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An up-to-date overview of the CFOUR program system is given. After providing a brief

outline of the evolution of the program since its inception in 1989, a comprehensive pre-

sentation is given of its well-known capabilities for high-level coupled-cluster theory and

its application to molecular properties. Subsequent to this generally well-known back-

ground information, much of the remaining content focuses on lesser-known capabilities of

CFOUR, most of which have become available to the public only recently or will become

available in the near future. Each of these new features is illustrated by a representative

example, with additional discussion targeted to educating users as to classes of applica-

tions that are now enabled by these capabilities. Finally, some speculation about future

directions is given, and the mode of distribution and support for CFOUR are outlined in

the appendix.
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I. INTRODUCTION

The origin of the CFOUR (Coupled-Cluster techniques for Computational Chemistry) program

package1 is deeply connected with the story of several young scientists crossing paths at an early

stage of their careers in Rodney J. Bartlett’s group at the Quantum Theory Project at the University

of Florida in Gainesville, near the dawn of the 1990s. After attending the inaugural Molecular

Quantum Mechanics (MQM) meeting in honor of John A. Pople in Athens, GA, in October 1989,

John F. Stanton was inspired by the rapid development around the world in high-accuracy quantum

chemical methods, and especially by the rapid progress that was being made in their application

to interesting and “real” chemical problems. Educated in the Bartlett group, he had been fully

convinced of the power of high-level many-body methods, and was determined to develop a new

set of programs to bring these approaches to bear on meaningful chemical applications. Upon his

return to Gainesville, Stanton started a project that has now lasted more than three decades, which

has led to what is now known as CFOUR. By the end of 1989, he had written interfaces to the

self-consistent field (SCF) and integral packages used in the Bartlett group – the ACES (Advanced

Concepts in Electronic Structure) program system.2 In 1990, Jürgen Gauss arrived in Gainesville

for a postdoc in the Bartlett group, which fueled the development of the project. Together, Stanton

and Gauss wrote many-body perturbation theory (MBPT)3 and coupled-cluster (CC)4 codes – the

latter through CC with singles and doubles (CCSD) – that included analytic gradients5 as well as

the exploitation of molecular point-group symmetry (D2h and subgroups).6

John D. Watts, another postdoc in the Bartlett group at that time, contributed code for triple

excitations, and Walter J. Lauderdale, a graduate student, wrote a new SCF and integral trans-

formation program. Together with atomic orbital (AO) integrals coming from the MOLECULE

package7 of Jan Almlöf (one- and two-electron integrals; the code had recently been extensively

modified for performance on vector processors by Peter R. Taylor), the VPROPS package8 (dipole

and other one-electron property integrals, which can trace its lineage back to the POLYATOM

package9), and integral derivatives coming from the ABACUS package10 of Trygve Helgaker et

al., the main core of what was to become CFOUR had already emerged. Apart from AO integral

and integral derivative evaluation, all other code was completely new; nothing associated with

Hamiltonian construction, MBPT and CC energy and density evaluation was taken from another

source; indeed even input parsing and general processing of output (vibrational frequencies, for

example) was written from scratch. With this nucleus, a number of chemical applications11–13
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were done at the dawn of the 1990s, and a first paper14 describing the code – called ACES II at

that time – was published in 1992.

Following the move of the main developers: Stanton to Austin, TX, and Gauss to Karlsruhe

(Germany) and later Mainz (Germany) the main development centers of ACES II migrated from

the original Gainesville location, taking their exposure to many-body methods with them. This

eventually resulted in a bifurcation of ACES II, comprising the Mainz-Austin-Budapest (MAB)

version – the Budapest center (Hungary) involving Péter G. Szalay as another main author. In

Gainesville, this was followed by a complete rewrite of the overall package devised to target

emergent parallel computers. This is known now as the ACES III package.15 Finally, in 2008, the

Mainz-Austin-Budapest version of ACES II, by now containing many new features and enhanced

computational sophistication, was renamed as CFOUR.16

Since its beginnings, CFOUR has specialized in high-accuracy quantum chemical methods,

targeting applications in the field of thermodynamic, spectroscopic and kinetic phenomena of

small- to medium-sized molecular systems. While some of its nearly thirty-year-old primor-

dial core remains in the current version, much has also changed since its inception. Incremen-

tal algorithmic improvements have been made to existing capabilities, and new methodology has

been continuously added to the package by developers throughout the world. Some of the ca-

pabilities included today (together with their first appearance in CFOUR) are: NMR chemical

shifts ranging from second-order MBPT through CCSD(T) (1990s);17–23 equation-of-motion cou-

pled cluster methods for electronic excited and ionized states;24–29 analytic second derivatives for

MBPT and CC through CCSDT (1990s);23,30–33 automated evaluation of anharmonic (quartic)

force fields and computation of associated rovibrational spectroscopic constants (1990s);34,35 new

open-shell CC methods (1990s);36,37 properties associated with high-resolution spectroscopy such

as spin-rotation tensors (1990s and 2000s);35,38–41 arbitrarily high-order CC gradients and sec-

ond derivatives (as interfaced to the MRCC package42,43 of Mihály Kállay, 2000s);44–47 diagonal

Born-Oppenheimer corrections (2000s);48,49 couplings between quasidiabatic states (2010s);50,51

relativistic quantum chemical methods (2010s);52–60 multireference CC methods (2010s);61 highly

efficient code for high-accuracy (post-CCSD(T)) methods (2010s);62 and many more.

Following the work of the original team, and beginning their careers in the groups of the

main authors, many more young scientists actively contributed to CFOUR. The primary authors

of CFOUR now include Lan Cheng, who has contributed extensively with relativistic quantum

chemical methods56,58–60 for both energy and property calculations; Devin A. Matthews, who has
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written a new and very fast coupled-cluster module (xncc)62 for CFOUR and contributed signifi-

cantly to some of the spectroscopic extensions of CFOUR;63,64 and Michael E. Harding, who has

been in charge of many issues related with code infrastructure, parallelization,65,66 and general

organization.

An accurate characterization of CFOUR is that it is a program system with many capabili-

ties for the highly accurate calculation of parameters that play a role in diverse areas of chemical

physics. Largely through methods based on coupled-cluster theory,4 one can calculate potential

energy surfaces, couplings between electronic states, a vast number of one- and two-electron prop-

erties that play a role in various branches of molecular spectroscopy, relativistic corrections to elec-

tronic structure, and generally obtain information that can be extracted from accurate electronic

wavefunctions and their response to external perturbations. Beyond this, there are auxiliary tools

that make use of this fundamental information. For example, vibrational perturbation theory67 can

be used to obtain accurate positions for the fundamental vibrational levels of semirigid polyatomic

molecules (using the efficiently-calculated anharmonic force field); information can be extracted

to construct vibronic Hamiltonians in a diabatic representation; extrapolation to the basis set limit

can be done in an automated fashion;68 molecular structures can be fitted to rotational constants,35

(both the raw experimental data and the equilibrium constants corrected (by CFOUR calculations)

for the effects of vibration-rotation interaction;34,67 etc.

The capabilities of CFOUR can be also used in conjunction with features of other computa-

tional chemistry programs (e.g., MRCC,42,43 GIMIC,69 NEWTON-X,70–72 and GECCO73,74) to

which CFOUR has been interfaced.

While providing powerful tools for the quantum chemical study of small- to medium-sized

molecules, CFOUR does not have a great deal to offer in the area of large molecules. Develop-

ments in CFOUR have focused on many-body treatments of electron correlation, and the methods

of density functional theory are completely absent from its repertoire. The coupled-cluster meth-

ods available in CFOUR are mainly single-reference methods, meaning that calculations are built

upon a single Slater determinant that is usually (but need not be) composed of orbitals associated

with the Hartree-Fock self-consistent field (HF-SCF) solution. While some multireference effects

can certainly be treated within the framework of equation-of-motion coupled-cluster (EOM-CC)

methods75 – this area represents a decided strength of CFOUR – more traditional methods based

on multiconfigurational zeroth-order wavefunctions are needed to describe phenomena associated

with bond-breaking, to construct (semi-)global potential energy surfaces, and even to treat certain
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classes of transition states. While some of these limitations described above have been addressed

by implementing multireference variants of CC theory61,76 and incorporating a rigorous second-

order complete-active space SCF (CASSCF) scheme77 in CFOUR, the currently available version

of the program exclusively offers single-reference treatments of the correlation problem.

The remainder of this paper elaborates on the strengths and capabilities of the CFOUR program

system. The next section summarizes the “core features” of CFOUR, specifically its treatments

of the non-relativistic electronic Schrödinger equation based on CC and MBPT methods, and its

capabilities for calculating properties within these approximations using analytic derivative tech-

niques. Many users of CFOUR are likely to be familiar with these capabilities, and the section

largely serves to document these features with some remarks about the current status of implemen-

tations. We continue with a short section about practical aspects such as input and use of CFOUR.

After that, a section is included to describe new developments that are present in CFOUR, either

in the current version (V2.1) or versions likely to come in the near future. After the discussion of

the present state of the CFOUR project, we proceed with some remarks about the general long-

term perspective on the future of CFOUR and close by describing the method by which the code

is distributed.

II. ESTABLISHED FEATURES

A. Treatments of electron correlation

The available treatments of electron correlation in CFOUR are based on many-body pertur-

bation theory (MBPT, also known as Møller-Plesset (MP) perturbation theory)3,78 and coupled-

cluster (CC) theory4,79,80 and collectively referred to as single-reference methods, as their descrip-

tion of electron correlation starts from a single Slater determinant.

CC theory was originally formulated for the quantum-chemical treatment of nuclear matter.81,82

After its introduction into electronic structure theory by Čížek83,84 in 1966, it developed to one of

the most powerful schemes quantum chemistry nowadays has to offer for the electron-correlation

treatment and for high-accuracy computations. The success of CC theory is probably best illus-

trated by the fact that the CCSD(T) method,85 to be described in detail below, often is referred to

as the “gold standard” in quantum chemistry.

6
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CC theory uses an exponential ansatz for the wavefunction

|ψ〉= exp(T )|0〉 (1)

where |0〉 denotes the reference determinant (often, but not necessarily chosen as the HF state)

and T the cluster operator which is an excitation operator and consists of the weighted sum of all

excitations

T = T1 +T2 + ...TN . (2)

The sum in Eq. (2) runs up to TN with N as the number of electrons. T1, T2, ... denote the weighted

sums of single, double, ... excitations with the unknown parameters given by the weighting coef-

ficients that are usually referred to as amplitudes. The chosen wavefunction ansatz in Eq. (1) has

significant advantages over the corresponding linear choice in configuration-interaction (CI) the-

ory, as it ensures size-consistency86/size-extensivity87 of the electron-correlation treatment even

within a truncated scheme that does not include all excitations. CC theory therefore is, by con-

struction, a size extensive approach.

Because of the exponential ansatz, the CC wavefunction is typically not determined via the

variational principle. Instead, one uses a projection approach in which the CC wavefunction is

inserted into the electronic Schrödinger equation, the latter is then multiplied from the left with

exp(−T ), and an expression for the energy is obtained by projection onto the reference determinant

E = 〈0|exp(−T )H exp(T )|0〉 (3)

and nonlinear equations for the amplitudes are obtained by projection onto the excited determi-

nants

0 = 〈ΦP|exp(−T )H exp(T )|0〉. (4)

In Eqs. (3) and (4), H denotes the usual molecular Hamiltonian and ΦP a determinant from the

manifold of excited determinants. The nonlinear amplitude equations, Eq. (4), consequently need

to be solved for all possible ΦP.

Without any truncation, CC theory is equivalent to, though more involved than, full configura-

tion interaction (FCI) and hence in that form not particularly useful. CC theory demonstrates its

advantages only when used with a truncated cluster operator. The usual choices are here T = T2

(CC doubles, CCD),88–90 T = T1 + T2 (CC singles and doubles, CCSD),91 T = T1 + T2 + T3

7
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(CC singles, doubles, triples, CCSDT),92,93 and T = T1 + T2 + T3 + T4 (CC singles, doubles,

triples, quadruples, CCSDTQ),44,94,95 etc. While initially the implementation of CC methods

was quite cumbersome,89–91 the use of intermediates together with a rewrite of the equations in

terms of matrix-vector products has enabled more straightforward access to CC methods6,95,96

and forms also the basis of the CCSD implementations in CFOUR which is described in detail

in Ref. 6. CFOUR also offers the possibility to perform CCSDT92,93,97 as well as CCSDTQ

calculations.44,62,94,95 In addition, via an interface to the MRCC code,42 CC computations with

arbitrary excitations are possible.44

While CCSD is for many applications not accurate enough and CCSDT with an M8 scaling (M

denotes here the system size, which is assumed proportional to both the number of occupied and

virtual orbitals) too expensive, approximate CC methods have been developed in which not only

the cluster operator is truncated but (expensive) terms in the CC equations are also neglected. This

leads in the case of triple excitations in a straightforward manner to the CCSDT-n methods.98,99

The key idea is here to (a) skip the M8 terms and (b) avoid storage of the triples amplitudes. The

selection of the terms in the triples equations is then based on perturbation theory and leads to

CCSDT-1a,98 CCSDT-1b,98 CCSDT-2,99 and CCSDT-3.99 Somewhat related to CCSDT-1b is the

CC3 model100 which has been introduced by the Aarhus group in the context of CC response

theory.101 All these models (CCSDT-n with n = 1–3 and CC3) scale with M7 and do not require

storage of triple excitation amplitudes. The CC3 model furthermore is part of an alternative hierar-

chy of CC methods: CC2, CCSD, CC3, CCSDT, CC4, ... in which CC2102 is the simplest choice

and a cheap approximation to CCSD with a M5 scaling and no need to store double excitation

amplitudes. In this context one should also mention the quadratic CI singles and doubles (QCISD)

scheme103 by Pople et al., which was introduced as a simpler alternative to CCSD. However, as

there are nowadays no difficulties to implement CCSD, QCISD now plays only a minor role.

The CCSDT-n and CC3 models are significantly more efficient in computational terms than

the full CCSDT model, but they are for many applications still not affordable due to the need to

consider triple excitations in each iteration. This issue can be ameliorated by just considering a

perturbative correction for triple excitations on top of a CCSD computation. Starting with early

ideas based on corrections taken from fourth order MBPT or MP theory,99,104 ultimately led to

the development of the (T) correction which involves the fourth-order correction due to triple

excitations,85,105 though computed with the converged CCSD amplitudes, together with one fifth-

order correction, namely the one that couples singles and triples. Justifications for this choice

8
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have been for example given in Refs. 106 and 107. Similar ideas as in the case of CCSD(T)

for triple excitations can be also pursued for the perturbative treatment of quadruple excitations,

which leads to the CCSDT(Q) approach.108,109 More elaborate triple and quadruple corrections110

(referred to as Λ-CCSD(T)111 and Λ-CCSDT(Q)109) can be obtained by using the solution of the

Λ equations in addition to those of the amplitude equations for the evaluation of the perturbative

corrections.107,109,111,112

Considering the treatment of closed- and open-shell systems, CFOUR offers spin-adapted

treatments for closed-shell systems and open-shell treatments based on UHF and ROHF reference

determinants.12 The UHF-CC treatment is a straightforward spin-orbital based approach, though

with spin integration, while ROHF-CC113 formally classifies as a non-HF CC approach as the

occupied-virtual block of the Fock matrix in the spin-orbital basis does not vanish. However, this

only requires the trivial inclusion of off-diagonal elements of the Fock-matrix in the CC equations

within a standard CC treatment, but some thought is required to formulate appropriate perturba-

tive corrections.114,115 The latter are most efficiently implemented using so-called semicanonical

orbitals.116 CC calculations can also be carried out using the quasi RHF (QRHF) determinant113

as reference (here the orbitals for the reference determinant are obtained in a RHF calculation

with a different number of electrons). Further options involve Brueckner CC (B-CC)117,118 and

orbital-optimized CC calculations.119 In both cases, the orbitals are determined in the presence of

electron correlation which, though more expensive, sometimes turn out to be more efficient.

MBPT can be derived using perturbative techniques together with the Møller-Plesset partitioning120

of the electronic Hamiltonian. Alternatively, expressions for the various orders of MBPT can be

obtained through perturbative expansions of the CC energy expression as well of the CC ampli-

tude equations. Second-order MBPT, known as MBPT(2) or MP2, has evolved over the years

to the standard scheme for a first (and not particularly accurate) description of electron cor-

relation at low cost (the formal scaling is only of the order of M5) for otherwise rather well

behaved systems. Higher-order MBPT schemes (up to sixth order) have also been formulated

and implemented,86,121–125 but are only rarely used. The reasons are the now well established

convergence problems of MBPT126,127 as well the availability of the more robust CC methods.

Nevertheless, MBPT(3) (equivalent to MP3) and MBPT(4) (equivalent to MP4) are accessible

through CFOUR. MBPT(5) and MBPT(6) are only available in specialized codes,123–125 while

even higher order MBPT corrections so far can only be extracted from a perturbative dissection of

FCI.128,129

9
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MBPT is rather straightforward to formulate for restricted and unrestricted HF (RHF and UHF)

reference functions. However, after some experimentation,130–132 a satisfactory formulation of

MBPT for restricted open-shell HF (ROHF) reference functions has been suggested.116,133,134 The

perturbed Hamiltonian contains here also the virtual-occupied blocks of the Fock matrices in a

spin-orbital formulation and a non-iterative treatment is possible when semicanonical orbitals are

used.116

Table I summarizes the CC and MBPT/MP methods that are currently available in the current

public version (V2.1) of CFOUR together with information about the possible choices for the

reference determinants.

B. Analytic derivatives for the computation of molecular properties

A particular strength of CFOUR is its ability to provide analytic derivatives of the energy

and thus easy access to molecular properties for most implemented quantum-chemical meth-

ods. Analytic derivative techniques136,137 play an important role for the computation of molec-

ular geometries, as only analytically evaluated forces render geometry optimizations routinely

doable. CFOUR offers geometrical derivatives5,32,45,114,138–141 for most of the implemented CC

and MBPT methods and thus allows the routine determination of equilibrium geometries (prefer-

ably via the BFGS scheme142) but also of transition-state geometries using methods based on

eigenvector following.143

In CC theory, analytic gradients have been formulated144,145 and implemented144 rather late.

The main reason is the non-variational character of the standard CC approaches. Straightforward

differentiation of the CC energy expression, Eq. (3), with respect to a perturbation x thus leads to

an expression that involves the derivatives of the cluster operator

dE
dx

= 〈0|exp(−T )
dH
dx

exp(T )|0〉

+ 〈0|[exp(−T )H exp(T ),
dT
dx

]|0〉. (5)

Evaluation of gradients based on this expression would offer little advantage over a finite-

difference approach. However, based on the interchange theorem of perturbation theory,146 the

derivative expression can be reformulated such that the derivatives of the cluster operator T are

no longer needed. This has been shown by Adamowicz and Bartlett,147 thereby introducing the

perturbation-independent Λ equations, and used by Scheiner et al.144 for their implementation of
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TABLE I. CC and MBPT/MP methods available in the CFOUR program package.a A single x designates

that only energy evaluations are possible, while xx indicates that both energy and gradients can be calculated

and xxx indicates that analytic second derivatives are available.

method RHF UHF ROHF remarks

HF xxx xxx xxx

MBPT(2)/MP2 xxx xxx xx

MBPT(3)/MP3 xxx xxx xx

SDQ-MBPT(4)/SDQ-MP4 x x x

MBPT(4)/MP4 xxx xxx x

CCD xxx xxx

CCSD xxx xxx x also Brueckner, orbital-optimized CCSD, QRHF-CCSD

CCSDT xxx x x

CCSDTQ xx

CCSDT-n, n = 1a,1b,2,3 xxx xxx

CCSDTQ-n, n = 1a,1b,3 xx

CC2 xxx xxx inefficient code, M6 scaling

CC3 xxx xxx

CC4 xx

CCSD+T(CCSD) x x

CCSD(T) xxx xxx xx

Λ-CCSD(T) xx x

CCSD+TQ(CCSD) x

CCSD+TQ*(CCSD) x

CCSDT+Q(CCSDT) x

CCSDT(Q) xx

CCSDT(Q)/A x differs from CCSDT(Q) for closed-shell non-HF reference

CCSDT(Q)/B x differs from CCSDT(Q) for closed-shell non-HF reference

Λ-CCSDT(Q) x

CCSD(T-n), n = 2,3,4,5b x

CCSD(TQ-n), n = 2,3,4c x

CCSDT(Q-n), n = 2,3,4,5,6c x

LCCDd x x

LCCSDe x x

CISD x x x

QCISD xxx xxx

QCISD(T) xxx xxx

a Additional methods, in particular open-shell variants of higher-order coupled cluster methods including in many cases gradients and analytic
second derivatives are available through the interface to the MRCC program. See the MRCC manual (www.mrcc.hu) for a complete list.

b See Ref. 107.
c See Ref. 135.
d LCCD stands for linearized CCD.
e LCCSD stands for linearized CCSD.
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analytic closed-shell CCSD gradients. A modern formulation of CC derivative theory is based on

the Lagrangian formalism introduced by Helgaker and Jørgensen.148–150 In order to cope here with

the non-variational character of the standard CC theory, a Lagrangian L is introduced which con-

sists of the CC energy augmented by the CC equations (as the so-called constraints) premultiplied

with Lagrange multipliers

L = 〈0|(1+Λ)exp(−T )H exp(T )|0〉. (6)

In this equation, a compact notation is used in which the Lagrange multipliers are subsumed into

the Λ operator, a de-excitation operator that gathers all of them. At this point it should be men-

tioned that this CC energy functional was actually first suggested by Arponen151 in order to cast

CC theory in a variational framework. The Lagrangian is then made stationary. Stationarity with

respect to the amplitudes in the Λ operator recovers the CC amplitude equations, while station-

arity with respect to the amplitudes in the cluster operator leads to the linear equations for the

amplitudes of the Λ operator

〈0|(1+Λ)(exp(−T )H exp(T )−E)|ΦP〉= 0. (7)

Due to the stationarity of L, differentiation with respect to a perturbation x yields for the derivative

dE
dx

=
∂L
∂x

= 〈0|(1+Λ)exp(−T )
dH
dx

exp(T )|0〉 (8)

which forms the basis of CC gradient theory.

The discussion so far has ignored orbital relaxation. The consideration of this effect requires

coupled-perturbed HF theory,152,153 but is in CC gradient theory treated using the Z-vector ap-

proach by Handy and Schaefer.154 CFOUR is able to handle orbital relaxation for RHF and

UHF reference functions,5 and also in the case of ROHF and some classes of QRHF reference

determinants.138,139

All analytic gradient implementations in CFOUR (see Table I for methods marked “xx" or

“xxx") make use of a density-based formulation of the first derivatives155,156 such that in the final

step the perturbation-independent quantities, i.e., the one- and two-particle density matrices as

well as some intermediates, are contracted with the derivatives of the one- and two-electron AO

integrals without any need to store the latter.

Analytic second derivatives have been formulated and implemented within CC theory.23,30–32,46,157,158

CFOUR offers here a range of options with all implementations based on the so-called asymmet-

ric formulation33,159 that results from a straightforward differentiation of the gradient expression

12
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given in Eq. (8) with respect to a second perturbation y. This means that the first derivatives

of T and Λ need to be computed but at no point are these quantities required for two different

perturbations at the same time.

Geometrical analytic second derivatives allow the computation of quadratic force constants

(and thus harmonic vibrational frequencies) and, via numerical differentiation,34,160 of cubic and

semidiagonal quartic force constants (and thus in the framework of second order vibrational per-

turbation theory (VPT2) anharmonic corrections to vibrational frequencies, i.e, the computation

of fundamental frequencies as well as the frequencies of overtone and combination bands).67

CFOUR offers the corresponding capabilities and renders such computations doable on a routine

basis. Corresponding computations can furthermore be easily performed in a parallel manner. We

also note that CFOUR offers capabilities to perform such calculations on the basis of numerical

differentiation of analytically evaluated forces as well.

Table I also summarizes the CC and MBPT/MP methods for which analytic second deriva-

tives are available in CFOUR (methods marked with “xxx"). Note that so far no analytic second

derivatives are available for schemes based on a ROHF reference function.

Analytic differentiation schemes are particularly useful for the computation of the correspond-

ing geometrical derivatives. However, analytic derivatives also provide access to a range of other

properties. To be mentioned here in the context of first derivatives are the accessible first-order

properties such as dipole moment, quadrupole moment, nuclear electric-field gradients, etc.

There is an additional point to be discussed here, namely whether these first-order properties

are computed with or without orbital relaxation effects included. CFOUR offers both options

and it has been argued161 that CC theory takes (via single excitations) care of orbital relaxation

effects162 in an adequate manner.

The issue of orbital relaxation is also of relevance when dealing with frequency-dependent

properties in the framework of CC response theory.163 The consideration of orbital relaxation can

lead here to artificial poles and is therefore avoided. CFOUR offers, based on existing analytic

second derivative technology, access to frequency-dependent polarizabilities at CCSD level,164

CC3,163 and CCSDT level.165 In addition, using third derivatives, frequency-dependent hyperpo-

larizabilities can be evaluated at the same levels of theory.166–168 Further analytic third derivatives

include Raman intensities computed as gradients of the frequency-dependent polarizability at the

CCSD level169 and Verdet constants computed as quadratic response function at the CCSD and

CCSDT levels of theory.170
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Concerning the computation of magnetic properties, i.e., nuclear magnetic shielding tensors

and magnetizabilities, care has to be taken with respect to the gauge-origin problem. As am-

ply demonstrated in the literature, the use of gauge-including atomic orbitals (GIAOs,171–174

also known as London orbitals175) is here an adequate choice and they are hence used by de-

fault in CFOUR. CFOUR offers unique capabilities to compute magnetic properties at various

CC levels with high accuracy for both nuclear magnetic shielding constants20–23,46 as well as

magnetizabilities.176 The implementation of shielding constants at the MP2 level17,18 in CFOUR

was the first presented in the literature, but by now this option is also offered by other quantum

chemical program packages177–180 together with advancements that facilitate large-scale calcula-

tions. The capabilities of CFOUR concerning the computation of magnetic properties also al-

low the computation of closely related properties such as nuclear spin-rotation and rotational g

tensors181 via the use of so-called rotational London orbitals.38 In the context of NMR properties,

we also note that the second derivative capabilities of CFOUR allow the computation of indirect

spin-spin coupling constants at CCSD,182 CC3,183 and CCSDT and higher CC levels (both via

MRCC). To be noted here is that (a) these calculations must be performed in an orbital-unrelaxed

manner182 and that (b) CFOUR allows the computation of all four contributions to the indirect

spin-spin coupling constants (i.e., Fermi-Contact, spin-dipole, paramagnetic spin-orbit, and dia-

magnetic spin-orbit terms).184,185

To conclude this section, we mention that CFOUR also offers the capability to compute vibra-

tional corrections to a range of properties via VPT2.186 These corrections turn out to be essential

in the case of high-accuracy computations that are compared to experimental values from precise

gas-phase measurements.

C. Excited state treatments via equation-of-motion/linear response methods

Single-reference methods based on MBPT and CC theory are excellent approaches to study the

potential energy surfaces associated with ground electronic states near their equilibrium structure,

but generally cannot be straightforwardly applied to study excited states. In particular, all such

methods are subject to variational collapse (through the reference function |0〉) or convergence to

lower-lying states with the same (spatial and spin) symmetry. For closed-shell systems, the lowest

singlet excited states often have a symmetry different than the ground state (for example, the

lowest excited state of formaldehyde has 1A2 symmetry while the ground state has 1A1 symmetry),
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but such states are described (in zeroth order) by a linear combination of two Slater determinants

and therefore not amenable to standard MBPT or CC calculations. For many radicals, however,

excited states are properly described by a single determinant (for example, the excited 2Σ state of

OH), and the usual toolkit of “ground state" MBPT/CC methods can indeed be employed. The

same holds for excited triplet states where a single determinant is often a valid description for the

high-spin components. However, when one speaks generally of excited states in the context of

quantum chemistry, it can be assumed that standard single-determinant methods are not suitable.

The major advance in extending CC theory to excited states was identified in an insightful

paper by Monkhorst,187 and has ultimately come to be known as both “equation-of-motion CC”

(EOM-CC) theory24,75,188,189 and “linear response CC” (LR-CC)190–194 theory. Both of these

approaches give the same excitation and final state energies (see below), but differ in the way

that certain properties are defined (see next subsection). It should be noted that the symmetry-

adapted-cluster configuration-interaction (SAC-CI) method,195–198 which is similar in spirit to the

EOM-CC approach, was developed for excited, ionized, and electron-attached states by Nakatsuji

and Hirao in the late 70’s.

In EOM-CC methods, the final state energies are obtained by diagonalization of the similarity-

transformed Hamiltonian H̄

H̄ ≡ exp(−T )H exp(T ), (9)

a non-Hermitian operator that is obtained from the usual electronic Hamiltonian using the CC

amplitudes in the transformation step. The excited states are described by the wavefunctions

|ΨEOM−CC〉= R exp(T )|0〉 (10)

〈Ψ̃EOM−CC|= 〈0|L exp(−T ), (11)

where R and L are the right and left eigenvectors of H̄.

The characterization of EOM-CC above applies strictly only to “complete” CC methods like

CCSD, CCSDT, etc., but must be modified somewhat for methods in which certain classes of

excitation are not treated completely (CC2,102 CCSDT-1,92,98 and so on). In such a case, the

excitation energies are obtained again by diagonalization of a non-symmetric matrix, but one that

cannot be written as H̄ is designated above. Rather, one differentiates the CC amplitude equations

(Eq. (4) of the previous section), which leads to the linear equation

dT
dx

= A−1bx, (12)
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in which A is the “CC Jacobian" that is diagonalized to obtain the excitation energies. This per-

spective on EOM-CC applies equally well to the normal (CCSD, CCSDT, etc.) case, in which

A = H̄, and is illuminating in that one can easily see the correspondence between the eigenvalues

of A and the excitation energies from the point of view of first-order perturbation theory.

The first EOM-CC calculations were based on the CCSD approximation, and appeared more

than thirty years ago,191 but the method began to gain momentum with a flurry of activity that took

place both in Gainesville and Aarhus after 1990.24,189,193 For excited states that can be character-

ized as “single excitations”, EOM-CCSD theory gives excitation energies that are usually no more

than 0.25 eV in error, and tends towards overestimation.199–201 Later developments led to EOM-

CCSDT202–204 and EOM-CCSDTQ,205,206 as well as general arbitrary-order EOM-CC47 via the

MRCC package.42 With these methods, excitation energies become systematically more accu-

rate as the cost of calculation grows significantly. As for ground-state methods, the high cost of

EOM-CCSDT calculations has driven efforts to find suitable approximations, and this remains an

area of important research. Such approximations include generalizations of the CCSDT-n meth-

ods mentioned earlier, CC3 – which is probably the most popular and perhaps successful such

approach,207 and a great variety of non-iterative methods. While many such methods have been

identified and tested,28,202,208–218 a recent non-iterative technique (EOM-CCSD(T)(a)*)29 shows

considerable promise,200,219–221 and might be the method of choice for future applications.

While sometimes thought of as strictly a means to compute excitation energies, EOM-CC meth-

ods also can be used to compute states that differ from the ground state in terms of the number

of electrons. That is, their domain of application includes “excited states" in which electrons are

“excited” to the continuum (ionization) or electrons are excited from the continuum (electron at-

tachment). EOM-CC methods belonging to the former class are called EOMIP-CC27 (removal of

one electron), EOMDIP-CC222 (two-electrons), etc., while those in the latter class are EOMEA-

CC223 (attachment of one electron), EOMDEA-CC, and so on. EOM-CC methods in which the

number of electrons in the initial and final state are identical are then called EOMEE-CC (EE

standing for excitation energy). CFOUR has extensive capabilities for EOM-CC calculations for

all the variants mentioned above (EOMEE-CC, EOM(D)IP-CC, and EOMEA-CC), the state of

which is summarized in Table II.

It should be noted that the capabilities indicated in the table are only for efficient implementa-

tions of the methods. This is important because it has been shown224 that an EOMEE-CC code can

be used to do EOM(D)IP-CC or EOMEA-CC calculations by making use of continuum orbitals;
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TABLE II. EOM-CC methods available in the CFOUR program package for closed-shell reference func-

tions. A single x designates that only energy evaluations are possible, while xx indicates that both energy

and gradients can be calculated. The MRCC extension also does general CC(n) (n>1) energies and gradi-

ents for open- and closed-shell references.

method EOMEE EOMIP EOMEA remarks

CCSD xx xx xx also open-shell |0〉 and EOMDIP

CCSDT xx x also EOMDIP

CCSDTQ x x

CCSDT-n, n = 1a,1b,2,3 x

CC2 xx x inefficient code, M6 scaling

CC3 x

CCSD*a x x

CCSD(T) b x

CCSD(T)(a) c x x

CCSD(T)(a)* c x

CCSDR(n), n = T,1a,1b,3 d x

CIS xx

CIS(D) xx

CCSD(2) xx xx

a See Ref. 28.
b See Ref. 214.
c See Ref. 29.
d See Ref. 210.

excitation of one electron to this continuum orbital is equivalent to EOMIP-CC, excitation from

an occupied continuum orbital is equivalent to EOMEA-CC, etc. That is, while the table indicates

that, for example, EOMEA-CCSDT is not “available” in CFOUR, such calculations can indeed be

done by this means, although the resulting implementation has the same cost as the corresponding

EOMEE-CCSDT calculation. CFOUR allows the straightforward use of these continuum orbital
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techniques, and the capabilities extend to both energy and gradient calculations.

In addition to EOMEE-CC methods, CFOUR is also able to perform calculations using con-

figuration interaction singles225 (CIS, also known as the Tamm-Damcoff approximation226,227),

the perturbatively corrected CIS(D) method,228 and an approximate method known as EOM-

CCSD(2).229 All of these methods work at the excitation energy level, and both EOMEE-CCSD(2)

and EOMIP-CCSD(2) are implemented.

Several functionalities are available to direct the program into the desired excited state. The

character of the excitation can be specified in terms of dominant orbitals as further explained in

Section III. Alternatively, one can simply request the lowest excited state(s) of a particular spin

and spatial symmetry. It is also possible with CFOUR to compute excited states near a particular

target energy.

D. Analytic derivatives and properties for excited states

While the pioneering work with EOM-CC theory dealt strictly with energy differences (vertical

excitation energies, ionization potentials and electron attachment energies), the central importance

of excited states in chemical physics has demanded that the associated potential energy surfaces

be characterized computationally. Such studies are relevant not only for analysis and predictions

of electronic spectroscopy, but also to study photochemical behavior and interactions between

excited states. Accordingly, analytic derivative techniques similar in the spirit of application to

those mentioned in section IIB were developed for EOM-CC methods in the early 1990s25–27 and

were present in the first version of CFOUR. The EOM-CC energy gradient is given by

dE
dx

= 〈0|L ∂ H̄
∂x

R|0〉+ 〈0|Z ∂ H̄
∂x
|0〉, (13)

and, apart from contractions between the differentiated electronic Hamiltonian and the right- and

left-eigenvectors of H̄ (note that a calculation of the excitation energies requires only that one

of these eigenvectors be evaluated), involves an additional de-excitation operator Z , which is

analogous to the Λ operator in ground-state gradient theory. The amplitudes that make up this

operator are obtained from solving the linear system

〈0|Z |ΦP〉= 〈0|Ξ|ΦP〉 [〈0|H̄−ECC|0〉]−1
, (14)

where matrix elements of the auxiliary operator Ξ are defined by

〈0|Ξ|ΦP〉 ≡ 〈0|L H̄|ΦQ〉〈ΦQ|R|ΦP〉 (15)
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with ΦQ representing a determinant in the space of excitations beyond that defined by the particular

truncated CC approach (for example, triple excited determinants in CCSD).

As for ground state CC methods, the general gradient formula (Eq. 13) is recast in terms

of one- and two-electron density matrices. Contraction of these with the geometric derivatives

of the Hamiltonian gives the gradient, while contraction of the densities with other operators

again provides other properties. EOM-CCSD and EOM-CC2 gradients are available in CFOUR

for all methods (EOMEE, EOMIP and EOMEA), for both closed-shell and open-shell reference

functions, and offer a very efficient means to study potential energy surfaces of the final states.

EOMEE-CCSDT gradients for closed-shell references are a very recent addition, and general

EOMEE-CC(n) gradients are available with the MRCC interface. It is a straightforward matter

here to calculate properties such as dipole moments, higher multipole moments, Mulliken pop-

ulations, and so on, using the one-electron density; these properties are all equivalent to those

calculated as energy derivatives.

In addition to gradients, one-electron transition densities involving only the ground-state T

amplitudes and the L and R vectors25 are available. These yield, among other things, transition

moments. And it is here (and only here) that EOM-CC and CCLR methods provide different

results.230–232 The transition moments evaluated in CFOUR calculations – those mentioned here

– are not size-intensive, becoming so only in the limit of a full CC (i.e. CCSDTQ for a four-

electron system) calculation. In CCLR theory, the transition moments satisfy size-intensivity, but

involve the cost associated with solving an additional set of linear equations for each excited state

considered.

III. INPUT AND USE OF CFOUR

CFOUR calculations are rather straightforward to perform. After having installed CFOUR

(for information concerning the installation of CFOUR, see the CFOUR website www.cfour.de

and Appendix 1) and with all executables placed either in the working directory of the calculation

or in a directory (e.g., ../cfour/bin/) that is part of the path, all calculations (unless otherwise

advised) are invoked by the command xcfour. This command calls a driver program which, after

having analyzed the input file ZMAT (see below), determines the various modules that need to be

run, and in what order.

The input for a CFOUR calculation consists of a single file. This file, called ZMAT, consists of
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several sections as shown in the following example. The first three sections are always necessary,

while the fourth is optional (dependent on the chosen computational approach).

EOMEE-CCSD/cc-pVDZ calculation for water

H

O 1 R

H 1 R 2 A

R=0.958

A=104.5

*CFOUR(CALC=CCSD,BASIS=PVDZ,EXCITE=EOMEE)

%excite*

1

1

1 5 0 6 0 1.0

The ZMAT file starts with a mandatory one-line title, which is followed by the geometry in-

formation, either in Z-matrix format (shown here, and which is currently mandatory for geometry

optimizations) or in Cartesian coordinates. The geometry is followed by a list of keywords in

a sequence of lines that starts with *CFOUR. There are roughly 250 active keywords, but virtu-

ally all of them take on default values (or are modified by default according to other keywords

in the input file). Common keywords to supply, as shown in the example file above, include in-

formation about the chosen quantum chemical method (CALC=CCSD obviously invokes a CCSD

calculations), basis set (BASIS=PVDZ requests the use of the cc-pVDZ basis) and calculation type

(EXCITATION=EOMEE requests an EOMEE-CCSD treatment). Additional parameters such as con-

vergence thresholds, maximum number of iterations, etc. can also be modified, but they have

appropriate default values and do not need to be supplied. The final section (initiated by a % sign)

provides additional information. In the example chosen here, this information guides the choice

of guess vectors for the EOMEE-CCSD computation, with this particular example instructing the

EOM-CC program to start with the HOMO → LUMO guess in the Davidson diagonalization

procedure.
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Basis set information is provided via the file GENBAS which can either be customized and ex-

ternally supplied or used from the default location (../cfour/basis/). The same holds also for

information about effective core potentials (ECP), which is supplied via the related file ECPDATA.

Of course, more elaborate input files can be created, and it is sometimes advantageous or nec-

essary to include additional files (beyond ZMAT) in the running directory. Examples here include

the file FCMINT (which contains the force constants in Z-matrix internal coordinates), which can

be supplied to facilitate geometry optimization (this permits the force constants in FCMINT to be

used as a starting guess for the Hessian as opposed to a naive set of initial parameters). The ZMAT

file below,

Calculation of LVC parameters for nitrogendioxide

O

N 1 R

O 2 R 1 A

R = 1.26239

A = 116.4431

*CFOUR(CALC=CCSD,BASIS=AUG-PVDZ,FROZEN_CORE=ON

EXCITE=EOMIP,SCF_EXPSTART=10

CC_MAXCYC=200,LINEQ_MAXCYC=200

FCGRADNEW=0

CHARGE=-1

TRANGRAD=ON,DERIV_LEV=1)

%excite*

1

1

1 0 10 0 1.0

together with the file FCMFINAL, which, in this example, contains the force constants for the NO2

anion, calculated separately), provides the input to calculate the linear LVC parameters in Table

IX (vide infra) for the Ã2B2 state (the κA
s , vide infra). In addition to directing CFOUR to do
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an EOMIP calculation with the NO2 anion as reference, it specifies the calculation of a gradient

(DERIV_LEV=1), that this gradient should be transformed to the normal coordinate representation

associated with the force constants in FCMFINAL, that the frozen core approximation is to be used,

and also some other parameters about the algorithm used for the frozen-core gradient calculation,

and specifications for the maximum number of cycles for various equations that are solved.

Clearly, it is not possible or appropriate here to give an exhaustive list of examples. The point is

simply to show a few representative cases, and to state that the input is generally quite simple: the

ZMAT file and perhaps another file or two, depending on the type of calculation. More examples

can be found on the CFOUR website (see Appendix 1).

IV. NEW FEATURES

A. Higher-Order Coupled Cluster Methods: xncc

Highly-accurate calculations often require treatment of the correlation energy beyond CCSD(T).

For example, many common thermochemical protocols such as HEAT,233–235 Wn,236–238 and

ANLn239 include not only CCSDT contributions but additional contributions from quadruple ex-

citations (CCSDT(Q) or CCSDTQ) and in some cases even quintuple excitations (CCSDTQ(P) or

CCSDTQP). Such corrections are critical (in combination with corrections for relativistic effects,

basis set convergence, etc. described in other sections) to reaching sub-kJ/mol accuracy, and

enabling real-world applications using these methods has long been a design goal of CFOUR.

For many years, CFOUR has supported CCSDT energy calculations for both closed and open-

shell references, as well as properties, gradients, and even second derivatives at the closed-shell

CCSDT level. Additionally, the CCSDT(Q) method,108 which provides a cost-effective and often

highly-accurate approximation to full CCSDTQ was originally implemented in a development

version of CFOUR. More recently, the full hierarchy of coupled cluster methods has been made

accessible via the interface between CFOUR and the MRCC program of Kállay.44

However, in the last several years we have become interested in writing a new implementation

of CCSDT(Q), CCSDTQ, and other higher-order coupled cluster methods that maximizes effi-

ciency and scalability on modern computers, as well as developing new theoretical techniques to

facilitate such an implementation. For closed-shell references, we developed a general algebraic

and graphical interpretation of the non-orthogonal spin-adaptation approach240,241 first pioneered
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TABLE III. Timing of CCSDT(Q) and CCSDTQ calculations in minutes (from Ref. 62) for a representative

set of small molecules. Two basis sets are listed for some molecules, in this case the first basis set refers to

the CCSDT(Q) calculation while the second refers to the CCSDTQ calculation. The time for the CCSDT

part (per iteration) and the (Q) correction in CCSDT(Q) are listed separately.

CCSDT (Q) CCSDTQ

HSOH cc-pVTZ/cc-pVDZ 3.7 85.5 9.3

H2O cc-pVQZ/aug-cc-pVTZ 0.3 5.9 19.7

H2CCCCH2 cc-pVDZ/DZ 1.2 43.9 35.1

O3 aug-cc-pVDZ 0.2 7.5 99.6

FO3
– cc-pVDZ 0.5 12.3 241.3

by Kucharski and Bartlett,242 and later used by one of us (JG) to develop an efficient closed-

shell CCSDT code in CFOUR. In order to maximize efficiency, we coupled this mathematical

technique with a storage format and set of implementation techniques designed to minimize data

movement (from disk as well as from main memory) and to avoid costly tensor transposes.62 We

also made code quality a major design goal, and we put a large focus on modularity and code

reusability, maintainability, and extensibility. Finally, we included explicit OpenMP paralleliza-

tion to effectively make use of modern multi-core processors.

The end product of this work is a new CFOUR module, xncc,62,240 which implements a full

suite of coupled cluster methods for closed-shell molecules through CCSDTQ, including in most

cases gradients (see Table I for the full list of supported methods). Calculations with xncc can

be requested with CC_PROGRAM=NCC, but in most cases this is not necessary as xncc is the default

program for CCSDT(Q) and CCSDTQ. Sample timings from Ref. 62 are listed in Table III as the

number of minutes per iteration (for CCSDT and CCSDTQ) or the time in minutes required for

the (Q) correction. The hardware used here was one core of an Intel Xeon E5620 processor with

22 GiB of memory allocated to CFOUR. From these results it is immediately clear that significant

speed-ups can be achieved with xncc compared to other programs—while these results use only

one core, the multi-core scalability of xncc is also very good, with parallel efficiencies (achieved

parallel speed-up divided by number of cores used) of ∼ 50% for 8 or more cores.

xncc also includes implementations of EOMEE-CC and EOMIP-CC methods through CCS-

DTQ, with gradients available for EOMEE-CCSD and EOMEE-CCSDT. In lieu of full EOMEE-
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CCSDT, a number of approximate methods are also included: EOMEE-CCSD*,28,243 -CCSD(T)(a)

and -CCSD(T)(a)*,29 -CC3,207 -CCSDT-n and -CCSD(T),209,211 and -CCSDR(T), -CCSDR(1a),

and -CCSDR(3).210 Corrections to excited state energies, geometries, and vibrational frequencies

can be rather large; for example in a calculation of the geometries and harmonic frequencies of

the S1 excited state potential energy surface of C2H2, we found that triples contributions to the

harmonic frequencies can be in excess of 100 cm−1 while quadruples corrections can be as large as

35 cm−1.206 While the current release includes analytic gradients for EOMEE-CCSDT, transition

properties at this level have not yet been implemented, but will be included in the next version

along with EOMEE-CCSDT natural transition orbitals.

Another unique feature of xncc is the use of sub-iteration convergence acceleration for the

CCSDT, CCSDTQ, and approximate CCSDT (CC3 and CCSDT-n) methods.244 For CCSDT and

other iterative triples methods, this technique essentially “freezes" the higher-order cluster am-

plitudes and their contributions to the singles and doubles while a number of (modified) CCSD

iterations are performed. The triples amplitudes are then updated and the cycle repeats. For CCS-

DTQ, two levels of sub-iteration are possible and xncc utilizes both of them simultaneously by

default. For all methods, but especially for approximate methods such as CCn, CCSDT-n, and

CCSDTQ-n, this technique can drastically reduce the number of iterations required for conver-

gence. The current version includes sub-iteration for the amplitude equations, optional DIIS for

the triples and/or quadruples amplitudes, as well as optional amplitude damping that can help in

cases where oscillatory behavior is encountered. The next version will extend the sub-iteration

technique to linear equations (e.g. the Λ equations) and potentially to EOM-CC as well.

The availability of a high-performance yet easily extensible platform for higher-order coupled

cluster has also allowed us to rapidly implement new coupled cluster-based methods. Perhaps the

best example of this is the recent development of bivariational coupled cluster perturbation theory

methods CCSD(T-n), CCSD(TQ-n), and CCSDT(Q-n),107,135 for which we have implemented up

to n = 5, 4, and 6, respectively. These methods, with the exception of the lowest-order correction,

scale formally the same as the full method (CCSDT or CCSDTQ), but, by recovering essentially

all of the higher-order correlation energy in only a small number of high-scaling steps, a steep

reduction in computational cost can be achieved. As an example, errors in total atomization ener-

gies for a test set of small molecules with respect to full CCSDTQ are summarized in Table IV.135

From these results, we can see that CCSDT(Q-3) can reduce errors by approximately one order of

magnitude compared to CCSDT(Q) at the expense of one M10 step.
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TABLE IV. Total atomization energy errors w.r.t. CCSDTQ in kJ/mol for various approximate quadru-

ples methods (from Ref. 135). Errors are summarized by Mean Signed Error, Mean Absolute Error, and

MAXimum-amplitude signed error.

CCSDT CCSDT(Q) Λ-CCSDT(Q)

MSE −3.06 0.55 0.35

MAE 3.06 0.56 0.36

MAX −14.06 4.01 1.92

CCSDT(Q–2) CCSDT(Q–3) CCSDT(Q–4)

MSE −0.70 −0.01 −0.15

MAE 0.70 0.08 0.15

MAX −2.58 −0.29 −0.97

All of the capabilities described here (except where noted) are available in the current version.

The next release of xncc will focus on implementing open-shell alternatives for all supported

methods, in particular CCSDT(Q) and CCSDTQ. Additionally, the version of xncc under devel-

opment has included further performance improvements due to transpose-free tensor contraction

operations from the TBLIS library,245 including extension to tensors with explicit point-group

symmetry.246 We also hope to include scalable distributed-parallel implementations in the next

release.

B. Quadratically convergent SCF and complete active space SCF methods

A rigorous treatment of multireference systems can usually not be achieved by using a single-

reference method (see section II C). In order to have not only a method to describe such systems in

an unbiased and qualitatively correct way, but to have also a starting point for internally-contracted

multireference correlated treatments, an implementation of the Complete Active Space–Self-

Consistent Field (CASSCF) method247,248 has been recently added to CFOUR. In CASSCF, the

orbital space is partitioned into three groups, namely: i) internal orbitals, which are always doubly

occupied, ii) active orbitals, with floating occupation, and iii) external orbitals, that are always

empty. The molecular wavefunction is written as the linear combination of all the symmetry al-

lowed Slater determinants that can be formed by varying the occupation of the active orbitals for a
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given number of active electrons. Both the orbitals and the CI coefficients are then fully optimized.

Such a non-linear optimization problem is typically difficult to converge and ill-conditioned, mak-

ing the use of advanced numerical strategies mandatory. Many CASSCF algorithms have been

developed in the past. The numerical strategies proposed can be grouped in two main classes

depending on their convergence properties, namely, first-order methods249–254 and second-order

methods.255–261 The latter strategy is particularly attractive, because second-order methods offer

rigorous convergence results and are particularly robust, so that achieving convergence requires

little to no case-by-case calibration by the user.

The implementation strategy pursued for the CASSCF module of CFOUR is based on the

Norm Extended Optimization (NEO) algorithm of Jensen and co-workers.77,258–260 The CI opera-

tions are handled in a direct fashion using a string-based determinant CI formalism262–264 and the

CI implementation follows the integral-driven, vector implementation by Bendazzoli et al.265

A second-order optimization strategy is based upon the definition of a quadratic model Q of

the energy, obtained by expanding it in Taylor series with respect to the variational parameters x

up to the second order around a starting point x0

Q(x) = E(x0)+g†x+
1
2

x†Gx, (16)

where g and G are the energy gradient and Hessian evaluated at the expansion point. The

straightforward minimization of the quadratic model corresponds to the Newton-Raphson (NR)

method142, and prescribes to take a step

δNR =−G−1g. (17)

The NR method enjoys quadratic convergence if the starting point is close to a local minimum, but

is known to exhibit erratic behavior or even to diverge if, at the starting point, the Hessian is not

positive definite. This issue can be solved by defining a trust region, i.e., a maximum stepsize Rt

within which the quadratic model of the energy is deemed to provide an accurate representation.

This constraint can be imposed by means of a Lagrange multiplier ν . By doing so, one gets, for

the step, the following coupled equations (G+νI)δ =−g

‖δ(ν)‖= Rt

(18)

The trust-radius Netwon method is also known as Levenberg-Marquardt (LM) method.142 If the

LM method is coupled with an adaptive choice of the trust radius Rt , as proposed by Fletcher,142
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depending on the agreement of the quadratic model with the energy, it is possible to prove that,

under certain regularity hypotheses of the energy that can be assumed to be satisfied, the proce-

dure always converges to the closest local minimum. The NEO algorithm is an elegant practical

implementation of the Fletcher-Levenberg-Marquardt (FLM) strategy, thus enjoying its conver-

gence properties.259 The NEO scheme is the default for state-specific CASSCF calculations. The

implementation in CFOUR also includes another second-order algorithm, in particular, a sim-

plified version of the one proposed by Meyer, Werner, and Knowles,74,256,261 which can be used

for state-averaged CASSCF. CASSCF calculations are requested via the CALC=CASSCF keyword

and require one to provide as an additional input the definition of the orbital spaces. This is

done by adding a section to the ZMAT input file that specifies the number of active alpha and

beta electrons and the number of active orbitals and then the actual definition of the active space.

The latter can be provided in two different ways. The first possibility, invoked with the keyword

CAS_INPUT=ORBITALS, is to specify a list of active orbitals (in HF energy order), the second, in-

voked with the keyword CAS_INPUT=OCCUPATION, by specifying for each irreducible representa-

tion the number of internal orbitals and then the number of active orbitals. The following example

provides the input for a CASSCF calculation on benzene, in D2h symmetry, correlating the 6 π

electrons in the 6 π orbitals, using the first strategy, where the order of the orbitals is obtained

from a HF calculation using the cc-pVDZ266 basis set

%casscf

3 3 6

17 20 21 22 23 30

The same calculation, using the second input method, is obtained with the following route

%casscf

3 3 6

6 4 5 3 0 0 0 0

0 0 0 0 2 1 2 1

Other options that control the CASSCF calculations can be found in the CFOUR online man-

ual (see Appendix 1). CASSCF can be used with either non-relativistic or spin-free relativistic

Hamiltonians, that are detailed in section IV C. At the moment, the CASSCF code is still experi-

mental, and it is thus not included in the current public release of CFOUR. The code will be made

available with the next release.
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The quadratically convergent machinery developed for CASSCF can also be employed to deal

with a particularly important subcase, i.e., regular SCF. These equations can be notoriously diffi-

cult to converge using a standard SCF algorithm even when Pulay’s direct inversion in the iterative

subspace267 (DIIS) is used to accelerate convergence, especially for open-shell systems. Further-

more, even for well-behaved systems, it can be difficult to achieve very tight convergence, which

is required for instance when computing numerical derivatives of post-HF Hessians in anharmonic

force field calculations. In all these cases, the user must try and adjust a combination of SCF

convergence parameters, such as whether to damp the first iterations and what damping param-

eters to use, how many points to use for the DIIS extrapolation and when to start it. Tuning all

these parameters on a system-dependent basis can be very time consuming, especially if one has

to perform a large number of calculations, for which different parameters need to be used.

In such a situation, the robust convergence properties of a second-order scheme are particularly

useful. A quadratically convergent implementation of restricted and unrestricted HF based on

the solution of Eqs. 18 is available in the last public release of CFOUR and can be used by

adding the SCF_PROG=QCSCF keyword. The current implementation works in the MO basis and

requires to fully assemble and diagonalize the MO rotation Hessian and is, therefore, much more

computationally demanding than regular SCF. However, as HF is typically an intermediate step in a

correlated calculation, this is in practice not an issue for the standard CFOUR user. A new, direct,

AO-based implementation that uses the NEO algorithm exists and can be accessed by specifying

SCF_PROG=DQCSCF. However, such an implementation is not mature enough to be released at the

moment, and will be made available with the next release of the code.

The QCSCF program can be considered an almost black-box SCF code. However, there are a

few precautions that the user needs to take. The code performs, at the beginning of the calculation,

a few regular SCF iterations that are used in order to get a better starting point for the QC solver

and, if a calculation is run with symmetry, to try to guess the correct occupation numbers for

each irreducible representation. These are fixed during the QC optimization, so that QCSCF will

converge to a minimum for that given occupation. The user should therefore make sure that the

occupation numbers guessed are correct, or provide the correct ones in input. A second aspect that

should be considered is the general conditioning of the problem. If a very large basis set is used,

linear dependence problems can be encountered, as it can be seen by looking at the eigenvalues

of the overlap matrix. In such cases, it will not be possible to converge the SCF equations beyond

a certain threshold due to numerical precision limitations. This issue can be easily detected by
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looking at the QCSCF iterations. If the residual norm starts oscillating or iterations are stagnating,

it means that the best numerical solution that can be achieved for the chosen basis set has been

reached, and the user should either consider the calculation converged or, if not satisfied with the

result, remove redundant basis functions. A third aspect concerns UHF cases for which multiple

SCF solutions with different spin contamination exist. QCSCF is guaranteed to converge to the

closest local minimum, which might be different from the one found with regular SCF. In the

experience of the authors, QCSCF tends to converge to the solution which is lowest in energy and

more spin-contaminated. Whether this solution is acceptable is something that the user needs to

check. Nevertheless, a subsequent post-HF treatment is usually able to remove most of the spin

contamination. An interesting aspect of QCSCF is that, when regular SCF converges to an unstable

solution, QCSCF usually manages to converge to a stable one, at least within the symmetry of the

electronic wavefunction. However, convergence can be difficult, especially if the MO rotation

Hessian has several small and close eigenvalues.

In order to illustrate the robustness of QCSCF, we propose two examples. As an example of

a routine application where very tight convergence is required, we compute the SCF solution for

benzene (C−C distance 1.3989Å, C−H distance 1.0808Å) with the aug-cc-pVTZ266 basis set.

This is a standard calculation, however, we require the wavefunction to be converged to 10−11 in

the root mean square (RMS) norm of the MO rotation gradient. Using the default parameters for

the calculation and starting from a guess obtained by diagonalizing the core Hamiltonian, QCSCF

performs 6 regular SCF iterations, until the root mean square (RMS) variation of the density matrix

is smaller than 0.1, and then manages to converge in only 4 FLM iterations. On the other hand, the

regular SCF code easily achieves an intermediate convergence (maximum change of the density

matrix smaller than 10−7) but then struggles to further refine the solution, exhibiting an oscillating

behavior. The convergence profiles of the two algorithms are reported in Figure 1. The superlinear

convergence of QCSCF is particularly apparent, as two convergence profiles can be seen focusing

on the green line. The regular SCF iterations exhibit a linear convergence profile. As soon as the

FLM iterations start, the energy error drops very rapidly until convergence is achieved.

A second, more challenging example concerns a weakly bonded complex of molecular oxygen

and argon (O−O distance 1.25Å, O−Ar distance 2.1748Å, O−O−Ar angle 174.21◦), the ground

state of which is a triplet. For this molecule, described using a UHF reference, the regular SCF

code converges with some difficulty to an unstable solution, that has both a UHF-UHF instability

that preserves the symmetry of the wavefunction and a UHF-UHF instability to a broken-symmetry
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FIG. 1. Convergence profile for the regular SCF code and QCSCF for Benzene. The converged energy is

-230.780571677 Eh.

solution. QCSCF manages to converge to a minimum within the symmetry (about 1µEh lower in

energy than the regular SCF solution), although convergence requires as many as 36 FLM itera-

tions. An instability with respect to a broken symmetry solution is, however, still present. Inter-

estingly, the NEO based code xdqcscf converges effortlessly to a stable solution—no instability is

found even with respect to a broken symmetry UHF solution. While the latter result is a fortunate

occurrence that can in general not be expected, the better convergence properties of the NEO based

code can be explained by the fact that the NEO algorithm introduces an augmented Hessian, so

that the presence of small and close eigenvalues in the original MO rotation hessian has a small

effect on the overall convergence of the optimization. The convergence profile of the three algo-

rithms is reported in Figure 2. It is interesting to comment on the behavior of QCSCF. The first

iterations manage to quickly locate the same solution found by the regular SCF code. However,

the iterations are not stopped as QCSCF detects the instability in the form of a negative eigenvalue
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FIG. 2. Convergence profile (absolute energies are reported) for the regular SCF code, the default QCSCF

code, xqcscf, and the NEO based code, xdqcscf, for Ar···O2. The converged energy is −676.39126181 Eh

for the regular SCF, that finds an unstable solution both with respect to a UHF solution with the same

symmetry and with broken symmetry,−676.39126267 Eh for xqcscf, that finds a solution which is unstable

with respect to a UHF solution with broken symmetry and −676.39130017 Eh for xdqcscf, that finds a

stable solution.

in the MO rotation hessian. A large number of iterations are then spent trying to reach the local

minimum. As the lowest eigenvalues of the Hessian are both small and very close, convergence is

very slow. On the other hand, the NEO based xdqcscf code does not suffer from this problem and

converges smoothly to the global minimum.

C. Relativistic quantum chemical methods

Treatment of relativistic effects268,269 is indispensable for calculations of molecules contain-

ing heavy elements and also plays an important role in high-accuracy calculations of molecules
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that comprise lighter atoms from the first few rows of the periodic table. The development of

relativistic quantum-chemical methods in CFOUR has focused on obtaining relativistic correc-

tions to energies and properties with CC treatment of electron correlation. Initial efforts on

perturbative treatment of scalar-relativistic effects were focused on the framework of standard

(non-relativistic) CC gradient theory and the Breit-Pauli Hamiltonian.270,271 First-order scalar-

relativistic corrections to energies can be conveniently obtained in a calculationof first-order

properties (PROP=FIRST_ORDER), and are widely used in well-established protocols for compu-

tation of thermochemical parameters.233 Calculations of scalar-relativistic corrections to geomet-

rical parameters and electrical properties have been enabled by using nonrelativistic analytic CC

second-derivative techniques.272 Perturbative techniques for treating relativistic effects have been

extended to using direct perturbation theory (DPT),52 a four-component formalism that permits

a rigorous treatment of two-electron contributions.273–275 In the released version of CFOUR, the

use of a keyword (RELATIVISTIC=DPT2) in geometry optimization and evaluation of first-order

properties is a convenient way of obtaining leading relativistic corrections to geometries and first-

order electrical properties. Uncontracted basis sets are recommended for DPT calculations, since

DPT requires an accurate description for both the non-relativistic and the relativistic wavefunc-

tions. DPT corrections to energies have been implemented in CFOUR through fourth order with

respect to c−1 (DPT4) as analytic second derivatives of non-relativistic energies, including both

scalar-relativistic corrections and spin-orbit corrections,53 and have been further extended to sixth

order for scalar-relativistic corrections.276 Furthermore, DPT4 corrections to electrical properties

can be computed.54 The development of DPT has also provided relativistic one- and two-electron

integrals required for development of non-perturbative approaches.

Subsequent development of relativistic quantum chemical methods within CFOUR has in-

volved a rigorous non-perturbative treatment of scalar-relativistic effects augmented with a per-

turbative treatment of spin-orbit coupling. In these calculations, the cost of the coupled-cluster

steps of a scalar-relativistic calculation is essentially identical to that of the corresponding non-

relativistic calculation. In contrast, spin-symmetry breaking due to spin-orbit coupling leads

to substantial computational overhead; a spin-orbit CC calculation requires more than an order

of magnitude more computing time and storage than a corresponding nonrelativistic or scalar-

relativistic calculation.277 Meanwhile, the magnitude of the impact of scalar-relativistic effects

on properties is usually substantially larger than that of spin-orbit effects. Therefore, a natural
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idea for a cost-effective treatment of relativistic effects at CC levels is to treat the larger but

computationally less expensive scalar relativistic effects rigorously and then address spin-orbit

effects by means of perturbation theory. In this context, the spin-free exact two-component theory

in its one-electron variant (SFX2C-1e)56,278,279 is highly recommended for a rigorous treatment

of scalar-relativistic effects in routine chemical applications. The SFX2C-1e scheme performs

an exact block-diagonalization of the spin-free version of the matrix representation of the Dirac

Hamiltonian to decouple electronic and positronic degrees of freedom, and uses the electronic

block of the resulting matrix representation of the Hamiltonian together with non-relativistic two-

electron integrals in the subsequent many-electron treatment. As scalar-relativistic corrections

are dominated by one-electron contributions,278,280 the SFX2C-1e scheme is capable of provid-

ing an accurate treatment of scalar-relativistic effects on energies and properties. An SFX2C-1e

calculation requires only additional manipulation of one-electron Hamiltonian integrals as com-

pared to a non-relativistic calculation and thus essentially has the same computational cost, as

mentioned above. The SFX2C-1e energy and analytic gradients56,281 are available in the re-

leased version of CFOUR. SFX2C-1e calculations of energies and first-order properties and

geometry optimizations can conveniently be carried out. That is, the same input file used for the

corresponding non-relativistic calculation needs only an instruction that the SFX2C-1e scheme

is to be used (RELATIVISTIC=X2C1E), and then an appropriate basis set (recontracted for the

SFX2C-1e scheme) needs to be selected. Table IV summarizes geometrical parameters for gold-

containing molecules computed at the non-relativistic and SFX2C-1e CCSD(T) levels. These

SFX2C-1e CCSD(T) calculations have essentially identical computational cost as the correspond-

ing non-relativistic ones; scalar-relativistic effects are obtained for free. In this demonstration,

the availability of analytic gradients and the efficiency of the SFX2C-1e scheme allows a quick

prediction for the geometry of an unknown gold-containing species (AuCH3) with reasonably

good accuracy, with one optimization cycle (one gradient calculation) taking only around 15 min-

utes using a single cpu [Intel(R) Xeon(R) CPU E5-2698v3@2.30GHz CPU] and 4 GB memory.

More rigorous treatment of scalar-relativistic effects using the spin-free Dirac-Coulomb (SFDC)

approach282 or SFX2C in its mean-field variant (SFX2C-mf)283 have also been implemented

in CFOUR. The SFDC approach features a spin separation in the four-component framework

and is perhaps the most rigorous treatment of scalar-relativistic effects. SFDC is available in

the released version of CFOUR for calculations of energies and first-order electrical properties

(RELATIVISTIC=SFREE).55 The SFX2C-mf scheme recently implemented284 in CFOUR per-
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TABLE V. Geometrical parameters of AuF, AuCN, and AuCH3 computed at the non-relativistic and

SFX2C-1e-CCSD(T) levels (bond lengths in Å and bond angle in degree). 1s electrons of C, N, and F

as well as 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, and 4d electrons of gold have been kept frozen in CC treatment. The

ANO basis sets of triple-zeta quality used here have been obtained by recontracting ANO-RCC primitive

sets285,286 using non-relativistic and SFX2C-1e CCSD atomic densities, and can be found at www.cfour.de.

Nonrelativistic SFX2C-1e Experiment

AuF R(Au–F) 2.094 1.921 1.918

AuCN R(Au–C) 2.151 1.902 1.912

R(C–N) 1.171 1.168 1.159

AuCH3 R(Au–C) 2.207 1.984 /

R(C–H) 1.088 1.088 /

∠(Au–C–H) 107.7 107.3 /

forms the block-diagonalization at the HF level and will be available in the next released version.

Perturbative treatment of spin-orbit effects can be obtained using either the SFDC or the

SFX2C-1e scheme as the zeroth-order treatment.287–289 For the latter, the corresponding spin-

orbit integrals are defined as first derivatives of SFX2C-1e Hamiltonian integrals, thereby treating

spin-orbit integrals in the four-component formulation as the perturbation and using the analytic

SFX2C-1e derivative technique. In this way, scalar-relativistic effects on spin-orbit integrals,

which represent the coupling between scalar relativistic effects and spin-orbit coupling, have

been taken into account. This greatly extends the applicability of the perturbative treatment of

spin-orbit coupling in CFOUR to molecules containing heavy elements. Two-electron spin-orbit

contributions can be taken into account using the molecular mean-field (MMF) or the atomic

mean-field (AMF) spin-orbit approach.288,290,291 The resulting effective one-electron spin-orbit

integrals can be contracted with one-electron transition density matrices to obtain spin-orbit ma-

trix elements between two electronic states. The EOM-CCSD transition densities (also needed

for the quasidiabatic couplings in Section IV. E) have been shown to provide accurate spin-orbit

parameters289,292,293 and are highly recommended for routine applications. Computed spin-orbit

splittings of representative 2Π states using MMF and AMF spin-orbit integrals within the SFX2C-
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TABLE VI. Spin-orbit splittings (in cm−1) of 2Π radicals calculated at the SFX2C-1e-EOM-CCSD level

using uncontracted ANO-RCC basis sets. "MMF" and "AMF" refer to molecular mean field and atomic

mean field, respectively. The experimental values are given as compiled in Ref. 289.

MMF AMF Experiment

OH 135.2 132.7 139

SH 369.5 369.3 377

SeH 1701.2 1700.9 1763

TeH 3675.3 3675.1 3816

FO 195.0 193.8 197

ClO 319.6 316.9 322

BrO 985.2 984.5 975

IO 2126.3 2124.0 2091

1e scheme at the EOM-CCSD level are summarized in Table V. The computed splittings compare

very well with experimental values, with the biggest discrepancy being about 4% in the case of

TeH. SFX2C-1e EOM-CCSD calculation of spin-orbit coupling matrix elements will be available

in the next release of CFOUR.

CFOUR has also included options for non-perturbative treatment of spin-orbit coupling to

obtain benchmark results or for studying heavy elements such as those in 6p or 7p blocks, for

which these effects are too large to be handled using a perturbative treatment. The released version

of CFOUR provides a spin-orbit CCSD(T) scheme for closed-shell systems.294 In this scheme a

HF calculation using scalar-relativistic effective core potentials (ECP) is first performed to obtain

orbitals. A corresponding ECP spin-orbit term is then included to augment the Fock matrix in

subsequent CC calculations. Analytic first and second derivatives are available for this scheme

in the released version of CFOUR.294–296 Recent developments along this line include EOMEE-

, EOMEA-, and EOMIP-CCSD methods.297–299 More recently, an X2C300–305 AMF approach

has been developed for the non-perturbative treatment of spin-orbit coupling.59 Based on this

approach, coupled-cluster methods [CCSD(T), EOM-CCSD, and EOM-CCSD(T)(a)*)] with spin-

orbit coupling included at the orbital level have been implemented.60,221,306 The focus of these
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studies is on efficient implementation using atomic orbital based algorithms and rigorous treatment

of spin-orbit coupling in X2C. Users requesting more information about these relativistic methods

in CFOUR are encouraged to make inquiries on the CFOUR mailing list (see Appendix 2).

D. Multireference coupled-cluster methods

The treatment of quasidegenerate systems with chemical accuracy is one of the most intrigu-

ing problems of electronic-structure theory. Although certain patterns of quasidegeneracy can

be treated by means of EOM-CC methods (see Section II C) or in terms of generalized single-

reference CC methods,307,308 all these methods are subject to limitations, in particular a bias

towards the selected reference determinant. The development of genuine multireference CC

(MRCC) methods therefore remains an important goal of CC theory.

Much effort has been devoted to generalize the CC ansatz to the multireference domain, but

this has turned out to be not straightforward: Many MRCC methods have been suggested and

successfully applied to actual chemical problems, but a theory as elegant and robust as single-

reference CC theory discussed in Section II A has yet to emerge. Comprehensive overviews of the

field are provided, for example, in Refs. 61,309.

The development of MRCC theory in CFOUR has concentrated on the method suggested by

Mukherjee and co-workers (Mk-MRCC).310,311 This is a state-specific MRCC variant relying on

the Jeziorski-Monkhorst ansatz,312

|Ψα〉=
d

∑
µ

exp(Tµ)|Φµ〉cα
µ . (19)

The reference determinants Φµ differ in the occupation of the active orbitals; they form a model

space of dimension d, their weighting coefficients cα
µ are optimized for a particular target state

α . The cluster operators Tµ are specific to reference Φµ and can be partitioned into excita-

tion classes in analogy to Eq. (2). So-called internal excitations that map Φµ onto another

reference determinant Φν need to be excluded from Tµ . The energy Eα and the coefficients

cα
µ are obtained as eigenvalue and eigenvector of an effective Hamiltonian, whose elements are

Heff
µν = 〈Φµ |exp(−Tν)H exp(Tν)|Φν〉. The amplitude equations take on the form

〈ΦP(µ)|exp(−Tµ)H exp(Tµ)|Φµ〉 cα
µ (20)

+ ∑
ν 6=µ

〈ΦP(µ)|exp(−Tµ)exp(Tν)|Φµ〉 Heff
µν cα

ν = 0 .
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with ΦP(µ) as excitation manifold specific to reference Φµ . The first term of Eq. (20) can be

interpreted as a generalization of Eq. (4) whereas the second term couples the amplitude equations

for different cluster operators Tµ , Tν . In practice, the cluster operators are usually truncated in

analogy to the single-reference case giving rise to the Mk-MRCCSD,310,311,313 Mk-MRCCSDT,314

etc. models.

Distinct advantages of Mk-MRCC theory include rigorous size-extensivity,311 the unbiased

treatment of all references Φµ in the model space,61 and conceptual simplicity resulting in rel-

atively simple working equations.313 However, all truncated MRCC methods based on Eq. (19)

are not invariant with respect to rotations among the active orbitals61,315 and it has also been

shown that the computation of excitation energies and frequency-dependent properties by means

of linear-response theory is problematic with Mk-MRCC methods because the pole structure of the

linear-response function is flawed.316,317 Furthermore, the number of amplitudes to be determined

is proportional to the size of the model space. As a consequence, the computational cost scales

with system size as d times that of the corresponding single-reference model, that is, d ·M6 for

Mk-MRCCSD, d ·M8 for Mk-MRCCSDT and so forth, making Mk-MRCC impractical for large

model spaces.61

CFOUR offers efficient Mk-MRCCSD318 and Mk-MRCCSDT66 implementations for a model

space of two closed-shell determinants. An implementation of Mk-MRCC for arbitrary excitation

levels and model spaces has been presented elsewhere.319 The CFOUR implementation is ade-

quate for biradical species and single-bond breaking and, therefore, applicable to many multirefer-

ence cases. In these calculations, orbitals can be taken either from an HF or a two-configurational

SCF calculation. The application of Mk-MRCCSDT to larger molecules is greatly facilitated

by means of parallelization; that is, computing the triple amplitudes and their contributions to

the singles and doubles residuals in a distributed manner. Mk-MRCCSDT computations using

well over 200 basis functions have been carried out with CFOUR.66 A non-iterative treatment of

triple excitations, termed Mk-MRCCSD(T), has also been implemented into CFOUR for model

spaces of two closed-shell determinants.320 The treatment of open-shell states is possible at the

Mk-MRCCSD level using a model space of two open-shell determinants and orbitals from a low-

spin ROHF calculation.321 The case of a full model space of two electrons distributed among two

orbitals (comprising four reference determinants) can also be treated at the Mk-MRCCSD level.

Larger model spaces are required if more than two orbitals are (quasi-)degenerate. Examples

include the breaking of double and triple bonds as well as many transition-metal compounds.61
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FIG. 3. Optimized structures of the ground states of the three isomers of benzyne computed at the Mk-

MRCCSD/cc-pCVTZ level of theory. Taken from Ref. 321

Such cases can be treated by means of internally contracted (ic)-MRCC methods73,322–326 imple-

mented in the GECCO program73 that has been interfaced to CFOUR.74 In ic-MRCC theory, a

single cluster operator acts on a multideterminantal reference. ic-MRCC methods maintain full

orbital invariance and size extensivity, their computational cost is roughly comparable to that of

the corresponding single-reference method.61,73 However, the working equations are considerably

more complicated mandating automated implementation techniques.73

As a unique feature, CFOUR offers efficient implementations of analytic gradients at the Mk-

MRCCSD318,327 and Mk-MRCCSDT328 levels of theory. The theory is formulated starting from

a Lagrangian functional in analogy to single-reference CC gradient theory (see Section II B). The

Mk-MRCC gradient can be written as318

dE
dx

= ∑
µ

c̄µcµ〈Φµ |(1+Λµ)exp(−Tµ)
dH
dx

exp(Tµ)|Φµ〉 (21)

with Λµ as analog to the Λ operator from Eqs. (6) and (7) and c̄µ as additional Lagrange mul-

tipliers. Eq. (21) is evaluated based on density matrices; the relevant details are discussed in

Ref. 318. Besides enabling geometry optimizations of polyatomic molecules,318,321,327 analytic

gradients also provide convenient access to harmonic vibrational frequencies through numerical

differentiation.

To give an example of Mk-MRCC geometry optimizations, Table VII shows selected struc-

tural parameters for the ground states of the three isomers of benzyne depicted in Figure 3. The

electronic structure of these biradicals can be understood qualitatively in terms of two frontier

MOs that are a bonding and an antibonding combination of the atomic orbitals hosting the radical

electrons. The wave functions are dominated by two closed-shell determinants whose weights

computed with Mk-MRCCSD are also included in Table VII, this illustrates that the multirefer-

ence character increases from the o- to the m- to the p-isomer. Owing to the shape of the frontier
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TABLE VII. C1 – C2 distances for o-benzyne, C2 – C6 distances for m-benzyne, and C1 – C4 distances for

p-benzyne in Å computed at the Mk-MRCCSD, CCSD, and CCSD(T) levels of theory using the cc-pCVTZ

basis set. The weights of the reference determinants (see Eq. (19)) are also shown. For further details, see

Ref. 321.

o-benzyne m-benzyne p-benzyne

R [CCSD] 1.2436 —a 2.7071

R [CCSD(T)] 1.2567 2.0432 2.7183

R [Mk-MRCCSD] 1.2505 2.0141 2.6865

|c1|2 [Mk-MRCCSD] 0.942 0.921 0.724

|c2|2 [Mk-MRCCSD] 0.058 0.079 0.276

a CCSD calculations for m-benzyne favor a bicyclic structure without multireference character.

TABLE VIII. Spin-orbit splittings in cm−1 calculated at the Mk-MRCCSD/cc-pVQZa level of theory using

the spin-orbit mean-field approximation. Experimental data are also given. For further details, see Ref. 329.

Molecule Mk-MRCCSD Expt.

OH 135.1 139.2

SH 375.2 377.0

SeH 1707.9 1763.3

NCS 360.8 325.3

a g-functions have been omitted.

MOs, the distance between the two radical centers provides a measure for the influence of the

two reference determinants on the molecular equilibrium structures.318,327 Table VII illustrates

good agreement between CCSD and Mk-MRCCSD for o-benzyne whereas larger deviations are

observed for the other two isomers with stronger multireference character.

In addition to geometrical derivatives, CFOUR can compute spin-orbit (SO) splittings for 2Π

states based on degenerate perturbation theory as a first-order property at the Mk-MRCCSD level

of theory.329 This constitutes an alternative to the computation of these quantities by means of

EOM-CC theory (see Table VI) and is also helpful for the theoretical analysis of MRCC models

relying on Eq. (19). For such methods the symmetry properties of the SO operator allow for a de-
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composition of the SO splitting expression into two terms: A similarity-transformed SO operator

times a coupling term intimately related to the coupling term from Eq. (20). It has been argued329

that SO splittings provide a quality measure for this coupling term. As a numerical example, Table

VIII shows SO splittings for the 2Π states of a few diatomic and triatomic molecules.

E. Vibronic Hamiltonians and Electronic Spectroscopy

A relatively common application of quantum chemistry is to electronic spectroscopy, the full

understanding of which requires knowledge of electronic, vibrational and (sometimes) rotational

energy levels. While many electronic transitions, photoionization and electron detachment pro-

cesses are well-described by the Franck-Condon approximation, this is not always the case. A

standard approach for treating these difficult cases – which involve Herzberg-Teller or true non-

adiabatic effects – is to construct a molecular Hamiltonian in an electronic basis that does not

consist of the usual adiabatic states typically obtained in quantum chemical calculations. A conve-

nient framework for such an analysis was devised by Köppel, Domcke, and Cederbaum (KDC),330

who applied it long ago with great success to a number of photoelectron spectra in which ioniza-

tion to the lowest-lying ionic states was inadequately treated by the Franck-Condon picture.331

In such calculations, the molecular Hamiltonian is written in a basis of “quasidiabatic” elec-

tronic states which, by construction, vary smoothly and slowly as the nuclei are displaced. This

assumption motivates the form of the (diagonal) kinetic energy operator, but means that the poten-

tial energy (the usual electronic Hamiltonian) is not diagonal. For a two state problem, this model

vibronic Hamiltonian takes the form

HKDC = T +V =

Ta 0

0 Tb

+

Vaa Vab

Vab Vbb

 , (22)

which is usually projected onto a vibrational basis and then diagonalized to compute the spectrum

and intensities. A particularly simple form is given by the so-called linear vibronic coupling model

(LVC), viz.

VLVC =

∑s κa
s qs +

1
2 ∑k ωkq2

k ∑c λcqc

∑c λcqc ∆ab +∑s κb
s qs +

1
2 ∑k ωkq2

k

 ,

(23)

which in this form is applicable to the pseudo-Jahn-Teller case, where interaction between two

(generally quite proximate) non-degenerate states are important.
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Treatments of electronic spectra with the KDC model can involve an arbitrarily large number of

electronic states (for example, a proper treatment of the NO3 radical requires at least five states,332)

and going beyond the LVC is sometimes necessary to obtain qualitative understanding, and al-

ways necessary for quantitative agreement with measured spectra. Moreover, true Jahn-Teller

cases (interaction between degenerate states) can also be treated with largely the same framework.

Nevertheless, the very simple non-degenerate two-state LVC model is an appropriate example to

explain what tools are available in CFOUR for such calculations. Details for how more elaborate

calculations are done can be found elsewhere.333,334

The form of the LVC Hamiltonian above involves a choice of normal coordinates (q), the gap

between the electronic states at the coordinate origin (∆ab, assumed to be positive below), linear

diagonal terms with coefficients κs that correspond to gradients along totally symmetric coordi-

nates (qs) on the adiabatic potential energy surface, quadratic force constants for all modes on the

diagonal (in the LVC model, these are assumed to be equal to the reference state for which the

normal coordinates are calculated), and – critically – an off-diagonal coupling in which modes qc

of a certain symmetry (for example the asymmetric b2 NO stretching mode if the two states are the

X̃2A1 and Ã2B2 states of NO2) carry quasidiabatic coupling constants λc. Without sacrificing sim-

plicity, a useful extension of the LVC model is to maintain the assumption of linear off-diagonal

coupling, but to allow the quadratic force constants to relax from those of the reference state,

which leads to

V =

∑s κa
s qs +

1
2 ∑kl ga

klqkql ∑c λcqc

∑c λcqc ∆ab +∑s κb
s qs +

1
2 ∑kl gb

klqkql

 .

(24)

The computation of all parameters begins with the determination of a set of normal coordinates,

which usually are those of the same molecule in a different (reference) electronic state, with the

absorbing state in the spectroscopic experiment being the most logical choice. For example, to

study photodetachment of NO−2 , one would choose the anion. To do an LVC calculation, the first

and second derivatives of the energies at the origin of the coordinate system (i.e. the geometry

of NO−2 ) are evaluated using the derivative techniques in CFOUR and then transformed into the

normal coordinates. CFOUR contains a module called xquadmodel for effecting this transforma-

tion. The quasidiabatic coupling constants (λc) above are evaluated according to a diabatization
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scheme based on EOM-CC theory that is described in detail elsewhere,50 and their evaluation is

based on an algorithm that is quite similar to that for adiabatic EOM-CC gradients. However,

transition one- and two-electron densities are used in this case, and there are additional minor

modifications necessitated by the different physical situation under consideration. It is important

to note that these are not “non-adiabatic couplings” (which are off-diagonal terms in the kinetic

energy in the adiabatic basis rather than off-diagonal terms in the potential energy in the quasidia-

batic basis), but are intimately related to them, as is discussed in Refs.51,335,336. In any event, once

the quasidiabatic couplings are calculated, the force constants of the coupling modes appearing in

the diagonal blocks of the potential are “diabatized” via

ga
cc′ = ( f A

cc′)adiabatic +
2λcλ ′c
∆ab

(25)

gb
cc′ = ( f A

cc′)adiabatic−
2λcλ ′c
∆ab

, (26)

where the fcc′ are the quadratic force constants on the adiabatic potential surfaces. For coefficients

gkl where qk and ql do not couple the states, these are simply equal to the corresponding adiabatic

force constants on the two surfaces. Together with the trivially-calculated ∆ab, all parameters for

the Hamiltonian are now available, and the xsim module of CFOUR can then carry out the spectral

simulation.

It should be emphasized that the crucial coupling of states that characterizes these situa-

tions makes special demands on the quantum-chemical method. Approaches appropriate for the

parametrization are many, but generally do not include ground-state single determinant MBPT and

CC methods. It has been recognized that EOM-CC methods are ideally suited for problems of this

sort,75,337 and are recommended for applications. For the example above (the photodetachment

spectrum of NO−2 ), EOMIP-CC is the most appropriate method, and the gradients available in

CFOUR (together with the quasidiabatic coupling calculation) greatly facilitate the calculations

that need to be done to construct the Hamiltonian. Quasidiabatic couplings can currently be rou-

tinely evaluated with EOMEE-CCSD only, with the continuum orbital approach recommended for

EOMIP-CCSD and EOMEA-CCSD calculations.

Documentation about vibronic Hamiltonian construction and diagonalization calculations is

spotty, and the process of carrying out these calculations (apart from the simplest LVC treatment)

is slightly arduous and tedious. In general, the procedure involves three phases. In the first the

reference state (that which is used to define normal coordinates, and is usually the absorbing state

in the experiment) is characterized by means of geometry optimization and second derivative cal-
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culations. Then, the first and second derivatives are calculated for the final states, and transformed

to the reference state normal coordinates. Beyond this, the quasidiabatic couplings are calculated

and similarly transformed. For an LVC (or slightly elaborated LVC calculation, as is demonstrated

in the following paragraph), these are the three required phases of quantum chemistry calculation.

Any investigators that require assistance with such calculations, or intend to explore more elabo-

rate vibronic coupling models with CFOUR are encouraged to seek advice and assistance from

the CFOUR mailing list (see Appendix 2). This will also permit them to be directed to the tools

that have been created by the authors to facilitate this particular type of spectroscopic application,

and instructed in their use.

Parameters, and a simulation, are shown for the NO−2 photodetachment spectrum in Table IX

and Fig. 4, respectively, where the latter may be compared to the laboratory spectrum. The

calculations were done at the frozen-core CCSD/cc-pVDZ level of theory (the anion is treated

with simple single-reference CCSD and the X̃2A1 and Ã2B2 states of NO2 are treated with EOMIP-

CCSD), and the simulated spectrum shows indeed the power of the LVC model for capturing the

salient qualitative features of electronic spectra. It is an entirely straightforward matter to do this

parameterization and spectroscopic calculation with CFOUR; the entire procedure can easily be

done in a few hours of work.

Finally, for simpler electronic spectra in which interactions between electronic states can be ne-

glected, CFOUR has a highly-efficient Franck-Condon program xfc_squared,339 and clear docu-

mentation for running it is available on the CFOUR website (see Appendix 1).

F. Automatized composite schemes and basis-set extrapolations

Additivity schemes and basis-set extrapolation340,341 are nowadays popular tools to minimize

both basis-set truncation errors and correlation errors and to provide high-accuracy quantum-

chemical results.233,236,342,343 While these schemes are easily handled (with a calculator or a

spreadsheet) when focusing on energies, their application is much more cumbersome in the con-

text of geometry optimization or the computation of other properties. CFOUR offers here an

automatized scheme,68,344 which within a geometry optimization sets up and runs all individual

computations that are needed, gathers the result, and computes the total energy and gradient.

As input for computations involving basis-set extrapolation as well as composite schemes,

CFOUR requires (a) the property to be computed (energy, geometry, or harmonic frequencies),
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TABLE IX. Parameters of the LVC Hamiltonian describing the photodetachment spectrum of NO−2 , ob-

tained at the fc-(EOMIP)-CCSD/cc-pVDZ level of theory. The geometry of the anion is R(N–O) = 1.262

Å, θ = 116.44o, and the anion harmonic frequencies are ω1 = 1356.7 cm−1; ω2 = 794.6 cm−1; and ω3 =

1322.7 cm−1. The first two modes have a1 symmetry, and the third mode (which couples the two states) has

b2 symmetry. All parameters are in cm−1.

Parameter

κX
1 −2614.4

κX
2 1400.1

κA
1 803.3

κA
2 −2034.1

gX
11 984.2

gX
12 137.5

gX
22 902.2

gX
33 1148.8

gA
11 1500.8

gA
12 −70.7

gA
22 463.3

gA
33 1100.5

∆ab 8039.8

λ a
3 530.2

aGeometric mean of λ AX and λ XA, see Ref. 50.

b) information concerning the basis sets used in the extrapolation (three basis sets from one of

the correlation-consistent hierarchies of basis sets266,345 are required for the extrapolation at the

HF level;340 two sets are needed for the extrapolation at the correlated level341), c) information
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FIG. 4. Simulation of the 266 nm (4.66 eV) photodetachment spectrum of the NO2 anion, using the pa-

rameters in Table IX and calculated with the xsim module of CFOUR. The vertical energies have been

adjusted by +0.2 eV, so as to have the origin (peak at highest eKE) approximately coincide with that in

the laboratory measurement of Ref. 338 (inset). This shift accounts for an underestimation of the elec-

tron affinity at the EOMIP-CCSD level of theory with the aug-cc-pVDZ basis set. In the simulation, each

state in the stick spectrum has been convoluted with Gaussians having a width of 0.05 eV. Note that the

experimental spectrum reveals a higher excited state of NO2 (at low electron kinetic energy), which was not

included in the simulation. The two-state Hamiltonian was projected onto a vibrational basis comprising

25 functions per mode and diagonalized using 1000 Lanczos recursions. Transition moments for the two

ionization processes are assumed to be equal. The inset was reproduced from Ref. 338 with the permission

of AIP Publishing.

about the additional corrections to be applied, i.e., those from CCSDT, CCSDTQ, or all-electron

CCSD(T) computations, and d) keywords for the individual calculations to be performed. Detailed

information about the input can be found on the CFOUR website (see Appendix 1).

It should be pointed out that the computation of equilibrium geometries and harmonic vibra-

tional frequencies in this way provides results that are consistent with the potential energy surface

defined by the extrapolated energy. This is accomplished by using, for the gradient or the corre-

sponding second derivatives, expressions that are derived from the original extrapolated energy by

means of straightforward differentiation.68

To give an example, Figure 5 compares the equilibrium geometry of cyclic SiS2 obtained at the
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HF/∞Z + CCSD(T)/∞Z + ∆T/cc-pVTZ + ∆Q/cc-pVDZ + core/cc-pCV5Z level, at which compu-

tations using the cc-pVQZ, cc-pV5Z, and cc-pV6Z basis sets are used to estimate the HF limit and

computations at cc-pV5Z and cc-pV6Z level to obtain the basis-set limit for the fc-CCSD(T) cor-

relation energy. Additional contributions involve a correction obtained at the fc-CCSDT level

(in comparison to fc-CCSD(T)) computed with the cc-pVTZ set, a correction obtained at the

fc-CCSDTQ level (in comparison to fc-CCSDT) evaluated with cc-pVDZ, and a correction for

core-correlation effects obtained at the CCSD(T)/cc-pCV5Z level (in comparison to frozen-core

CCSD(T)). The experimental equilibrium geometry346 has been obtained from rotational con-

stants determined for three isotopologues of cyclic SiS2. These rotational constants have been

adjusted using vibrational corrections computed at the CCSD(T)/cc-pCVTZ level using VPT2.67

Concerning harmonic vibrational frequencies, the extrapolation scheme yields 1647, 3836, and

3947 cm−1 which can be compared to the experimental inferred values of 1648.5, 3832.2, and

3942.5 cm−1.347

Statistical analyses of the performance of these extrapolation schemes can be found in Ref.

68 for equilibrium geometries and in Ref. 35 for rotational constants derived from computed ge-

ometries after taking account of vibrational corrections. In passing, we note that the extrapolation

scheme can be further augmented by scalar-relativistic corrections computed either at the DPT2

level or using the X2C scheme.

G. Analytic calculation of the Diagonal Born Oppenheimer Correction (DBOC)

The Born-Oppenheimer approximation348 (BOA) is a fundamental assumption used in the de-

scription of molecules: not only are quantum-chemical calculations mostly based on it, but also

chemical intuition relies on the notion of potential energy surfaces defined by the BOA. It is a

quite good approximation and as cause for its breakdown typically (near-)degeneracy of coupled

electronic states349 are mentioned. The first-order correction to the BOA350 is, however, not re-

lated explicitly to other electronic states,351 it comes from the (parametric) dependence of the

electronic wave function on the nuclear coordinates, which results in a nonzero expectation value

of the nuclear kinetic energy operator over the electronic wavefunction:

∆EDBOC(R) =
∫

drΨ
∗(r;R)TN(R)Ψ(r;R) (27)

with Ψ as the normalized electronic wavefunction obtained within the BOA and TN as the nuclear

kinetic energy operator. In Eq. (27), the electronic coordinates are collectively denoted by r, while
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184.0 

184.3(6) 

(61.37°) 
2.1099 

(2.1099) 

61.45° 

2.1560 (2.1534) 

Si 

S S 

FIG. 5. Computed and semi-experimental equilibrium structure of cyclic SiS2. The semi-experimental

structure was obtained via a least-squares fit of the geometrical parameters of cyclic SiS2 to the experi-

mentally determined rotational constants of three isotopologues, the theoretical one (in parentheses) was

obtained via composite computations as described in the text. All distances are given in Å and all angles in

degrees. For further details, see Ref. 346.

the nuclear coordinates are represented by R. The integration in Eq. (27) is over electronic co-

ordinates only, thus the so-called diagonal Born-Oppenheimer correction (DBOC) depends para-

metrically on the nuclear coordinates and represents a mass-dependent increment to the potential

energy surface. Thus, with the DBOC included in the calculation, the adiabatic picture is kept352

(the DBOC is sometimes also called the adiabatic correction), and the notion of potential energy

surfaces is retained, although they now become mass-dependent. The DBOC is numerically small,

but the high accuracy reached by electronic structure methods, as also discussed at several parts of

this paper, sometimes necessitates its inclusion in the final energy.

Since the kinetic energy operator in Eq. (27) includes the second derivative with respect to nu-

clear coordinates (RAi), the key to the computation of the DBOC is the evaluation of the expectation

value of the operator ∇2
RAi

over the electronic wavefunction.353 Replacing this second derivative

by first derivatives of both the right- and left-hand CC wavefunctions, we were able to formulate

the DBOC at the general CI level.48 However, calculation of the DBOC from coupled-cluster elec-

tronic wave function is complicated by the biorthogonal approach with different right- and left-

hand wavefunctions,151,187 especially by issues associated with normalization. These problems

have been resolved in Ref. 48 and the DBOC expression could be formulated using derivatives of
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the cluster and Λ operators, the antisymmetric CC derivative density matrix, as well as the one-

and two-particle unrelaxed density matrices.

Evaluation of the DBOC formulae is possible with gradient and second derivative techniques

available in CFOUR and MRCC: the derivative of the amplitudes and the Λ parameters can be

taken directly from analytic force constant calculations. The same also holds for the calculation of

the unperturbed one- and two-particle density matrices. Two differences need to mentioned: a) for

the DBOC, unrelaxed density matrices are required, while the relaxed density matrices are used for

the force constants; b) translational invariance, which is exploited in force-constant calculations,

cannot be used for the DBOC since derivatives according to all nuclear coordinates are required.

The latter difference makes a slight increase in computational time, while the first one precludes

the possibility of doing DBOC and force constant calculations at the same time. The dependence

of the computational effort on the size of the system is the same as for the underlying CC model,

but the loop over the complete set of nuclear coordinates introduces an additional factor of 3Natoms

with Natoms being the number of atoms in the considered molecule. Thus, the calculation of the

DBOC is rather expensive compared to a single-point energy evaluation, nevertheless it can always

be routinely performed when harmonic frequencies and zero-point energy corrections to the energy

can be calculated analytically.

Availability of the DBOC for CC (and CI) methods analytically in CFOUR is the same as

that of the analytic second derivative as shown Table I. The only exceptions are non-iterative

methods like CCSD(T), where, due to the lack of a well defined wave function, the DBOC cannot

be expressed in the above formalism. For more details, see Ref. 48. We note that according to

numerical tests,48 triples contributions are rather small even at the full CCSDT level; therefore a

CCSD(T) type DBOC would not bring substantial improvement over CCSD.

To offer a reduced-cost alternative to CC methods, in Ref. 49 approximations to the above

theory within many-body perturbation theory were presented. The first one, termed MP1, uses

first-order amplitudes in the formula and its perhaps unusual name reflects the fact that, contrary

to the total energy, there is a first-order correction to the DBOC even in the Møller-Plesset par-

titioning. MP1-level DBOC just requires the evaluation of first-order (MP2) double excitation

amplitudes and their contraction with corresponding DBOC integrals, i.e. no significant addi-

tional cost compared to the HF-SCF evaluation of the DBOC (provided the CPHF equations are

solved). The next level is MP2, which requires the knowledge of the first- and second-order single

and double excitation amplitudes. Higher order formulas have not been worked out since the cost
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FIG. 6. Average DBOC contribution to atomization energies with respect to the CCSD value (in %). Stan-

dard deviation is given as error bars. Data from Table X have been used, NO and OF excluded.

of their evaluation would be similar to CCSD.

The calculated DBOC has found most of its application in accurate prediction of thermochem-

ical values,235,354–356 as well as in spectroscopy.357–364 To demonstrate its importance, the DBOC

contributions to the atomization energies of selected small molecules are given in Table X, as

obtained by different methods. The table shows that the DBOC contribution can be as large as

several tenth of kJ mol−1, therefore non-negligible in certain applications. Indeed, as has been

shown e.g. in Refs. 49 and 355, the DBOC contribution increases with the number hydrogen

atoms, and its role can be even more important for larger molecules with many hydrogen atoms.

The importance of electron correlation and the accuracy of different methods is represented

graphically in Figure 6. Here, the average DBOC contribution to atomization energies with respect

to the CCSD value (100%) is presented. One can conclude that a) correlation contribution is

important, and its size is unpredictable (as shown by the large standard deviation of the SCF

values); b) both MP1 and MP2 give good estimates with decreasing error bars.

H. Core-level spectroscopy

Core electron photoelectron and absorption spectra have served as useful tools for probing local

chemical environments in molecules and solids.365,366 Recent developments of x-ray light sources

have also led to a rapid growth in investigations of x-ray induced ultrafast dynamics.367,368 Ac-

curate calculations of core ionization and excitation energies and of x-ray absorption spectra are

of significant interest and have been a longstanding challenge for quantum chemistry.369 Bene-

fiting from available efficient implementation of EOM-CC methods, CFOUR offers EOM-CC

49
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TABLE X. DBOC contribution to atomization energies (in kJ mol−1) of selected small systems calculated

by different methods. The raw data are taken from Ref. 49 and obtained with the aug-cc-pCVQZ basis at

CCSD(T)/cc-pVQZ geometries.

SCF MP1 MP2 CCSD SCF MP1 MP2 CCSD

C2H2 0.50 0.39 0.36 0.33 HCN 0.31 0.24 0.20 0.20

CCH 0.13 0.10 0.14 0.10 HCO−0.14 −0.19 −0.21 −0.21

CF 0.03 0.01 0.01 0.01 HF 0.00 0.00 0.00 0.00

CH −0.35 −0.41 −0.42 −0.44 HNO−0.23 −0.31 −0.36 −0.40

CH2 0.13 0.06 0.06 0.06 HO2 0.03 −0.01 −0.03 −0.04

CH3 0.19 0.07 0.08 0.06 N2 0.08 0.04 0.01 0.03

CN −0.07 −0.07 −0.02 0.06 NH −0.21 −0.24 −0.24 −0.24

CO 0.07 0.03 0.02 0.02 NH2 −0.05 −0.12 −0.12 −0.14

CO2 0.20 0.16 0.14 0.15 NH3 0.56 0.44 0.44 0.42

F2 0.02 0.02 0.00 0.01 NO −0.48 −0.39 −0.11 0.02

H2 0.22 0.13 0.09 0.06 O2 0.05 0.03 0.01 0.01

H2O 0.52 0.45 0.42 0.41 OF −0.02 −0.02 −0.01 0.00

H2O2 0.52 0.44 0.39 0.36 OH 0.04 0.01 0.00 −0.01

machinery ranging from EOM-CCSD (available using the xvcc, xecc and xncc modules), EOM-

CCSDT, and EOM-CCSDTQ (using the new xncc module) for high-accuracy calculations of core

ionization and excitation energies. In order to eliminate spurious coupling between core ionized

or excited states with high-lying valence excited states, Cederbaum and collaborators370 have pro-
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TABLE XI. Maximum absolute deviations (MAD) and standard deviations (SD) of CVS-EOM-CC373 and

CVS-∆CC374 results from experimental values for chemical shifts of twenty-one 1s ionization energies of

C, N, O, F in fourteen molecules (in eV).

SD MAD

CVS-EOM-CCSD 0.40 0.94

CVS-EOM-CCSDT 0.20 0.45

CVS-EOM-CCSDTQ 0.10 0.24

CVS-∆HF 0.70 1.67

CVS-∆CCSD 0.19 0.53

CVS-∆CCSD(T) 0.10 0.20

posed a generic idea of core-valence separation (CVS). The original formulation of CVS neglects

coupling between core and valence orbitals in Hamiltonian integrals. An efficient implementation

of this scheme has recently been reported by Vidal et al. for the EOM-CCSD method.371 We have

adopted a variant of CVS suggested for EOM-CCSD by Coriani and Koch,372 in which CVS is

only applied to the EOM vectors, i.e., only excitation operators containing targeted core orbitals

are retained in the EOM vectors. EOM-CC methods using this variant of CVS (hereafter referred

to as "CVS-EOM-CC" methods) have initially been implemented in CFOUR by using a projector

that sets pure valence excitations in the EOM vector to zero in a regular EOM-CC calculation.

As shown in Table VIII, benchmark studies have demonstrated the systematic convergence of

CVS-EOM-CC methods and the high accuracy of computed core ionization energies when triples

contributions are taken into account.373

We have also recently explored the use of both perturbative and iterative approximations to full

CVS-EOM-CCSDT, coupled with efficient techniques for implementing the core-valence separa-

tion for higher-order excitation amplitudes.375 Among the best-performing approximations was

the CVS-EOM-CCSD* method, which is a straightforward modification of the original method of

Stanton and Gauss.28 We have recently implemented these approximations in xncc (along with full

CVS-EOM-CCSDT and CVS-EOM-CCSDTQ) using an algorithm that explicitly discards triple

and quadruple excitation amplitudes with only valence occupied or inactive core indices. When

only a constant number of core orbitals are active (in most calculations only one core orbital is

active), this implementation leads to reduced scaling of the EOM-CC calculation. Importantly, the
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scaling is reduced to fully M6 for CVS-EOM-CCSD*.

Although EOM-CC methods are capable of providing accurate results for core ionization ener-

gies, relatively slow convergence of computed results with respect to rank of excitation has been

observed. This can be attributed to strong relaxation of the wavefunction due to the removal of

core electron(s). The convergence is expected to be even slower for calculation of double core hole

states. An alternative option for computing core ionization energies using ∆CC methods374,376 has

also been implemented in CFOUR and will be available in the next release. ∆CC methods per-

form separate HF and CC calculations for the neutral molecule and the core-ionized state. Due to

the local nature of core holes, the HF wavefunction of a core-ionized state can usually be obtained

using maximum overlap method.377 The convergence problem of CC equations for core-ionized

states due to coupling to valence continuum states can be handled using a generalization of the

CVS scheme.374 Favorable accuracy has been obtained for CVS-∆CC results of core ionization

energies, with CVS-∆CCSD(T) providing results as accurate as CVS-EOM-CCSDTQ, as shown

in Table VIII.

I. Vibrational Perturbation Theory and Effective Hamiltonians

CFOUR allows for the determination of harmonic vibrational frequencies for a wide range of

quantum-chemical methods. When analytic Hessians are not available, the Hessian may be com-

puted numerically by finite differences of gradients and/or single-point energies. Additionally, an-

harmonic vibrational frequencies and intensities may be obtained by finite differences (preferably

of analytical Hessians). The xcubic module calculates anharmonic contributions based on second-

order vibrational perturbation theory (VPT2).380–384 While VPT2, when paired with a sufficient

level of electron correlation and basis set completeness, can provide highly-accurate frequencies

and intensities compared to gas-phase experiments,385–390 the presence of near-degeneracies in

the harmonic frequencies can lead to a breakdown in the perturbation theory. Most commonly,

VPT2 is affected by Fermi391 and Darling-Dennison392 resonances (although the latter is better

described as a missing vibrational interaction rather than a PT breakdown). xcubic automatically

attempts to detect cases of Fermi resonance and provides “deperturbed" frequencies and intensi-

ties, but a more accurate treatment requires the construction and diagonalization of an effective

vibrational Hamiltonian as in contact transformation perturbation theory (Van Vleck perturbation

theory).393,394
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TABLE XII. Stretching levels of water, obtained at the CCSD(T) level of theory with the ANO2 basis set.

Italicized level energies correspond to states of b2 vibrational symmetry. The VPT2 values are ordered in

terms of decreasing ν1 quantum numbers (i.e. the 3νOH levels are ordered 300, 201, 102 and 003), and

the VPT2+K levels are ordered in terms of those with dominant eigenvector projections along the same

zeroth-order levels.

νOH 2νOH 3νOH 4νOH

VPT2 VPT2+K VPT2 VPT2+K VPT2 VPT2+K VPT2 VPT2+K

Calc. 3659 - 7231 7201 10718 10591 14119 14215

3757 - 7249 7249 10656 10604 13977 13804

- - 7415 7445 10742 10869 13982 13801

- - - - 10976 11028 14136 14309

- - - - - - 14439 14525

Expt.a 3657 - - 7202 - 10600 - 13828

3756 - - 7250 - 10613 - 13831

- - - 7445 - 10869 - 14221

- - - - - 11032 - 14319

- - - - - - - 14538

aRefs. 378, 379

In order to treat these more difficult cases, the xguinea module is provided as a standalone

program. xguinea reads the output of an anharmonic calculation, in particular the files rota,

coriolis, dipole[xyz], quadratic, cubic, and quartic. The CFOUR job archive files

(JOBARC and JAINDX) are used if present to determine symmetry and axis frame information.

xguinea offers an interactive command-line input so that different options and structures of the

effective Hamiltonian can be quickly explored. Alternatively, an input file can be fed to xguinea

using shell redirection, e.g. xguinea < input. An example input file for treating multiple Fermi

resonances in formaldehyde is given below (here ω5≈ω2+ω6≈ω3+ω6—the Darling-Dennison

coupling between the latter two states is also included). The full xguinea manual is available on

the CFOUR website (see Appendix 1).
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states

3

0 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 1

vibration

vpt2

diagonalize

calc

The construction of the effective Hamiltonian requires two steps: first, the diagonal elements

are set equal to the deperturbed anharmonic frequencies. These differ from the standard VPT2

frequencies by removal of terms with a nearly-degenerate energy denominator. Second, the off-

diagonal elements are determined by coupling formulas specific to the type of resonance (Fermi or

Darling-Dennison) and the relationship between the two states. The Fermi coupling coefficients,

also called the F coefficients, are simply equal to scaled cubic force constants. The Darling-

Dennison, or K coefficients,395 are much more complicated in form, and arise from the second-

order transformed Hamiltonian. The expressions for the effective Hamiltonian for the formalde-

hyde example above are given in Ref. 390,

Heff =

51 2161 3161
ν∗5

1√
8
φ256

1√
8
φ356

1√
8
φ256 ν2 +ν6 + x∗26 K

1√
8
φ356 K ν3 +ν6 + x∗36

 (28)

K =
1
4

6

∑
i=1

Ki2,i3 +
1
2

K26,36 (29)

where an asterisk indicates deperturbation of the frequencies or anharmonicity coefficients xi j, and

the Ki j,kl coefficients are tabulated in the literature.63,395,396

The treatment of Darling-Dennison resonances is especially important for accurately calculat-

ing the overtone and combination bands of molecules with multiple hydrogen stretching modes.

For example, in water, the symmetric and antisymmetric O−H stretching modes interact strongly

for 2νOH and higher. Results from Ref. 63 for the nνOH , n = 1,2,3,4 levels of water computed
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with CCSD(T)/ANO2397 are reproduced in Table XII. Overtone levels of ν3 are reproduced

extremely well, as are combination and ν1 overtone levels for νOH ≤ 3. In the 4νOH polyad,

additional interactions with bending mode overtones nν2 begin to affect the symmetric stretching

mode. Effective Hamiltonians for fixed polyad numbers are easily specified in xguinea, e.g.,

polyad

2

1 0 0

0 0 1

vibration

vpt2

states

1

0 0 0 1

diagonalize

calc

!set

states

1

0 0 0 2

diagonalize

calc

...

In addition to computing anharmonic frequencies, intensities, and vibrationally-averaged dipole

moments at the VPT2 level, xguinea can also compute frequencies using fourth-order vibra-

tional perturbation theory (VPT4).398 VPT4 calculations in xguinea additionally require the didq,

quintic, and sextic files—the latter two are not calculated as part of a standard CFOUR anhar-

monic calculation, but they may be manually computed either by finite differences of fourth-order
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force fields or by fitting to a local potential energy surface (the “off-diagonal" quartic constants

φi jkl with i 6= j 6= k 6= l are also required). In a future version, we hope to extend xguinea to

rotational and ro-vibrational spectroscopies and the calculation of higher-order vibration-rotation

interaction and centrifugal distortion constants.

V. FUTURE DIRECTIONS

The discussion so far has focused on the current status of CFOUR, and is limited to features

provided via either the current public version or a version to be released shortly. However, there

are many other long-term developments concerning CFOUR either initially underway, or in the

planning stages, that will extend its capabilities in the future. While most of these ideas are still

in the planning stages and not yet appropriate for discussion, a few representative examples are

provided here. Specifically, we will briefly discuss ongoing work on the use of Cholesky decom-

position in order to facilitate computations on large molecules, and on the development of methods

for treating atoms and molecules in the exotic but astrophysically relevant environment of finite

and strong magnetic fields.

A. Cholesky Decomposition representation of the electron repulsion integrals

While the main focus of CFOUR is, by design, on the high-level treatment of small- to

medium-sized molecules, extending the applicability of rigorous, ab initio methods to larger sys-

tems is becoming more and more desirable. The asymptotically rate-determining step of such cal-

culations is the solution to amplitude equations, however, calculations on medium-large molecules

with reasonable, but not too large basis sets, can often become overwhelming due to the cost of

handling the two-electron repulsion integrals (ERIs). Operations such as the full or partial trans-

formation of the ERIs from the AO to the MO basis may often become the limiting step in practice.

This is due to two factors. First, it is usually safe to assume that the ERIs cannot fit in memory,

which is usually true for ERIs in the AO basis and even more so for ERIs in the MO basis. This

means that handling the integrals involves slow disk I/O, which can be a serious limiting factor.

Second, integrals are computed (and stored) in an order that depends on the shell structure of the

basis set, and accessed (or re-computed, for integral direct implementations399–401) in buffers. This

makes writing subsequent code with optimal handling of memory accesses virtually impossible,
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as the order in which the integrals are available is system-dependent and in general not optimal for

vectorization or use of highly optimized BLAS routines.

The ERI matrix is, however, not a full rank one. While there are in principle O(M4) nonzero

integrals, due to the localization of Gaussian basis functions, many of these will be small or

negligible.399,400,402 This induces sparsity in the ERI matrix that can be exploited by introduc-

ing low rank approximations

(µν |ρσ)≈
n

∑
KL
(µν |K)SKL(L|µν), (30)

where n is the rank of the decomposition and is assumed to be much smaller than the full rank

N = M(M + 1)/2, where M is the number of basis functions. Popular choices are the so-called

resolution of the identity (RI)403–407 (or density fitting) approximation and the Cholesky Decom-

position (CD)408–415 technique. In RI, an auxiliary basis set is introduced in order to approximate

four-center integrals with products of three-center ones, according to Eq. 30. CD, on the other

hand, is in principle the exact decomposition of the ERIs matrix in the product of a (full rank)

lower triangular matrix times its transpose, i.e.,

(µν |ρσ) =
N

∑
K=1

LK
µνLK

ρσ (31)

However, the decomposition in Eq. 31 can be truncated at n� N in a way that allows for both

compression, to the point that the resulting Cholesky vectors can often be kept in memory, and a

rigorous a priori control of the approximation error. The latter feature is particularly attractive, as

the accuracy of a CD-based calculation can be precisely controlled, which is not the case for the RI

approximation. On the other hand, RI computations can be performed using the same machinery

used to compute the ERIs themselves, with little modifications, and many auxiliary basis sets are

available in the literature,406,416–419 while CD needs an ad-hoc implementation and to compute the

decomposition itself. The same applies for integral derivatives.420–422 We believe that this price is

worth paying to retain full control on the precision of the calculation. For this reason, CD of the

ERIs has been implemented in CFOUR.

The long term goal of this development is to offer all the main features of CFOUR in conjunc-

tion with a CD representation of the ERIs. CD allows for large computational savings in operations

on the integral, as it reduces the scaling of AO to MO transformations from M5 to M4. However, it

does not change the scaling of the correlated treatment, with the exception of scaled-opposite-spin

second-order many body perturbation theory (SOS-MP2).423,424 Nevertheless, it can make a large
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difference as a formulation based on the CD of integrals is intrinsically well suited for writing

all the operations involving the ERIs as matrix-matrix multiplications, that can be performed with

very efficient level 3 BLAS routines. Furthermore, as each Cholesky vector LK contributes to the

final quantity independently of the others, it is possible to parallelize CD-based calculations by

distributing the Cholesky vectors.

At the moment, we are just starting to explore the use of CD in CFOUR.425 A particularly

promising development is the coupling of CD with quadratically convergent solvers for both SCF

and CASSCF. To show an example of the potential benefits of such a technique, we present here

some preliminary results obtained with a serial, CD-based implementation of quadratically con-

vergent SCF. This implementation is part of the experimental xdqcscf code described in section

IV B.

As an example of the use of CD to extend the applicability of methods implemented in

CFOUR, let us consider a medium-sized molecule such as caffeine (C8H10N4O2). Using Dun-

ning’s correlation consistent cc-pVTZ basis set, 560 basis functions are used, which is starting to

be borderline for many post-HF applications. SCF optimization can however still be performed

using the AO-based code in xdqcscf. The calculation requires, on a single core, about 2.5 hours,

and is heavily dominated by disk I/O. The same calculation using CD ERIs can be performed in

little more than 5 minutes, using a threshold for the CD of 10−4, which is a reasonable choice for

most applications. All the timings were obtained on a single core of an Intel Xeon Gold 6140M

processor. The main difference is that the CD ERI can easily be fitted in memory, avoiding thus

slow I/O operations, and that the vast majority of the operations performed are done with highly

efficient BLAS-3 routines. It is interesting to note that the same calculation, when performed

forcing the use of an out-of-core algorithm and thus reading the Cholesky vectors from disk, re-

quires slightly less than 10 minutes on the same machine. Therefore, even though the calculation

is a factor of 2 slower than the same performed with the Cholesky vectors in core, it is still much

faster than the traditional one. As a second example, we computed the SCF wavefunction for taxol

(C47H51NO14), a large molecule for which we employ again Dunning’s cc-pVTZ basis set and the

same settings for CD, for a total of 1947 basis functions. The SCF optimization can be performed

in under 4.5 hours on the same cluster node used before. While these are very preliminary results

and simple-minded applications, we believe that they offer a convincing argument in favor of

using CD as a method to handle larger molecular systems.

We have also recently completed an implementation in xncc of a CD-based algorithm for the
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expensive particle-particle ladder contribution to MP3 and CCSD which avoids explicit storage of

the 〈ab||cd〉 integrals. We plan to extend this pilot implementation to additional terms in CCSD

equations that deal with the 〈ab||ci〉 integrals in order to further reduce storage and I/O bottle-

necks.

B. Reduced-Scaling Coupled Cluster Methods

While the Cholesky decomposition approach (or RI/DF) can drastically reduce the memory

and I/O requirements of both the SCF and correlated calculations, by itself it cannot reduce the

scaling of post-Hartree–Fock methods except for SOS-MP2. In order to reduce the scaling of

the same-spin (exchange) part of the MP2 energy as well, Hohenstein, et al. introduced a further

factorization of the ERIs termed the tensor hypercontraction (THC) decomposition,426

(µν |ρσ)≈∑
RS

XR
µ XR

ν VRSXS
ρ XS

σ (32)

This factorization, combined with a Laplace quadrature representation of the orbital energy de-

nominators reduces the scaling of full MP2 to M4 and SOS-MP2 to M3. Parrish et al. refined the

THC method by assuming that the factor matrices X take the form of a real-space collocation of

the orbitals over a set of grid points: XR
µ = φµ(xR).427 This reduces the problem of finding the

interaction matrix V to a linear least squares problem with closed-form solution,

VRS = ∑
R′S′

∑
µνρσ

(S−1)RR′X
R′
µ XR′

ν (µν |ρσ)XS′
ρ XS′

σ (S−1)SS′ (33)

SRS = ∑
µν

XR
µ XR

ν XS
µXS

ν (34)

This procedure scales as M5 for exact ERIs but reduces to M4 when paired with an additional

CD/DF/RI approximation.

We have recently used this LS-THC factorization to implement reduced-scaling MP2 and MP3

methods (both scale as M4). In particular, we have found that using a Cholesky decomposition

of the real-space metric matrix S allows for defining “pruned" grids specific to particular classes

of transformed MO integrals, e.g. (ai|b j) vs. (ab|cd).428 The accuracy of the LS-THC-DF-MP2

energy and size of the pruned grids were found to be similar or superior to hand-optimized429

or other automatically-generated430,431 grids. We are now turning to the THC factorization of the

double excitation amplitudes432 and the efficient implementation of a reduced-scaling THC-CCSD

method.
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C. Atoms and molecules in finite magnetic fields

Strong magnetic fields lead, due to the interplay between Coulomb- and Lorentz forces, to a

fascinating and complex electronic structure.433 For example, the lowest triplet state of the hydro-

gen molecule (3Σ+
u ) becomes bound and even assumes the role of the ground state of the molecule

at a sufficiently strong magnetic field by the so-called perpendicular paramagnetic bonding mecha-

nism even though the formal bond order is zero.434 Such strong field strengths are of astrophysical

relevance as they can be found on magnetic White Dwarf stars (WDs). Spectra from WDs are,

however, very difficult to interpret since the magnetic field strength as well as the composition

of the atmosphere are a priori unknown. As the magnetic field changes the electronic spectra

completely, accurate quantum-chemical predictions are crucial prerequisites to interpretation. For

such predictions, perturbation theory is inadequate because the field is by no means only a small

perturbation to the system and finite-field methods have to be used instead. The predictions face

the challenge that due to the structure of the Hamiltonian for a molecule in a magnetic field, the

wave function becomes (in general) complex and therefore the implementation needs to allow for

complex wavefunction parameters, integrals, etc. It is hence the goal to develop high-accuracy

methods for the investigation of atoms and molecules in strong magnetic fields. Finite-field full-

CI implementations exist and have led to the discovery of strongly magnetized WDs with helium

atmospheres435 and the above-mentioned bonding mechanism.434 However, since finite-field full-

CI only allows to study systems with very few electrons, alternative high-accuracy finite-field

methods with lower computational scaling, such as finite-field methods based on coupled-cluster

and equation-of-motion coupled-cluster theory are desirable.436–438 In order to use these meth-

ods within CFOUR, a new integral code using gauge-including atomic orbitals (GIAOs) based

on the McMurchie Davidson scheme439,440 together with an SCF driver is being written and will

be interfaced with the QCUMBRE program.441 The latter is written in C++ and designed in an

object-oriented manner. A hierarchical data-type structure ensures that changes can be made on

a low level without having to modify existing top-level code. A key feature of QCUMBRE is a

black-box contraction routine that allows one to code in a manner that resembles the equations on

paper while efficient complex BLAS algorithms like ZGEMM3M are being used internally to carry

out matrix multiplications.
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VI. DATA AVAILABLITY STATEMENT

Data available on request from the authors
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Appendix A: Appendixes

1. Website and Online Documentation

Already in 2005, at the time of the ACES II Mainz-Austin-Budapest (MAB) version, a wiki-

based website was implemented to replace the old latex based manual in order to increase the up-

to-dateness and to facilitate documentation of old and new features of the program package. With

the renaming to CFOUR the current wiki-based website www.cfour.de was introduced, which

provides detailed information how to obtain, install, and use the CFOUR program package, which

features are available, as well as many illustrative examples together with a bibliography, which

provides references for methods, basis sets, and the underlying implementations in CFOUR.
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2. Mailing list

Besides the aforementioned online manual (see Appendix 1), there is a mailing list available

(cfour@lists.uni-mainz.de) to which any CFOUR user may subscribe. This mailing list, which is

hosted at the University of Mainz, is meant as a forum for the exchange of experiences between

users of the CFOUR program system. Users may join at any time via the website https://lists.uni-

mainz.de/sympa/subscribe/cfour. Please note that in order to prevent spam, subscription requests

are monitored and require that subscribers are accepted manually. After having subscribed, one

can post questions and comments via email to the email address cfour@lists.uni-mainz.de. A

searchable message archive of previous postings to the CFOUR mailing list, which goes back to

about 2009, is available at https://lists.uni-mainz.de/sympa/arc/cfour.

3. Licensing and Mode of Distribution

For non-commercial purposes there is no charge to obtain CFOUR for academic users (in-

dividuals, universities, research institutes). The CFOUR license agreement, which is available

from the aforementioned website, has to be signed and sent via regular mail or fax to the indicated

address.

After reception of the properly signed unmodified CFOUR license agreement, instructions will

be provided for downloading CFOUR from a GitLab server hosted by the University of Florida.

This portal offers a user interface similar to other popular git-based portals such as GitHub and

Bitbucket. From there, users can easily download any released CFOUR version. Bug fixes that

fall between versions are distributed through this system as well, and users can either download a

new version or receive updates through git version control.
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83J. Čížek, “On the correlation problem in atomic and molecular systems. calculation of wave-

function components in Ursell-type expansion using quantum-field theoretical methods,” J.

Chem. Phys. 45, 4256–4266 (1966).
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