x∗)± yx∗)k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩ Z(R). Since char(R) 6= 2
and S(R)∩Z(R) 6= (0), we obtain yT (x∗)± yx∗ ∈ Z(R) for all x,y ∈ R. This can be
further written as

[yT (x∗),r]± [yx∗,r] = 0 for all x,y,r ∈ R.

Taking y = z and x = x∗ and using primeness of R and the fact that
S(R)∩Z(R) 6= (0), we obtain

[T (x),r]± [x,r] = 0 for all x,r ∈ R.

Taking r = x, we get
[T (x),x] = 0 for all x ∈ R. (2.14)

Linearizing (2.14), we have

[T (x),y]+ [T (y),x] = 0 for all x,y ∈ R. (2.15)

Replacing x by xw in (2.15), where w ∈ R and using (2.15), we get

T (x)[w,y]+ x[T (y),w] = 0 for all x,y,w ∈ R. (2.16)

Replacing y by ym in (2.16), where m ∈ R and using (2.16), we obtain

(T (x)y− xT (y))[w,m] = 0 for all x,y,w,m ∈ R.

Replacing m by mu where u ∈ R and using the previous expression, we arrive at

(T (x)y− xT (y))m[w,u] = 0 for all x,y,w,m,u ∈ R. (2.17)

Thus by the primeness of R, we have either T is a centralizer or R is commutative. �

Theorem 4. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a left centralizer T : R→ R such that O[x,T (x∗)]± x◦ x∗ ∈
Z(R) for all x ∈ R, then either T is centralizer or R is commutative.

Proof. We have

O[x,T (x∗)]± x◦ x∗ ∈ Z(R) for all x ∈ R. (2.18)

If T = 0, then by Lemma 2, we have R is commutative. Now consider T 6= 0. On
linearizing (2.18), we get

O[x,T (y∗)]+O[y,T (x∗)]± x◦ y∗± y◦ x∗ ∈ Z(R) for all x,y ∈ R. (2.19)

Replacing y by ky in (2.19) where k ∈ S(R)∩Z(R), we get

−O[x,T (y∗)]k+ yT (x∗)k+T (x∗)y∗k∓ (x◦ y∗)k± (y◦ x∗)k ∈ Z(R)

for all x,y ∈ R and k ∈ S(R)∩Z(R). Making use of (2.19), we obtain

2(yT (x∗)± y◦ x∗)k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

yT (x∗)± y◦ x∗ ∈ Z(R) for all x,y ∈ R.



8 ADNAN ABBASI, MUZIBUR RAHMAN MOZUMDER, AND NADEEM AHMAD DAR

Taking x = x∗ and y = z, where z ∈ S(R)∩Z(R), we obtain

(T (x)±2x)z ∈ Z(R) for all x ∈ R and z ∈ Z(R).

Using the primeness of R, we get T (x)±2x ∈ Z(R) for all x ∈ R. This can be further
written as [T (x),r]± [2x,r] = 0 for all x,r ∈ R. Taking r = x, we get [T (x),x] ∈ R for
all x ∈ R, which is same as equation (2.14). Thus proceeding on similar lines as in
the previous theorem, we get either T is centralizer or R is commutative. �

Theorem 5. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a left centralizer T : R→ R such that T (x)◦ x∗±O[x,x∗] ∈
Z(R), then either T is centralizer or R is commutative.

Proof. We have

T (x)◦ x∗±O[x,x∗] ∈ Z(R) f or all x ∈ R. (2.20)

If T = 0 then by Lemma 4, we get R is commutative. Now consider T 6= 0, linearizing
(2.20), we get

T (x)◦ y∗+T (y)◦ x∗±O[x,y∗]±O[y,x∗] ∈ Z(R) for all x,y ∈ R. (2.21)

Replacing y by yk in (2.21), where k ∈ S(R)∩Z(R), we get

(−T (x)◦ y∗)k+(T (y)◦ x∗)k∓O[x,y∗]k± yx∗k± x∗y∗k ∈ Z(R)

for all x,y ∈ R. Using (2.21), we have

2(T (y)◦ x∗± yx∗)k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

T (y)◦ x∗± yx∗ ∈ Z(R) for all x,y ∈ R.

Taking x = h, where h ∈ H(R)∩Z(R), we get

(2[T (y),r]± [y,r])h ∈ Z(R) for all y,r ∈ R and h ∈ H(R)∩Z(R).

Since S(R)∩Z(R) 6= (0), this implies that

2[T (y),r]± [y,r] ∈ Z(R) for all y,r ∈ R.

Thus 2[T (y),y] = 0 for all y∈ R. Since char(R) 6= 2, this implies that [T (y),y] = 0 for
all y ∈ R, which is same as equation (2.14) and the result follows as in the Theorem
3. �

Theorem 6. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a left centralizer T : R→ R such that O[x,T (x◦ x∗)] ∈ Z(R)
for all x ∈ R, then R is commutative.
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Proof. we have
O[x,T (x◦ x∗)] ∈ Z(R) for all x ∈ R. (2.22)

Replacing x by x+ y in (2.22), we get

xT (x◦ y∗)+ xT (y◦ x∗)+ xT (y◦ y∗)+ yT (x◦ x∗)+ yT (x◦ y∗) (2.23)

+yT (y◦ x∗)−T (x◦ y∗)x∗−T (y◦ x∗)x∗−T (y◦ y∗)x∗−T (x◦ x∗)y∗

−T (x◦ y∗)y∗−T (y◦ x∗)y∗ ∈ Z(R) for all x,y ∈ R.
Replace x by −x in (2.23) and adding with (2.23), we get

2(xT (x◦ y∗)+ xT (y◦ x∗)+ yT (x◦ x∗)−T (x◦ y∗)x∗

−T (y◦ x∗)x∗−T (x◦ x∗)y∗) ∈ Z(R) for all x,y ∈ R.
Since char(R) 6= 2, this implies that

xT (x◦ y∗)+ xT (y◦ x∗)+ yT (x◦ x∗)−T (x◦ y∗)x∗ (2.24)

−T (y◦ x∗)x∗−T (x◦ x∗)y∗ ∈ Z(R) for all x,y ∈ R.
Replacing y by yk in (2.24) and using (2.24), we get

2(xT (y◦ x∗)+ yT (x◦ x∗)−T (y◦ x∗)x∗)k ∈ Z(R)

for all x,y ∈ R and k ∈ S(R)∩Z(R). Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), this
implies that

xT (y◦ x∗)+ yT (x◦ x∗)−T (y◦ x∗)x∗ ∈ Z(R) for all x,y ∈ R. (2.25)

Replacing x by kx in (2.25), where k ∈ S(R)∩Z(R) and using (2.25), we get 2(T (y◦
x∗)x∗)k2 ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R). Since char(R) 6= 2 and S(R)∩
Z(R) 6= (0), we arrive at T (y ◦ x∗)x∗ ∈ Z(R) for all x,y ∈ R. Taking x = h, where
h ∈ H(R)∩Z(R), we get 2T (y)h2 ∈ Z(R) for all y ∈ R and h ∈ H(R)∩Z(R). Since
char(R) 6= 2 and S(R)∩Z(R) 6= (0), this implies that T (y) ∈ Z(R) for all y ∈ R. This
can be further written as [T (y),r] = 0 for all y,r ∈ R. This is same as equation (2.8).
Hence following the same steps as before, we get R is commutative. �

Theorem 7. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a left centralizer T : R→ R such that T (O[x,x∗])±O[x,x∗]∈
Z(R) for all x ∈ R, then either T is centralizer or R is commutative.

Proof. We have

T (O[x,x∗])±O[x,x∗] ∈ Z(R) for all x ∈ R. (2.26)

If T = 0, then in view of Lemma 4, we get R is commutative. Now consider T 6= 0.
Linearizing (2.26), we get

T (O[x,y∗])+T (O[y,x∗])±O[x,y∗]±O[y,x∗] ∈ Z(R) for all x,y ∈ R. (2.27)

Replacing y by ky in (2.27), where k ∈ S(R)∩Z(R) and using (2.27), we get

2(T (y)x∗± yx∗)k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R). (2.28)
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Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

T (y)x∗± yx∗ ∈ Z(R) for all x,y ∈ R. (2.29)

Taking x = h, where h ∈ H(R)∩Z(R) and using the primeness of R and the fact that
S(R)∩Z(R) 6= (0), we get T (y)±y∈ Z(R) for all y∈ R. This can be further written as
[T (y),r]± [y,r] = 0 for all y,r ∈ R. Replacing r by y, we get [T (y),y] = 0 for all y∈ R.
Which is same as (2.14). Thus proceeding as before, we get the required result. �

Theorem 8. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits left centralizers T1,T2 : R→ R such that [T1(x),T2(x∗)]±
O[x,x∗] ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. we have

[T1(x),T2(x∗)]±O[x,x∗] ∈ Z(R) for all x ∈ R. (2.30)

If either T1 = 0 or T2 = 0, then in view of Lemma 4, we get R be a commutative. Now
consider T1 6= 0 and T2 6= 0, linearizing (2.30), we get

[T1(x),T2(y∗)]+ [T1(y),T2(x∗)]±O[x,y∗]±O[y,x∗] ∈ Z(R) for all x,y ∈ R. (2.31)

Replacing y by yk in (2.31), where k ∈ S(R)∩Z(R) and using (2.31), we get

2([T1(y),T2(x∗)]± yx∗)k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R). (2.32)

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

[T1(y),T2(x∗)]± yx∗ ∈ Z(R) for all x,y ∈ R.

This can be further written as

[[T1(y),T2(x∗)],r]± [yx∗,r] = 0 for all x,y,r ∈ R. (2.33)

Replacing x by xT1(y) in (2.33) and using (2.33), we get

([T1(y),T2(x)]± yx)[T1(y),r] = 0 for all x,y,r ∈ R. (2.34)

Replacing r by rm in (2.34) and using (2.34), we get

([T1(y),T2(x)]± yx)r[T1(y),m] = 0 for all x,y,r,m ∈ R. (2.35)

Thus by the primeness of R, we have either

[T1(y),T2(x)]± yx = 0 for all x,y ∈ R (2.36)

or
[T1(y),m] = 0 for all y,m ∈ R. (2.37)

Replace x by xr in (2.36) and using (2.36), we get T2(x)[T1(y),r] = 0 for all x,y,r ∈
R. Again replacing x by xm, where m∈R, we get T2(x)m[T1(y),r] = 0 for all x,y,r,m∈
R. Hence by the primeness of R, we get either T2(x) = 0 for all x ∈ R or [T1(y),r] = 0
for all y,r ∈ R. Since T2 6= 0, we have [T1(y),r] = 0 for all y,r ∈ R. Replacing y by yu,
where u ∈ R, we obtain T1(y)[u,r] = 0 for all y,u,r ∈ R. Replacing y by yw, where
w ∈ R, we get T1(y)w[u,r] = 0 for all y,w,u,r ∈ R. Hence by primeness of R, we get
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either T1(y) = 0 for all y∈R or [u,r] = 0 for all u,r ∈R. Since T1 6= 0, we get [u,r] = 0
for all u,r ∈ R. That is, R is commutative. Similarly we can get R is commutative in
case [T1(y),m] = 0 for all y,m ∈ R. �

Theorem 9. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admit two left centralizers T1,T2 : R → R such that
(O[x,x∗])T1(x)±T2(x)(O[x,x∗]) ∈ Z(R) for all x ∈ R, then either R is commutative or
T1(x) =∓T2(x) for all x ∈ R.

Proof. We have

(O[x,x∗])T1(x)±T2(x)(O[x,x∗]) ∈ Z(R) for all x ∈ R. (2.38)

If T1 = 0 and T2 6= 0 then we have

±T2(x)(O[x,x∗]) ∈ Z(R) for all x ∈ R. (2.39)

This implies that
T2(x)(O[x,x∗]) ∈ Z(R) for all x ∈ R. (2.40)

Linearizing (2.40), we get

T2(x)(O[x,y∗])+T2(x)(O[y,x∗])+T2(x)(O[y,y∗])+T2(y)(O[x,x∗]) (2.41)

+T2(y)(O[x,y∗])+T2(y)(O[y,x∗]) ∈ Z(R) for all x,y ∈ R.
Replacing x by −x in (2.41) and using (2.41), we get

2(T2(x)(O[x,y∗]+T2(x)(O[y,x∗])+T2(y)(O[x,x∗])) ∈ Z(R) for all x,y ∈ R. (2.42)

Since char(R) 6= 2, this implies that

T2(x)(O[x,y∗])+T2(x)(O[y,x∗])+T2(y)(O[x,x∗]) ∈ Z(R) for all x,y ∈ R. (2.43)

Replacing y by yk in (2.43), where k ∈ S(R)∩Z(R) and using (2.43), we get

2(T2(x)yx∗+T2(y)(O[x,x∗])k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

T2(x)yx∗+T2(y)(O[x,x∗]) ∈ Z(R) for all x,y ∈ R. (2.44)

This can be further written as

T2(x)yx∗+T2(y)xx∗+T2(y)(x∗)2 ∈ Z(R) for all x,y ∈ R. (2.45)

Replacing x by kx in (2.45), where k ∈ S(R)∩Z(R) and using (2.45), we get

2T2(y)(x∗)2k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that T2(y)(x∗)2 ∈ Z(R)
for all x,y ∈ R. Taking x = h, where h ∈ H(R) ∩ Z(R), we have
T2(y)h2 ∈ Z(R) for all y ∈ R and h ∈ H(R)∩Z(R). Since S(R)∩Z(R) 6= (0), making
use of primeness of R, we get T2(y) ∈ Z(R) for all y ∈ R. This can be further written
as [T2(y),r] = 0 for all y,r ∈ R. Which is same as equation (2.8). Thus proceeding as
in Theorem 1, we have R is commutative.
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Now suppose T2 = 0 and T1 6= 0, we get (O[x,x∗])T1(x) ∈ Z(R) for all x ∈ R. Now
following the same steps as we follow after (2.40), we get R is commutative. At last
consider neither T1 6= 0 nor T2 6= 0. Linearizing (2.38), we get

(O[x,y∗])T1(x)+(O[y,x∗])T1(x)+(O[y,y∗])T1(x)+(O[x,x∗])T1(y) (2.46)

+(O[x,y∗])T1(y)+(O[y,x∗])T1(y)±T2(x)(O[x,y∗])±T2(x)(O[y,x∗])

±T2(x)(O[y,y∗])±T2(y)(O[x,x∗])±T2(y)(O[x,y∗])±T2(y)(O[y,x∗])

∈ Z(R) for all x,y ∈ R.

Replacing x by −x in (2.46) and using (2.46), we get

2((O[x,y∗])T1(x)+(O[y,x∗])T1(x)+(O[x,x∗])T1(y)±T2(x)(O[x,y∗])

±T2(x)(O[y,x∗])±T2(y)(O[x,x∗])) ∈ Z(R) for all x,y ∈ R.
Since char(R) 6= 2, this implies that

(O[x,y∗])T1(x)+(O[y,x∗])T1(x)+(O[x,x∗])T1(y)±T2(x)(O[x,y∗])

±T2(x)(O[y,x∗])±T2(y)(O[x,x∗]) ∈ Z(R) for all x,y ∈ R. (2.47)
Replacing x by kx in (2.47) and using (2.47), we get

2(xy∗T1(x)− (x∗)2T1(y)±T2(x)xy∗∓T2(y)(x∗)2)k2 ∈ Z(R)

for all x,y ∈ R and k ∈ S(R)∩Z(R). As char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

xy∗T1(x)− (x∗)2T1(y)±T2(x)xy∗∓T2(y)(x∗)2 ∈ Z(R) for all x,y ∈ R. (2.48)

Replacing y by ky in (2.48), where k ∈ S(R)∩Z(R), and using (2.48), we get

2(−(x∗)2T1(y)∓T2(y)(x∗)2)k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), this implies that

−(x∗)2T1(y)∓T2(y)(x∗)2 ∈ Z(R) for all x,y ∈ R.

Taking x = h, where h ∈ H(R)∩Z(R), we get

(−T1(y)±T2(y))h2 ∈ Z(R) for all y ∈ R and h ∈ H(R)∩Z(R).

Since S(R)∩Z(R) 6= (0), this implies that

−T1(y)±T2(y) ∈ Z(R) for all y ∈ R and h ∈ H(R)∩Z(R).

If we consider
−T1(y)+T2(y) ∈ Z(R) for all y ∈ R.

This implies
T1(y)−T2(y) ∈ Z(R) for all y ∈ R.

Hence
[T1(y),r]− [T2(y),r] = 0 for all y,r ∈ R. (2.49)

Replacing y by yu in (2.49) and using (2.49), we get

(T1(y)−T2(y))[u,r] = 0 for all y,u,r ∈ R. (2.50)
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Thus by the primeness of R, we have either T1(y) = T2(y) for all y ∈ R or R is com-
mutative. Similarly we get either T1(y) =−T2(y) for all y ∈ R or R is commutative in
the case −T1(y)−T2(y) ∈ Z(R) for all y ∈ R. �

Theorem 10. Let R ba a noncommutative prime ring with involution of the second
kind such that char(R) 6= 2. If R admits two non zero left centralizes T1,T2 : R→ R
such that T1(x◦ x∗)±O[x,T2(x∗)] ∈ Z(R) for all x ∈ R, then T1 = λT2, where λ ∈C.

Proof. We have

T1(x◦ x∗)±O[x,T2(x∗)] ∈ Z(R) for all x ∈ R. (2.51)

Linearizing (2.51), we get

T1(x◦ y∗)+T2(y◦ x∗)±O[x,T2(y∗)]±O[y,T2(x∗)] ∈ Z(R) for all x,y ∈ R. (2.52)

Replacing y by ky in (2.52), where k ∈ S(R)∩Z(R) and using (2.52), we get

2(T1(y◦ x∗)± yT2(x∗))k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), this implies that

T1(y◦ x∗)± yT2(x∗) ∈ Z(R) for all x,y ∈ R.

Taking x = x∗ and y = z, where z ∈ Z(R), we obtain

(2T1(x)±T2(x))z ∈ Z(R) for all x ∈ R and z ∈ Z(R).

Thus by the primeness and the fact that S(R)∩Z(R) 6= (0), we have

2T1(x)±T2(x) ∈ Z(R) for all x ∈ R.

This can be further written as

2[T1(x),r]± [T2(x),r] = 0 for all x,r ∈ R.

Replacing r by T2(x), we get

2[T1(x),T2(x)] = 0 for all x ∈ R.

Since char(R) 6= 2, this implies that

[T1(x),T2(x)] = 0 for all x ∈ R. (2.53)

Linearizing (2.53), we get

[T1(x),T2(y)]+ [T1(y),T2(x)] = 0 for all x,y ∈ R. (2.54)

Replacing x by xz in (2.54) and using (2.54), we get

T1(x)[z,T2(y)]+T2(x)[T1(y),z] = 0 for all x,y,z ∈ R. (2.55)

Again, replacing x by xw in (2.55) and using (2.55), we get

T1(x)w[z,T2(y)]+T2(x)w[T1(y),z] = 0 for all x,y,z,w ∈ R. (2.56)
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Thus in view of Lemma 3, we have [z,T2(y)] = 0 for all y,z ∈ R or T1(x) = λ(x)T2(x),
where λ(x) ∈C. But [z,T2(y)] 6= 0 for all z,y ∈ R since R is not commutative. Hence
we get T1(x) = λ(x)T2(x), where λ(x) ∈C. Using this in (2.56), we get

λ(x)T2(x)w[z,T2(y)]+T2(x)w[λ(y)T2(y),z] = 0 for all x,y,z,w ∈ R.

(λ(x)T2(x)−λ(y)T2(x))w[z,T2(y)] = 0 for all x,y,z,w ∈ R.

Using the primeness of R yields that either λ(x)T2(x) − λ(y)T2(x) = 0 or
[z,T2(y)] = 0. Again since R is not commutative we have λ(x)T2(x) = λ(y)T2(x)
and so T1 = λT2. This completes the proof. �

Theorem 11. Let R be a noncommutative prime ring with involution of the second
kind such that char(R) 6= 2. If R admits two non zero left centralizers T1,T2 : R→ R
such that T1(O[x,x∗])±O[x,T2(x∗)] ∈ Z(R), then T1 = λT2 where λ ∈C.

Proof. We have

T1(O[x,x∗])±O[x,T2(x∗)] ∈ Z(R) for all x ∈ R. (2.57)

Linearizing (2.57), we get

T1(O[x,y∗])+T1(O[y,x∗])±O[x,T2(y∗)]±O[y,T2(x∗)] ∈ Z(R) for all x,y ∈ R.
(2.58)

Replacing y by ky in (2.58), where k ∈ S(R)∩Z(R) and using (2.58), we get

2(T1(yx∗)± yT2(x∗))k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

T1(yx∗)± yT2(x∗) ∈ Z(R) for all x,y ∈ R.

Taking y = z, where z ∈ Z(R) and x = x∗, we obtain

(T1(x)±T2(x))z ∈ Z(R) for all x ∈ R and z ∈ Z(R).

Since S(R)∩Z(R) 6= (0), we get

T1(x)±T2(x) ∈ Z(R) for all x ∈ R.

This can be further written as [T1(x),r]± [T2(x),r] = 0 for all x,r ∈ R. Replacing r
by T2(x), we get [T1(x),T2(x)] = 0 for all x ∈ R. Which is same as equation (2.53),
proceeding as before, we get T1(x) = λT2(x) for all x ∈ R. �

Theorem 12. Let R be a noncommutative prime ring with involution of the second
kind such that char(R) 6= 2. If R admits two non zero left centralizers T1,T2 : R→ R
such that O[x,T1(x∗)]±O[x,T2(x∗)] ∈ Z(R) for all x ∈ R, then T1 = λT2.

Proof. We have

O[x,T1(x∗)]±O[x,T2(x∗)] ∈ Z(R) for all x ∈ R. (2.59)
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Linearizing (2.59), we get

O[x,T1(y∗)]+O[y,T1(x∗)]±O[x,T2(y∗)]±O[y,T2(x∗)] ∈ Z(R) for all x,y ∈ R.
(2.60)

Replacing y by ky in (2.60) and using (2.60), we get

2(yT1(x∗)± yT2(x∗))k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

yT1(x∗)± yT2(x∗) ∈ Z(R) for all x,y ∈ R.

Replacing y by z, where z∈ Z(R) and using primeness, S(R)∩Z(R) 6= (0) conditions,
we obtain T1(x∗)±T2(x∗) ∈ Z(R) for all x,r ∈ R. Taking x = x∗, we obtain T1(x)±
T2(x) ∈ Z(R) for all x ∈ R. This can be further written as [T1(x),r]± [T2(x),r] = 0 for
all x ∈ R. Replacing r by T2(x), we get [T1(x),T2(x)] = 0 for all x ∈ R, which is same
as equation (2.53) and hence, we get T1(x) = λT2(x) for all x ∈ R. �

Theorem 13. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits two left centralizers T1,T2 : R→ R such that T1(x) ◦ x∗±
O[x,T2(x∗)] ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have

T1(x)◦ x∗±O[x,T2(x∗)] ∈ Z(R) for all x ∈ R. (2.61)

If T1 = 0 and T2 6= 0, then R is commutative by Theorem 1. If T2 = 0 and T1 6= 0, then
by Lemma 5, we get R is commutative. Now consider T1 6= 0 and T2 6= 0, linearizing
(2.61), we get

T1(x)◦ y∗+T1(y)◦ x∗±O[x,T2(y∗)]±O[y,T2(x∗)] ∈ Z(R) for all x,y ∈ R. (2.62)

Replacing y by ky in (2.62), where k ∈ S(R)∩Z(R) and using (2.62), we get

2(T1(y)◦ x∗± yT2(x∗))k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

T1(y)◦ x∗± yT2(x∗) ∈ Z(R) for all x,y ∈ R.

Taking x = x∗, we obtain

T1(y)◦ x± yT2(x) ∈ Z(R) for all x,y ∈ R.

This can be further written as

T1(y)[x,r]+ [T1(y),r]x+ x[T1(y),r]+ [x,r]T1(y)± y[T2(x),r]± [y,r]T2(x) = 0 (2.63)

for all x,y,r ∈ R. Replacing x by xr and using of (2.63), we get

x[T1(y),r]r+[x,r]T1(y)r+ xr[T1(y),r]+ [x,r]rT1(y) = 0 for all x,y,r ∈ R. (2.64)

Replacing x by x+ z in (2.64) and combining it with (2.64), we obtain

z[T1(y),r]r+ zr[T1(y),r] = 0 for all y,r ∈ R and z ∈ Z(R).
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Since S(R)∩Z(R) 6= (0), then primeness of R gives us

[T1(y),r]r+ r[T1(y),r] = 0 for all y,r ∈ R. (2.65)

Substituting r+ z for r in (2.65) and using (2.65), we obtain

2[T1(y),r]z = 0 for all y,z ∈ R and z ∈ Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), primeness of R gives [T1(y),r] = 0 for all
y,r ∈ R. Since T1 6= 0, this implies that R is commutative. �

Theorem 14. Let R be a noncommutative prime ring with involution of the second
kind such that char(R) 6= 2. If R admits two left centralizers T1,T2 : R→ R such that
T1(O[x,x∗])±T2(O[x,x∗]) ∈ Z(R) for all x ∈ R, then T1 = λT2 where λ ∈C.

Proof. We have
T1(O[x,x∗])±T2(O[x,x∗]) ∈ Z(R) (2.66)

If either of T1 = 0 and T2 6= 0 or T2 = 0 and T1 6= 0, then by Theorem 2, we get R is
commutative. Now consider T1 6= 0 and T2 6= 0, linearizing (2.66), we get

T1(O[x,y∗])+T1(O[y,x∗])±T2(O[x,y∗])±T2(O[y,x∗]) ∈ Z(R) for all x,y ∈ R.
(2.67)

Replacing y by ky in (2.67) and using (2.67), we get

2(T1(y)x∗±T2(y)x∗)k ∈ Z(R) for all x,y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), we get

T1(y)x∗±T2(y)x∗ ∈ Z(R) for all x,y ∈ R. (2.68)

Taking x = h, where h ∈ H(R)∩ Z(R) and using primeness of R and the fact that
S(R)∩Z(R) 6= (0), we get T1(y)±T2(y) ∈ R for all y ∈ R. This can be further written
as [T1(y),r]±[T2(y),r] = 0 for all y,r∈R. Replacing r by T2(y), we get [T1(y),T2(y)]=
0 for all y ∈ R, which is same as equation (2.53). Hence following the same steps as
in Theorem 10, we get T1(x) = λT2(x) for all x ∈ R. �
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