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Abstract. In the present article, we introduce a new concept of contraction and prove a new
type of the extension of Tychonoff fixed point theorem. Then, as an application, we study the
problem of existence of solutions for the infinite systems of integral equations using the technique
of measures of noncompactness in conjunction with this extension in the Fréchet spaces.
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1. INTRODUCTION

The theory of infinite systems of integral or differential equations creates an im-
portant branch of nonlinear analysis. Up to now, several papers have been published
on this significant topic (see [9, 12,16, 17,19,21]) . It is connected naturally with
a large number of problems considered in mechanics, engineering, in the theory of
branching processes, the theory of neutral nets and so on (see [14, 15, 18,20,22,23]).
In this paper, we investigate the existence of solutions for the infinite systems of
integral equations of the forms

Xn(t) = fult,xi (1), ..., x4(2))

BA(1) ) (1.1)
+qn(t,x1(t),...,xn(t))/0 gn(t,5, (5;()) )ds, nEN,t R,
and
ya(t) = fu(t,y1(2),- ., n())
- _ (1.2)
+qn(t,y1(t)7---,yn(t))/o kn(t,5)ha(s, (v(s))5=1)ds, n€N;t €R,

by using the measures of noncompactness u introduced in [9] and a new type of
extension of Tychonoff fixed point theorem in the Fréchet space (BC(R.))® (denote
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the countable cartesian product of BC(R;) with itself). The results of this paper
improve and generalize those obtained in papers [2—8, 10, 11].

2. NOTATION AND AUXILIARY FACTS

Here, we recall some basic facts concerning measures of noncompactness. Denote

by R the set of real numbers and put R, = [0, +o0). The symbol X and ConvX will
denote the closure and closed convex hull of a subset X of E, respectively. Moreover,
let g indicate the family of all nonempty and relatively compact subsets of E.
A topological vector space (TVS) is a vector space X over the field R which is en-
dowed with a topology such that the maps (x,y) — x+y and (o, x) — ow are continu-
ous from X x X and R x X to X. A topological vector space is called locally convex
if there is a basis for the topology consisting of convex sets (that is, set A such that if
x,y€Athentx+ (1—t)ycAfor0 <t <1).

Definition 1 ([13]). A Fréchet space is a locally convex space which is complete
with respect to a translation-invariant metric.

Example 1. Let E; be a Banach space for all i € N, then HEi is a Fréchet space
ieN
with respect to the metric

1
d(x,y) = sup{5; min{1,d;(x;,y;)} : i € N},

where x = (x1,x2,...), y = V1,2, - EHE
ieN

Definition 2 ([9]). Let M be a class of subsets of a Fréchet space E, we say M is
admissible class if i N M # & and if X € M, then Conv(X),X € M.

Definition 3 ([9]). Let M be an admissible class of a Fréchet space E, we say that
u: M — R, is a measure of noncompactness on Fréchet space E if it satisfies the
following conditions:

(1°) The family kerp = {X € M : u(X) = 0} is nonempty and keru C Ng;
XCY=pulX)<ul);

(X) = u(X);

(ConvX) = u(X);

(AX 4+ (1—=A)Y) <Au(X)+ (1 =A)u(Y) for A € [0,1];

f {X, } is a sequence of closed sets from M such that X, C X, for n =
1,2,---, and if hm,u( w) =0, then Xo, = N7\ X, # 0.

(2°)
(3°)
(4°)
(5°)
(6°)

i
i
u
I

e}

Theorem 1 (Tychonoff fixed point theorem [1]). Let E be a Hausdorff locally
convex linear topological space, C be a convex subset of E and F : C — E be a
continuous mapping such that

F(C)CACC,
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with A compact. Then F has at least one fixed point.

Theorem 2 ([9]). Suppose u; be a measure of noncompactness on Banach spaces
E; for all i € N. If we define

A = {C C ] i+ suplau(m(C))} < o=},

i=1

where 1;(C) denotes the natural projection of HEi into E; and pu: M — R is
i=1
defined by
u(C) = sup{u;(m;(C)) : i € N},

then M is an admissible set and u is a measure of noncompactness on X = HE,-.
i=1

3. MAIN RESULT

In this section, we introduce a new concept of contraction and prove some new
extensions of Tychonoff fixed point theorem.

Theorem 3. Let Q be a nonempty, closed and convex subset of a Fréchet space E,
M is admissible class such that Q € M and u: M — R is a measure of noncom-
pactness on E. Let F,G : Q — Q be two continuous mappings such that

H(FX) +y(u(GY)) < @((X) +y(u(¥))). G.1)

and F(X),G(Y) € M for any nonempty subset X,Y € M where ¢,y : R, — R
are nondecreasing and right continuous functions such that ¢(0) = y(0) = 0 and
(1) <t for eacht > 0. Then F and G have at least one fixed point in the set .

Proof. By induction, we obtain sequences {2, } and {A,} such that

Qo=Ao=0Q,
Q, = Conv(FQ,_) n>1,
Ay = Conv(GA,—1) n>1.

It is obvious that ,, A, € M for all n € N. If there exists an integer N > 0 such that
u(Qn) = u(Ay) =0, then Qy and Ay are compact. Thus, Theorem 1 implies that F
and G have a fixed point. Now assume that u(Q,) # 0 or u(A,) # 0 for n > 0. Since
we have FQp=FQ C Q = Q,Q; = Conv(FQp) C Q = Qy, and by continuing this
process we obtain

Q20202

and
ANODAI DA D,



34 REZA ALLAHYARI, REZA ARAB, AND ALI SHOLE HAGHIGHI

so u(€,) and u(A,) is a positive decreasing sequence of real numbers. Thus, there
are r1,ry > 0 such that u(Q,) — ry and u(A,) — rp as n — co. On the other hand,
in view of (3.1), we obtain

limsup (@ 1) + W(e(Ans1) < limsup@(u(Q0) + (M) )

n—->oo n—-voo

This show that r +y(r2) < ¢(ri +y(r2)). Consequently ri +y(r;) =0, so rj =
r, = 0. Hence we deduce that u(Q,) — 0 and u(A,) — 0 as n — . Since the
sequences (L) and (A,) are nested, in view of axiom (6°) of Definition 3 we derive

that the sets Q. = ﬂ Q, and A, = ﬂ A, are nonempty, closed and convex subsets
n=1 n=1

of the set Q. Moreover, the sets ., and A., are invariant under the operators ' and G
respectively, and belongs to keru. Now, Tychonoff fixed point theorem implies that
F and G have fixed points in the set Q. O

Corollary 1. Let Q be a nonempty, closed and convex subset of a Fréchet space
E, M satisfies the hypotheses of Theorem 3 and Q € M. Let F,G : Q@ — Q be two
continuous mappings such that
H(FX) +y(u(GY)) < ku(X) +y(u(¥))],

and F(X),G(Y) € M for any nonempty subset X,Y € M where y: R, — R, is
nondecreasing and right continuous function such that y(0) = 0, u is an arbitrary
measure of noncompactness on M and k € [0,1). Then F and G have at least a fixed
point in the set Q.

Proof. Take @(t) = kt in Theorem 3. O

Definition 4. Let X be a Banach space. An operator F : X — X is affine if
F(ax+ (1 —a)y) =aF (x)+ (1 —a)F(y) forallx,y € X and all a € R.

Corollary 2. Let Q be a nonempty, closed and convex subset of a Fréchet space
E, M is admissible class such that Q € M and p: M — R is a measure of non-
compactness on E. Let F,G : Q — Q be two continuous operators such that

u(FX) < @(u(X)) (3.2)

and F(X) € M for any nonempty subset X € M where @ : R, — R satisfies the
hypotheses of Theorem 3. Moreover, G(F (X)) C F(X) for all X € Mg and F is affine
operator. Then F and G have at least one common fixed point in the set 2.

Proof. Take y(t) = 0 in Theorem 3. Thus, applying Theorem 3, F has a fixed
point. Now suppose that ' = {x € Q : Fx =x}, then by (3.2) and F(I') =T" we have

() = u(F(I))
< o(u(I))
<u(T).
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which is a contradiction. So I is relatively compact, and since F is a continuous and
affine operator so I" is nonempty, compact and convex subset of Q. Also, we have

G(D) = G(F (D))
C F(D)
=T.

Now, Tychonoff fixed point theorem implies that ' and G have a common fixed point
in the set I U

We introduce the following useful corollary which will be used in Section 4.

Corollary 3. Let Q; (i € N) be a nonempty, convex and closed subset of a Banach
space E;, y; an arbitrary measure of noncompactness on E; and sup{u;(Q;)} < oe.

Let F,,G; : HQi — Q; (i=1,2,...) be continuous operators such that
i=1

oo

(F(LTX) + w6 [T10) < @(suplua(X) +wa(1)}), G3)

i=1 i=1
for any subsets X; and Y; of Q; (i € N) where @,y : R, — R satisfies the hypotheses
of Theorem 3. Then there exist (x7)7_y, (V)71 € HQj such that for alli € N
‘ J=1

F((x¥)7-1) =,
(3.4)
{Gi((y}f)‘}"_l) =)

Proof. Assume that F , G: HQ" — HQ,- are defined as follows
i=1 i=1

F((x)721) = (F1((e) 7)), B () 520)s - Fi(() 7)),
and

G((3)71) = (G1((3) 721, Ga (7)) 1)+ Gl (V) ),

for all (x;)7,,(v;)7 € HQ,-. It is obvious that ' and G are continuous. It suffices

i=1
to show that the hypothesis (3.1) of Theorem 3 holds where u is defined by Theorem

2. Take arbitrary nonempty subset X and Y of HQi. Now, by (2°) and (3.3) we
i=1
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obtain

HF0) w6 < TR T 00) +W(u(fIGi(f[ﬂj(Y))))

= sup; (Fi ([ m;(X)))) +w (supai(Gi( HN,
i j=1

oo oo

< supa A ([T i) + wiu( Gl [ Tm, )}

Jj=1 J=1

< Slll.p(P<SI;P{.Uj(Xj) +W(ﬂj(Y1))})

< <P(Su_p/«lj(Xj) + W(Supuj(Yj)))
< QuX) +y(u(Y))).

Therefore, all the conditions of Theorem 3 are satisfied, hence F and G have fixed

points and there exist (x ) j=1 )7 i)i=1 € HQ such that

{ ()51 = F(5)720) = (R )T (8T ) F ()0,
(

Y5 = G(0)51) = (G 721), Ga ()5, GH((8) ),
and that (3.4) holds. O

4. APPLICATION

In this section we are going to show how the measure of noncompactness defined
in the previous section, can be applied to an infinite system of nonlinear integral
equations. Here, we will work in the classical Banach space BC(R ) consisting of
all real functions defined, bounded and continuous on R equipped with the standard
norm

]l = sup{|x(e)] -2 = 0}
Now, we present the definition of a special measure of noncompactness in BC(R )
which will be needed in the sequel.
To do this, let X be a fixed nonempty and bounded subset of BC(R ) and fix a positive
number 7. For x € X and € > 0, denote by ®’ (x,€) the modulus of the continuity of
function x on the interval [0, 7], i.e
o' (x,8) = sup{|x(t) —x(s)| : 1,5 € [0, T}, |t —s| < &}

Further, let us put

o’ (X,e) = sup{o’ (x,&) : x € X},
o} (X) = lima’ (X.¢)

e—0



AN EXTENSION OF TYCHONOFF FIXED POINT... 37

and
— T1; T
wo(X) = }1330‘”0 (X).
If t is a fixed number from R, let us denote X (¢) = {x(¢) : x € X}. Finally, consider
the function u defined on Mpc(r, ) by the formula
u(X) = o(Xp) + limsupdiamX (t),
t—yo0
where,
diamX (t) = sup{|x(t) —y(t)| : x,y € X }.

It is shown [10] that the function u is a measure of noncompactness in the space
BC(R,).
We will consider Equations (1.1) and (1.2) under the following assumptions:

(A1) fusqn Ry xR" — R (n € N) are continuous with

M= sup{max{\f,,(t,O,...,O)\,\qn(t,O,...,O)]} 1eR e N} < oo,

Moreover, there exists a nondecreasing, concave and upper semicontinuous
function @ with () < ¢ for all 7 > 0 such that

‘f'l(taxlv"‘a-xn) _fn(t7y17-"7yn)| < (P( max ‘xi_yi|)7
1<i<n
and

|9n (1,51, - Xn) = gu(t, 1, yn)| < @(max |x; —yil);

1<i<n

(B1) Bn: R4 — [0,0) is continuous function for all n € N;
(B2) gn: Ry xRy xR® — R (n € N) is continuous and there exists a positive
constant D such that

Bn(t)
D:= sup{‘/0 gn(t,s, (x;(s))7o1)ds| : t €Ry, x; € BC(Ry),1 <n < oo}

Moreover,

) Bu(t) - .
lim ‘/o gn(t,s, (x;(s))721) — gnlt,s, (vj(s)) 721 )ds| =0,

f—o0
uniformly respect to x;,y; € BC(R,.);
(C1) ky: Ry xRy — R is continuous function for all n € N;
(C2) hy: Ry xR® — R (n € N) is a continuous and there exists a continuous
function @, : R;, — R and a continuous and nondecreasing function b,, :
R, — R. such that
a2, () 72| < an(0)ba( sup ),

1<j<eo
forallz € Ry and (x;)7_, € R® with sup [x;| < eo. Also the function s —
’ 1<j<0o0
an(s)ky,(t,s) is integrable over R for any fixed7 € R} and n € N;
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(C3) There exists a positive constant Q such that

0:= sup{/ an(s)|kn(t,s)|ds :t € Ry,n € N} < oo,
0

and

S}

lim [ au(s)|kn(t,5)|ds = 0.

11— J0

(C4) The following equality holds:

T —oo

lim {sup{/:an(s)|kn(t,s)|ds:t€R+}} =0

foralln € N;
(D)) There exists a positive solution ry of the inequalities

(1+D)(o(r)+M) <r,
and

(14 Qbu(r)) (@(r)+M) <,

for all n € N such that

(max{l +D,sup{1+ an(ro)}})(p(t) <t.

neN

Theorem 4. Under above conditions Eq. (1.1) and Eq. (1.2) have at least one
solution in the space (BC(R))®.

Proof. Let us fix arbitrarily n € N. F,,G,, : (BC(R;))® — BC(R+) (n € N) are
defined by

Fo((5)72)(0) = Fult.x1 (1), (1))
Bn(r)
Fautn (1)) [ g, (e (9) 7 )ds,
and

Go() ) (1) = fu(t.31 (1), - 3 (1))
utx1 (1) 5n(0)) [l 5) s, (510 s
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In view of imposed assumptions, we infer that the operators Fn((xj);":l) and

Gn((x;)7-,) are continuous for arbitrarily (x;)7_; € (BC(R))®. Also from our as-
sumptions, we obtain

[F () F=) O] < 1 fa(t,x1(0), -2 (1))

Bn(1)
a0 (@), [ gl ()7 )|

< ‘fn(tvxl (t)7"'7xn(t)) _fn(t707"'70)’ + ‘fn(tvow"v())‘
(1151 (0 30(6)) = (8,0, 0)| + | (1,0, 0)])

Bu(2)
17 el )7
< o( max (1)) + M+ D(p(max (1)) + M)

1<i 1<i<n

<(1+D) ((p(max |xl-(t)|)+M).

1<i<n
Thus,
IFu((x))ll < (1+D) (@(max [l + ). (4.1
and with similar argument
G ()70l < (1-+ ol sup_ ) (o(ma Il +1). 4.2

F(()7,) and Ga((j)7y) € BC(R.) for any (1), € (BO(R,))® with
SUP| < jcoo |xj|| < eo. Due to Inequalities (4.1), (4.2) and using (D), the opretors
F, and G, maps (B,,)® into B,,. Now we show that G, is a continuous function

on (B,,)®. To prove this, let us fix 0 < € < 5. and take arbitrary x = (xj);.c’:],y =

- _ . .
(¥);=1 € (Br,)® such that d(x,y) = sup{imln{l, |x; —yil|} : i € N} <&. Then, for
t € R, we have
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Gl (5)7)(1) = Gu (1)) ()]
fn(t,xl(t),...,xn(t))—i—qn(t,xl(t),...,x,,(t))/owkn(t,s)hn(s, (x;(5)) 2 )ds

0 30 0) + a0 O, 30(0)) [ K9, (35 6)) 1 s
S A IORAG ARG RIRAG)

+[@at21 (0 %0 (0) = G310, 30 0))|

| Rt s, )5 + e300 x,,(r))\

-‘/Ok(ts) ds/kts m)d‘
< <P(1H<1a<X i () — yit )!)+(P(max |x;i(t) = yi(£)[) bn (”o)/0 an(s)|kn(t,s)|ds

+ (ol (max [+(1) )+M) j/kts =)= hals, (35(5)) 7, )1ds].

So, as a result of condition (C3), we can infer there exists 7 > 0 such that for 7 > T,
we have

o((57)72)(0) = Gl (3)72)(@)|
< o max k(1) =) (1+ bulro) | “an(s)(1,9)1ds)
+ (o(max () ) 260(r0) [ Jhn(t,5) an(5)ds

< Q&) (1 +ba(ro)Q) +2(9(ro) +M)by(ro)e.
Now, we assume that ¢ € [0, 7]. By applying the assumptions, we have
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G ()70 = Gl 57 0)] <
< @(max |x;(1) —yi(t )’)(l-i-b (VO)Q)

1<i<n
+(@max (1) +M\/kts (51 6)70) s (0 s
+(omax o) +)| [ (e UﬁJ—%@@%m;mw\

< (&) (1+ba(0)Q) + (9(r0) + M) <TK§50),TO(hn,£) + 2B, (o) /T ) o (t,9)]an(s)ds )

where
K} = sup{ka(t,s) : 1,5 € [0,T]}

mz;(hnvg) = Sup{’hn(sv (xj);ozl) _hn(sv (yj);'o:l)’ 15 € [0, T]?
x;,i € [=ro,ro], |xi —yi| <€}

By using the continuity of 4, on the compact set [0,T] x [—rg,r0]® ( Tychonoff’s
theorem implies that [—rg, r]® is a compact space), we have w,TO (hy,e) — Oase —
0. Moreover, in view of assumption (C4) we can choose T in such a way that last
term of the above estimate is sufficiently small. Thus G, is a continuous function
on (By,)®. Also with similar argument and using conditions (B;) — (B) we have
F is a continuous function on (B,,)®. Now we show that F,, and G, satisfy all the
conditions of Colloraly 3. Let X; and ¥; be nonempty and bounded subsets of B, for
all j € N such that sup( (Xi)) < oo and sup( (Y;)) < oo. Assume that 7 >0 and € >0

are arbitrary constants Also we take tl,tz €[0,T], with |, — ;| < € and x; € X; and
y; €Y, forall j € N. Then we have
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F(5)70) (2) — () ) (1)
= fn(tz,xl (lz), .. .x,,(tz)) —|—qn(t2,x1 (tz), .. .xn<t2))

Bu(t2)
T sl (oo )ds
— futr,x1 (1), xa (1)) +gu(tr, x1 (1), xa(11))

Bu(t)
T sl )5 )ds
< |falt2,x1(2), - Xu(12)) = fu(t1,x1(12), . xn(12))]
+ [t x1(82)5 - Xa(12)) = fultr,x1(11), - X (1))
)

(2,51 (2), - 3(12)) = 0,30 (12, <rz>|\
Bn(’l)

T sl (oo )ds

a1 (12), o0 (02)) = @nler 31 10), o (00)) |

Bu(r2)
T etz G5

n(f2)
—an t1 X1 t1 t1 ‘/ IQ s, x] )d
Bu(t1)
= [T etz (el
(1)
+|gn(t1,x1(t1), a(th) \‘/ n(t2,8,(x;(s)) 7= )ds
Bu(r1)
- [ st <x4,-<s>>,~:1>ds1

< opy (f,€) + @ max [xi(t1) = xi(12)[) + D], (gn. )

+Do(max |xi(1) = xi(12)]) + g (11,1 (1), xa(11)) ]

B(z2)
o, 8006 0] a1 ). o)
1

Bn(11)
T ez, G510 = a5, ()0l
< @) (fn,€) + Do} (gn,€) + (1 +D)(p(max o’ (x;,€))

+Br O of (gn.8) + O Ul " (B.e).
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Thus, we deduce
Fa(x)721)(12) = () 7)) (1) | < @y ()
—l—Dco,TO(qn,S)—i—(l—i—D)(p(max o’ (x;,€)) 4.3)
+PBr 0y, o7, (8n.8) + 0, Up, 0 (B£),
and with similar argument, we get
Gal(1)71)(12) = Gl 0)7-) (1)
< O, (f,€) + DO, (n,€) + (1+ 0b(r0))0( max o () (44)

FTQLV 0, (i) + Ol (r0) [ a(t2:9)] + (1. Ja()ds,
where
Br = sup{B(1) :1 € [0,7]},
OJrTO(fn,e) = sup{|fu(t1,Xx1,- - Xn) — fu(t2, X1, , Xn)]
i, €[0,T], | —t1| <&, |xi| <ro},
OJ,TO(qn,S) = sup{|gn(t1,x1, -, %0) — qn(t2, %1, ., X4)]
i1, €10,T), |0 —11] <& |xi| <ro},
®r," (gn,€) = sup{|ga(t1,s, () 51) — gnltass, (x7)7=1)|
tt1,t0,8 € [0,T], |t — 11| <€,5 € [0,Br],|xj| <ro},
o (B.e) = sup{|B(r) —B(s)| : 1,5 € [0,T],|r —s| <&},
Ur€ = sup{[gn(t,s, (x;)7=1)| : 1 € [0,T],s € [0,Br], x; € [-r0,70]},
QrTO = sup{|gn(t,x1,--.,xs)| : 2 € [0,T],x; € [—ro,r0]},
(o,To(k,,,a) = sup{|kn(t1,5) — kn(t2,5)| : t1,12,8 € [0, T], |t2 — 11| < €},
V,g = sup{|hn(s, (x;)721)| : s € [0,T],x; € [=ro,70] }.
Since x; is an arbitrary element of X; and y; was an arbitrary element of Y; for alli € N

in (4.3) and (4.4), we obtain

T F,,(ﬁX,-) < @] (f1.€) + Do} (gn,€) + (1+D)o( max o (X;,€))

=1 1<i<n

+BrQ;, o}, (8n.€) + Op Ur o (B,€),

! Gn(flm < L (fu,€) + DL, (gn,€) + (1 + Oby(r0))@( max o’ (X;,€))

=1 1<i<n

TRV 0, (k) + Obul(r) [ lka(t2.9)] + [kul01,9) la(s)ds,
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and by the uniform continuity of f,, ¢,, g, and P on the compact sets [0,7] x
[—ro,r0]"s [0,T] x [—ro,r0]", [0,T] x [0,Br] X [—ro,r0]® and [0, T] respectively, we
have @7 (f,,€) — 0, @7 (gn,€) — 0, @, 7 (gn,€) — 0 and o’ (B,€) — 0 as
€ — 0. Therefore we obtain

oo

o' (A ]9) < (14 D)o(max of (),

5]

@ (Ga([T¥) < (14 Qbn(r0)) 9( max @ (¥;,€))

i=1 SIS
£ Qhba(r0) [ Kat9)] + (.9 la(5)ds:

Now taking 7' — oo and by using of assumption (Cy), we get

oo

oo (F:([])) < (1+ D)o max o (X)), 4.5)
i=1 SIS
and
0(Gu([]¥2) < (14 @b(r0))@( max ao(¥)). (4.6)

i=1
On the other hand, for all x;,u; € X;, y;,v; € Y; (i € N) andt € R, we get

Fu((x})721) (1) _Fn((”j)Tzl)(t)’ < (1+D)o( max |xi(r) —ui(t)])

B()
+(9(r0) +M)|/0 |8n (2,5, (x;())71) — gn(t,s, (u(s)) 71 ) |ds,

and with similar argument
Gu((v)7=1)(1) — Gn((vj-)j-‘;l)(t)( < (1+Qbu(ro))@(max [yi(r) —vi(t)])

+ (9(ro) +M)!/Omkn(f7S) [ (2,5, (0 () 721) = (2,5, (v(5)) 71 )]ds
<(1 +Qb”(r°))q’(52?§ yi(t) —vi(2)])

+(0(r0) + M)2b,,(ro) /O " lkat,5)la(s)ds.

Thus

diam(anjx,-)(t)) < (14D)o(max diam(Xi(1))

B(r) 7
+ (9(ro) +M)\/O [gn(t,5, (x;(5))7=1) — gn(tss, (e (s))7=1)]ds,
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and

oo

diam(G,([ [¥)(t)) < (1+ Qba(ro))9( max diam(¥;(t)))

1<i<n

= . (4.8)
+ (0(r0) +M)2b, (ro) /0 leu(,5)[a(s)ds.

If take t — oo in the inequalities (4.7) and (4.8), then using (B,) and (C3), we have

oo

limsupdiaan(HXi)(t) < (1+D)o( max limsupdiam(X;(t))), 4.9)

f—>o0 =1 1<i<n o0

and

limsupdiamG, ([ [¥:)(t) < (1+ Qb (ro))@( max limsupdiam(X;(t))).  (4.10)

t— o0 il 1<i<n —oo

Further, combining (4.5) and (4.9), we get

oo

limsup diamF, ([ [ X;)(¢) +m0(Fn(ﬁX,-)) <(1+D)
f—o0 i1 i1 (4.11)
[@( max 0y(X;)) + @( max limsupdiam(X;(1)))],

1<i<n 1<i<n ¢—00

from (4.6) and (4.10) we have

limsupdiamG, ([ [¥;) (1) + @o(Ga([ [¥i)) <(1+ Qbu(ro))[@( max wo(Y;))

1—yeo i=1 i=1 1<izn

+ @( max limsupdiam(Y;(t)))].

4.12)
Since ¢ is concave, (4.11) and (4.12) imply
1 = 1 = 1 1
ZHETX0) + (Gl [T9)) < ¢ (5 supu(X) + 7 supu(¥) ),
i=1 i=1 i i

where @' (1) = <max {1 + D, sup{1+ an(ro)}})(p(t). Taking ¢/ = %,u and y(z) =1.
neN
Then we get

oo oo

W (ETTX0) + 4 (Go(TT4)) < o (sup{ud (%) + 4 (1)}).

i=1 i=1

Now by using Colloraly 3, there exist (x;)3, (yi)2; € (BC(R4))® such that
Xn(t) = fu(t,x1(2),...,x,(2))

Bn(1)
a1 (0)eea0) [ (e85 (5) 7 ),
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and
yn(t) = falt;1(1), -, yu(t
+an(t,y1(t), .., yalt / K (2,8)hn (s, (v (s ))}ll)dS),
and this completes the proof. O
Example 2. Consider the following system of functional integral equations
sint
5c0s(x,(s%))
X, () = farctan Z |x;(¢) / ———ds, (4.13)
e
and
yu(t) = farctan Zb’ /MI( ) i Y vils)ds. (4.14)
n 1 0 tz +1 = .
Eq. 4.13)isa spemal case of Eq. (1.1) and Eq. (4.14) is a special case of Eq.
(1.2) where

fat,x1,. .. 2x0) ffarctan Z]xl]

I SCOSX
gn(tvsv(xj)]fl = o n,
t
kn(t,s) = -1
n( ,S) (t2—|—1)n(e )7

1 sint

an(s) i E— bn(r) = 2n%7 Bn(t) =

es—1 n
1
Suppose that # € Ry and |x;| > |y;|. Now, by taking @(7) = 7 arctan(r) we have
1 1 & 1 &
’fn(taxlv cee ,Xn) _fn(tayly' e ayn)’ SZ‘ arCtan(Z Z ‘X,“) - arctan(; Z ‘yl’)’
i i=1
< arctan Xi y
Z’ C (4.15)
1
SZ arctan(lmax |xi — yil)
=@( max |x; —yi).

1<i<n

The case |y;| > |x;| can be treated in the same way. Moreover,

M= sup{max{|fn(t,0,...,0)|,|qn(t,0,...,0)]}:t6R+,nEN} —1 <o
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Thus from (4.15) we infer that condition (A;) holds. The condition (B;) is obvious.
Also, g, is continuous and

Bll
D=sup{| [ gult.s. (i (5)70)ds| : £ € Ry xj € BO(R), 1 << o)
0

sint
1
_Sup{‘/ sCOoS xn ))ds : IGR+,Xj€BC(R+),1§n<oo}:§,
sint
lim ‘/ §COoS x;, (s*)) _ ScoS(y?(SZ)))dS —0,
t—>oo0 et et

uniformly respect to x;,y; € BC(R.), which implies that condition (B,) is satisfied.
The condition (C;) clearly is evident. In order to show that condition (C;) is satisfied,

let us assume that sup |y;| < oo, so we have
1<i<eo

(e, () 7-)| = Y e " 2y <Y e o sup |yil

i=1 i=1 1<i<eo
<= sup |y
€ — 1<i<oo
=a,(t)bn( sup |yil).
1<i<oo

On the other hand, the function s — a,(s)k,(z,s) is integrable over R for any fixed
t € Ry and n € N. Thus, condition (C,) is valid. Further, we get:

0 :sup{/owan(s)|kn(t,s)|ds reR, neN)

—ns __

t © e 1
= ds:teR eN
=

t 1
= ———n:teR N}==-<ow
sup{ (t2—|—1)nn €eR;,neN} 5 <

and

oo

. t “e -1 t
lim an(s)|kn ts)|a’s— hm lm T m / prgg ds = lim =0.

t—e0 Jy =0 f2 4 |

This impliese that the condition (C3) holds. Moreover, for arbitrarily fixed 7 > 0 we

obtain:
oo t ooefns_l
k,(t,s)|ds = d
/T an(s)lknt, ) ds (t2+1)n/r o—1 "

€ Lo e VT )
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From the above estimate, we infer that condition (C4) holds. It is easy to see that
each number r > 4 satisfies the inequality in condition (D), i.e.,

(1+D)(9(r) +M) = (1+ %)(%arctan(r) +1) <n,
and

(1+0bu(r)) (o(r)+M) = (1 i1

1
5 ) (Z arctan(r) + 1) <r,

for all n € N such that
(max{l +D,:g§{l +Qb,,(r0)}}>(p(t) = (max{l + %,sgg{l +% Z"KVZ}})%arctan(t) <t.

Thus, we can take ryp = 4. Consequently, all the conditions of Theorem 2 are satisfied.
Hence the system of functional integral equations (4.13) and (4.14) have at least one
solution put which belongs to the space (BC(R))®.
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