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Abstract

Answering a question of Liardet, we prove that if 1,0, a5, ..., % are real numbers linearly
independent over the rationals, then there is an infinite subset A of the positive integers such
that for real 8, we have (|| || denotes the distance to the nearest integer)

> lInpll< oo

neA

if and only if f is a linear combination with integer coefficients of 1,a;, a0y, ..., o, The proof
combines elementary ideas with a deep theorem of Freiman on set addition. Using Freiman’s
theorem, we prove a lemma on the structure of Bohr sets, which may have independent interest.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In [1], together with Jean-Marc Deshouillers, we proved the following theorem
(|| denotes the distance to the nearest integer).

Theorem. Assume that 1,01,0,, ...,0, are real numbers linearly independent over the
rationals. Then there is an infinite subset A of the positive integers such that for real f3,
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we have

lim [nf| =0

neAn— oo
if and only if fe G, where G is the group generated by 1,04,0,, ..., 0.

We call 4 a characterizing sequence of G.

Actually, we proved there a stronger theorem: the same statement is true for any
countable subgroup of the reals with 1€ G, but to extend the theorem for that case is
a technical matter. For the sake of simplicity, in the present paper we consider only
the special case. Liardet [2] asked the following problem: can one replace the
condition

lim ||nfl| =0
neAn— o

in the above theorem by

S [Inpll < 07

neA

Our answer is affirmative.

Theorem. Assume that 1,01,0,, ...,0, are real numbers linearly independent over the
rationals. Then there is an infinite subset A of the positive integers such that for real f3,
we have

S [nfll< o,

ned

if and only if fe G, where G is the group generated by 1,0, 05, ..., 0. Furthermore, for
P ¢ G we even have

lim inf||np||>0.

neAn—

This is a strengthening of the quoted theorem of [1], so we may call such an 4 a
strong characterizing sequence of G.

Our proof combines the ideas of the proof in [1] with a deep theorem of Freiman
on set addition. Using Freiman’s theorem, we prove a lemma on the structure of
Bohr sets. Since this lemma (Lemma 1 below) may have independent interest, we
state it here, in the Introduction.

Bohr sets are defined in the following way: if oy,0, ...,0, are arbitrary (but
fixed) real numbers (so independence is not assumed here), N is a positive integer
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and ¢>0, let

Hy, = {1<n<N: ||nou||<¢, ||noa|| e, ..., ||nog]| < e}
The implied constants in < depend only on ¢ in the following lemma.

Lemma 1. Let ¢>0 be small enough (depending on t). Then
R
HN,A?E{Z kin;: 1<k;<K; for 1<1<R} (1)
i=1

with some R>=1 and suitable nonzero integers n; and positive integers K; satisfying
R<1,

Il <= (1<i<R1<j<0)
and
N
|ni|<z (I<i<R).

Consequently, for any element n of the right-hand side of (1) we have

<N and |nyl|<e (1<j<0).
Remark 1. It would be interesting to analyze the dependence of R on the dimension ¢
of the Bohr set.

Remark 2. Our work is related to the papers [3,4] (see [1] for more details in this
connection).

2. Lemmas on Bohr sets

In this section oy, oy, ..., o, are arbitrary real numbers, and the implied constants in
< depend only on ¢.

To prove Lemma 1 stated in the Introduction we need Lemma 2. If 4 and B are
two subsets of the integers, then we write

A+B={a+b: acA,beB}.
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Lemma 2. We have
‘HN,IJ + HN,::| < C|HN.{:|3
where C is a constant depending only on t (the dimension of the Bohr set).

Proof. It is clear that Hy, + Hy . < Hoy .. We divide the interval [1,2N] into two

parts, the interval [—2e, 2¢] into four parts, so the cube [—2¢, 2¢]" into 4/ parts, and the
lemma follows easily by the pigeon-hole principle. [

Proof of Lemma 1. By Ruzsa’s version of Freiman’s theorem (see [5]; Freiman’s
original work is [6]) and Lemma 2 we have

r

HN‘BQ{LZ—F Zl'dil 1<11<Ll for 1<1<V}

i=1
with some r>1 and suitable integers a and d; and positive integers L;, where
|Hy.|>DL/L,...L,

with some 0 <D< 1. Here the numbers r and D depend only on C of Lemma 2 (so
depend only on 7).
Assume that L, 2%. Then it is clear that we can fix b, 5, ..., I, such that

Hl<ll<L11 a—i—z lidiEHN,s}

i=1

>DL,>=2.

Then there are two different numbers in this set, say /; and A, with the property
0<|h — h|<3,
and since /; and 4; are elements of the above set, by the definition of Hy, we have
[|(lh = An)dioy]|<2e  for 1<j<t
and
[(ly — A1)di|<N.

Applying this argument several times and taking least common multiple, we find a
positive integer 7 such that

T<1, ||Tdwl|<e, |Tdi|<N (2)

for 1<j<t and for every 1<i<r satisfying L,~>%. We want to improve the last two
inequalities in (2).
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To this end we assume again that L; 2%. If we fix suitably 5, /s, ..., [, then we can
find a residue class T (mod T') such that

>L.

ngll <Li:lh=t(modT),a+ Z l,'d,‘eHN,g}
=1

Hence there is an integer M| > L; and a number E >0 depending only on ¢ with the

property that for every 1<j<¢, there is a real x; and there is an integer n such that

with the notations

S1j = {I<sm<M: ||x; + m(Tdyo;)|| < e} (3)
and
Sy = {1<m<M;: |n+m(Td))|<N}, (4)
we have
|S1j|=EM, |S:|=EM,. (5)
Recall from (2) that ||7d, ;|| <e. Then it follows by (3) (dividing the interval [1, M;]
into intervals of length smaller than m) that
Sigl <1+ Ml o)

If ¢ is small enough (depending on ¢), then using (5) and M;> L; we get
€
|| Td, 0| <L—l. (6)
On the other hand, by (2) and (4) we have

N
S _
| 2|<|Td1|7

and so (5) gives
N
|d1|<L—1. (7)

We see that (6) and (7) indeed improve (2).
Summing up: if ¢ is small enough, we can divide {1,2, ...,r} into a disjoint union

{1,2, ...,r} 211U12
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such that

L<2 for iel
<— foriel,
D 1

N
||Ta’,-oq,»||<% and |d| <7 for iel, and 1<j<t. (8)

1

Now, it is clear that there is a set H; of integers satisfying |H;| <1 and Hy .S H; +
H,, where

. Li

H, = {Z (Td)l;: 1< < [7} }
iel

Of course, we can assume that Hy N (h+ H,)#0 for every he Hy, and so we know

[|hoj|| <e for 1<j<t and |h|<N 9)

for he H, if we know (9) for he H, and he Hy .. But for he H, (9) follows from (8);
for he Hy, (9) is true by definition. The lemma follows from the above observations
(as n; we can take Td;(iel,) and each element of Hy). O

Lemma 3. If w is a real number, k=1 is an integer, and

1
ol [120]l,[[4e]l, ... 2ol <o <1,
then ||o|| <.

Proof. We use induction on k. The case k = 1 is clear since

0 1
— < JR—
2<||co||\5<10

implies 6 <||2w||. If k> 1, then by the k = 1 case we have
4 P .
||2’co||<§ for 1<j<k —1
and then the assertion for k — 1 implies the assertion for k. [

Lemma 4. If Hy , is a Bohr set, and ¢> 0 is small enough (depending on t), then there is
a set S consisting of positive integers with the following three properties:

(i) max,esn<N,
(i) 3,cs |lnoy||<e for 1</<z,
(i) max,em,, |[nB|| <max,cs||np|| for every real p.
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Proof. We use the notations of Lemma 1. We define
S = {2Mn]: 1<2"<K;, 1<i<R}.

The first two required properties of S are then trivial from Lemma 1. We prove the
third one. We may assume that

1
<—.
g lInfll <1

Then by Lemma 3, we have
Bl < max| B
n; L— n
K,’ neS

for 1<i<R, and using Lemma 1, this proves the present lemma. [

3. Proof of the Theorem

It is not needed for the general proof, but we think that it is interesting to give first
a construction of a suitable set in the one-dimensional case: if £ = 1,0 = o,

o= lag;ar,an, ...]

is its continued fraction expansion, and p,,/¢,, is the sequence of its convergents,
then

A= {2lq,,,: 1< <apyr,m=1,2, .}

is a set satisfying the conditions listed in the Theorem. This can be easily proved
using Theorem 1* of [1] and our present Lemma 3, but instead of analyzing it
further, we turn to the proof of the Theorem for any 7>1.

In the sequel, 1,0y, s, ...,%, are linearly independent over the rationals. The
following lemma is a simple consequence of Lemma 2.2 in [1]. For the sake of
completeness, we sketch its proof here.

Lemma 5. Let ¢>0,T>1 and 6 >0, and assume that 8T<‘l1. Then there is a positive
integer N such that if

max ||nf||<Te ()

neHy,
for a real 3, then

||'B— (K]O(] + - +K[OC{)||<5
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with some integers K\, ..., K; satisfying

(K| + - K< T. (%)

Proof. By a compactness argument, it is enough to prove the following:

Statement. Ler ¢>0,T>1 and assume that ¢T<j. Then, if (*) is true for every
positive integer N, then

p=Ko+ -+ Koy (mod 1)
with some integers K, ..., K, satisfying (s ).

To prove it, we note that by the conditions, the set

{(nov,noa, ... ,noy,npP): neZ}

is not dense in (R/Z)”l7 so, by Kronecker’s theorem, the numbers oy, oy, ..., %,
and 1 cannot be linearly independent over the rationals. Hence, there are integers
K, K, ...,K, | and a positive integer K such that

K, K

gl Ry
=—u e —
K K"K

(mod 1).

We first prove that K;/K is an integer. If this is not the case, then there is an
integer 1 <R <K such that ||RK;/K||>1/3. For that R and any 6 >0, we can choose
a large enough r such that

[(R/K) = rau||<0,  [[roal, ..., |[roul[ <9,

and then, taking n = rK, this gives us (if J is small enough) that ||no ||, ..., ||no|| <e,
but ||nf|| > 1/4. This contradiction shows that K divides Kj, and similarly, K divides
K, ... K,.

We now prove that K, /K is also an integer. If not, then for a 1 < R< K we have
[|RK:+1/K||=1/3. For any >0 we can choose a large enough r such that with
n= R+ rK we have ||no||, ..., ||noy|| <0. Then, similarly as above, for small enough
0 we will have ||nay]], ..., ||no|| <e, but ||[nf]|>1/4. Hence K divides K;41. So we can
assume that K =1, i.e.,

IB EK]O(] + - +K10([ (mOd 1)

and it is easy to see that our condition can be satisfied only if (* ) is true. Lemma 5
is proved. [

We now prove the theorem. Let J; be a strictly decreasing sequence (to be
determined later) tending to 0. Then, by Lemma 5, we can choose a sequence Ny of
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positive integers such that Hy, >« #0, and if

<d 10
x| gl <} (10)

for a real f, then

|IB = (Kion + -+ + Kio)|| <0k (11)
with some integers K, ..., K; satisfying
|Ki| + - + | Ky < 2K (12)

By Lemma 4, for large enough k, say for k> K, we can choose a set Sy for Hy, ,-i—
satisfying the properties listed in that lemma. Observe that by (ii) of Lemma 4, we
have

lim (min n) = o0. (13)
k— o \neS;
Define
4= J s (14)
k=Ko
Assume that for a real § we have
lim ||np]| = 0. (15)
neAn— o

Then, by (13) and (14), we must have

Jim (masf ||nﬁ||> =0,

and so by (iii) of Lemma 4, (10) is valid for large enough k, if § satisfies (15). This
implies (see (11) and (12)) that for such f and for every large enough k, one has

18— (Kigon + -+ + K o) || <O (16)
for suitable integers satisfying
Kyl + -+ [Kix] <25, (17)
Using (16) for k and k + 1, and using also that J; is decreasing, we find that

(Kik — Kigg1)or + - + (Ko — Kpger1) 0| | <20k (18)
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If we define

1
S ==

( min (Ko + - +Kta,||),
2\ 0<|Ki [+ +| K| <2k+2

then we obtain from (18) (using (17) for k and k + 1) that
I(j_’k = I<j7k+1 for 1<j<t.

This is true for every large enough k, so there are integers K; for every j such that
K« = K; for large k. Since 6, — 0, this easily implies fe G by (16). Hence we proved
that if (15) is true for f, then feG.

On the other hand, for every 1<;j<t, by the definition of the sets S, by (ii) of
Lemma 4 and by (14) we obtain

Slnlls 33 lngl< 3 242 <l

neA k>Ky neSk k=K

This proves the theorem. [
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