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REZA ALLAHYARI, REZA ARAB, AND ALI SHOLE HAGHIGHI

Received 30 May, 2015

Abstract. In the present article, we introduce a new concept of contraction and prove a new
type of the extension of Tychonoff fixed point theorem. Then, as an application, we study the
problem of existence of solutions for the infinite systems of integral equations using the technique
of measures of noncompactness in conjunction with this extension in the Fréchet spaces.
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1. INTRODUCTION

The theory of infinite systems of integral or differential equations creates an im-
portant branch of nonlinear analysis. Up to now, several papers have been published
on this significant topic (see [9, 12, 16, 17, 19, 21]) . It is connected naturally with
a large number of problems considered in mechanics, engineering, in the theory of
branching processes, the theory of neutral nets and so on (see [14,15,18,20,22,23]).
In this paper, we investigate the existence of solutions for the infinite systems of
integral equations of the forms

xn(t) = fn(t,x1(t), . . . ,xn(t))

+qn(t,x1(t), . . . ,xn(t))
∫

βn(t)

0
gn(t,s,(x j(s))∞

j=1)ds, n ∈ N, t ∈ R,
(1.1)

and
yn(t) = fn(t,y1(t), . . . ,yn(t))

+qn(t,y1(t), . . . ,yn(t))
∫

∞

0
kn(t,s)hn(s,(y j(s))∞

j=1)ds, n ∈ N, t ∈ R,
(1.2)

by using the measures of noncompactness µ introduced in [9] and a new type of
extension of Tychonoff fixed point theorem in the Fréchet space (BC(R+))

ω (denote
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the countable cartesian product of BC(R+) with itself). The results of this paper
improve and generalize those obtained in papers [2–8, 10, 11].

2. NOTATION AND AUXILIARY FACTS

Here, we recall some basic facts concerning measures of noncompactness. Denote
by R the set of real numbers and put R+ = [0,+∞). The symbol X and ConvX will
denote the closure and closed convex hull of a subset X of E, respectively. Moreover,
let NE indicate the family of all nonempty and relatively compact subsets of E.
A topological vector space (TVS) is a vector space X over the field R which is en-
dowed with a topology such that the maps (x,y)→ x+y and (α,x)→ αx are continu-
ous from X ×X and R×X to X . A topological vector space is called locally convex
if there is a basis for the topology consisting of convex sets (that is, set A such that if
x,y ∈ A then tx+(1− t)y ∈ A for 0 < t < 1).

Definition 1 ([13]). A Fréchet space is a locally convex space which is complete
with respect to a translation-invariant metric.

Example 1. Let Ei be a Banach space for all i ∈ N, then ∏
i∈N

Ei is a Fréchet space

with respect to the metric

d(x,y) = sup{ 1
2i min{1,di(xi,yi)} : i ∈ N},

where x = (x1,x2, . . .), y = (y1,y2, . . .) ∈∏
i∈N

Ei.

Definition 2 ([9]). Let M be a class of subsets of a Fréchet space E, we say M is
admissible class if NE ∩M 6=∅ and if X ∈M , then Conv(X),X ∈M .

Definition 3 ([9]). Let M be an admissible class of a Fréchet space E, we say that
µ : M −→ R+ is a measure of noncompactness on Fréchet space E if it satisfies the
following conditions:

(1◦) The family kerµ = {X ∈M : µ(X) = 0} is nonempty and kerµ⊆NE ;
(2◦) X ⊂ Y =⇒ µ(X)≤ µ(Y );
(3◦) µ(X) = µ(X);
(4◦) µ(ConvX) = µ(X);
(5◦) µ(λX +(1−λ)Y )≤ λµ(X)+(1−λ)µ(Y ) for λ ∈ [0,1];
(6◦) If {Xn} is a sequence of closed sets from M such that Xn+1 ⊂ Xn for n =

1,2, · · · , and if lim
n→∞

µ(Xn) = 0, then X∞ = ∩∞
n=1Xn 6=∅.

Theorem 1 (Tychonoff fixed point theorem [1]). Let E be a Hausdorff locally
convex linear topological space, C be a convex subset of E and F : C −→ E be a
continuous mapping such that

F(C)⊆ A⊆C,
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with A compact. Then F has at least one fixed point.

Theorem 2 ([9]). Suppose µi be a measure of noncompactness on Banach spaces
Ei for all i ∈ N. If we define

M = {C ⊆
∞

∏
i=1

Ei : sup
i
{µi(πi(C))}< ∞},

where πi(C) denotes the natural projection of
∞

∏
i=1

Ei into Ei and µ : M −→ R+ is

defined by
µ(C) = sup{µi(πi(C)) : i ∈ N},

then M is an admissible set and µ is a measure of noncompactness on X =
∞

∏
i=1

Ei.

3. MAIN RESULT

In this section, we introduce a new concept of contraction and prove some new
extensions of Tychonoff fixed point theorem.

Theorem 3. Let Ω be a nonempty, closed and convex subset of a Fréchet space E,
M is admissible class such that Ω ∈M and µ : M −→ R+ is a measure of noncom-
pactness on E. Let F,G : Ω−→Ω be two continuous mappings such that

µ(FX)+ψ(µ(GY ))≤ ϕ

(
µ(X)+ψ(µ(Y ))

)
, (3.1)

and F(X),G(Y ) ∈M for any nonempty subset X ,Y ∈M where ϕ,ψ : R+ −→ R+

are nondecreasing and right continuous functions such that ϕ(0) = ψ(0) = 0 and
ϕ(t)< t for each t > 0. Then F and G have at least one fixed point in the set Ω.

Proof. By induction, we obtain sequences {Ωn} and {Λn} such that
Ω0 = Λ0 = Ω,

Ωn =Conv(FΩn−1) n≥ 1,
Λn =Conv(GΛn−1) n≥ 1.

.

It is obvious that Ωn,Λn ∈M for all n ∈ N. If there exists an integer N ≥ 0 such that
µ(ΩN) = µ(ΛN) = 0, then ΩN and ΛN are compact. Thus, Theorem 1 implies that F
and G have a fixed point. Now assume that µ(Ωn) 6= 0 or µ(Λn) 6= 0 for n≥ 0. Since
we have FΩ0 = FΩ⊆Ω = Ω0,Ω1 =Conv(FΩ0)⊆Ω = Ω0, and by continuing this
process we obtain

Ω0 ⊇Ω1 ⊇Ω2 ⊇ ·· · ,
and

Λ0 ⊇ Λ1 ⊇ Λ2 ⊇ ·· · ,
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so µ(Ωn) and µ(Λn) is a positive decreasing sequence of real numbers. Thus, there
are r1,r2 ≥ 0 such that µ(Ωn)−→ r1 and µ(Λn)−→ r2 as n−→∞. On the other hand,
in view of (3.1), we obtain

limsup
n−→∞

µ(Ωn+1)+ψ(µ(Λn+1)≤ limsup
n−→∞

ϕ

(
µ(Ωn)+ψ(µ(Λn))

)
.

This show that r1 +ψ(r2) ≤ ϕ
(
r1 +ψ(r2)

)
. Consequently r1 +ψ(r2) = 0, so r1 =

r2 = 0. Hence we deduce that µ(Ωn) −→ 0 and µ(Λn) −→ 0 as n −→ ∞. Since the
sequences (Ωn) and (Λn) are nested, in view of axiom (6◦) of Definition 3 we derive

that the sets Ω∞ =
∞⋂

n=1

Ωn and Λ∞ =
∞⋂

n=1

Λn are nonempty, closed and convex subsets

of the set Ω. Moreover, the sets Ω∞ and Λ∞ are invariant under the operators F and G
respectively, and belongs to kerµ. Now, Tychonoff fixed point theorem implies that
F and G have fixed points in the set Ω. �

Corollary 1. Let Ω be a nonempty, closed and convex subset of a Fréchet space
E, M satisfies the hypotheses of Theorem 3 and Ω ∈M . Let F,G : Ω −→ Ω be two
continuous mappings such that

µ(FX)+ψ(µ(GY ))≤ k[µ(X)+ψ(µ(Y ))],

and F(X),G(Y ) ∈M for any nonempty subset X ,Y ∈M where ψ : R+ −→ R+ is
nondecreasing and right continuous function such that ψ(0) = 0, µ is an arbitrary
measure of noncompactness on M and k ∈ [0,1). Then F and G have at least a fixed
point in the set Ω.

Proof. Take ϕ(t) = kt in Theorem 3. �

Definition 4. Let X be a Banach space. An operator F : X −→ X is affine if
F(ax+(1−a)y) = aF(x)+(1−a)F(y) for all x,y ∈ X and all a ∈ R.

Corollary 2. Let Ω be a nonempty, closed and convex subset of a Fréchet space
E, M is admissible class such that Ω ∈M and µ : M −→ R+ is a measure of non-
compactness on E. Let F,G : Ω−→Ω be two continuous operators such that

µ(FX)≤ ϕ(µ(X)) (3.2)

and F(X) ∈M for any nonempty subset X ∈M where ϕ : R+ −→ R+ satisfies the
hypotheses of Theorem 3. Moreover, G(F(X))⊆ F(X) for all X ∈NΩ and F is affine
operator. Then F and G have at least one common fixed point in the set Ω.

Proof. Take ψ(t) = 0 in Theorem 3. Thus, applying Theorem 3, F has a fixed
point. Now suppose that Γ = {x ∈Ω : Fx = x}, then by (3.2) and F(Γ) = Γ we have

µ(Γ) = µ(F(Γ))

≤ ϕ(µ(Γ))

< µ(Γ).



AN EXTENSION OF TYCHONOFF FIXED POINT. . . 35

which is a contradiction. So Γ is relatively compact, and since F is a continuous and
affine operator so Γ is nonempty, compact and convex subset of Ω. Also, we have

G(Γ) = G(F(Γ))

⊆ F(Γ)

= Γ.

Now, Tychonoff fixed point theorem implies that F and G have a common fixed point
in the set Γ. �

We introduce the following useful corollary which will be used in Section 4.

Corollary 3. Let Ωi (i ∈N) be a nonempty, convex and closed subset of a Banach
space Ei, µi an arbitrary measure of noncompactness on Ei and supi{µi(Ωi)} < ∞.

Let Fi,Gi :
∞

∏
i=1

Ωi −→Ωi (i = 1,2, . . .) be continuous operators such that

µi(Fi(
∞

∏
i=1

Xi))+ψ(µi(Gi(
∞

∏
i=1

Yi)))≤ ϕ

(
sup

i
{µi(Xi)+ψ(µi(Yi))}

)
, (3.3)

for any subsets Xi and Yi of Ωi (i∈N) where ϕ,ψ :R+−→R+ satisfies the hypotheses

of Theorem 3. Then there exist (x∗j)
∞
j=1,(y

∗
j)

∞
j=1 ∈

∞

∏
j=1

Ω j such that for all i ∈ N

{
Fi((x∗j)

∞
j=1) = x∗i ,

Gi((y∗j)
∞
j=1) = y∗i .

(3.4)

Proof. Assume that F̃ , G̃ :
∞

∏
i=1

Ωi −→
∞

∏
i=1

Ωi are defined as follows

F̃((x j)
∞
j=1) = (F1((x j)

∞
j=1),F2((x j)

∞
j=1), . . . ,Fi((x j)

∞
j=1), . . .),

and

G̃((y j)
∞
j=1) = (G1((y j)

∞
j=1),G2((y j)

∞
j=1), . . . ,Gi((y j)

∞
j=1), . . .),

for all (x j)
∞
j=1,(y j)

∞
j=1 ∈

∞

∏
i=1

Ωi. It is obvious that F and G are continuous. It suffices

to show that the hypothesis (3.1) of Theorem 3 holds where µ is defined by Theorem

2. Take arbitrary nonempty subset X and Y of
∞

∏
i=1

Ωi. Now, by (2◦) and (3.3) we
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obtain

µ(F̃(X))+ψ(µ(G̃(Y )))≤ µ(
∞

∏
i=1

Fi(
∞

∏
j=1

π j(X)))+ψ(µ(
∞

∏
i=1

Gi(
∞

∏
j=1

π j(Y ))))

= sup
i

µi(Fi((
∞

∏
j=1

π j(X))))+ψ(sup
i

µi(Gi((
∞

∏
j=1

π j(Y )))))

≤ sup
i
{µi(Fi((

∞

∏
j=1

π j(X))))+ψ(µi(Gi((
∞

∏
j=1

π j(Y )))))}

≤ sup
i

ϕ

(
sup

j
{µ j(X j)+ψ(µ j(Yj))}

)
≤ ϕ

(
sup

j
µ j(X j)+ψ(sup

j
µ j(Yj))

)
≤ ϕ(µ(X)+ψ(µ(Y ))).

Therefore, all the conditions of Theorem 3 are satisfied, hence F̃ and G have fixed

points and there exist (x∗j)
∞
j=1,(y

∗
j)

∞
j=1 ∈

∞

∏
j=1

Ω j such that

{
(x∗j)

∞
j=1 = F̃((x∗j)

∞
j=1) = (F1((x∗j)

∞
j=1),F2((x∗j)

∞
j=1), . . . ,Fj((x∗j)

∞
j=1), . . .),

(y∗j)
∞
j=1 = G̃((y∗j)

∞
j=1) = (G1((x∗j)

∞
j=1),G2((x∗j)

∞
j=1), . . . ,G j((x∗j)

∞
j=1), . . .),

and that (3.4) holds. �

4. APPLICATION

In this section we are going to show how the measure of noncompactness defined
in the previous section, can be applied to an infinite system of nonlinear integral
equations. Here, we will work in the classical Banach space BC(R+) consisting of
all real functions defined, bounded and continuous on R+ equipped with the standard
norm

‖x‖= sup{|x(t)| : t ≥ 0}.
Now, we present the definition of a special measure of noncompactness in BC(R+)
which will be needed in the sequel.
To do this, let X be a fixed nonempty and bounded subset of BC(R+) and fix a positive
number T . For x ∈ X and ε > 0, denote by ωT (x,ε) the modulus of the continuity of
function x on the interval [0,T ], i.e.,

ω
T (x,ε) = sup{|x(t)− x(s)| : t,s ∈ [0,T ], |t− s| ≤ ε}.

Further, let us put
ω

T (X ,ε) = sup{ωT (x,ε) : x ∈ X},
ω

T
0 (X) = lim

ε→0
ω

T (X ,ε)
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and
ω0(X) = lim

T→∞
ω

T
0 (X).

If t is a fixed number from R+, let us denote X(t) = {x(t) : x ∈ X}. Finally, consider
the function µ defined on MBC(R+) by the formula

µ(X) = ω(X0)+ limsup
t→∞

diamX(t),

where,
diamX(t) = sup{|x(t)− y(t)| : x,y ∈ X}.

It is shown [10] that the function µ is a measure of noncompactness in the space
BC(R+).
We will consider Equations (1.1) and (1.2) under the following assumptions:
(A1) fn,qn : R+×Rn −→ R (n ∈ N) are continuous with

M := sup
{

max{| fn(t,0, . . . ,0)|, |qn(t,0, . . . ,0)|} : t ∈ R+,n ∈ N
}
< ∞.

Moreover, there exists a nondecreasing, concave and upper semicontinuous
function ϕ with ϕ(t)< t for all t > 0 such that

| fn(t,x1, . . . ,xn)− fn(t,y1, . . . ,yn)| ≤ ϕ(max
1≤i≤n

|xi− yi|),

and

|qn(t,x1, . . . ,xn)−qn(t,y1, . . . ,yn)| ≤ ϕ(max
1≤i≤n

|xi− yi|);

(B1) βn : R+ −→ [0,∞) is continuous function for all n ∈ N;
(B2) gn : R+×R+×Rω −→ R (n ∈ N) is continuous and there exists a positive

constant D such that

D := sup{
∣∣∣∫ βn(t)

0
gn(t,s,(x j(s))∞

j=1)ds
∣∣∣ : t ∈ R+, x j ∈ BC(R+),1≤ n < ∞}.

Moreover,

lim
t−→∞

∣∣∣∫ βn(t)

0
gn(t,s,(x j(s))∞

j=1)−gn(t,s,(y j(s))∞
j=1)ds

∣∣∣= 0,

uniformly respect to x j,y j ∈ BC(R+);
(C1) kn : R+×R+ −→ R is continuous function for all n ∈ N;
(C2) hn : R+×Rω −→ R (n ∈ N) is a continuous and there exists a continuous

function an : R+ −→ R+ and a continuous and nondecreasing function bn :
R+ −→ R+ such that

|hn(t,(x j)
∞
j=1)| ≤ an(t)bn( sup

1≤ j<∞

|x j|),

for all t ∈R+ and (x j)
∞
j=1 ∈Rω with sup

1≤ j<∞

|x j|< ∞. Also the function s−→

an(s)kn(t,s) is integrable over R+ for any fixed t ∈ R+ and n ∈ N;
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(C3) There exists a positive constant Q such that

Q := sup{
∫

∞

0
an(s)|kn(t,s)|ds : t ∈ R+,n ∈ N}< ∞,

and

lim
t→∞

∫
∞

0
an(s)|kn(t,s)|ds = 0.

(C4) The following equality holds:

lim
T→∞

{
sup
{∫

∞

T
an(s)|kn(t,s)|ds : t ∈ R+

}}
= 0

for all n ∈ N;
(D1) There exists a positive solution r0 of the inequalities

(1+D)
(
ϕ(r)+M

)
≤ r,

and

(1+Qbn(r))
(
ϕ(r)+M

)
≤ r,

for all n ∈ N such that(
max

{
1+D,sup

n∈N
{1+Qbn(r0)}

})
ϕ(t)< t.

Theorem 4. Under above conditions Eq. (1.1) and Eq. (1.2) have at least one
solution in the space (BC(R+))

ω.

Proof. Let us fix arbitrarily n ∈ N. Fn,Gn : (BC(R+))
ω −→ BC(R+) (n ∈ N) are

defined by

Fn((x j)
∞
j=1)(t) = fn(t,x1(t), . . . ,xn(t))

+qn(t,x1(t), . . . ,xn(t))
∫

βn(t)

0
gn(t,s,(x j(s))∞

j=1)ds,

and

Gn((x j)
∞
j=1)(t) = fn(t,x1(t), . . . ,xn(t))

+qn(t,x1(t), . . . ,xn(t))
∫

∞

0
kn(t,s)hn(s,(x j(s))∞

j=1)ds.
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In view of imposed assumptions, we infer that the operators Fn((x j)
∞
j=1) and

Gn((x j)
∞
j=1) are continuous for arbitrarily (x j)

∞
j=1 ∈ (BC(R+))

ω. Also from our as-
sumptions, we obtain

|Fn((x j)
∞
j=1)(t)| ≤ | fn(t,x1(t), . . . ,xn(t))|

+ |qn(t,x1(t), . . . ,xn(t))||
∫

βn(t)

0
gn(t,s,(x j(s))∞

j=1)ds|

≤ | fn(t,x1(t), . . . ,xn(t))− fn(t,0, . . . ,0)|+ | fn(t,0, . . . ,0)|

+
(
|qn(t,x1(t), . . . ,xn(t))−qn(t,0, . . . ,0)|+ |qn(t,0, . . . ,0)|

)
· |
∫

βn(t)

0
gn(t,s,(x j(s))∞

j=1)ds|

≤ ϕ(max
1≤i≤n

|xi(t)|)+M+D(ϕ(max
1≤i≤n

|xi(t)|)+M)

≤ (1+D)
(

ϕ(max
1≤i≤n

|xi(t)|)+M
)
.

Thus,
‖Fn((x j)

∞
j=1)‖ ≤ (1+D)

(
ϕ(max

1≤i≤n
‖xi‖)+M

)
, (4.1)

and with similar argument

‖Gn((x j)
∞
j=1)‖ ≤ (1+Qbn( sup

1≤ j<∞

‖x j‖))
(

ϕ(max
1≤i≤n

‖xi‖)+M
)
. (4.2)

Fn((x j)
∞
j=1) and Gn((x j)

∞
j=1) ∈ BC(R+) for any (x j)

∞
j=1 ∈ (BC(R+))

ω with
sup1≤ j<∞ ‖x j‖ < ∞. Due to Inequalities (4.1), (4.2) and using (D1), the opretors
Fn and Gn maps (B̄r0)

ω into B̄r0 . Now we show that Gn is a continuous function
on (B̄r0)

ω. To prove this, let us fix 0 < ε < 1
2n and take arbitrary x = (x j)

∞

j=1,y =

(y j)
∞

j=1 ∈ (B̄r0)
ω such that d(x,y) = sup

{ 1
2i min{1,‖xi−yi‖} : i ∈N

}
< ε. Then, for

t ∈ R+, we have
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∣∣∣Gn((x j)
∞

j=1)(t)−Gn((y j)
∞

j=1)(t)
∣∣∣

=
∣∣∣ fn(t,x1(t), . . . ,xn(t))+qn(t,x1(t), . . . ,xn(t))

∫
∞

0
kn(t,s)hn(s,(x j(s))∞

j=1)ds

− fn(t,y1(t), . . . ,yn(t))+qn(t,y1(t), . . . ,yn(t))
∫

∞

0
kn(t,s)hn(s,(y j(s))∞

j=1)ds
∣∣∣

≤
∣∣∣ fn(t,x1(t), . . . ,xn(t))− fn(t,y1(t), . . . ,yn(t))

∣∣∣
+
∣∣∣qn(t,x1(t), . . . ,xn(t))−qn(t,y1(t), . . . ,yn(t))

∣∣∣
·
∣∣∣∫ ∞

0
kn(t,s)hn(s,(y j(s))∞

j=1)ds
∣∣∣+ ∣∣∣qn(t,x1(t), . . . ,xn(t))

∣∣∣
·
∣∣∣∫ ∞

0
kn(t,s)hn(s,(x j(s))∞

j=1)ds−
∫

∞

0
kn(t,s)hn(s,(y j(s))∞

j=1)ds
∣∣∣

≤ ϕ(max
1≤i≤n

|xi(t)− yi(t)|)+ϕ(max
1≤i≤n

|xi(t)− yi(t)|)bn(r0)
∫

∞

0
an(s)|kn(t,s)|ds

+
(

ϕ(max
1≤i≤n

|xi(t)|)+M
)∣∣∣∫ ∞

0
kn(t,s)[hn(s,(x j(s))

∞

j=1)−hn(s,(y j(s))
∞

j=1)]ds
∣∣∣.

So, as a result of condition (C3), we can infer there exists T > 0 such that for t > T ,
we have ∣∣∣Gn((x j)

∞

j=1)(t)−Gn((y j)
∞

j=1)(t)
∣∣∣

≤ ϕ(max
1≤i≤n

|xi(t)− yi(t)|)
(

1+bn(r0)
∫

∞

0
an(s)|kn(t,s)|ds

)
+
(

ϕ(max
1≤i≤n

|xi(t)|)+M
)

2bn(r0)
∫

∞

0
|kn(t,s)|an(s)ds

≤ ϕ(ε)
(
1+bn(r0)Q

)
+2
(
ϕ(r0)+M

)
bn(r0)ε.

Now, we assume that t ∈ [0,T ]. By applying the assumptions, we have
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∣∣∣Gn((x j)
∞

j=1)(t)−Gn((y j)
∞

j=1)(t)
∣∣∣≤

≤ ϕ(max
1≤i≤n

|xi(t)− yi(t)|)
(
1+bn(r0)Q

)
+
(

ϕ(max
1≤i≤n

|xi(t)|)+M
)∣∣∣∫ T

0
kn(t,s)[hn(s,(x j(s))

∞

j=1)−hn(s,(y j(s))
∞

j=1)]ds
∣∣∣

+
(

ϕ(max
1≤i≤n

|xi(t)|)+M
)∣∣∣∫ ∞

T
kn(t,s)[hn(s,(x j(s))

∞

j=1)−hn(s,(y j(s))
∞

j=1)]ds
∣∣∣

≤ ϕ(ε)
(
1+bn(r0)Q

)
+
(
ϕ(r0)+M

)(
T Kn

T ω
T
r0
(hn,ε)+2bn(r0)

∫
∞

T
|kn(t,s)|an(s)ds

)
,

where
Kn

T = sup{kn(t,s) : t,s ∈ [0,T ]}
ω

T
r0
(hn,ε) = sup{|hn(s,(x j)

∞

j=1)−hn(s,(y j)
∞

j=1)| : s ∈ [0,T ],

xi,yi ∈ [−r0,r0], |xi− yi| ≤ ε}.
By using the continuity of hn on the compact set [0,T ]× [−r0,r0]

ω ( Tychonoff’s
theorem implies that [−r0,r0]

ω is a compact space), we have ωT
r0
(hn,ε)−→ 0 as ε−→

0. Moreover, in view of assumption (C4) we can choose T in such a way that last
term of the above estimate is sufficiently small. Thus Gn is a continuous function
on (B̄r0)

ω. Also with similar argument and using conditions (B1)− (B2) we have
F is a continuous function on (B̄r0)

ω. Now we show that Fn and Gn satisfy all the
conditions of Colloraly 3. Let X j and Yj be nonempty and bounded subsets of B̄r0 for
all j ∈N such that sup

i
(µ(Xi))< ∞ and sup

i
(µ(Yi))< ∞. Assume that T > 0 and ε > 0

are arbitrary constants. Also we take t1, t2 ∈ [0,T ], with |t2− t1| ≤ ε and x j ∈ X j and
y j ∈ Yj for all j ∈ N. Then we have
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∣∣∣Fn((x j)
∞

j=1)(t2)−Fn((x j)
∞

j=1)(t1)
∣∣∣

=
∣∣∣ fn(t2,x1(t2), . . .xn(t2))+qn(t2,x1(t2), . . .xn(t2))

·
∫

βn(t2)

0
gn(t2,s,(x j(s))∞

j=1)ds

− fn(t1,x1(t1), . . .xn(t1))+qn(t1,x1(t1), . . .xn(t1))

·
∫

βn(t1)

0
gn(t1,s,(x j(s))∞

j=1)ds
∣∣∣

≤ | fn(t2,x1(t2), . . .xn(t2))− fn(t1,x1(t2), . . .xn(t2))|
+ | fn(t1,x1(t2), . . .xn(t2))− fn(t1,x1(t1), . . .xn(t1))|

+ |qn(t2,x1(t2), . . .xn(t2))−qn(t1,x1(t2), . . .xn(t2))|
∣∣∣

·
∫

βn(t1)

0
gn(t2,s,(x j(s))∞

j=1)ds
∣∣∣

+ |qn(t1,x1(t2), . . .xn(t2))−qn(t1,x1(t1), . . .xn(t1))|
∣∣∣

·
∫

βn(t2)

0
gn(t2,s,(x j(s))∞

j=1)ds
∣∣∣

+ |qn(t1,x1(t1), . . .xn(t1))|
∣∣∣∫ βn(t2)

0
gn(t2,s,(x j(s))∞

j=1)ds

−
∫

βn(t1)

0
gn(t2,s,(x j(s))∞

j=1)ds
∣∣∣

+ |qn(t1,x1(t1), . . .xn(t1))|
∣∣∣∫ βn(t1)

0
gn(t2,s,(x j(s))∞

j=1)ds

−
∫

βn(t1)

0
gn(t1,s,(x j(s))∞

j=1)ds
∣∣∣

≤ ω
T
r0
( fn,ε)+ϕ(max

1≤i≤n
|xi(t1)− xi(t2)|)+Dω

T
r0
(qn,ε)

+Dϕ(max
1≤i≤n

|xi(t1)− xi(t2)|)+ |qn(t1,x1(t1), . . .xn(t1))|
∣∣

·
∫

β(t2)

β(t1)
gn(t2,s,(x j(s))∞

j=1)ds
∣∣∣+ |qn(t1,x1(t1), . . .xn(t1))|

∣∣∣
·
∫

βn(t1)

0
[gn(t2,s,(x j(s))∞

j=1)ds−gn(t1,s,(x j(s))∞
j=1)]ds

∣∣∣
≤ ω

T
r0
( fn,ε)+Dω

T
r0
(qn,ε)+(1+D)ϕ(max

1≤i≤n
ω

T (xi,ε))

+βT QT
r0

ω
T
r0
(gn,ε)+QT

r0
UT

r0
ω

T (β,ε).
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Thus, we deduce∣∣∣Fn((x j)
∞

j=1)(t2)−Fn((x j)
∞

j=1)(t1)
∣∣∣≤ ω

T
r0
( fn,ε)

+Dω
T
r0
(qn,ε)+(1+D)ϕ(max

1≤i≤n
ω

T (xi,ε))

+βT QT
r0

ω
T
r0
(gn,ε)+QT

r0
UT

r0
ω

T (β,ε),

(4.3)

and with similar argument, we get∣∣∣Gn((y j)
∞

j=1)(t2)−Gn((y j)
∞

j=1)(t1)
∣∣∣

≤ ω
T
r0
( fn,ε)+Dω

T
r0
(qn,ε)+(1+Qb(r0))ϕ(max

1≤i≤n
ω

T (xi,ε))

+T QT
r0

V T
r0

ωr0
T (kn,ε)+QT

r0
bn(r0)

∫
∞

T
[|kn(t2,s)|+ |kn(t1,s)|]a(s)ds,

(4.4)

where
βT = sup{β(t) : t ∈ [0,T ]},

ω
T
r0
( fn,ε) = sup{| fn(t1,x1, . . . ,xn)− fn(t2,x1, . . . ,xn)|

: t1, t2 ∈ [0,T ], |t2− t1| ≤ ε, |xi| ≤ r0},
ω

T
r0
(qn,ε) = sup{|qn(t1,x1, . . . ,xn)−qn(t2,x1, . . . ,xn)|

: t1, t2 ∈ [0,T ], |t2− t1| ≤ ε, |xi| ≤ r0},
ωr0

T (gn,ε) = sup{|gn(t1,s,(x j)
∞
j=1)−gn(t2,s,(x j)

∞
j=1)|

: t1, t2,s ∈ [0,T ], |t2− t1| ≤ ε,s ∈ [0,βT ], |x j| ≤ r0},
ω

T (β,ε) = sup{|β(t)−β(s)| : t,s ∈ [0,T ], |t− s| ≤ ε},
UT

r0
= sup{|gn(t,s,(x j)

∞
j=1)| : t ∈ [0,T ],s ∈ [0,βT ],xi ∈ [−r0,r0]},

QT
r0
= sup{|qn(t,x1, . . . ,xn)| : t ∈ [0,T ],xi ∈ [−r0,r0]},

ω
T
r0
(kn,ε) = sup{|kn(t1,s)− kn(t2,s)| : t1, t2,s ∈ [0,T ], |t2− t1| ≤ ε},

V T
r0
= sup{|hn(s,(x j)

∞
j=1)| : s ∈ [0,T ],xi ∈ [−r0,r0]}.

Since xi is an arbitrary element of Xi and yi was an arbitrary element of Yi for all i∈N
in (4.3) and (4.4), we obtain

ω
T (Fn(

∞

∏
i=1

Xi)≤ ω
T
r0
( fn,ε)+Dω

T
r0
(qn,ε)+(1+D)ϕ(max

1≤i≤n
ω

T (Xi,ε))

+βT QT
r0

ω
T
r0
(gn,ε)+QT

r0
UT

r0
ω

T (β,ε),

ω
T (Gn(

∞

∏
i=1

Yi)≤ ω
T
r0
( fn,ε)+Dω

T
r0
(qn,ε)+(1+Qbn(r0))ϕ(max

1≤i≤n
ω

T (Xi,ε))

+T QT
r0

V T
r0

ωr0
T (kn,ε)+QT

r0
bn(r0)

∫
∞

T
[|kn(t2,s)|+ |kn(t1,s)|]a(s)ds,
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and by the uniform continuity of fn, qn, gn and β on the compact sets [0,T ]×
[−r0,r0]

n, [0,T ]× [−r0,r0]
n, [0,T ]× [0,βT ]× [−r0,r0]

ω and [0,T ] respectively, we
have ωr0

T ( fn,ε) −→ 0, ωr0
T (qn,ε) −→ 0, ωr0

T (gn,ε) −→ 0 and ωT (β,ε) −→ 0 as
ε−→ 0. Therefore we obtain

ω0
T (Fn(

∞

∏
i=1

Xi))≤ (1+D)ϕ(max
1≤i≤n

ω
T
0 (Xi)),

ω
T
0 (Gn(

∞

∏
i=1

Yi)≤ (1+Qbn(r0))ϕ(max
1≤i≤n

ω
T
0 (Yi,ε))

+QT
r0

bn(r0)
∫

∞

T
[|kn(t2,s)|+ |kn(t1,s)|]a(s)ds.

Now taking T −→ ∞ and by using of assumption (C4), we get

ω0(Fn(
∞

∏
i=1

Xi))≤ (1+D)ϕ(max
1≤i≤n

ω0(Xi)), (4.5)

and

ω0(Gn(
∞

∏
i=1

Yi))≤ (1+Qbn(r0))ϕ(max
1≤i≤n

ω0(Yi)). (4.6)

On the other hand, for all xi,ui ∈ Xi, yi,vi ∈ Yi (i ∈ N) and t ∈ R+, we get∣∣∣Fn((x j)
∞
j=1)(t)−Fn((u j)

∞
j=1)(t)

∣∣∣≤ (1+D)ϕ(max
1≤i≤n

|xi(t)−ui(t)|)

+(ϕ(r0)+M)|
∫

β(t)

0
|gn(t,s,(x j(s))∞

j=1)−gn(t,s,(u j(s))∞
j=1)|ds,

and with similar argument∣∣∣Gn((y j)
∞
j=1)(t)−Gn((v j)

∞
j=1)(t)

∣∣∣≤ (1+Qbn(r0))ϕ(max
1≤i≤n

|yi(t)− vi(t)|)

+(ϕ(r0)+M)|
∫

∞

0
kn(t,s)[hn(t,s,(y j(s))∞

j=1)−hn(t,s,(v j(s))∞
j=1)]ds

≤(1+Qbn(r0))ϕ(max
1≤i≤n

|yi(t)− vi(t)|)

+(ϕ(r0)+M)2bn(r0)
∫

∞

0
|kn(t,s)|a(s)ds.

Thus

diam(Fn(
∞

∏
i=1

Xi)(t))≤ (1+D)ϕ(max
1≤i≤n

diam(Xi(t)))

+(ϕ(r0)+M)|
∫

β(t)

0
[gn(t,s,(x j(s))∞

j=1)−gn(t,s,(u j(s))∞
j=1)]ds,

(4.7)
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and

diam(Gn(
∞

∏
i=1

Yi)(t))≤ (1+Qbn(r0))ϕ(max
1≤i≤n

diam(Yi(t)))

+(ϕ(r0)+M)2bn(r0)
∫

∞

0
|kn(t,s)|a(s)ds.

(4.8)

If take t −→ ∞ in the inequalities (4.7) and (4.8), then using (B2) and (C3), we have

limsup
t−→∞

diamFn(
∞

∏
i=1

Xi)(t)≤ (1+D)ϕ(max
1≤i≤n

limsup
t−→∞

diam(Xi(t))), (4.9)

and

limsup
t−→∞

diamGn(
∞

∏
i=1

Yi)(t)≤ (1+Qbn(r0))ϕ(max
1≤i≤n

limsup
t−→∞

diam(Xi(t))). (4.10)

Further, combining (4.5) and (4.9), we get

limsup
t→∞

diamFn(
∞

∏
i=1

Xi)(t)+ω0(Fn(
∞

∏
i=1

Xi))≤ (1+D)

[ϕ(max
1≤i≤n

ω0(Xi))+ϕ(max
1≤i≤n

limsup
t→∞

diam(Xi(t)))],
(4.11)

from (4.6) and (4.10) we have

limsup
t→∞

diamGn(
∞

∏
i=1

Yi)(t)+ω0(Gn(
∞

∏
i=1

Yi))≤(1+Qbn(r0))[ϕ(max
1≤i≤n

ω0(Yi))

+ϕ(max
1≤i≤n

limsup
t→∞

diam(Yi(t)))].

(4.12)
Since ϕ is concave, (4.11) and (4.12) imply

1
4

µ(Fn(
∞

∏
i=1

Xi))+
1
4

µ(Gn(
∞

∏
i=1

Yi))≤ ϕ
′
(1

4
sup

i
µ(Xi)+

1
4

sup
i

µ(Yi)
)
,

where ϕ′(t) =
(

max
{

1+D,sup
n∈N
{1+Qbn(r0)}

})
ϕ(t). Taking µ′ = 1

4 µ and ψ(t) = t.

Then we get

µ′(Fn(
∞

∏
i=1

Xi))+µ′(Gn(
∞

∏
i=1

Yi))≤ ϕ
′
(

sup
i
{µ′(Xi)+µ′(Yi)}

)
.

Now by using Colloraly 3, there exist (xi)
∞
i=1,(yi)

∞
i=1 ∈ (BC(R+))

ω such that

xn(t) = fn(t,x1(t), . . . ,xn(t))

+qn(t,x1(t), . . . ,xn(t))
∫

βn(t)

0
gn(t,s,(x j(s))∞

j=1)ds,
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and
yn(t) = fn(t,y1(t), . . . ,yn(t))

+qn(t,y1(t), . . . ,yn(t))
∫

∞

0
kn(t,s)hn(s,(y j(s))∞

j=1)ds
)
,

and this completes the proof. �

Example 2. Consider the following system of functional integral equations

xn(t) =
1
4

arctan(
1
n

n

∑
i=1
|xi(t)|)+

∫ sin t
n

0

scos(xn(s2))

et2 ds, (4.13)

and

yn(t) =
1
4

arctan(
1
n

n

∑
i=1
|yi(t)|)+

∫
∞

0

t(e−ns−1)
(t2 +1)n

∞

∑
i=1

e−is 2n−1
√

yi(s)ds. (4.14)

Eq. (4.13) is a special case of Eq. (1.1) and Eq. (4.14) is a special case of Eq.
(1.2) where

fn(t,x1, . . . ,xn) =
1
4

arctan(
1
n

n

∑
i=1
|xi|),

qn(t,x1, . . . ,xn) = 1,

gn(t,s,(x j)
∞
j=1) =

scosxn

et2 ,

kn(t,s) =
t

(t2 +1)n
(e−ns−1),

hn(s,(y j)
∞
j=1) =

∞

∑
i=1

e−is 2n−1
√

yi,

an(s) =
1

es−1
, bn(r) = 2n−1

√
r, βn(t) =

sin t
n

.

Suppose that t ∈ R+ and |xi| ≥ |yi|. Now, by taking ϕ(t) =
1
4

arctan(t) we have

| fn(t,x1, . . . ,xn)− fn(t,y1, . . . ,yn)| ≤
1
4
|arctan(

1
n

n

∑
i=1
|xi|)− arctan(

1
n

n

∑
i=1
|yi|)|

≤1
4

arctan(
1
n

n

∑
i=1
|xi− yi|)

≤1
4

arctan(max
1≤i≤n

|xi− yi|)

=ϕ(max
1≤i≤n

|xi− yi|).

(4.15)

The case |yi| ≥ |xi| can be treated in the same way. Moreover,

M := sup
{

max{| fn(t,0, . . . ,0)|, |qn(t,0, . . . ,0)|} : t ∈ R+,n ∈ N
}
= 1 < ∞.
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Thus from (4.15) we infer that condition (A1) holds. The condition (B1) is obvious.
Also, gn is continuous and

D =sup{
∣∣∣∫ βn(t)

0
gn(t,s,(x j(s))∞

j=1)ds
∣∣∣ : t ∈ R+, x j ∈ BC(R+),1≤ n < ∞}

=sup{
∣∣∣∫ sin t

n
0

scos(xn(s2))

et2 ds
∣∣∣ : t ∈ R+, x j ∈ BC(R+),1≤ n < ∞}= 1

2
,

lim
t−→∞

∣∣∣∫ sin t
n

0

scos(xn(s2))

et2 − scos(yn(s2))

et2 )ds
∣∣∣= 0,

uniformly respect to x j,y j ∈ BC(R+), which implies that condition (B2) is satisfied.
The condition (C1) clearly is evident. In order to show that condition (C2) is satisfied,
let us assume that sup

1≤i<∞

|yi|< ∞, so we have

|hn(t,(y j)
∞
j=1)|=

∞

∑
i=1

e−it 2n−1
√

yi ≤
∞

∑
i=1

e−it
2n−1

√
sup

1≤i<∞

|yi|

≤ 1
et −1

2n−1

√
sup

1≤i<∞

|yi|

=an(t)bn( sup
1≤i<∞

|yi|).

On the other hand, the function s−→ an(s)kn(t,s) is integrable over R+ for any fixed
t ∈ R+ and n ∈ N. Thus, condition (C2) is valid. Further, we get:

Q =sup{
∫

∞

0
an(s)|kn(t,s)|ds : t ∈ R+,n ∈ N}

=sup{ t
(t2 +1)n

∫
∞

0

e−ns−1
es−1

ds : t ∈ R+,n ∈ N}

=sup{ t
(t2 +1)n

n : t ∈ R+,n ∈ N}= 1
2
< ∞,

and

lim
t−→∞

∫
∞

0
an(s)|kn(t,s)|ds = lim

t−→∞

t
(t2 +1)n

∫
∞

0

e−ns−1
es−1

ds = lim
t−→∞

t
t2 +1

= 0.

This impliese that the condition (C3) holds. Moreover, for arbitrarily fixed T > 0 we
obtain: ∫

∞

T
an(s)|kn(t,s)|ds =

t
(t2 +1)n

∫
∞

T

e−ns−1
es−1

ds

≤ 1
2n

[e−nT + e−(n−1)T + e−(n−2)T + . . .+ e−T ].
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From the above estimate, we infer that condition (C4) holds. It is easy to see that
each number r ≥ 4 satisfies the inequality in condition (D1), i.e.,

(1+D)
(
ϕ(r)+M

)
= (1+

1
2
)
(1

4
arctan(r)+1

)
≤ r,

and

(1+Qbn(r))
(
ϕ(r)+M

)
= (1+

1
2

2n−1
√

r)
(1

4
arctan(r)+1

)
≤ r,

for all n ∈ N such that(
max

{
1+D, sup

n∈N
{1+Qbn(r0)}

})
ϕ(t) =

(
max

{
1+

1
2
, sup
n∈N
{1+ 1

2
2n−1
√

4}
})1

4
arctan(t)< t.

Thus, we can take r0 = 4. Consequently, all the conditions of Theorem 2 are satisfied.
Hence the system of functional integral equations (4.13) and (4.14) have at least one
solution put which belongs to the space (BC(R+))

ω.
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