4. On a Conjecture of Roth

and Some Related Problems I

P. Erdôs, A. Sárkōzy ${ }^{(1)}$, V.T. Sós ${ }^{(2)}$

1. Introduction

Let N denote the set of positive integers and put $[1, N\}=\{1, \ldots, N\}$. We use $|S|$ to denote the cardinality of the finite set S. If S is a given set and A_{1}, \ldots, A_{k} are subsets of S with

$$
S=\cup_{i=1}^{k} A_{i}, \quad A_{i} \cap \mathcal{A}_{j}=0 \text { for } i \neq j,
$$

then $\left\{A_{1}, \ldots, A_{k}\right\}$ will be called a k-partition (or k-colouring) of S, and the subsets A_{1}, \ldots, A_{k} will be referred to as classes. Let $f: \mathcal{N}^{t} \rightarrow N$ be a given function. If

$$
\begin{equation*}
n=f\left(a_{1}, \ldots, a_{t}\right) \tag{1}
\end{equation*}
$$

with a_{1}, \ldots, a_{t} belonging to the same class, then this will be called a monochromatic representation of n in the form (1)

For a fixed k-partition and f we consider the set of integers, which have a monochromatic representation and investigate
a) how dense this set must be?
b) for which $S \subseteq N$ it must contain an element in S ?
c) what sort of structural properties this set has?

We consider first the case $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$.
Let C resp. C^{2} denote the set of integers resp. the set of even integers which have a monochromatic representation in the form

$$
\begin{equation*}
n=a_{1}+a_{2} \quad \text { with } \quad a_{1} \neq a_{2} \tag{2}
\end{equation*}
$$

$$
\text { Put } \mathrm{C}_{M}=\mathrm{C} \cap[1, M] \text { and } \mathrm{C}_{M}^{2}=\mathrm{C}^{2} \cap[1, M] \text {. }
$$

${ }^{(1),(2)}$ Research partially supported by Hungarian National Foundation for Scientinic Research grant no. 1811
K.F. Roth conjectured (see [4] and [9], p.112) that there is an absolute constant $c>0$ such that for an arbitrary k-partition

$$
\begin{equation*}
\left|\mathrm{C}_{M}\right|>c M . \tag{3}
\end{equation*}
$$

(Note that if also $a_{1}=a_{2}$ is allowed, then this is trivial.)
We prove this conjecture in a sharper and more general form. We study some related problems too.

The Case $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$

Theorem 1.

(i) To every $k \geq 2$ there exists an $M_{0}(k)$ such that for an arbitrary k-partition of N

$$
\begin{equation*}
\left|C_{M}^{2}\right|>\frac{M}{2}-3 M^{1-2^{-k-1}} \text { if } \quad M>M_{0}(k) \tag{4}
\end{equation*}
$$

Moreover
(ii) For every 2-partition

$$
\begin{equation*}
\left|C_{M}^{2}\right|>\frac{M}{2}-\left(\log \left(\frac{1+\sqrt{5}}{2}\right)\right)^{-1} \log M \tag{5}
\end{equation*}
$$

(iii) There is a 2-partition so that

$$
\begin{equation*}
2^{n} \notin C^{2} \text { for } n \in N \tag{6}
\end{equation*}
$$

Proof.
(i) The proof will be based on the following

Lemma 1. If $d \in N, M>M_{0}(d), B \subseteq[1, M]$ and

$$
\begin{equation*}
|B|>3 M^{1-2^{-d}} \tag{7}
\end{equation*}
$$

then there exist positive integers u, v_{1}, \ldots, v_{d} such that $v_{i} \neq v_{j}$ for $i \neq j$ and all the 2^{d} sums

$$
\begin{equation*}
u+\sum_{i=1}^{d} \varepsilon_{i} v_{i}, \quad \varepsilon_{i} \in\{0,1\} \tag{8}
\end{equation*}
$$

belong to 8 .

This is a density version of Hilbert's lemma [10] (which is considered as the first Ramsey-type result). See aiso [8]. It can be proved similariy to Lemma 7 in [14] (see also [3] and [20]). However for the sake of completeness, we give the proof here.

Proof of Lemma 1. It suffices to show the existence of sets $B_{0}, B_{1}, \ldots, B_{d}$ and distinct positive integers $v_{1}, v_{2}, \ldots, v_{d}$ such that

$$
\begin{equation*}
B_{0}=B, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
B_{j} \cup\left\{b+v_{j}: b \in B_{j}\right\} \subset B_{j-1} \text { for } j=1,2, \ldots, d \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|8_{j}\right| \geq|8|^{2^{j}}(3 M)^{-\left(2^{j}-1\right)} \text { for } j=0,1,2, \ldots, d . \tag{11}
\end{equation*}
$$

In fact, if $B_{0}, B_{1}, \ldots, B_{d}, v_{1}, \ldots, v_{d}$ satisfy these conditions and $u \in B_{d}$, then by (9) and (10), $u+\sum_{i=1}^{d} \varepsilon_{i} v_{i} \in 3$ for $\varepsilon_{i}=0$ or 1 , while (7) and (11) imply that B_{d} is not empty. This then will complete the proof of Lemma 1.

We are going to construct $B_{0}, B_{1} \ldots, B_{d}, v_{1}, \ldots, v_{d}$ recursively. Let $B_{0}=B$. Assume now that $0 \leq j \leq d-1$ and, in the case $j>0, v_{1}, \ldots, v_{j}$ have already been defined. For $1 \leq h \leq M-1$, let $f\left(B_{j}, h\right)$ denote the number of solutions of

$$
b-b^{\prime}=h, \quad \text { where } \quad b, b^{\prime} \in B_{j} .
$$

Then in order to define B_{j+1} and v_{j+1}, we need an estimate for

$$
L=\max f\left(B_{j}, h\right)
$$

where the maximum is over all h with $h \in[1, M], h \notin\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$.
Clearly, for all h we have $f\left(B_{j}, h\right) \leq\left|B_{j}\right|$. Also

$$
\begin{equation*}
\sum_{h=1}^{M-1} f\left(B_{j}, h\right)=\binom{\left|B_{j}\right|}{2} \tag{12}
\end{equation*}
$$

since $b-b^{\prime} \in[1, M]$ for any pair $b, b^{\prime} \in B_{j}$ with $b>b^{\prime}$. If we majorize $f\left(B_{j}, h\right)$ by $\left|B_{j}\right|$ for $h \in\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ and by L otherwise, (12) implies

$$
\binom{\left|B_{j}\right|}{2} \leq j\left|B_{j}\right|+(M-1-j) L \leq j\left|B_{j}\right|+L M
$$

so that

$$
\begin{equation*}
L>\frac{1}{2 M}\left(\left|B_{j}\right|^{2}-\left|B_{j}\right|-2 j\left|B_{j}\right|\right)=\frac{\left|B_{j}\right|}{3 M}\left(\frac{3}{2}\left|B_{j}\right|-\frac{3}{2}-3 j\right) . \tag{13}
\end{equation*}
$$

From (7) and (11), we have (for M larger than some absolute and computable constant)

$$
\begin{gathered}
\left|B_{j}\right| \geq|B|^{2^{j}}(3 M)^{-\left(2^{j}-1\right)}>\left(3 M^{1-2^{-d}}\right)^{2^{j}}(3 M)^{-\left(2^{j}-1\right)}= \\
=3 M^{1-2^{j-d}} \geq 3 M^{1-2^{-i}}>3+6 d>3+6 j
\end{gathered}
$$

so that (11) and (13) imply

$$
L>\frac{\left|B_{j}\right|}{3 M} \cdot\left|B_{j}\right| \geq \frac{1}{3 M}\left(|8|^{j}(3 M)^{\left(2^{j}-1\right)}\right)^{2}=
$$

$$
\begin{equation*}
=|B|^{2^{j+1}}(3 M)^{-\left(+2^{j+1}-1\right)} . \tag{14}
\end{equation*}
$$

Let $v_{j+1} \in[1, M] \backslash\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ denote an integer for which the maximum in the definition of L is attained, i.e., $L=f\left(B_{j}, v_{j+1}\right)$ with $v_{j+1} \notin$ $\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$, and let

$$
B_{j+1}=\left\{b: b \in B_{j}, b+v_{j+1} \in B_{j}\right\} .
$$

Thus (10) holds for $j+1$ in place of j and since $\left|B_{j+1}\right|=L$, (14) implies that (11) holds also for $j+1$ in place of j. This completes the proof of the existence of $B_{0}, B_{1}, \ldots, 8_{d}, v_{1}, \ldots, v_{d}$ with the desired properties, so that Lemma 1 is proved.

To prove the first statement in Theorem 1, we assume that there are more than $3 M^{1-2^{-k-1}}$ even integers not exceeding M which do not have a monochromatic representation in the form (2); let us denote the set of these integers by 8 . Then (3) holds with $k+1$ in place of d, thus if M is sufficiently large, then by Lemma 1 there exist positive integers $u, v_{1}, v_{2}, \ldots, v_{k+1}$ such that all the sums

$$
u+\sum_{i=1}^{k+1} \varepsilon_{i} v_{i} \text { where } \varepsilon_{i}=0 \text { or } 1
$$

belong to B. Then

$$
u=u+\sum_{i=1}^{k+1} 0 \cdot v_{i} \in B
$$

and since \hat{b} consists of even numbers, thus also $u=2 z$ is even. The integers $z+v_{1}, z+v_{2}, \ldots, z+v_{k+1}$ are distinct, thus by the pigeon hole principle, there exist $1 \leq i<j \leq k+1$ such that $a_{1}=z+v_{i}$ and $a_{2}=z+v_{j}$ belong to the same class. Then $a_{1}+a_{2}$ is a monochromatic sum with $a_{1} \neq a_{2}$, and

$$
a_{1}+a_{2}=\left(z+v_{i}\right)+\left(z+v_{j}\right)=2 z+v_{i}+v_{j}=u+v_{i}+v_{j}
$$

But this contradicts the definition of B, and the proof of the first half of Theorem 1 is completed.
(ii) Let $B=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$ (where $b_{1}<b_{2}<\ldots<b_{t}$) denote the set of those even integers not exceeding $2 M$ which do not have a monochromatic representation in the form (2).
Suppose

$$
\begin{equation*}
b_{j+2}<b_{j}+b_{j+1} \tag{15}
\end{equation*}
$$

for some j. Then there are positive integers x, y, z for which

$$
\begin{aligned}
& x+y=b_{j} \\
& x+z=b_{j+1} \\
& y+z=b_{j+2}
\end{aligned}
$$

At least two of these numbers belong to the same class. This contradicts to the definition of B. Hence for every j

$$
\begin{equation*}
b_{j+2} \geq b_{j}+b_{j+1} \tag{16}
\end{equation*}
$$

which proves (ii)
To prove (iii) we define the set A_{1} recursively. Let $1 \in A_{1}$. If $A \cap\left[1,2^{k-1}\right\}$ has been defined, then let $2^{k} \in A_{1}$ and for $2^{k-1}<n<2^{k}, n \in A_{1}$ iff $2^{k}-n \notin A_{1} \cap\left[1,2^{k-1}\right]$. Furthermore let $A_{2}=N \backslash A_{1}$. Then obviousiy $2^{n} \notin \mathrm{C}$ for $n=1,2, \ldots$.

Observe that $\left|\mathrm{C}_{M}\right|$ need not be much greater then $\left|\mathrm{C}_{M}^{2}\right|$ as the following example shows: $A_{1}=\{2 j-1: j \in N\}, A_{2}=\{2 j: j \in N\}$. However the situation is different for $k \leq 3$ and for $k \geq 4$.
Theorem 2.
(i) There is an absolute constant C so that if $k \leq 3$ then at any k-partition

$$
\begin{equation*}
\left|\mathrm{C}_{M}\right| \geq\left[\frac{M}{2}\right]-1 \text { if } \quad M>C \tag{17}
\end{equation*}
$$

(ii) If $k \geq 4$, there exists a k-partition such that

$$
\begin{equation*}
\left|C_{M}\right|<\frac{M}{2}-c k \log M \tag{18}
\end{equation*}
$$

where c is an absolute constant.
Proof of (i). Case $k=2$.
Without loss of generality we can assume that $x \in A_{1}$ for $1 \leq x \leq a$ and $a+1 \in A_{2}$.

Then $y \in \mathrm{C}$ for $3 \leq y \leq 2 a-1$. On the other hand for every $y>0$ either $y+a \in \mathrm{C}$ or $y+a+1 \in \mathrm{C}$.

Case $k=3$
Suppose $2 x-1 \in A_{1}$ if $1 \leq x \leq a$ and $2 a+1 \in A_{2}$. Then

$$
\begin{equation*}
2 y \in \mathrm{C} \quad \text { if } \quad 2 \leq y \leq 2 a . \tag{19}
\end{equation*}
$$

We may assume that there is an $n>2 a$ such that

$$
\begin{equation*}
2 n \notin \mathrm{C} \text { and } 2 n-1 \notin \mathrm{C} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|C_{2 n}\right|<\left[\frac{M}{2}\right] \tag{21}
\end{equation*}
$$

Case $12 n \leq 6 a$. Put $2 n=4 a+2 t, \quad(t \leq a)$. First we prove

$$
2 a+2 \in A_{2} .
$$

Namely if $2 a+2 \in A_{1}$, then $2 x-1+2 a+2 \in \mathrm{C}$ for $1 \leq x \leq a$. Hence

$$
\left|\mathrm{C}_{2 n}\right|>2 a+a
$$

which contradicts (21).
Now suppose $2 a+2 \in A_{3}$. Then $2 n-(2 a+2)=2 a+2 t-2 \in A_{1} \cup A_{2}$. In case $2 a+2 t-2 \in A_{1}$

$$
2 x-1+2 a+2 t-2 \in \mathrm{C} \text { for } 1 \leq x \leq a .
$$

This implies

$$
\mathrm{C}_{2 n} \geq 2 a+a
$$

which contradicts again to (21).
In case $2 a+2 t-2 \in A_{2}$

$$
2 n-1=(2 a+1)+(2 a+2 t-2) \in \mathrm{C}
$$

would follow, which contradicts to (20).
Thus $2 a+2 \in A_{2}$.
Consider now the integers in $[2 a+2,2 a+2 t\}$. For every $y, 0 \leq y \leq 2 t$

$$
2 a+y \in A_{3} \text { implies } 2 a+2 t-y \in A_{3} \text {. }
$$

Therefore at least t integers in $[2 a+2,2 a+2 t]$ belong to $A_{1} \cup A_{2}$.
If there is an even $x \in A_{1} \cup[2 a+2,2 a+2 t]$, then

$$
4 a<x+2 v-1<4 a+2 t=n \text { for } 1 \leq v \leq a .
$$

Hence

$$
\left|\mathrm{C}_{2 n}\right|>2 a+a
$$

which contradicts (21).
If all the t even integers in $[2 a+2,2 a+2 t]$ belong to A_{2}, then for $1 \leq u \leq$ $t-1$

$$
(2 a \div 2+2 u)+2 a+1 \in \mathrm{C}
$$

and

$$
(2 a+2+2 u)+2 a+2 \in \mathrm{C}
$$

This would imply

$$
\left|C_{2 n}\right|>3 a
$$

This finishes the case when $2 n \leq 6 a$.
Case $22 n>6 a$.
Since $2 n \notin C$, at least $\frac{n-2}{2}$ even numbers below $2 n$ are in $\AA_{1} \cup A_{2}$. Thus at least $\frac{n-2}{2}-a$ even numbers below $2 n-2 a$ are in $A_{1} \cup A_{2}$. Therefore at least $\frac{n-2}{4}-\frac{a}{2}>\frac{n-2}{12}$ are in A_{1} resp. in A_{2}. Adding to these numbers $2 a-1$ or $2 a+1$ we gain $\frac{n-2}{12}$ odd numbers in C. Hence by Theorem 1

$$
\mathrm{C}_{2 n}>n-6 n^{\frac{15}{16}}+\frac{n-2}{12}>n \quad \text { if }
$$

n is large enough.
Proof of (ii). We may suppose that $k=4 \ell$ where ℓ is odd. Define t_{0} by

$$
2^{t_{0}-i} \leq 2 \ell<2^{t_{0}}
$$

For $i=1,2, \ldots, \ell$ we are going to define subsets $\AA_{4 i-j}, j=0,1,2,3$ recursively. Let for $j=1,3$

$$
A_{4 i-j} \cap\left(1,2^{t_{0}}\right)=\left\{n: n \equiv i(\bmod \ell), n \equiv\left[\frac{j}{2}\right](\bmod 2)\right\} \cap\left[1,2^{t_{0}}\right]
$$

and

$$
A_{4 i-j} \cap\left[1,2^{t_{0}}\right]=\emptyset \quad \text { if } \quad j=0,2 .
$$

Assume now that $A_{4 i-j} \cap\left[1,2^{t}\right]$ have been defined for $j=0,1,2,3, i=$ $1, \ldots, 2 \ell+1$. Let $r_{i}(t)$ defined by

$$
: \quad 2 i \equiv 2^{t+1}+r_{i}(t)(\bmod 2 \ell), \quad 0 \leq r_{i}(t)<2 \ell
$$

Now we define $\mathcal{A}_{4 i-j} \cap\left[2^{t}+1,2^{t+1}\right]$ in the following way: let $2^{t}<n \leq 2^{t+1}$. For $2^{t}<n<2^{t+1} n \in \mathcal{A}_{4 i-3}$ iff n is even and

$$
n \equiv i(\bmod \ell), \quad 2^{t+1}+r_{i}(t)-n \notin A_{4 i-3} \cap\left[1,2^{t}\right], 2 \mid n
$$

$n \in A_{4 i-2}$ iff n is even and

$$
n \equiv i(\bmod \ell), \quad n \notin A_{4 i-3}
$$

$n \in A_{4 i-1}$ iff n is odd and

$$
n \equiv i(\bmod \ell), 2^{t+1}+r_{i}(t)-n \notin A_{4 i-1} \cap\left(1,2^{t}\right), 2 \mid n
$$

$n \in A_{4 i}$ iff n is odd and

$$
n \equiv i(\bmod \ell), n \notin A_{4 i-1}
$$

Then clearly the sets $A_{4 i-j}, 1 \leq i \leq \ell, 0 \leq j \leq 3$ give a 4ℓ-partition of \mathcal{N}. Furthermore it can be seen easily that all the monochromatic sums
$a_{1}+a_{2}, \quad a_{1} \neq a_{2}$ are even and none of these sums is equal to a number of the form $2^{t}+2^{j}$ where $t>t_{0}$ and $0 \leq j \leq \ell-1$. This completes the proof of Theorem 2.

By Theorem 1, there are more than $\frac{M}{2}-c_{1} M^{1-2^{k-1}}$ integers in $\{1, M\}$ which have a monochromatic representation in the form (2), and by Theorem 2 , the number of these integers can be less than $\frac{M}{2}-c_{2} k \log M$. It follows from a result of Erdős and Sárkōzy (Theorem 8 in [5]) that if $k \in \mathcal{N}, M \in \mathcal{N}, M>$ $M_{0}(k), t \in N$ and $M^{2 / 3}(\log M)^{2}<t \leq M$, then almost all the sets B with $B \subset\{1, M],|B|=t$ are such that for every k-partition of $[1, M]$ there is (at least one) element in B which has a monochromatic representation in the form (2). (In fact, the following sharper statement is true: almost all of these sets B are such that for every A with $A \subset\left[1, \frac{M}{2}\right]$ and $|A|>\frac{1}{k}[M / 2 \mid$, there is an element in 8 which can be represented in the form (2) with $a \in A, a^{\prime} \in A$.) Ruzsa [16] proved that if $f(x) \rightarrow+\infty$, then there exists an infinite sequence D of positive integers such that $D(x)=\sum_{\substack{d \leq x \\ d \in D}} \mid=0\left(f(x)(\log x)^{2}\right)$, and if A is a sequence of positive integers with positive upper asymptotic density, then D intersects the set of the integers of the form $a+a^{\prime}$ where $a \in \mathcal{A}, a^{\prime} \in \mathcal{A}$. These results suggest that the upper bound $\frac{M}{2}-c k \log M$ is closer to the truth than the lower bound.

Recently Balog, Fūrstenberg, Sárközy, Stewart, Lagarias, Odlyzko, Schearer [1], [7], [13], [14], [17], [18], [19] and others have studied the solvability of the equations

$$
\begin{aligned}
& a-a^{\prime}=x^{2} \\
& a-a^{\prime}=p-1 \\
& a+a^{\prime}=x^{2} \\
& a+a^{\prime}=p x, x^{n} \text { small" }^{\prime}(=0(1))
\end{aligned}
$$

with $a, a^{\prime} \in A$ where A is a "dense" sequence of positive integers. These resuits and Hindman's theorem [2], [11] led us to consider the corresponding "monochromatic" questions.

Theorem 1 implies that e.g. the equations

$$
\begin{aligned}
& a_{1}+a_{2}=2 p \\
& a_{1}+a_{2}=p-1
\end{aligned}
$$

have monochromatic solutions with $a_{1} \neq a_{2}$.
Our result is not strong enough to obtain for arbitrary k that

$$
a_{1}+a_{2}=x^{2}
$$

has a monochromatic solution with $a_{1} \neq a_{2}$. However a simple argument leads to

Theorem 3. If $k \leq 3$, then for any k-partition of N there are infinitely many squares in C .

Proof. We use the following simple (and well known)
Lemma 2. For every $\varepsilon>0$ there are infinitely many integers n so that

$$
n=x^{2}+y^{2}
$$

has at least three (in fact arbitrary many) integer solutions where

$$
x^{2}, y^{2} \in\left[\frac{n}{2}(1-\varepsilon), \frac{n}{2}(1+\varepsilon)\right] .
$$

Now let

$$
x_{1}^{2}+x_{6}^{2}=x_{2}^{2}+x_{5}^{2}=x_{3}^{2}+x_{4}^{2}
$$

with $x_{i} \in\left[\frac{n}{2}(1-\varepsilon),-\frac{n}{2}(1+\varepsilon)\right], 1 \leq i \leq 6$.
Then an easy calculation shows, that the system

$$
\begin{aligned}
& u_{1}+u_{2}=x_{1}^{2} \\
& u_{3}+u_{4}=x_{5}^{2} \\
& u_{2}+u_{3}=x_{2}^{2} \\
& u_{1}+u_{4}=x_{5}^{2} \\
& u_{1}+u_{3}=x_{3}^{2} \\
& u_{2}+u_{4}=x_{4}^{2}
\end{aligned}
$$

in $u_{i}(1 \leq i \leq 4)$ has a solution in distinct positive numbers. Since at least two of the u_{i} 's belong to the same class, one of the $x_{i}^{2}(1 \leq i \leq 6)$ squares must have a monochromatic representation.

If we have some information on the structure of the classes A_{i} in the given partition then the lower bound given for the integers that have a monochromatic representation in form (2) can be sharpened. In fact we have

Theorem 4.

(i) For every $\varepsilon>0$ and k there exists an $M_{0}(\varepsilon, k)$ such that if we have a k-partition of N where every class contains both even and odd integers then.

$$
\left|\mathrm{C}_{M}\right|>\left(\frac{1}{2}+\frac{1}{2 k}-\varepsilon\right) M \text { if } M>M_{0}(\varepsilon, k)
$$

(ii) For every $k \in N$ there is a k-partition of N so that every class contains both even and odd integers and

$$
\left|C_{M}\right|<\left(\frac{1}{2}+\frac{1}{k}\right) M+1
$$

Proof.

(i) can be proved by the method used in the proof of Theorem 2,
(ii) follows from the following construction: for $i=1,2, \ldots, k$ let

$$
A_{i}=\{n: n \equiv 2 i(\bmod 2 k)\} \cup\{n: n \equiv 1-2 i(\bmod 2 k)\} .
$$

It is easy to see that this k-partition of N has the desired properties.

The Case $f\left(x_{1}, x_{2}\right)=\left|\tau x_{1}+s x_{2}\right|$.

Let r, s be integers. As before, let C denote the set of integers which have a monochromatic representation in the form

$$
\begin{equation*}
n=\left|r a_{1}+s a_{2}\right| \quad \text { with } \quad a_{1} \neq a_{2} . \tag{22}
\end{equation*}
$$

Let $C_{M}=: C \cap[1, M]$. The following result is merely a simple modification of Theorem 1.

Theorem 5. Let $r \neq 0, s \neq 0, r+s \neq 0$. Put $|r+s|=m$. For every $\varepsilon>0, k, r, s$ and for every k-partition

$$
\left|C_{M}\right| \geq(1-\varepsilon) \frac{M}{m} .
$$

This can not be essentially improved, since choosing

$$
\begin{equation*}
k=m \text { and } A_{i}=\{n: n \equiv i(\bmod m)\}, 1 \leq i \leq m \tag{23}
\end{equation*}
$$

only the multiples of m have a monochromatic representation in the form (22)
Note furthermore that Theorem 5 does not cover the case of the differences $a_{1}-a_{2}$. Namely, in this case the density of the integers having a monochromatic representation in the form (22) need not be greater than a positive absolute constant. To see this, let us consider a large integer m and define the partition as in (23). Then only the multiples of m have a monochromatic representation in the form (22) so that their density is $\frac{1}{m}$ which $\rightarrow 0$ if $m \rightarrow \infty$.
Proof. Assume that there are more than $\varepsilon \frac{M}{m}$ positive multiples of m in $[1, M]$ which do not have a monochromatic representation in the form [22]. Then by Szemerédi's theorem [20], for $M>M_{0}(k, \varepsilon, r, s)$ their set must contain an arithmetic progression of $2(|r|+|s|) k+1$ terms; let us write this arithmetic progression (all whose terms are multipies of m) in the form

$$
\begin{equation*}
u m-(|r|+|s|) k v, u m-((|r|+|s|) k-1) v, \ldots, u m+(|r|+|s|) k v . \tag{24}
\end{equation*}
$$

Let us consider the integers $u, u+v, \ldots, u+k v$. By the pigeon hoie principle, two of them, say $a_{1}=u+i v$ and $a_{2}=u+j v($ where $i \neq j)$ belong to the same class. Then

$$
r a_{1}+s a_{2}=r(u+i v)+s(u+j v)=(r+s) u+(r i+s j) v .
$$

Here we have

$$
|r i+s j| \leq|r| k+|s| k=(|r|+|s|) k .
$$

Since $|r+s|=m$ and all the numbers in (24) are positive, $\left|r a_{1}+s a_{2}\right|$ is equal to one of the numbers in (24). But this contradicts the fact that none of these numbers has a monochromatic representation in the form (22), and the proof is completed.

2. Some Unsolved Problems

Problem 1. Do there exist α and β which depend only on k, so that for an arbitrary k-partition

$$
C_{M} \left\lvert\,>\frac{M}{2}-(\log M)^{\alpha(k)}\right.
$$

or even more $\left|C_{M}^{2}\right|>\frac{M}{2}-(\log M)^{\beta(k)}$.
Problem 2. Let $f(x)$ be a polynomial of integer coefficients such that 2 is a prime divisor of it. Is it true that for any k-partition for some x (or for infinitely many x)

$$
a_{1}+a_{2}=f(x),
$$

have a monochromatic solution with $a_{1} \neq a_{2}$?
Problem 3. Is it true that for every k-partition of $[1, M \mid$ almost all the even integers $2 n$ in $[1, M]$ have more than $c(k) n$ monochromatic representations in form (2)? (Perhaps this holds with $c(k)=\frac{c_{1}}{k}$.)
Problem 4 a) For a given k-partition let $n_{1}<n_{1}<\ldots$ be the sequence of those integers which have a monochromatic representation in form (2). ($\mathrm{C}=$ $\left\{n_{i}\right\}$). What can be said about the structure of the sequence $\left\{n_{i}\right\}$? (For example it is easy to see that $\left|n_{i+1}-n_{i}\right|<2 k$.)
b) The complementary problem is to study the structure of the set $3=N-C$ (the set of those integers which do not have a monochromatic representation in form (2)).

Let $\mathcal{G}(\mathcal{N} ; E)$ be the graph with edgeset $\{(x, y) \mid x+y \in \mathcal{B}, x, y \in \mathcal{N}\}$. Obviously at any k-partition the chromatic number of $\mathcal{G}(\mathcal{N} ; E)$ is $\leq k$. Basically this was used in the proofs above.

Problem 5. So far we have studied monochromatic representations in form (1) in the special case when $f\left(x_{1}, \ldots, x_{t}\right)$ is a linear polynomial and $t=2$. In the paper Erdős-Sárkōzy [6] the case $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is considered.

What can one say on general polynomials $f\left(x_{1}, \ldots, x_{t}\right)$ (whose coefficients are integers)? What can be said in the most important special case when $f\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ is of the form $g\left(x_{1}\right)+\ldots+g\left(x_{t}\right)$?

As Ruzsa [15] observed, if

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}
$$

then for every k-partition

$$
\left|\mathrm{C}_{M}\right|>c(k) \cdot M
$$

and $\left|C_{M}\right|>c M$ cannot hold with an absolute constant c.
Acknowledgement. We would like to thank to I. Ruzsa for his helpful comments.

References

[1] A. Balog and A. Sárközy, On sums of sequences of integers, II, Acta Math. Hung. 44 (1984), 169-179.
[2] J. Baumgartner, A short proof of Hindman's theorem, J.Comb. Th. Ser. A 17 (1974), 384-386.
[3] D. Berend, Joint ergodicity and mixing, J. Analyse Math. 45 (1985), 255-284.
[4] P. Erdôs, Some unsoived problems, MTA MKI Közl. 6 (1961), 221-254.
[5] P. Erdös and Sárkōzy, On differences and sums of integers, I, J. Number Theory 10 (1978), 430-450.
[6] P. Erdös and A. Sárközy, On monochromatic products, to appear.
[7] H. Fürstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204256.
[8] H. Fürstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math. 34 (1978), 61-85.
[9] R.K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981.
[10] D. Hilbert, Über die Irreduzibilitāt ganzer rationaler Functionen mit ganzzahligen Koefficienten, J. Reine Angew. Math. 110 (1892), 104-129.
[11] N. Hindman, Finite sums from sequences within cells of a partition of N , J. Comb. Th. Ser. A 17 (1974), I-II.
[12] J.C. Lagarias, A.M. Odlyzko and J.B. Shearer, On the Density of Sequences of Integers the Sum of No Two of which is a Square, I, Arithmetic Progressions, J. Comb. Th. Ser. A 33 (1982), 167-185.
[13] J.C. Lagarias, A.M. Odlyzko and J.B. Shearer, On the Density of Sequences of Integers the Sum of No Two of which is a Square, II, General Sequences, J. Comb. Th. Ser. A 34 (1983), 123-139.
[14] C. Pomerance, A. Sárkōzy and C.L. Stewart, On divisors of sums of integers, II, Pacific J. Math., to appear.
[15] I.Z. Ruzsa, oral communication.
[16] L.Z. Ruzsa, Probabilistic constructions in additive number theory, Soc. Math. France Astérique 147-148 (1987), 173-182.
[17] A. Sárközy, On difference sets of sequences of integers, I, Acta Math. Hung. 31 (1978), 125-149.
[18] A. Sárkōzy, On difference sets of sequences of integers, III, Acta Math. Hung. 31 (1978), 355-386.
[19] A. Sárkōzy and C.L. Stewart, On divisors of sums of integers, II, Math. Annalen.
[20] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithm. 27 (1975), 199-245.

```
P. Erdos
Math. Inst. of the
Hung. Acad. of Sci.
Budapest
```

A. Sárközy

Math. Inst. of the
Hung. Acad. of Sci.
Budapest
V.T. Soss

Math. Inst. of the
Hung. Acad. of Sci.
Budapest

