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1. Introduction

Given a metric space, (M, d), we shall call a mapping ϕ : M → M
wobbling if d(x, ϕ(x)) is bounded for x ∈ M.

Such mappings were investigated by Laczkovich in his fundamental study
on squaring the disk [6]. He considered sets which may be mapped into the
regular grid by wobbling mappings.

The simple idea behind this concept is related also to physics and crystallo-
graphy. Consider, for example, an amount of iron filings distributed in the
plane to which an electrical field of finite energy is applied. The filings will
move into an arranged position along the lines of the field. As long as the
electrical field has small energy it is expected that no element is moved too
far. Similarly, a faulty crystal can be imagined to be obtained from a regular
crystal by moving certain elements by some small distance. Such mappings
occur in many applications and may be treated in several ways [11].

In this note we outline some aspects of wobbling mappings in arbitrary
metric spaces. The Banach-Tarski’s theorem states that the unit ball in R3

may be decomposed into two parts which are piecewise congruent to the
unit ball. We shall consider analogues of the Banach-Tarski’s phenomenon
in arbitrary metric spaces. We will characterize those metric spaces which
may be decomposed into two parts, where both parts are equivalent to the
whole metric space by a wobbling bijection.

1
Added in 2004: This is a new, extended version of our earlier paper with

the above title. This version is created solely for posting it on our homepage, to
correct some of the minor misprints and add just a few remarks. The NEW notes,
extensions, remarks are indicated either by being boxed or by putting them into
footnotes. The first author, Walter Deuber died on ...., the last author gave a
lecture in his memory and the G. Elek and the last author wrote a longer survey
in his memory [17]. While writing that survey, we realized that posting such an
annotated version of our paper on our homepage could be useful.

Miklós Simonovits and Vera T. Sós
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/328818586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 W. A. DEUBER, M. SIMONOVITS, AND V. T. SÓS

2. Wobbling Equivalences

Definition 1. Let (M, d) be a metric space and X,Y ⊆ M . An injective
mapping ϕ : X → Y is called k–wobbling if

sup
x∈X

d(ϕ(x), x) < k.

We call X and Y wobbling equivalent if for some k there is a k–wobbling
bijection ϕ : X → Y .

Copying the proof of the Cantor-Bernstein theorem one gets

Lemma 2.1. Let X1 and X2 be subsets of a metric space (M, d) and ϕ1

be a wobbling mapping of X1 onto a subset Y2 ⊆ X2 and ϕ2 be a wobbling
mapping of X2 onto a subset Y1 ⊆ X1. Then X1 and X2 are wobbling
equivalent.

Definition 2. For two sets X,Y ⊆ M the bipartite k–distance graph
Gk(X,Y ) is the bipartite graph with colour classes X and Y , where x ∈ X
is joined to y ∈ Y iff d(x, y) < k.

Clearly, X has a wobbling injection into Y if there exists a constant k such
that Gk(X,Y ) contains a matching covering X. A metric space (M, d) is
discrete if every bounded subset of M is finite. For discrete metric spaces
the k–distance graphs Gk(X,Y ) are locally finite.

We denote by Nk(Z) the k–neighborhood of a set Z in M .
Applying the Rado-Hall theorem [10] for matchings in countable locally

finite bipartite graphs to the k–distance graphs above gives the following.

Claim 2.2. Let (M, d) be a discrete countable metric space. Two subsets
X,Y of M are wobbling–equivalent iff there exists a constant k > 0 such
that

(i) For every finite subset X ′ of X |Nk(X
′) ∩ Y | ≥ |X ′|.

(ii) For every finite subset Y ′ of Y |Nk(Y
′) ∩ X| ≥ |Y ′|.

Sets which are equivalent to Zd are called uniformly spread [7]. In the
geometric setup one can make the transition from ”counting” as in Claim
2.4 to “measuring volumes”: Let X ⊆ R. To each x ∈ X associate the unit
cube with lower left corner in x:

Cd(x) = x + [0, 1)d.

Heuristically one would say that if a set X is uniformly spread, then for
every finite set X ′ ⊆ X the cardinality |X ′| may be approximated by the
volume λd(

⋃
x∈X

Cd(x)) where λd is the d–dimensional volume.

For a subset X ⊆ Rd of a C ⊆ Rd, the quantity ||X ∩C|−λd(C)| is called
the discrepancy of X relative to C and denoted by ∆(X,C).

To prove his famous result on “squaring the disk”, Laczkovich proved the
following [7].
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Theorem 2.3 (Laczkovich). A subset X of Rd is equivalent to Zd if there
exists a constant L such that for every measurable set C ⊂ Rd the following
holds:

∆(X,Y ) ≤ Lλd(N1(∂C)),

where ∂C denotes the boundary of C.

For d = 2 there is a variant of this theorem [7].

Theorem 2.4 (Laczkovich). A set X ⊂ R2 is equivalent to Z2 if there exists
a constant L such that for every Jordan domain C of diameter at least 1

∆(X,C) ≤ Lλ1(∂C)

holds.

As a corollary of the above theorem, one can easily show

Corollary 2.5. (See also P. Pleasants [9] ) Every Penrose tiling is equi-
valent to τZ2 for some τ ∈ R.

Proof. By De Brujin’s theorem [2] every Penrose tiling P is obtained as
follows: There exists a 2 dimensional plane E ⊂ R5 and a constant ` such
that the orthogonal projection Π from R5 to E satisfies

∏
(N`(E) ∩ Z5) = P.

It is easy to verify that N`(E)∩Z5 satisfies the discrepancy condition of the
theorem of Laczkovich. Then the projection - which is injective in this case
- is a wobbling mapping, since ` is fixed.

In a metric space much less is known in general about wobbling equiva-
lence.2 Of course, there are general theorems guaranteeing the existence of
injections such as the extensions of Hall’s theorem by Michael Holz; Klaus
Peter Podewski; Karsten Steffens [4]. It could well be that an application of
these theorems gives new insight in the context of wobbling equivalences.

Problem 1. Characterize the sets which are wobbling equivalent to Z2.

The same problem could be of interest for X ⊂ Q2.

3. Paradoxical Sets

Definition 3. Two sets A,B in R3 are called piecewise congruent if
there exist decompositions A = A1∪̇ . . . ∪̇An, and B = B1∪̇ . . . ∪̇Bn such
that each Ai is congruent to Bi.

In their classical paper Banach and Tarski [1], (see also Wagon [13]) proved
that the unit ball B in R3 is paradoxical in the following sense: B can be
decomposed into two disjoint sets B1, B2 so that B1, B2 and B are pair-
wise piecewise congruent. Whenever one has an equivalence relation on

2
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the power-set of some set, one can define paradoxical sets. Here we define
paradoxical sets only for the wobbling equivalence.

Definition 4. Let (M, d) be a metric space. (M, d) is paradoxical if
there exists a decomposition M = M1∪̇M2 such that M1,M2 and M are
pairwise wobbling equivalent.

Example 1. R2 is paradoxical. Take a checkerboard tiling of the plane. A
translation moves the black tiles into the white ones. Moreover any single
square is equivalent to a domino. This shows that R2 and the set of black
tiles are equivalent.

3

Example 2. Let M = {log n | n ∈ N}. Then M1 = {log(2n + 1) | n ∈ N}
and M2 = {log 2n | n ∈ N} show that M is paradoxical.

In order to characterize paradoxical sets (for wobbling equivalence) we
introduce the following

Definition 5. Let (M, d) be a discrete metric space. M has exponential
growth rate if

(∗) there exists a k (the doubling radius) such that for every finite
set M ′ the k–neighborhood Nk(M

′) contains at least 2 · |M ′| elements.

4

Remark. Obviously, the condition (∗) above is equivalent to that for some
fixed q > 1 there exists a k such that for every finite set M ′ the k–neighbor-
hood Nk(M

′) has at least qM ′ elements.

Theorem 3.1. Let (M, d) be a discrete countable metric space. Then the
following are equivalent.

(i) M is paradoxical.
(ii) M has exponential growth rate.

One should be aware that this theorem is not just a rewriting of defini-
tions. To check exponential growth rate one has local tests: For every finite
set one establishes the doubling radius. M is paradoxical if all these local
doubling radii remain bounded. On the other hand, paradoxicity is a global
property.

For the proof we need a variant of Hall’s theorem.

3
Added in 2004: Rd is not paradoxical for the isometries. This shows that being

paradoxical depends very much on the equivalence relation (or, in some specific
cases, on the group/family of mappings we consider).

4
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ized that this was slightly unfortunate since the expression “exponential growth
rate” had been used slightly differently in the group theory literature, see [16],
[17].
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Definition 6. Let G = (A,B) be a bipartite graph. A set E of edges is an
(`1, `2)-matching if every vertex of A is contained in exactly `1 edges of E
and every vertex of B is contained in exactly `2 edges of E.

We need the following.

Generalized Hall-Rado theorem. Let G = (A,B) be a countable locally
finite bipartite graph. G contains an (`1, `2)-matching if the following two Originally, a mis-

print was here: we
wrote “iff”.

conditions are satisfied.
(i) For every finite subset A′ of A there are at least `1 · |A

′| neighbours
in B.

(ii) For every finite subset B ′ of B there are at least `2 · |B
′| neighbours

in A.

Proof of Theorem 3.1. Let M be paradoxical. Then there exists a k ∈
R such that for every finite subset M ′ of M the k–neighborhood Nk(M

′)
contains two disjoint sets of cardinality |M ′|.

Indeed, let M = M1∪̇M2 be paradoxical decomposition with wobbling
distance k. Then both M1 ∩ Nk(M

′) and M2 ∩ Nk(M
′) have at least |M ′|

elements. Hence M has exponential growth rate.
To see the converse statement, observe that M is paradoxical iff for some

k the k–distance graph Gk(M,M) contains a (2,1) matching. To ensure a
(2,1)-matching, we use the condition of the generalized Hall-Rado theorem
for Gk(M,M) with (`1, `2) = (2, 1). The exponential growth rate implies
the Hall condition for Gk(M,M) with (2, 2), and therefore with (2, 1) as
well.

4. Paradoxical Graphs

Any graph G can be regarded as a metric space, where the distance d(x, y)
is the length of the shortest path between x and y in G.

Problem 2. When is an infinite graph G paradoxical?

For trees this question can be answered easily. Let us call a path Pk ⊆ G
a hanging chain if all its inner vertices have degree 2 in G.

Theorem 4.1. A locally finite infinite tree T without endvertices is para-
doxical iff the lengths of hanging chains in T is bounded.

Here it should be remarked that when a tree T is decomposed into 2
subsets wobbling equivalent with each other and with the whole tree, these
subsets are not trees.

Corollary 4.2. An infinite tree is paradoxical if its minimum degree is at
least 3.

Proof. Assume that T contains no hanging chain of K inner vertices (i.e.
K + 1 edges). For any S ⊆ V (T ) we define ∂S as the set of vertices joined
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to S but not in S. We may apply our characterisation, Theorem 3.4 to T :
the only thing to be proven is that if S ⊆ V (T ), then |∂S| ≥ cK |S|. Indeed,
let Fn be the forest induced by the set S ∪ ∂S. We shall count the vertices
of degree 1 in Fn since all they belong to ∂S. Let ni be the set of vertices of
degree i. The number of vertices of degree at least 3 is n≥3 = n3 +n4 + . . . .
Then (for any tree or forest) n1 ≥ n≥3 + 2. Further, n− n2 > n/K. Indeed,
fix a vertex w of degree 1 and map each x of degree 2 to the y for which
x is on a hanging chain yy∗ and y is farther from w than y∗. We get each
y at most K times. Thus n1 = n − n2 − n≥3 > n − n/K − n1 implying
|∂S| > n/2K. Hence T has exponential growth rate.

One feels that in case of trees a directly constructed partition should also
exist. One can easily provide the partition V (T ) = V1∪̇V2, e.g., if T is a tree
of minimum degree 3.

Problem 3. When is an infinite graph paradoxical? Is it true that if an
infinite graph G is paradoxical, then there is an infinite spanning tree T ⊆ G
which is paradoxical? 5

5. Recursive Sets

Often one would like to ensure some extra properties of the (wobbling)
mapping or of the parts in a paradoxical partition under the condition that
the original sets have additional properties. From the point of view of math-
ematical logic, those things are interesting for us which can be generated by
a Turing Machine. This motivates the problems below.

Problem 4. Let X ⊆ Z2 be recursive and equivalent to Z2. Is there a
recursive wobbling bijection X → Z2 which is recursive?

Problem 5. Are there recursive paradoxical sets M in Q2 for which there
is no recursive paradoxical decomposition M = M1∪̇M2?

Remark. We do not think that there is a trivial positive answer. There
are analogous situations with negative answers.

(a) There exists a recursive countable locally finite tree (i.e. the charac-
teristic function of the edge set is recursive) which has no recursive infinite
path [12].

(b) There exists a recursive k– regular bipartite graph G(A,B) which
has a 1-factor but has no recursive 1- factor. [8].
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