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Abstract. Heat transfer enhancement of different nanofluid laminar flow over backward facing 

step is numerically studied in this paper. The expansion ratio is chosen according to the 

experimental setup suggested by Armaly H/h = 1.9432. The Reynolds number is taken in a range 

of 10 ≤ Re ≤ 400.  The result showed a primary recirculation region developed after the sudden 

expansion before it starts to change to become fully developed flow downstream of the 

reattachment point. The length of the reattachment point increases as Reynolds number 

increases. The effect of the volume fraction has observed along the downstream wall for Al2O3 - 

water nanofluid. Moreover, the impact of the volume fraction on the thermal boundary layer and 

heat transfer is investigated.  

 

1.  Introduction  

The flow separation and reattachment of the fluid is one of the common phenomena that happen in many 

engineering applications. Backward facing step geometry, where the flow separation happens due to a 

sudden expansion is one of the structures that can be found in heating and cooling devices such as: 

nuclear reactors, combustion chambers, flow in valves, cooling compressors blade, electronic cooling 

equipment, wide angle diffusers, and high-performance heat exchangers. The separation of the flow is 

unwanted in many of the previous examples due to the pressure drop, which causes energy losses by the 

additional fan or pumping power. However, in some applications for instance in the burner flame 

stabilization, the flow separation can enhance the heat transfer, where it is used for turbulence 

promotion. 

In 1950, a study on the separation and reattachment flow over a backward facing (BWF) step was 

conducted, which was considered as the first study and effort on the BWF flow. Then, due to the 

improvement in the numerical codes and computational tools the number of researches has started to 

investigate more types of geometrical and boundary conditions such as horizontal, inclined and vertical 

cases. A review on the fluid flow and heat transfer using a single phase for laminar mixed convective 

flow over different orientations steps is made by Abu-Mulaweh [1].  

The 2D backward facing step forced convection flow behaviour has been studied both experimentally 

and numerically. Denham and Patrick studied the flow without investigating the heat transfer effects 

[2]. In the experimental work, Armaly found that the reattachment point position moves downstream far 

from the sudden expansion as Reynolds number increases [3]. Furthermore, Shih, Chiang, and others 

investigated the 3D forced convection flow; the result of their studies shows that the reattachment zone 

is greater near the sidewall compared to the centre plane of the channel [4-12]. Also, the heat transfer 
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phenomena over the BWF is investigated extensively in the literature. This phenomenon has an 

influence on the fluid flow characteristics due to the buoyancy force. The horizontal flow has shown an 

irrelevant effect on the buoyancy effect compared to inclined and vertical flow due to the height 

limitation. The authors of the experiment and numerical works for the 2D airflow over a horizontal BWF 

heating with uniform heat flux or constant wall temperature have reported that the higher value of the 

local Nusselt number was noticed to be near the reattachment point while the lower value close to the 

step, and the recirculation region and Nusselt number decreases as the buoyancy force increases [13-

17].  

The 3D backward-facing step has been investigated using various parameters [18-24]. The results 

showed that the maximum local Nusselt number observed at the area of the reattachment point 

approximately between the centre-plane and the sidewall. Moreover, the effect of the backward facing 

step duct orientation was studied [25-29]. The authors reported that the inclination angle between 0° to 

180° has a significant effect on the reattachment length, where the increase in the inclination increases 

the reattachment length and decrease the wall fraction and Nusselt number. However, the opposite 

behaviour was noticed between 180° to 360° on the reattachment length and Nusselt number. The flow 

and heat transfer of nanofluid over a backward facing step behaviour was studied for the first time by 

Abu-Nada [30]. He investigated Reynolds number between 200 and 600 with volume fraction 0 to 0.2 

the study includes five different mixtures of nanofluids. In the literature, the number of studies dealing 

with such a problem is slightly small.  

Our goal is to investigate the flow behaviour and heat transfer for a higher concentration of 

nanoparticles flows. In section 2, the governing equations describe the model are given. In section 3, the 

geometry generated, the mesh dependency study and the numerical solution method are presented in 

section 4. The numerical simulations for forced convective flow over a BWF are carried out using 

different volume fractions. Our aim is to examine the velocity distribution, walls shear and the heat 

enhancement of the heat transfer at the bottom wall. 

2.  Model description and governing equations  

The computational domain is schematically shown in Figure 1. The expansion ratio has been chosen as 

H/h=1.9432, and the length of the upstream wall, and downstream were Lu = 5 m, and Ld =10 m, 

respectively. The flow at the inlet was considered to be hydrodynamically steady with temperature of 

274 K and the velocity specified by Reynolds number 10 ≤ Re ≤ 400. The downstream stepped wall was 

heated with constant temperature of 400 K, and all the other walls were fixed to be adiabatic. The single-

phase approach for solving the flow of nanofluid problem is adopted in this numerical study. In this 

approach the following assumptions are used:  

 The nanoparticles and the base fluid (water) are to be perfectly mixed and treated as a 

homogenous mixture. Moreover, the fluid phase and the solid particles are assumed to be in 

thermal equilibrium and move with the same velocity.  

 Steady, Newtonian and incompressible fluid flow is considered. 

 The thermophysical properties of the nanofluid are temperature independent and assumed to be 

dependent on the volume fraction of the nanoparticles.  

 
Figure 1. The schematic diagram of the computational domain  

 

X1 
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2.1.  Governing equations 

Equations (1) to (3) are continuity, momentum, and energy governing equations that present the 

mathematical formulation of the single-phase model [39][40]. 

 

                                                𝑑𝑖𝑣(𝜌𝑛𝑓�⃗� ) = 0                                                          (1) 

 

                                     𝑑𝑖𝑣(𝜌𝑛𝑓�⃗� �⃗� ) = −∇𝑃 + 𝜇𝑛𝑓∇
2�⃗�                                            (2)   

 

                                   𝑑𝑖𝑣(𝜌𝑛𝑓�⃗� 𝐶𝑝𝑛𝑓𝑇) = 𝑑𝑖𝑣(𝑘𝑛𝑓∇𝑇)                                          (3) 

 

where the following notations are used: 

�⃗� , P, and T present the velocity vector, pressure, and temperature, respectively. 𝜇𝑛𝑓 is the viscosity of 

nanofluid, 𝜌𝑛𝑓  is density of the nanofluid, 𝑘𝑛𝑓, and 𝐶𝑝𝑛𝑓 are the thermal conductivity and thermal 

capacity, respectively.  

2.2.  Thermal properties of the nanofluid  

The thermal properties of the nanofluid are modelled as a function of the volume fraction. The viscosity, 

density, thermal capacity, and the thermal conductivity are approximated depending on the 

concentration of the nanoparticles in the base fluid using equation (4)-(7) as defined in [31-36]. Table 

1. Shows the thermo-physical properties for Al2O3-water at a different values of 𝜙 [37].  

 

                                  𝜇𝑛𝑓 =
𝜇𝑏

(1−𝜙)2.5                                                                  (4) 

 

                                 𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑏 + 𝜙𝑝𝜌𝑝,                                        (5) 

   

                                𝐶𝑝𝑛𝑓 =
𝜙(𝜌𝐶𝑝)𝑝+(1−𝜙)(𝜌𝐶𝑝)𝑏

𝜌𝑛𝑓
,                                       (6) 

 

                                𝑘𝑛𝑓 = 𝑘𝑏
𝑘𝑝+2𝑘𝑏−2𝜙(𝑘𝑏−𝑘𝑝)

𝑘𝑝+2𝑘𝑏+𝜙(𝑘𝑏−𝑘𝑝)
.                                             (7) 

 

 

Table 1. The thermo-physical properties of water-Al2O3 at different value of 𝜙 

 
 

Parameter 
Pure water 

(0%) 

Al2O3-water 

(1%) 

Al2O3-water 

(2%) 

Al2O3-water 

(3%) 

Al2O3-water 

(4%) 

𝜌[𝑘𝑔/𝑚3] 997.1 1026.829 1056.558 1086.287 
1116.016 

𝐶𝑝[𝐽/𝑘𝑔. 𝐾] 4179 4047.005 3922.4389 3804.6906 
3693.2155 

k[w/m. K] 0.613 0.63073914 0.6488238 0.6672642 
0.6860711 

μ[Pa. s] 0.001 0.001025444 0.001051180 0.001079122 
0.001107444 
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3.  Numerical procedure and validation 

3.1.  Geometry  

The geometry is generated by using ICEM CFD, and the two-dimensional flow problem was chosen 

according to the experimental setup published by Armaly et al [3], where H/h=1.9432 is the expansion 

ratio. H is the channel height downstream, and h is the height of the inflow channel. In the present study, 

all the geometrical length is made based on the channel height, Lu =5h is the upstream channel length, 

while Ld =10 h is the downstream channel length.  

3.2.  Mesh grid testing and model validation 

Non-uniform quadrilateral grid system is employed for meshing the domain generated by Blocking 

method in ICEM CFD as shown in Figure 4. The grid is centred on the walls and the step will give 

greater simulation accuracy and more efficient computing time. The maximum face size of the mesh 

was 0.005 m and the maximum aspect ratio 1:2. Four different meshes represent the criteria of grid 

independency at Re=100 (see Table 1).  

The purpose of this mesh dependency study for X1 is to avoid the result relying on the mesh. After 

the 3rd mesh, the grid difference is less than 1%, which can be considered as grid-independent. For 

further validation, the result of the reattachment point compared to Armaly's work, where the result 

showed excellent agreement, as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The grid independency  

Mesh Size X1 

1 25*80 2.6891 

2 35*90 2.7078 

3 40*100 2.7191 

4 50*110 2.7192 

 

3.3.  Numerical solution method 

A finite volume method (FVM) was used for discretizing the equations of mass, momentum, and energy. 

ANSYS fluent solver used to perform the calculations by solving the system of equations (1) – (3) 

together with the boundary conditions. The solution method was as follows: a simple algorithm was 

used to resolve the velocity-pressure coupling. The convection and diffusion terms in the governing 

equations were discretized using a second-order upwind scheme. The convergence criteria of the 

solutions monitored by a residual monitor of 10-6. 

 

 

Figure 2. Mesh generation for the model  
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3.4.  Validation  

The streamlines of the steady state flow of water are compared with the results of Armaly’s flow field 

for the same expansion ratio. For Reynolds number Re=10 the flow follows the upper convex corner 

without revealing a flow separation and a corner vortex is formed in the concave corner after the step. 

Figure 4 shows the experimental and numerical simulation result for Re =10. Moreover, for a higher 

value of Reynolds number, the corner vortex strongly increases in size. At Re=50 it can be seen that the 

corner vortex reaches up to the corner of the step and covers the complete face of the step. For Re=100 

the same behaviour is observed, i.e., with increasing the Reynolds number the size of the recirculation 

region steady increases. Figure 3 exhibits the variation reattachment length as a function of the Reynolds 

number and the excellent agreement of the present simulation with the experimental results of Armaly, 

and Biswas [3], [38].  
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Figure 3. Comparison length X1 of present study with Armaly’s experimental results 

Figure 4.  Stream line patterns for the flow separation at Re=10  
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Figure 7. Streamline patterns for the flow separation at Re = 400 

Figure 6. Streamline patterns for the flow separation at Re=100 

Figure 5. Stream line patterns for the flow separation at Re=50  
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4.  Result  

4.1.  Hydrodynamic effect of nanofluid 

The distributions of the velocity for different nanoparticle volume fractions for Re=100 and at different 

sections along the downstream channel are shown in Figures 8-10 for volume fraction ϕ=1, 2, 3, or 4%. 

The numerical simulations show that the velocity increases as the volume fraction increase at the 

location x=2, and after the reattachment point the velocity starts to decrease as the volume fraction 

increases. Two observations are made for the velocity distribution along the downstream wall. The first 

is for the area between the side wall and the reattachment point, where the result shows that the velocity 

of the nanoparticles is independent from the sudden expansion and was influenced by the volume 

fraction, where the velocity increase as the concentration of the particles in the base fluid increases. The 

second observation after the recirculation zone is that the velocity starts to decrease as the volume 

fraction increases and that can be seen in Figure 10 at the outlet x=10, and that is shown in Figure 10 at 

the outlet x=10.  

 

 

 

Figure 8. Velocity distribution for different value of volume fraction at x=2m  

Figure 9. Velocity distribution for different value of volume fraction at x= 3 and at x= 5 

x=3 x=5 
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The effect of the volume fraction on the wall shear stress is presented in Figure 9 along the 

downstream wall. It can be seen that the wall shear stress has negative value in the recirculation zone, 

where that is due to the reverse flow in that area. The magnitude of the wall shear stress increases as the 

volume fraction increases. After the reattachment point, the value of the wall shear stress decreases as 

the volume fraction increases which explains why the velocity in Figure 8 has its maximum value for 

𝜙 = 0.04. Then, the value of wall shear stress increases with the increase in the concentration of the 

particles after the velocity profile reattached and redeveloped approaching a fully developed flow. As 

the fluid flows toward the outlet that effect can be seen in the velocity profile Figure 10, where the water 

has the highest velocity at the outlet.  

 

 

Figure 11. Wall shear stress at different volume fraction along the downstream wall 
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Figure 10. Velocity distribution for different value of volume fraction at x=10  
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4.2.  Thermal effect of nanofluid 

Numerical results for the thermal boundary layers at different locations along the downstream wall are 

presented. Figures 12-14 present the impact of the nanoparticle volume fraction on the temperature 

profile for Al2O3-water for different concentrations. The thermal boundary layer thickness increases 

with an increase in the parameter ϕ. Comparison of the temperature profiles for different nanofluid 

concentration shows that Al2O3- water at 0.04 has the thickest thermal boundary layer. Therefore, it is 

observed that the nanoparticles change the flow and heat transfer characteristics and causes an increase 

in the thermal boundary layer.   

 

 

 
 

Figure 13. Temperature profile for Al2O3 for different value of volume fraction at x=3 and x=5 

Figure 12. Temperature profile for Al2O3 for different value of volume fraction at x=2  

 

 

x=3 x=5 
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The effect of the nanoparticles concentration on the heat transfer is studied and the result is 

introduced in Figure 15. The result shows the variation of the average heat transfer along the downstream 

wall for the five-volume fractions tested fluids 0,1,2,3,4 %. It can be observed an improvement in the 

heat performance with the increase in the volume fraction. The nanofluid with a 4% volume 

concentration showed the highest heat transfer values along the downstream wall. From the graph, a 

remarkable increase in the average heat transfer is located in the reattachment point. This increase is due 

to the increase in the temperature gradient at the lower wall, which implies an increase in the inertia 

forces, more, the increase in the concentration results in augmentation in the thermal conductivity. 

 

 

 
 

Figure 15. The average heat transfer along the plate (Al2O3 -water case) 
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Figure 14. Temperature profile for Al2O3 for different value of volume fraction at x=10 
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5.  Conclusion 

 

CFD simulations of the forced convection flow over backward facing step were carried out. We can 

summarize our findings as follows: 

The flow reattachment points calculated in this paper have excellent agreement with those obtained 

experimentally by Armaly et al. [3]. We have an excellent agreement with result got simulation by 

Biswas et al. [38]. Validating the numerical result with measured data given in [3]. In our paper we have 

pointed on the impact of the Al2O3 nanoparticles in water base fluid. We examined how the velocity 

distribution, the wall shear stress, the temperature distribution and the heat transfer change with volume 

fraction of the nanoparticles. The maximum velocity shows an increase with increasing volume fraction 

at x=2, however at the outlet the impact of ϕ is opposite. It is obtained that the temperature is increased 

with increasing the volume fraction of Al2O3everywhere. The heat transfer is higher when the volume 

fraction is bigger. For the downstream wall, the highest heat transfer performance was obtained for 

maximal ϕ of tested fluids. Our aim is to investigate the impact of the nanoparticle’s material on the 

velocity and thermal profiles. 

 

Acknowledgment: 
The described study was carried out as part of the EFOP-3.6.1-16-2016-00011 Younger and Renewing University 

– Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent 

specialisation project implemented in the framework of the Széchenyi 2020 program. The realization of this 

project is supported by the European Union, co-financed by the European Social Fund. The second author was 

supported by project no. 129257 implemented with the support provided from the National Research, Development 

and Innovation Fund of Hungary, financed under the K_18 funding scheme. 

 

References  

[1] Abu-Mulaweh H I  2003 Int. J. Therm. Sci 42  897 

[2] Denhum M K and Patrick M A 1974 Trans. Instn. Chem. Eng 52 361 

[3] Armaly B F Durst F Pereira J C F and Schonung B 2006 J. Fluid Mech 127  473 

[4] Shih C and Ho C M 1994 J. Fluids Eng 116 228 

[5] Chiang T P Sheu T W H and Tsai S F 1997 Comput. Fluids 26 321 

[6] De Brederode V and Bradshaw P 1972 I. C Aero Report 72 9 

[7] Hertzberg J and  Ho C M 1992 AIAA J 30 2420 

[8] Tylli N Kaiktsis L and Ineichen B 2002 Am. Inst. Phys 14 3835 

[9] Armaly B F Li A and Nie J H 2003 Int. J. Heat Mass Transfer 46 3573 

[10] Nie J H and Armaly B F 2004 Int. J. Heat Mass Transfer 47  4713 

[11] Hsieh T Y Hong Z C and Pan Y C 2010 Numer. Heat Transfer 57 331 

[12] Chiang T P and Sheu T W H 1997 Numer. Heat Transfer 31 167 

[13] Aung W 1983 J. Heat Transfer 105  823 

[14] Sparrow E M and Chuck W 1987 Numer. Heat Transfer 12 19 

[15] Khanafer K Al-Azmi B Al-Shammari A and Pop L 2008 Int. J. Heat Mass Transfer 51 5785 

[16] Chen Y T Nie J H Armaly BF and Hsieh H 2006 Int. J. Heat Mass Transfer 49  3670 

[17] Kanna P R and Das M K 2006 Numer. Heat Transfer 50 165 

[18] Iwai H Nakabe K and  Suzuki K 2000 Int. J. Heat Mass Transfer 43 457 

[19] Nie J H and Armaly B F 2002 Int. J. Heat Mass Transfer 45 2431 

[20] Armaly B F Li A and  Nie J H 2002 J. Thermophys. Heat Transfer 16 222 

[21] Barbosa J G Saldana and Anand N K 2005 Int. J. Comput. Meth. Eng. Sci. Mech 6 225 

[22] Barbosa J G Saldana,. Anand N K and Sarin V 2005 J. Heat Transfer 127  1027 

[23] Lan H Armaly B F and Drameier J A 2009 Int. J. Heat Mass Transfer 52 1690  

[24] Carrington D B and Pepper D W 2002 Numer. Heat Transfer 41 555 

[25] Lin J T Armaly B F and Chen TS 1991 Int. J. Heat Mass Transfer 34 1568 

[26] Lin J T Armaly BF and Chen TS 1990 Int. J. Heat Mass Transfer 33 2121 



MMCTSE 2020

Journal of Physics: Conference Series 1564 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1564/1/012010

12

 

 

 

 

 

 

[27] Hong B Armaly B F and Chen T S 1993 Int. J. Heat Mass Transfer 36 3059 

[28] Abu-Mulaweh H I Armaly B F and Chen T S 1993 Int. J. Heat Mass Transfer 36 1883 

[29] Iwai H Nakabe K Suzuki K and Matsubara K  2000 Int. J. Heat Mass Transfer 43 473 

[30] Abu-Nada E 2008 Int. J. Heat Mass Transfer 29  242 

[31] Brinkman H C 1952 J. Chemistry Physics 20  571 

[32] Mahbubul I M Saidur R and Amalina M A 2012 Int. J. Heat Mass Transf  55 874 

[33] Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 242 

[34] Khanafer K and Vafai K 2011 Int. J. Heat Mass Transf  54 4410 

[35] Xuan Y and Li Q 2000 Int. J. Heat Fluid Flow 21 58 

[36] Kakaç S and Pramuanjaroenkij A 2009 Int. J. Heat Mass Transf  52 3187 

[37] Oztop H F and Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 1326 

[38] Biswas G  Breuer M and Durst F 2003 J Fluid Eng 126  362 

[39] Abdullah A Alrashed Omid A Akbari  Ali H  Davood Majid Z  Gholamreza A SShabani  Ali Reza 

S and Marjan G 2018 Physica B: Physics of Condensed Matter 18 30141 

[40] Mustafa T 2019 Comput. Meth. Progr. Bio. 19 31698 

 


