
SASTRA Ramanujan Prize for this achievement
and other results. See [27] for the latest results on
the bounded gap problem. In the last few months,
Ford-Green-Konyagin-Tao [24] and Maynard [26]
have announced a solution to the Erdős $10,000
problem by showing that the constant in Rankin’s
lower bound can be made arbitrarily large. The
methods in [24] and [26] are different.
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László Lovász and Vera T. Sós

Erdős Centennial
It would be impossible to discuss the tremendous
work of Paul Erdős especially in such a short article.
All we can do is to contribute some impressions
and ideas about the nature of his work, flavored
by some quotations from letters of Erdős and
by a few personal impressions and experiences.
Several “mathematical,” and not only mathematical,
biographies of Erdős were written, among these
we mention here two thorough ones written by
Babai [2] and Bollobás [6]. His work was treated in
depth in a number of volumes containing expert
articles [20], [21], [22], [24], and even on the pages
of these Notices [4].

The idea of the present issue of the Notices
arose in connection with the Erdős Centennial
Conference we organized in summer 2013. To be
precise, we organized three Paul Erdős conferences
in Budapest: The first took place in 1996, one day
after his funeral. At that one-day meeting, our
goal was to give an immediate short survey of
his oeuvre, a demonstration of his unique role
in mathematics in the past seven decades. The
second conference took place three years later,
in 1999, when our primary aim was to cover as
much as possible the full scope and richness of his
mathematics and its impact. The third conference
was in 2013 to celebrate the hundredth anniversary
of his birth. The intention of this third one was to
give a panorama of the monumental development
originating in his mathematics, of the wide-ranging
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Paul Erdős and Paul Turán were great
mathematicians, close friends, and partners in
several important collaborations.

influence of his work, and to give some indication
of possible trends in the future. The success of the
conference surpassed all our expectations: more
than twice as many mathematicians participated
as we first expected, illustrating the tremendous
interest in his work and its proceeds.

Trying to collect a few thoughts about the
character of Erdős’s mathematics, our starting
point could be what he wrote in a letter that
included a scientific biography written by him in
the late 1970s:

To finish this short outline of my scientific
biography, I observe that most of my papers
contain some type of combinatorial reason-
ing and most of them contain unsolved
problems.

Indeed, a special trait all across his work was
his unparalleled power of formulating and posing
problems and conjectures. He had a special sense
for asking just the right questions: how else can
we explain that many of his innocent-looking
problems have opened up new areas, in some cases
after several decades? He wrote the first “problem
paper” in 1956 [9], which contained six problems.
After more than half a century, in spite of the many
important results and methods initiated by this
paper, none of these six problems is completely
solved.
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In one of his letters from 1979 he wrote:

I am writing a paper with the title: ‘Com-
binatorial problems I would most like to
see solved’—the subjective title is better
because then I do not have to write about my
opinion on the importance of the problems.

While Erdős often just asked a problem in a very
compact form without mentioning any reasons,
these problems were not as spontaneous as it
would seem. An example: In a letter to Paul Turán
in 1938 he formulated a conjecture about the
maximum number of k-element subsets of an n-
element set with the property that any two of them
intersect in at least r points. He mentioned that
with the help of Ko he could prove the case r = 1,
and he added the remark: “The theorem could
have beautiful applications in number theory.” The
proof was published only in 1961 in a famous
paper by Erdős, Ko, and Rado [15], but possible
applications in number theory are not mentioned
in the paper.

In its simplest form, the Erdős-Ko-Rado Theorem
says that to get the largest number of k-subsets
of an n-set (n ≥ 2k) that mutually intersect,
one should take all k-subsets containing a given
element. When reading such a statement, one
realizes that many similar problems can be raised
about subsets of a finite set, and then, depending
on one’s temperament, one might escape, or one
might be challenged by, the fact that such basic
questions are unsolved. Luckily, Erdős and several
others felt the challenge, and over a relatively short
period a wealth of basic questions in extremal set
theory were answered. The theorems of Sperner
(about sets not containing each other), Erdős-de
Bruijn (about sets, any two intersecting in exactly
one element), Erdős-Rado (about sets among which
no three mutually have the same intersection)
and Kruskal-Katona (about k-sets covering the
least number of r -sets) are not only standard
theorems in combinatorics textbooks, but they
have very important applications in geometry,
number theory, computer science, and elsewhere.
These problems, which arise in a very simple and
natural way, are often quite difficult to solve, and
in some cases a complete solution is still missing
after decades of intensive research.

Another characteristic of his mathematics was
that very often his questions and proofs reveal
deep relationships between different areas in
mathematics. Even though he was never directly
involved in computer science, he had an essential
influence on it, mostly through extremal set theory
and the probabilistic method. These connections
could not have been foreseen, except perhaps
by Erdős himself. (About this aspect of his work
see Babai [3].) Using his own words from the late
seventies:

I am basically a pure mathematician and
had little contact with applied mathematics,
I expect that my paper with Rényi on
the evolution of random graphs will be
used in several branches in science—Rényi
planned to work in this direction but was
prevented by his untimely death. Graham,
Szemerédi and I [16] have a paper on
problems raised by computer scientist but
I am not competent enough to judge their
importance for applications.

Erdős started out as a number theorist, and
number theory remained present in his mathemat-
ics all the time. There are several survey articles
dealing with his work on the theory of primes,
equidistribution, diophantine approximation, addi-
tive and multiplicative number theory, and many
more. Discovering the combinatorial nature of
some of his early number theory problems led him
to general questions in combinatorics and in graph
theory. He writes in his above-quoted “scientific
biography”:

My main subjects are: number theory (a
subject which interested me since early
childhood when I learned from my father
Euclid’s proof that the number of primes is
infinite), combinatorial analysis, set theory,
probability, geometry and various branches
of analysis.

His work in set theory often arose from combi-
natorics as infinite versions of finite problems. His
problems and results in geometry and algebra also
have a combinatorial flavor. He was the driving
force behind the development of large areas of
modern combinatorics, including extremal graph
theory and extremal set theory. Since combina-
torics is the best-known area of his work (which is
due, at least in part, to the fact that this was the
focus of his work in his later years), we will not go
into the details of these results.

Another area that Erdős introduced into sev-
eral branches of mathematics is probability. The
interaction with probability is a very hot topic in
number theory, combinatorics, computer science,
and other areas, and the pioneering work of Erdős
is present all over this work. We could talk about
four different ways in which he contributed to this
field.

1. He studied problems in pure probability
theory (often with a combinatorial flavor but
belonging to mainstream probability), like random
walks or the Law of Iterated Logarithm. As to this
last work, let us quote Bollobás [6]: “There are
very few people who have contributed more to the
fundamental theorems in probability theory than
Paul Erdős.”
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2. Starting with problems in number theory, he
showed how to exploit the random-like behavior
of different structures. Let’s quote his own words
[13]:

Heuristic probability arguments can often
be used to make plausible but often hope-
less conjectures on primes and on other
branches of number theory.

The deliberate and systematic application of prob-
ability theory to number theory started with the
celebrated Erdős-Kac theorem [14]. For a detailed
review of the story of this theorem, see the article
of Alladi-Krantz in this issue of the Notices. Erdős
himself wrote about the formation of the Erdős-Kac
theorem several times; let’s quote from [10]:

I conjectured that the convergence of the
three series is both necessary and sufficient
for the existence of the distribution function
(of an additive function) but this I could
not prove due to my gaps of knowledge in
Probability Theory.…After the lecture (of
Kac) we got together…and thus with a little
impudence we would say, that probabilistic
number theory was born.

Elliott writes in his book [8] about this theorem:

This result, of immediate appeal, was the
archetype of many results to follow. It firmly
established the application of the theory of
probability to the study of fairly wide class
of additive and multiplicative functions.

3. Perhaps most important of Erdős’s achieve-
ments is the “probabilistic method,” the use of
probability to prove the existence of certain objects
without explicitly constructing them (and whose
explicit construction is sometimes still open sixty
years later). This issue of the Notices contains other
papers that describe this fundamental method and
its applications, and we can also refer to the books
of Alon and Spencer [1] and Erdős and Spencer
[19].

4. The Erdős-Rényi theory of random graphs
is the first major example of the investigation of
random structures. To be precise, random sets of
integers, random polynomials, random matrices,
and other random structures were considered
before by several mathematicians (including Erdős
and Rényi themselves), but random graphs were
the first where a comprehensive theory arose that
showed how basic properties of these graphs are
different from their deterministic counterparts.
Several books have been written about random
graphs [5], [23]. The Erdős-Rényi random graphs
serve as basic examples in the recent explosion of
random graph models for many real-life networks
(like the Internet and social networks), where the
understanding and explanation of the differences
from this basic model is the main goal.

C
o
u

rt
es

y
o
f

V
er

a
Só

s

Paul Erdős with his mother, who travelled with
him around the world until her death in 1971.

Analysis, in particular approximation, interpola-
tion, polynomials, complex functions, and infinite
series, were also in the foreground of his research
from the thirties through the sixties. His analytic
power can be felt in his papers all along. It is best to
quote Paul Turán, who was an early collaborator of
Erdős and wrote a detailed survey on Erdős’s work
on the occasion of his fiftieth birthday [27]. (This
became an important source for many later articles
on Erdős.) Out of the several topics in analysis
which Turán discussed in this paper, let’s quote
what he wrote about the application of probability
in analysis:

“The application of probabilistic methods runs
right through the whole oeuvre of Erdős and this
holds for his works in analysis as well. In this
connection I have in my mind especially three of
his papers, the first of which was published in
1956 in the Proc. London Math. Soc. with Offord
[17], the second in 1959 in the Michigan Math. J.
with Dvoretzky [7], the third will be published with
Rényi in the volume to be issued to celebrate the
75th birthday of György Pólya [18]. In the first they
showed that if εν = ±1, then the 2n equations

1+ ε1x+ · · · + εnxn = 0

have, with at most o
(
2n/

√
log logn

)
exceptions,

2
π

logn+ o
(

log
2
3 n log logn

)
real roots each.

“The second gives an existence proof of the
nice theorem that there exists a power series
∞∑
0

eiαn√
n z

n with real αn that diverges on the whole

unit circle (that this can be achieved excluding a set
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(From l to r) George Graetzer, Paul Erdős, Paul
Turán and Alfred Renyi.

of measure zero was known). In the third they solve
an old problem of Zygmund in connection with
a theorem of N. Wiener. This theorem of Wiener
states (in a weakened form) that if the series∑

ν
(aν cos lνx+ bν sin lνx),

where the lν ’s are positive integers satisfying

lim
ν→∞

(lν+1 − lν) = ∞

is Abel-summable in an arbitrarily small interval
(a, b) to a function f (x) belonging to L2, when
we have

∑
(a2
ν + b2

ν) < ∞, hence the series is the
Fourier series of a function belonging to L2 on,
the whole [0,2π], thus f (x) has an extension to
[0,2π] that is in L2 and whose Fourier series is the
given series. Ingham, Zygmund and Marcinkiewicz
and the author of these lines gave much simpler
proofs of this theorem than the original; some
twenty years ago Zygmund raised the question
whether the theorem can be extended to a class
Lq with q > 2 in the place of L2. Now Erdős
and Rényi with probabilistic methods showed for
every q > 2 the existence of a trigonometric series
satisfying the above lacunarity condition that is
summable to a function continuous in (a, b) for
every 0 < a < b < 2π and still the series is not the
Fourier series of any function belonging to Lq on
[0,2π].”

Erdős was always very supportive of young
people. In the 1960s, when the Cold War began
to melt and he started to spend more time in
Budapest, he would often sit in the lobby of his
hotel all day, with students and young researchers
coming and going, discussing their new results,
and learning about new developments and new
problems from all over the world. One of us (the
first author) was lucky enough, as a high school
student, to have the opportunity to stay there
and take part in these discussions. The effect of
these discussions on how to look at mathematics,

research, colleagues, science, and the world has
lasted a lifetime.

From this experience, and in general from the
attitude of Erdős towards open problems, conjec-
tures, dissemination of ideas and collaboration,
his basic (probably unstated) philosophy can be
distilled: he believed in total openness in research,
where the goal is to advance knowledge, and we
all work together to achieve it.

Let me (the second author) also mention my first
and last meeting with Paul Erdős—the beginning
and the end of almost fifty years of acquaintance
and more than three decades of collaboration,
partly in several hundreds of letters. I met Erdős
the first time in 1948, when he returned to Hungary
after a break of ten years. My high school teacher,
Tibor Gallai, one of Erdős’s best friends, introduced
me to him. I cannot recall the particulars of our
conversation, but I am sure he asked mathematical
questions, as he usually did when meeting young
people interested in mathematics. However, I
remember that because of a long break his visit
had a special significance. Let me say a few words
about this.

Erdős and Gallai were members of the now
legendary “Anonymus group.”1 The members of
this group met regularly during their university
years at the Statue of Anonymus in City Park
in Budapest. Lifelong friendships were formed
between them, and their meetings had a deep
impact on their professional lives as well.

Arranged by Mordell, Erdős spent the years
1934–38 in Manchester. During this period he
returned to Hungary quite regularly three times
a year for shorter visits. In 1938 he decided to
leave Hungary, with its adverse and deteriorating
political situation. He had to leave his family, he
had to leave his friends. Then came the war years;
Erdős returned to Budapest only ten years later
to see his mother and his friends. This was the
occasion when, in December 1948, I met Erdős for
the first time.

In September 1996 we both attended a graph
theory conference in Warsaw. Our plan was to
go from Warsaw, together with András Sárközy,
to Vilnius to participate in a number theory
conference the following week. On the morning of
Wednesday, September 18, he gave his very last
problem lecture. The last problem he mentioned
was a problem of Hajnal (and perhaps himself). He
got stuck, started again, and this was repeated two

1László Alpár (1914–1991), Pál Erdős (1913–1996), János
Erőds, (1912–1944), Ervin Feldheim (1912–1944), Géza
Grünwald (1913–1944), Tibor Grünwald (Gallai) (1912–
1992), Eszter Klein (1910–1975), Dezső Lázár (1913–1943),
György Szekeres (1911–1975), Pál Turán (1910–1976),
Márta Wachsberger (Sved) (1911–2005), Endre Weiszfeld
(1913–1976).
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more times. After the third attempt, he put down
the chalk and finished the talk. The audience broke
out in applause, and he responded, “Thank you. I
know this is meant as a consolation!” There was an
excursion the same afternoon, which he skipped,
partly because of the cold weather. Instead of that,
the rest of the day became the last hours we spent
together, switching between topics and problems
perhaps more often than at other times. Paul Erdős
passed away on Friday, September 20 [26].

Erdős’s brilliant mathematical thinking, pure
character, helpful and sympathizing nature; his
quest for truth in science, politics, everyday life—
these are what motivated his untiring, relentless
activity and creativity until his last days. His
personality is perhaps evoked by the simple lines
he wrote one morning in 1976:

It is six in the morning, the house is still
asleep, I am listening to lovely music, while
writing and conjecturing.2
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ematics of Paul Erdős, Notices of the AMS 45 (1998),
19–31.

[5] B. Bollobás, Random Graphs, Academic Press, 1985.
[6] B. Bollobás, To prove and conjecture: Paul Erdős and
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[9] P. Erdős, Problems and results on additive number
theory, in Colloque sur la Thèorie des Nombres, Brux-
elles, 1955, George Thone, Liège; Masson and Cie, Paris,
1956, pp. 127–137.

[10] , On some of my favourite theorems, in D. Mik-
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Erdős contribution to the Proceedings of the
Conference on Number Theory in his honor for
his 70th birthday held in Ootacamund, India in
January 1984, and referred to in the Lovász-Sós
article.

Capocelli, R. (ed.), Sequences (Naples-Positano, 1988),
Springer, New York, 1990, pp. 182–194.
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Ronald L. Graham and Joel
Spencer

Ramsey Theory and the Probabilistic Method
Ramsey Theory was a lifelong interest of Paul Erdős.
It began [11] in the winter of 1931–32. George
Szekeres recalled:

We had a very close circle of young math-
ematicians, foremost among them Erdős,
Turán and Gallai; friendships were forged
which became the most lasting that I have
ever known and which outlived the up-
heavals of the thirties, a vicious world war
and our scattering to the four corners of
the world. I […] often joined the mathe-
maticians at weekend excursions in the
charming hill country around Budapest and
(in the summer) at open air meetings on the
benches of the city park.

Szekeres, Esther Klein, and Erdős attacked an
unusual geometric problem: Is it true that for every
k there exists an n so that given any n points in
the plane, no three collinear, some k of them form
a convex k-gon? Szekeres, in finding a proof of this
conjecture, actually proved Ramsey’s Theorem,
which none of the three knew about at the time.

The mantra for Ramsey Theory is “Complete
disorder is impossible.” Let s, r , k be positive
integers. Then, Ramsey showed, for n sufficiently
large (dependent on s, r , k), the following holds: LetΩ have size n. Take any partition of the s-element
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subsets of Ω into r colors. Then there will be a k-
element set S ⊂ Ω which is monochromatic, in the
sense that all of its s-element subsets are the same
color. In the important special case s = 2 one may
think of an r -coloring of the edges of the complete
graph Kn. While Erdős was not the originator of
Ramsey Theory, he was its chief proponent, with
conjectures and theorems in myriad directions
that truly turned Ramsey’s Theorem into Ramsey
Theory.

A natural question arose: Just how big does n
need to be? We’ll restrict here to s = 2, though
the other cases are also important. The Ramsey
function r(k) is the least n such that if the edges
of the complete graph Kn are red/blue colored,
then there will necessarily be a monochromatic Kk.
The proof of Szekeres worked for n =

(
2k−2
k−1

)
so

that, thinking asymptotically, r(k) < (4+ o(1))k.
In 1947 Erdős published a three-page paper [3] in
the Bulletin of the AMS that had a profound effect
on both the Probabilistic Method and on Ramsey
Theory.

Theorem. Let n, k satisfy(
n
k

)
21−(k2) < 1.

Then r(k) > n. That is, there exists a two-coloring of
the edges ofKn such that there is no monochromatic
Kk.

Today, for those in the area, the proof is
two words: Color Randomly! Consider a random

coloring of the edges. For each of the
(
n
k

)
sets S

of k vertices there is a probability 21−m, m =
(
k
2

)
,

that the m edges are all colored the same. The
probability of a disjunction is at most the sum
of the probabilities, and so the disjunction has
probability strictly less than one. Thus with positive
probability the coloring is as desired. But (this part
is sometimes called Erdős Magic) if there were no
such coloring, then the probability would be zero,
so, reversing, the coloring absolutely positively
must exist.

Asymptotic analysis (from Erdős’s paper) gives
r(k) > (

√
2 + o(1))k. There have been some im-

provements in both the upper and lower bounds,
most notably by David Conlon, but only for lower-
order terms. The gap between

√
2 and 4 has not

moved since 1947 and is a central question in the
field.

In 1950 [7], with Richard Rado, Erdős began
the area of canonical Ramsey Theory. Let S be an
ordered set. They gave four special colorings of the
pairs of S: They could all have the same color; they
could all have different colors; the color of {x, y}
with x < y could be different for different x and the
same for the same x; the color of {x, y} with x < y
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