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Intersection Theorems for t-Valued Functions 

R . H. SCHELP, M. SIMONOVITS AND V. T. S6s 

This paper investigates the maximum possible size of families !F of I-valued functions on an 
n-element set S = {I, 2, . .. , n}, assuming any two functions of !F agree in sufficiently many 
places. More precisely, given a family :JI of k-eIement subsets of S, it is assumed for each pair h, 
g E !F that there exists a B in :JI such that h = g on B. If :JI is 'not too large' it is shown that the 
maximal families have t" - k members. 

INTRODUCTION 

Recently, theories have been developed relating set systems which have some specific 
intersection properties with intersection properties of other structures. 

Sets 

A theorem of Erdos, Ko, and Rado [3] asserts if S is an n-element set and d is a family 
of k-element subsets of S any two of which have a non-empty intersection, then 

(
n - I), 
k-I 

n ~ 2k. (I) 

This result is sharp as shown by the family of k-tuples containing a fixed element of S. 
An analogous but much simpler assertion is the following observation. 
If d is a family of subsets of an n-element set S such that the intersection of any two of 

them is non-empty, then 

(2) 

This estimate is again sharp; simply take all subsets of S containing a fixed element 
x of S. 

PROBLEM I. Assume S is an n-element set and d is a family of subsets of S such that 
the intersection of any two has at least k elements. What is the maximum cardinality of d? 

One family d satisfying the above condition is obtained by taking all supersets of a fixed 
k-element subset of S. For this family 

(3) 

Unfortunately, this is not the largest family satisfying the condition. Indeed, if n + k is 
even and d is the family of all subsets of S with at least (n + k)j2 elements, then any two 
of them intersect in at least k elements. The number of sets in this family is 

(n-k)J2 (n) 
N = L .' 

i~O. I 

(4) 

This number is much greater than that given in (3) except when k I, when they are the 
same. Katona [7] proved that, indeed, (4) is the best possible result and also settled the case 
when n + k is odd. 
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DEFINITION 1. Let S be an n-element set and f!4 a family of subsets of S. The intersection 
problem corresponding to (S, &I) is to find the maximum sized family sI such that the 
intersection of any two members of sI belongs to &I. The families attaining the maximum 
cardinality are called the extremal families corresponding to (S, f!4). 

Generally, one could distinguish between strong and weak intersection problems. If one 
requires that the intersection be an element of f!4, then it is a strong intersection problem, 
while if one requires that the intersection only contains as a subset some element of &I, then 
it is a weak intersection problem. 

REMARK. Here one should clarify that the distinction between strong and weak inter
section problems is not a mathematical one, in the sense that f!4 can be enlarged to contain 
all supersets of the original members of f!4. The strong intersection problem corresponding 
to the enlarged f!4 is identical with the weak intersection problem corresponding to the 
original f!4. 

Minimal Extremal Set Systems 

Throughout, the strong version of the intersection problem is assumed, thus if B E f!4 and 
B £;; B', then B' E f!4. 

Surely the smaller f!4 the smaller the extremal system corresponding to (S, f!4). Whenever 
f!4 contains some k-tuples, then by letting sI be the family of all supersets of a fixed k-tuple 
in &I the family sI has 2n~k elements each pair of which intersect in f!4. This means that the 
minimal size of the extremal family corresponding to (S, &I) is 2n~k. In the case when the 
extremal families contain at most 2n~k members, the family or system is called a minimal 
extremal system. The aim of the paper is to investigate under which conditions minimal 
extremal systems are obtained. 

Such questions were discussed in [2, 4, 6]. One result obtained independently in [2] and 
[4] is the following. Let S be an n-element set and let Xl, X2 , ••• , A't be a partition of S 
into non-empty subsets. If sI is a family of subsets of S in which the intersection of each 
pair of sI contain k (k ~ I) elements Yj, Yi, ... , Yk belonging respectively to k cyclically 
consecutive members of the partition Xl, X2 , ••• , A't, then Isli ~ 2n~k. Thus this extremal 
system is a minimal one and is already obtained by restricting oneself to a small intersection 
family. 

Functions 

In [4] and [6], in addition to intersecting families of sets the authors also consider 
intersecting families of functions. Given a family ff of functions mapping the n-element set 
S to a t-element set, two functions h, g E ff are said to intersect or agree at U £;; S if 
U = {i E S: hU) = gU)}. Usually, when hU) = g(i) we simply say hand g agree at i. 

Families of intersecting or agreeing functions are connected with families of intersecting 
sets. In particular, the family of characteristic functions defined on a family of intersecting 
sets gives an intersecting family of functions with t = 2. In the light of an earlier remark, 
it is not surprising that the following theorem holds. 

THEOREM A [4]. If ff is a family of 2-valued functions on an n-element set S, and S is 
partitioned into I non-empty sets Xl, X2 , ••• , A't such that each pair in ff intersect or agree 
in at least k (k ~ I) points Yl, Yz, ... , Yk belonging respectively to k cyclically consecutive 
members of the partition Xl' X2 , ••• , A't, then Iffl ~ 2n~k. 
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RESULTS 

One of the questions left unanswered in [4] is whether Theorem A holds for t-valued 
functions. We establish this and more, showing that the agreement of pairs of functions at 
points of k consecutive members of the partition can be replaced by agreement at points 
of k members whose indices form either an arithmetic or geometric progression with a fixed 
increment or ratio. This is the content of the next three theorems. 

Throughout the remainder of the paper it is always assumed that S is an n-element set, :F 
is a family of t-valued functions defined on S, XI, X2 , ••• , ~ is a partition X of S into 
non-empty sets, and k is a positive integer, k ~ I. In addition, the I members of the partition 
XI, X2 , ••• , ~ will be assumed to be cyclically ordered. 

THEOREM I. If each pair of functions in :F agree at some point of each of k consecutive 
terms of the partition X, then I:FI ~ tn-k. 

THEOREM 2. Let d be a positive integer such that id ¥= O(mod I), 1 ~ i ~ k - 1. If each 
pair of functions in :F agree at some point of each of k terms of an arithmetic progression of 
terms of X with increment d, then I:FI ~ tn-k. 

THEOREM 3. Let I = pm - 1 for some prime p and let r be a positive integer such that 
ri # 1 (mod I + 1), 1 ~ i ~ k - 1. If each pair of functions in :F agree at some point of 
each of k terms of a geometric progression of terms of X with ratio r, then I:FI ~ tn- k

• 

Each of the above theorems result in a family :F that is minimal extremal. It will be 
apparent from the proof given, that a slightly more general 'agreement condition' for the 
family :F can be given such that :F is again minimal extremal. Since this amounts to an 
appropriate permutation of the partition X, there is no need to include it. 

These theorems have obvious set intersection theorem consequences. 

COROLLARY 1 (set system version). Let P be either the progression mentioned in Theorem 
2 or the one in Theorem 3. If d is a family of subsets of S such that the intersection of each 
pair in d contains an element of each member of some progression P, then Idl ~ 2n- k

• 

Clearly, when d = 1 and t = 2 the results of Theorem 2 and Corollary 1 reduce to ones 
given in [4]. 

Dropping the Consecutiveness 

In an earlier paper [6], Frankl and Fiiredi consider the family :F (of t-valued functions 
on n points) in which each pair of its members (functions) agree at k or more points of their 
domain S. They let f(n, t, k) denote the maximum size of such a family. They prove the 
following theorem. 

THEOREM B [6]. For t ~ 3, t" It ~ f(n, t, k) ~ t" l(t - It and for k ~ 15,f(n, t, k) = 
t"-k if and only if t ~ k + 1 or n ~ k + 1. 

Since then, Richard Wilson has shown that the condition k ~ 15 can be dropped in this 
theorem. We consider a generalization of the Frankl-Fiiredi bound. 

THEOREM 4. If each pair of functions in :F agree at some point of each of k members of 
the partition X, then I:FI ~ f(l, t, k)tn-t. 
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In particular, the Frankl-Fiiredi result shows that the family ff of Theorem 4 satisfies 
Iffl ~ f(l, t, k)t"-I = tl- k • t"-I = t"-k and is minimal extremal when t ~ k + 1 or 
n ~ k + 1. Also, the inequality of Theorem B shows t"ltk ~ f(l, t, k)t"-I ~ t"/(t - l)k. 

Erdos posed and Kleitman [8] showed that 

(/,-.,\,~ko)/2 (II') 
{ 

~ if I - k is even; 

f(l, 2, k) = (5) 

2 [(/-.~/2l (I -. 1) 
~ if I - k is odd. 
,~O I 

This gives an exact upper bound on Iffl in Theorem 4 for t = 2. 
When t is a power of some fixed positive integer one can prove the following theorem, 

which in some cases gives a more useful upper bound than the one in Theorem 4. 

THEOREM 5. If t = d m and ff satisfies the condition of Theorem 4, then Iffl ~ 
[f(l, d, k)t . t"-I. 

To demonstrate the usefulness of the bound of Theorem 5 consider the case when d = 2 
and, consequently,f(l, 2, k) is known exactly. In particular, consider a comparison of the 
bounds of Theorems 4 and 5 in the case when I - k = d and m are both fixed with I large. 
To do this, observe by (5) that (f(l, 2, k»m ~ Idm

/
2

, a polynomial upper bound in I, while 
f(l, 2m

, k) ~ tll(t - l)k = (t - l)d(tl(t - l)y by Theorem B, an exponential upper 
bound in I. Hence this is an instance where the bound of Theorem 5 is considerably more 
effective to use than the one of Theorem 4. Similarly, Theorem 5 is better in cases when m 
and I - k are not fixed but tend to infinity slowly (as functions of I). 

One of the most interesting open questions left unanswered is a slight generalization 
of one initially posed in [2]. Select any k element set T of indices from the index set 
L = {l, 2, ... , I} of the partition X = {Xl' X 2 , ••• , ~}. Let BI have as elements the set 
T together will all its cyclic translates in L. If each pair of functions in ff agree at some point 
of each element of the partition indexed by an element Bin !fI, then is Iffl ~ t"-k? Some 
evidence is given in [2] and [4] that the answer to this question is yes. 

PROOFS 

In order to prove Theorems I, 2 and 3 a special case of the theorem is needed. 

LEMMA 1. Let I = n ~ 2k so that the partition X consists of singleton sets. If each pair 
of functions in ff agree at k consecutive terms of the partition X, then Iffl ~ t"-k. 

This lemma was proved in [4] for t = 2, and the proof for arbitrary t is similar. To make 
the paper self-contained an outline of the proof is provided. 

PROOF (outline). Let X; = {i} for each member of the partition and let Y £; S = 
{I, 2, ... , n} be the set on which all elements of ff agree (have the same values). Surely 
if I YI ~ k then the result follows. Using the 'agreement condition' for pairs of functions 
in ff it follows when i andj are at a distance at most k in either direction along the n-cycle 
(i.e. when 2n - k ~ Ii - j I ~ k), that either i or j belong to Y. Thus for each i ¢ Y there 
are 2k - n + I consecutive elements of S in Y, and each additional element not in Y 
accounts for an additional element in Y. Hence I YI ~ 2k - n + IS - YI ~ k. 

PROOF (Theorem 1). For I = uk + {!, 0 ~ {! ~ k, partition the index set of the 
partition X = {Xl' X2 , ••• ,~} into k + {! subsets {Y;}7~f by letting 1'; = {i, k + 
i, ... , (f.1,- l)k + i}forl ~ i ~ kand Yk+ i = {f.1,k + i}forl ~ i ~ {!.Notethatany 
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two distinct integers in the same term of this partition differ by at least k, so any k 
consecutive integers (I and I are assumed consecutive) will be in k cyclically consecutive 
terms of the partition Yi , 1;, . .. , Yk +e of the index set of X. Let w., US, . . . , w" +p be 
the partition of S defined by W; = Uj E Y, Xi for I ~ i ~ k + e. Due to the choice of the 
Y;'s each pair of functions in :#' agree at some point of each of k cyclically consecutive terms 
of the partition w., US, ... , w" +e· 

Let :#'* be the set of all t-valued functions defined on S. Clearly, :#'* has tn functions 
which will be partitioned into tn

- e- k classes as follows. For each g, hE:#'* define g '" h 
(equivalent to) if g(x) - h(x) has a constant value on each Uj. Clearly' ",' is an equivalence 
relation. Let [g] denote the equivalence class containing g. Observe that each class [g] 
contains tk +p functions. 

LetwjE Uj, I ~} ~ k + (l, be fixed elements of the partition w., US,··· , w,,+p. Let 
:#'* * be the set of all t-valued functions with domain {I , 2, . . . , k + (l}. For each class [g] 
define a function y: [g] -+ :#'** by y(h) = ii, hE [g], where ii(j) = h(w) for all}. Observe 
that g(x) - h(x) = g(wj ) - h(wj) for all}. Clearly y is a one-to-one function. Also if 
h" h2 E [g] n :#', then h, and h2 agree at points of at least k cyclically consecutive terms 
of W" US, ... , w" +e' so that ii, and ~ agree at k cyclically consecutive points of 
{l, 2, . .. , k + e} . Hence from the one-to-one correspondence of y it follows from 
Lemma 1 that l[g] n :#'1 ~ t ( p +k)-k = ( e . Since this is true for each equivalence class [g], 
I:#'I ~ tn - e-kte = tn- k . 

Since the proofs of Theorems 2 and 3 are similar adaptions of the strategy used in the 
proof of Theorem I, their proofs will be given as a single proof. 

PROOF (Theorem 2 and Theorem 3). Consider a maximal length progression X(I) = 
{Xmp Xm2, . .. , Xm,} of distinct terms of the partition X = {X" X2 , ••• , X;} which is 
arithmetic with increment d in the case of Theorem 2 and geometric with ratio r in the case 
of Theorem 3. The conditions in each of the theorems make s ~ k. Consider this sub
partition XCI) = {Xmp Xm2' ... , Xm,} of X ordered cyclically as listed. For s = Jlk + e, 
o ~ e < k, partition the set of indices of X(I) into k + e subsets {Y;(')}~~f by letting 
y;(') = {mi' mk+j, . .. , m(~_')k+;} for I ~ i ~ k and Y}~i = {m~k+;} for I ~ i ~ (l. 

If s < 1 then find another maximal length progression X(2) of distinct terms of X disjoint 
from Xl'). Clearly, its length is also s. Form the analogous sequence of indices {y;(2)}7~f . 
Repeat this process sequentially until the maximal progressions exhaust all terms of X, 
giving subpartitions X(I), X(2), ... ,X(v) (each cyclically ordered) with corresponding 

f t · {yU)}k+e I . L Y UV yU)!' I . k sequences 0 ver Ices j j~', ~ } ~v. et j = j~' j lor ~ I ~ + e. 
At this point the proof becomes identical with the proof of Theorem 1. Set W; = UjEY, Xi 

for I ~ i ~ k + e. Note that if a pair of functions in :#' agree at some point of each of 
k terms of a progression of terms of X, then they agree at some point of each of k cyclically 
consecutive terms of the partition w., US, ... , w,,+e. Hence I:#'I ~ tn

-
k as required. 

PROOF (Theorem 4). This proof is similar to part of the proof of Theorem I. Let :#'* 
be the set of all t-valued functions defined on S. Surely:#,* has tn functions which we 
partition into tn - I classes as follows. For each g, hE:#'* define g '" h if g(x) - h(x) is 
constant on each X;, I ~ i ~ I. Thus the equivalence class [g] containing g has tl elements. 
Select fixed elements X j E X;, I ~ i ~ I, and let :#'** be the set of all t-valued functions with 
domain {l, 2, ... ,f}. For each class [g] define a function y: [gj -+ :#'** by y(h) = 
ii, h E [g], where ii(j) = h(xj) for all}. Surely y is one to one and if hI , h2 E [g] n:#' then 
ii, and ii2 have values which agree at k points of their domain. Hence l[gjl n :#'1 ~ f(l, t, k), 
so that I:#'I ~ f(l, t, k)tn - I. 
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Before Theorem 5 is proved some observations are needed. A family fF* of t-valued 
functions defined on the n-element set S can be replaced by t = ab-valued functions where 
the set of values is {(z, w)ll ~ z ~ a, I ~ w ~ h}. For CfJ s; fF* let PI(CfJ) (P2 (CfJ» 
be the projection of members of CfJ onto the first (second) coordinate. Surely IfF*1 = 
IPI (fF*)1 "IP2(fF*)1 with IPI (fF*)1 = d', IP2 (fF*)I= bn

, and ICfJI ~ IPI (CfJ)1 " IP2 (CfJ)I. 
Also, given the equivalence defined in the proof of Theorem 4, for g E F*, 1[g]1 = 
IPI [g]1 " IP2 [g]1 = al " bl. 

PROOF (Theorem 5). We show by induction on m that l[g] n F*I ~ [f(l, d, k)r 
where F*, is as given above, ab = dm = t, g E fF*, and [g) is the equivalence relation 
defined in the proof of Theorem 4. It is clear that one may assume a = d and b = dm

-
I

• 

Further, since [g) n fF satisfies the conditions of Theorem 4 so do PI ([g) n fF) and 
P2([g] n fF). Thus as in the proof of Theorem 41PI ([g) n fF)1 ~ 1(1, d, k) and by induction 
on m, when m > I, IP2([g] n fF)1 ~ 1(1, d, k)r- I. 

Thus l[g] n fFl ~ IPI([g] n fF)IIP2([g] n F)I ~ [/(1, d, k)r. Since this holds for each 
of the tn-I equivalence classes IfFl ~ [/(1, d, k)r " tn-I. 
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