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1053 Budapest, Hungary

Received 12 April 2002

Communicated by D. Goss

Abstract

Answering a question of Liardet, we prove that if 1; a1; a2;y; at are real numbers linearly

independent over the rationals, then there is an infinite subset A of the positive integers such

that for real b; we have (jj jj denotes the distance to the nearest integer)X
nAA

jjnbjjoN

if and only if b is a linear combination with integer coefficients of 1; a1; a2;y; at: The proof

combines elementary ideas with a deep theorem of Freiman on set addition. Using Freiman’s

theorem, we prove a lemma on the structure of Bohr sets, which may have independent interest.

r 2002 Elsevier Science (USA). All rights reserved.

Keywords: Characterizing sequences; Bohr sets; Freiman’s theorem

1. Introduction

In [1], together with Jean-Marc Deshouillers, we proved the following theorem
(jj jj denotes the distance to the nearest integer).

Theorem. Assume that 1; a1; a2;y; at are real numbers linearly independent over the

rationals. Then there is an infinite subset A of the positive integers such that for real b;
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we have

lim
nAA;n-N

jjnbjj ¼ 0

if and only if bAG; where G is the group generated by 1; a1; a2;y; at:

We call A a characterizing sequence of G:
Actually, we proved there a stronger theorem: the same statement is true for any

countable subgroup of the reals with 1AG; but to extend the theorem for that case is
a technical matter. For the sake of simplicity, in the present paper we consider only
the special case. Liardet [2] asked the following problem: can one replace the
condition

lim
nAA;n-N

jjnbjj ¼ 0

in the above theorem by

X
nAA

jjnbjjoN?

Our answer is affirmative.

Theorem. Assume that 1; a1; a2;y; at are real numbers linearly independent over the

rationals. Then there is an infinite subset A of the positive integers such that for real b;
we have

X
nAA

jjnbjjoN;

if and only if bAG; where G is the group generated by 1; a1; a2;y; at: Furthermore, for

beG we even have

lim
nAA;n-N

inf jjnbjj40:

This is a strengthening of the quoted theorem of [1], so we may call such an A a
strong characterizing sequence of G:

Our proof combines the ideas of the proof in [1] with a deep theorem of Freiman
on set addition. Using Freiman’s theorem, we prove a lemma on the structure of
Bohr sets. Since this lemma (Lemma 1 below) may have independent interest, we
state it here, in the Introduction.

Bohr sets are defined in the following way: if a1; a2;y; at are arbitrary (but
fixed) real numbers (so independence is not assumed here), N is a positive integer
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and e40; let

HN;e ¼ f1pnpN: jjna1jjpe; jjna2jjpe;y; jjnatjjpeg:

The implied constants in 5 depend only on t in the following lemma.

Lemma 1. Let e40 be small enough (depending on t). Then

HN;eD
XR

i¼1

kini: 1pkipKi for 1pipR

( )
ð1Þ

with some RX1 and suitable nonzero integers ni and positive integers Ki satisfying

R51;

jjniaj jj5
e

Ki

ð1pipR; 1pjptÞ

and

jnij5
N

Ki

ð1pipRÞ:

Consequently, for any element n of the right-hand side of (1) we have

jnj5N and jjnajjj5e ð1pjptÞ:

Remark 1. It would be interesting to analyze the dependence of R on the dimension t

of the Bohr set.

Remark 2. Our work is related to the papers [3,4] (see [1] for more details in this
connection).

2. Lemmas on Bohr sets

In this section a1; a2;y; at are arbitrary real numbers, and the implied constants in
5 depend only on t:

To prove Lemma 1 stated in the Introduction we need Lemma 2. If A and B are
two subsets of the integers, then we write

A þ B ¼ fa þ b: aAA; bABg:
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Lemma 2. We have

jHN;e þ HN;ejpCjHN;ej;

where C is a constant depending only on t (the dimension of the Bohr set).

Proof. It is clear that HN;e þ HN;eDH2N;2e: We divide the interval ½1; 2N	 into two

parts, the interval ½
2e; 2e	 into four parts, so the cube ½
2e; 2e	t into 4t parts, and the
lemma follows easily by the pigeon-hole principle. &

Proof of Lemma 1. By Ruzsa’s version of Freiman’s theorem (see [5]; Freiman’s
original work is [6]) and Lemma 2 we have

HN;eD a þ
Xr

i¼1

lidi: 1plipLi for 1pipr

( )

with some rX1 and suitable integers a and di and positive integers Li; where

jHN;ejXDL1L2yLr

with some 0oDo1: Here the numbers r and D depend only on C of Lemma 2 (so
depend only on t).

Assume that L1X
2
D
: Then it is clear that we can fix l2; l3;y; lr such that

1pl1pL1: a þ
Xr

i¼1

lidiAHN;e

( )�����
�����XDL1X2:

Then there are two different numbers in this set, say l1 and l1; with the property

0ojl1 
 l1jo2
D
;

and since l1 and l1 are elements of the above set, by the definition of HN;e we have

jjðl1 
 l1Þd1aj jjp2e for 1pjpt

and

jðl1 
 l1Þd1jpN:

Applying this argument several times and taking least common multiple, we find a
positive integer T such that

T51; jjTdiajjj5e; jTdij5N ð2Þ

for 1pjpt and for every 1pipr satisfying LiX
2
D
: We want to improve the last two

inequalities in (2).
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To this end we assume again that L1X
2
D
: If we fix suitably l2; l3;y; lr; then we can

find a residue class t ðmod TÞ such that

1pl1pL1: l1 � t ðmod TÞ; a þ
Xr

i¼1

lidiAHN;e

( )�����
�����bL1:

Hence there is an integer M1bL1 and a number E40 depending only on t with the
property that for every 1pjpt; there is a real xj and there is an integer n such that

with the notations

S1;j ¼ f1pmpM1: jjxj þ mðTd1ajÞjjpeg ð3Þ

and

S2 ¼ f1pmpM1: jn þ mðTd1ÞjpNg; ð4Þ

we have

jS1;j jXEM1; jS2jXEM1: ð5Þ

Recall from (2) that jjTd1ajjj5e: Then it follows by (3) (dividing the interval ½1;M1	
into intervals of length smaller than 1

jjTd1aj jj) that

jS1;j j5ð1 þ M1jjTd1ajjjÞ
e

jjTd1ajjj
:

If e is small enough (depending on t), then using (5) and M1bL1 we get

jjTd1ajjj5
e

L1
: ð6Þ

On the other hand, by (2) and (4) we have

jS2j5
N

jTd1j
;

and so (5) gives

jd1j5
N

L1
: ð7Þ

We see that (6) and (7) indeed improve (2).
Summing up: if e is small enough, we can divide f1; 2;y; rg into a disjoint union

f1; 2;y; rg ¼ I1,I2
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such that

Lio
2

D
for iAI1;

jjTdiajjj5
e

Li

and jdij5
N

Li

for iAI2 and 1pjpt: ð8Þ

Now, it is clear that there is a set H1 of integers satisfying jH1j51 and HN;eDH1 þ
H2; where

H2 ¼
X
iAI2

ðTdiÞli: 1plip
Li

T

� �( )
:

Of course, we can assume that HN;e-ðh þ H2Þa| for every hAH1; and so we know

jjhaj jj5e for 1pjpt and jhj5N ð9Þ

for hAH1; if we know (9) for hAH2 and hAHN;e: But for hAH2 (9) follows from (8);

for hAHN;e (9) is true by definition. The lemma follows from the above observations

(as ni we can take TdiðiAI2) and each element of H1). &

Lemma 3. If o is a real number, kX1 is an integer, and

jjojj; jj2ojj; jj4ojj;y; jj2kojjpdo
1

10
;

then jjojjp d
2k:

Proof. We use induction on k: The case k ¼ 1 is clear since

d
2
ojjojjpdo

1

10

implies dojj2ojj: If k41; then by the k ¼ 1 case we have

jj2jojjpd
2

for 1pjpk 
 1

and then the assertion for k 
 1 implies the assertion for k: &

Lemma 4. If HN;e is a Bohr set, and e40 is small enough (depending on t), then there is

a set S consisting of positive integers with the following three properties:

(i) maxnAS n5N;
(ii)

P
nAS jjnajjj5e for 1pjpt;

(iii) maxnAHN;e jjnbjj5maxnASjjnbjj for every real b:
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Proof. We use the notations of Lemma 1. We define

S ¼ f2li jnij: 1p2lipKi; 1pipRg:

The first two required properties of S are then trivial from Lemma 1. We prove the
third one. We may assume that

max
nAS

jjnbjjo 1

10
:

Then by Lemma 3, we have

jjnibjj5
1

Ki

max
nAS

jjnbjj

for 1pipR; and using Lemma 1, this proves the present lemma. &

3. Proof of the Theorem

It is not needed for the general proof, but we think that it is interesting to give first
a construction of a suitable set in the one-dimensional case: if t ¼ 1; a ¼ a1;

a ¼ ½a0; a1; a2;y	

is its continued fraction expansion, and pm=qm is the sequence of its convergents,
then

A ¼ f2lqm: 1p2lpamþ1;m ¼ 1; 2;yg

is a set satisfying the conditions listed in the Theorem. This can be easily proved
using Theorem 1* of [1] and our present Lemma 3, but instead of analyzing it
further, we turn to the proof of the Theorem for any tX1:

In the sequel, 1; a1; a2;y; at are linearly independent over the rationals. The
following lemma is a simple consequence of Lemma 2.2 in [1]. For the sake of
completeness, we sketch its proof here.

Lemma 5. Let e40;TX1 and d40; and assume that eTp1
4
: Then there is a positive

integer N such that if

max
nAHN;e

jjnbjjpTe ð*Þ

for a real b; then

jjb
 ðK1a1 þ?þ KtatÞjjod
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with some integers K1;y;Kt satisfying

jK1j þ?þ jKtjpT : ð* *Þ

Proof. By a compactness argument, it is enough to prove the following:

Statement. Let e40;TX1 and assume that eTp1
4: Then, if ð*Þ is true for every

positive integer N, then

b � K1a1 þ?þ Ktat ðmod 1Þ

with some integers K1;y;Kt satisfying ð* *Þ:

To prove it, we note that by the conditions, the set

fðna1; na2;y; nat; nbÞ: nAZg

is not dense in ðR=ZÞtþ1; so, by Kronecker’s theorem, the numbers a1; a2;y; at; b
and 1 cannot be linearly independent over the rationals. Hence, there are integers
K1;K2;y;Ktþ1 and a positive integer K such that

b � K1

K
a1 þ?þ Kt

K
at þ

Ktþ1

K
ðmod 1Þ:

We first prove that K1=K is an integer. If this is not the case, then there is an
integer 1pRoK such that jjRK1=K jjX1=3: For that R and any d40; we can choose
a large enough r such that

jjðR=KÞ 
 ra1jjod; jjra2jj;y; jjratjjod;

and then, taking n ¼ rK ; this gives us (if d is small enough) that jjna1jj;y; jjnatjjoe;
but jjnbjj41=4: This contradiction shows that K divides K1; and similarly, K divides
K2;y;Kt:

We now prove that Ktþ1=K is also an integer. If not, then for a 1pRoK we have
jjRKtþ1=K jjX1=3: For any d40 we can choose a large enough r such that with
n ¼ R þ rK we have jjna1jj;y; jjnatjjod: Then, similarly as above, for small enough
d we will have jjna1jj;y; jjnatjjoe; but jjnbjj41=4: Hence K divides Ktþ1: So we can
assume that K ¼ 1; i.e.,

b � K1a1 þ?þ Ktat ðmod 1Þ

and it is easy to see that our condition can be satisfied only if ð* *Þ is true. Lemma 5
is proved. &

We now prove the theorem. Let dk be a strictly decreasing sequence (to be
determined later) tending to 0. Then, by Lemma 5, we can choose a sequence Nk of
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positive integers such that HNk ;2
k
2a|; and if

max
nAH

Nk ;2

k
2

jjnbjjp1
4

ð10Þ

for a real b; then

jjb
 ðK1a1 þ?þ KtatÞjjodk ð11Þ

with some integers K1;y;Kt satisfying

jK1j þ?þ jKtjp2k: ð12Þ

By Lemma 4, for large enough k; say for kXK0 we can choose a set Sk for HNk ;2
k
2

satisfying the properties listed in that lemma. Observe that by (ii) of Lemma 4, we
have

lim
k-N

min
nASk

n

� 	
¼ N: ð13Þ

Define

A ¼
[

kXK0

Sk: ð14Þ

Assume that for a real b we have

lim
nAA;n-N

jjnbjj ¼ 0: ð15Þ

Then, by (13) and (14), we must have

lim
k-N

max
nASk

jjnbjj
� 	

¼ 0;

and so by (iii) of Lemma 4, (10) is valid for large enough k; if b satisfies (15). This
implies (see (11) and (12)) that for such b and for every large enough k; one has

jjb
 ðK1;ka1 þ?þ Kt;katÞjjodk ð16Þ

for suitable integers satisfying

jK1;kj þ?þ jKt;kjp2k: ð17Þ

Using (16) for k and k þ 1; and using also that dk is decreasing, we find that

jjðK1;k 
 K1;kþ1Þa1 þ?þ ðKt;k 
 Kt;kþ1Þatjjo2dk: ð18Þ
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If we define

dk ¼ 1

2
min

0ojK1jþ?þjKtjp2kþ2
jjK1a1 þ?þ Ktatjj

� 	
;

then we obtain from (18) (using (17) for k and k þ 1) that

Kj;k ¼ Kj;kþ1 for 1pjpt:

This is true for every large enough k; so there are integers Kj for every j such that

Kj;k ¼ Kj for large k: Since dk-0; this easily implies bAG by (16). Hence we proved

that if (15) is true for b; then bAG:
On the other hand, for every 1pjpt; by the definition of the sets Sk; by (ii) of

Lemma 4 and by (14) we obtainX
nAA

jjnajjjp
X

kXK0

X
nASk

jjnaj jj5
X

kXK0

2
k
2
51:

This proves the theorem. &
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