Intersection Theorems for \boldsymbol{t}-Valued Functions

R. H. Schelp, M. Simonovits and V. T. Sós

Abstract

This paper investigates the maximum possible size of families \mathscr{F} of t-valued functions on an n-element set $S=\{1,2, \ldots, n\}$, assuming any two functions of \mathscr{F} agree in sufficiently many places. More precisely, given a family S of k-element subsets of S, it is assumed for each pair h, $g \in \mathscr{F}$ that there exists a B in $\mathscr{O}_{马}$ such that $h=g$ on B. If \mathscr{B} is 'not too large' it is shown that the maximal families have t^{n-k} members.

Introduction

Recently, theories have been developed relating set systems which have some specific intersection properties with intersection properties of other structures.

Sets

A theorem of Erdös, Ko, and Rado [3] asserts if S is an n-element set and \mathscr{A} is a family of k-element subsets of S any two of which have a non-empty intersection, then

$$
\begin{equation*}
|\mathscr{A}| \leqslant\binom{ n-1}{k-1}, \quad n \geqslant 2 k \tag{1}
\end{equation*}
$$

This result is sharp as shown by the family of k-tuples containing a fixed element of S.
An analogous but much simpler assertion is the following observation.
If \mathscr{A} is a family of subsets of an n-element set S such that the intersection of any two of them is non-empty, then

$$
\begin{equation*}
|\mathscr{A}| \leqslant 2^{n-1} \tag{2}
\end{equation*}
$$

This estimate is again sharp; simply take all subsets of S containing a fixed element x of S.

Problem 1. Assume S is an n-element set and \mathscr{A} is a family of subsets of S such that the intersection of any two has at least k elements. What is the maximum cardinality of \mathscr{A} ?

One family \mathscr{A} satisfying the above condition is obtained by taking all supersets of a fixed k-element subset of S. For this family

$$
\begin{equation*}
|\cdot \mathscr{A}|=2^{n-k} \tag{3}
\end{equation*}
$$

Unfortunately, this is not the largest family satisfying the condition. Indeed, if $n+k$ is even and \mathscr{A} is the family of all subsets of S with at least $(n+k) / 2$ elements, then any two of them intersect in at least k elements. The number of sets in this family is

$$
\begin{equation*}
N=\sum_{i=0}^{(n-k) / 2}\binom{n}{i} \tag{4}
\end{equation*}
$$

This number is much greater than that given in (3) except when $k=1$, when they are the same. Katona [7] proved that, indeed, (4) is the best possible result and also settled the case when $n+k$ is odd.

Definition 1. Let S be an n-element set and \mathscr{B} a family of subsets of S. The intersection problem corresponding to (S, \mathscr{B}) is to find the maximum sized family \mathscr{A} such that the intersection of any two members of \mathscr{A} belongs to \mathscr{B}. The families attaining the maximum cardinality are called the extremal families corresponding to (S, \mathscr{B}).

Generally, one could distinguish between strong and weak intersection problems. If one requires that the intersection be an element of \mathscr{B}, then it is a strong intersection problem, while if one requires that the intersection only contains as a subset some element of \mathscr{B}, then it is a weak intersection problem.

Remark. Here one should clarify that the distinction between strong and weak intersection problems is not a mathematical one, in the sense that \mathscr{B} can be enlarged to contain all supersets of the original members of \mathscr{B}. The strong intersection problem corresponding to the enlarged \mathscr{B} is identical with the weak intersection problem corresponding to the original \mathscr{B}.

Minimal Extremal Set Systems

Throughout, the strong version of the intersection problem is assumed, thus if $B \in \mathscr{B}$ and $B \subseteq B^{\prime}$, then $B^{\prime} \in \mathscr{B}$.

Surely the smaller \mathscr{B} the smaller the extremal system corresponding to (S, \mathscr{B}). Whenever \mathscr{B} contains some k-tuples, then by letting \mathscr{A} be the family of all supersets of a fixed k-tuple in \mathscr{B} the family \mathscr{A} has 2^{n-k} elements each pair of which intersect in \mathscr{B}. This means that the minimal size of the extremal family corresponding to (S, \mathscr{B}) is 2^{n-k}. In the case when the extremal families contain at most 2^{n-k} members, the family or system is called a minimal extremal system. The aim of the paper is to investigate under which conditions minimal extremal systems are obtained.

Such questions were discussed in [2, 4, 6]. One result obtained independently in [2] and [4] is the following. Let S be an n-element set and let $X_{1}, X_{2}, \ldots, X_{l}$ be a partition of S into non-empty subsets. If \mathscr{A} is a family of subsets of S in which the intersection of each pair of \mathscr{A} contain $k(k \leqslant l)$ elements $Y_{1}, Y_{2}, \ldots, Y_{k}$ belonging respectively to k cyclically consecutive members of the partition $X_{1}, X_{2}, \ldots, X_{l}$, then $|\mathscr{A}| \leqslant 2^{n-k}$. Thus this extremal system is a minimal one and is already obtained by restricting oneself to a small intersection family.

Functions

In [4] and [6], in addition to intersecting families of sets the authors also consider intersecting families of functions. Given a family \mathscr{F} of functions mapping the n-element set S to a t-element set, two functions $h, g \in \mathscr{F}$ are said to intersect or agree at $U \subseteq S$ if $U=\{i \in S: h(i)=g(i)\}$. Usually, when $h(i)=g(i)$ we simply say h and g agree at i.

Families of intersecting or agreeing functions are connected with families of intersecting sets. In particular, the family of characteristic functions defined on a family of intersecting sets gives an intersecting family of functions with $t=2$. In the light of an earlier remark, it is not surprising that the following theorem holds.

Theorem A [4]. If \mathscr{F} is a family of 2-valued functions on an n-element set S, and S is partitioned into lnon-empty sets $X_{1}, X_{2}, \ldots, X_{1}$ such that each pair in \mathscr{F} intersect or agree in at least $k(k \leqslant l)$ points $y_{1}, y_{2}, \ldots, y_{k}$ belonging respectively to k cyclically consecutive members of the partition $X_{1}, X_{2}, \ldots, X_{l}$, then $|\mathscr{F}| \leqslant 2^{n-k}$.

Results

One of the questions left unanswered in [4] is whether Theorem A holds for t-valued functions. We establish this and more, showing that the agreement of pairs of functions at points of k consecutive members of the partition can be replaced by agreement at points of k members whose indices form either an arithmetic or geometric progression with a fixed increment or ratio. This is the content of the next three theorems.

Throughout the remainder of the paper it is always assumed that S is an n-element set, \mathscr{F} is a family of t-valued functions defined on $S, X_{1}, X_{2}, \ldots, X_{l}$ is a partition X of S into non-empty sets, and k is a positive integer, $k \leqslant l$. In addition, the l members of the partition $X_{1}, X_{2}, \ldots, X_{l}$ will be assumed to be cyclically ordered.

Theorem 1. If each pair of functions in \mathscr{F} agree at some point of each of k consecutive terms of the partition X, then $|\mathscr{F}| \leqslant t^{n-k}$.

Theorem 2. Let d be a positive integer such that id $\not \equiv 0(\bmod l), 1 \leqslant i \leqslant k-1$. If each pair of functions in \mathscr{F} agree at some point of each of k terms of an arithmetic progression of terms of X with increment d, then $|\mathscr{F}| \leqslant t^{n-k}$.

Theorem 3. Let $l=p^{m}-1$ for some prime p and let r be a positive integer such that $r^{i} \neq 1(\bmod l+1), 1 \leqslant i \leqslant k-1$. If each pair of functions in \mathscr{F} agree at some point of each of k terms of a geometric progression of terms of X with ratio r, then $|\mathscr{F}| \leqslant t^{n-k}$.

Each of the above theorems result in a family \mathscr{F} that is minimal extremal. It will be apparent from the proof given, that a slightly more general 'agreement condition' for the family \mathscr{F} can be given such that \mathscr{F} is again minimal extremal. Since this amounts to an appropriate permutation of the partition X, there is no need to include it.

These theorems have obvious set intersection theorem consequences.
Corollary 1 (set system version). Let P be either the progression mentioned in Theorem 2 or the one in Theorem 3. If \mathscr{A} is a family of subsets of S such that the intersection of each pair in \mathscr{A} contains an element of each member of some progression P, then $|\mathscr{A}| \leqslant 2^{n-k}$.

Clearly, when $d=1$ and $t=2$ the results of Theorem 2 and Corollary 1 reduce to ones given in [4].

Dropping the Consecutiveness

In an earlier paper [6], Frankl and Füredi consider the family \mathscr{F} (of t-valued functions on n points) in which each pair of its members (functions) agree at k or more points of their domain S. They let $f(n, t, k)$ denote the maximum size of such a family. They prove the following theorem.

Theorem B [6]. For $t \geqslant 3, t^{n} / t^{k} \leqslant f(n, t, k) \leqslant t^{n} /(t-1)^{k}$ and for $k \geqslant 15, f(n, t, k)=$ t^{n-k} if and only if $t \geqslant k+1$ or $n \leqslant k+1$.

Since then, Richard Wilson has shown that the condition $k \geqslant 15$ can be dropped in this theorem. We consider a generalization of the Frankl-Füredi bound.

Theorem 4. If each pair of functions in \mathscr{F} agree at some point of each of k members of the partition X, then $|\mathscr{F}| \leqslant f(l, t, k) t^{n-l}$.

In particular, the Frankl-Füredi result shows that the family \mathscr{F} of Theorem 4 satisfies $|\mathscr{F}| \leqslant f(l, t, k) t^{n-t}=t^{l-k} \cdot t^{n-t}=t^{n-k}$ and is minimal extremal when $t \geqslant k+1$ or $n \leqslant k+1$. Also, the inequality of Theorem B shows $t^{n} / t^{k} \leqslant f(l, t, k) t^{n-l} \leqslant t^{n} /(t-1)^{k}$.

Erdös posed and Kleitman [8] showed that

$$
f(l, 2, k)=\left\{\begin{array}{cl}
\sum_{i=0}^{(l-k) / 2}\binom{l}{i} & \text { if } l-k \text { is even } \tag{5}\\
2 \sum_{i=0}^{[(l-k) / 2]}\binom{l-1}{i} & \text { if } l-k \text { is odd }
\end{array}\right.
$$

This gives an exact upper bound on $|\mathscr{F}|$ in Theorem 4 for $t=2$.
When t is a power of some fixed positive integer one can prove the following theorem, which in some cases gives a more useful upper bound than the one in Theorem 4.

Theorem 5. If $t=d^{m}$ and \mathscr{F} satisfies the condition of Theorem 4, then $|\mathscr{F}| \leqslant$ $[f(l, d, k)]^{m} \cdot t^{n-l}$.

To demonstrate the usefulness of the bound of Theorem 5 consider the case when $d=2$ and, consequently, $f(l, 2, k)$ is known exactly. In particular, consider a comparison of the bounds of Theorems 4 and 5 in the case when $l-k=d$ and m are both fixed with l large. To do this, observe by (5) that $(f(l, 2, k))^{m} \leqslant l^{d m / 2}$, a polynomial upper bound in l, while $f\left(l, 2^{m}, k\right) \leqslant t^{t} /(t-1)^{k}=(t-1)^{d}(t /(t-1))^{t}$ by Theorem B, an exponential upper bound in l. Hence this is an instance where the bound of Theorem 5 is considerably more effective to use than the one of Theorem 4. Similarly, Theorem 5 is better in cases when m and $l-k$ are not fixed but tend to infinity slowly (as functions of l).

One of the most interesting open questions left unanswered is a slight generalization of one initially posed in [2]. Select any k element set T of indices from the index set $L=\{1,2, \ldots, l\}$ of the partition $X=\left\{X_{1}, X_{2}, \ldots, X_{l}\right\}$. Let \mathscr{B} have as elements the set T together will all its cyclic translates in L. If each pair of functions in \mathscr{F} agree at some point of each element of the partition indexed by an element B in \mathscr{B}, then is $|\mathscr{F}| \leqslant t^{n-k}$? Some evidence is given in [2] and [4] that the answer to this question is yes.

Proofs

In order to prove Theorems 1,2 and 3 a special case of the theorem is needed.
Lemma 1. Let $l=n \leqslant 2 k$ so that the partition X consists of singleton sets. If each pair of functions in \mathscr{F} agree at k consecutive terms of the partition X, then $|\mathscr{F}| \leqslant t^{n-k}$.

This lemma was proved in [4] for $t=2$, and the proof for arbitrary t is similar. To make the paper self-contained an outline of the proof is provided.

Proof (outline). Let $X_{i}=\{i\}$ for each member of the partition and let $Y \subseteq S=$ $\{1,2, \ldots, n\}$ be the set on which all elements of \mathscr{F} agree (have the same values). Surely if $|Y| \geqslant k$ then the result follows. Using the 'agreement condition' for pairs of functions in \mathscr{F} it follows when i and j are at a distance at most k in either direction along the n-cycle (i.e. when $2 n-k \leqslant|i-j| \leqslant k$), that either i or j belong to Y. Thus for each $i \notin Y$ there are $2 k-n+1$ consecutive elements of S in Y, and each additional element not in Y accounts for an additional element in Y. Hence $|Y| \geqslant 2 k-n+|S-Y| \geqslant k$.

Proof (Theorem 1). For $l=u k+\varrho, 0 \leqslant \varrho \leqslant k$, partition the index set of the partition $X=\left\{X_{1}, X_{2}, \ldots, X_{l}\right\}$ into $k+\varrho$ subsets $\left\{Y_{i}\right\}_{i=1}^{k+e}$ by letting $Y_{i}=\{i, k+$ $i, \ldots,(\mu-1) k+i\}$ for $1 \leqslant i \leqslant k$ and $Y_{k+i}=\{\mu k+i\}$ for $1 \leqslant i \leqslant \varrho$. Note that any
two distinct integers in the same term of this partition differ by at least k, so any k consecutive integers (1 and l are assumed consecutive) will be in k cyclically consecutive terms of the partition $Y_{1}, Y_{2}, \ldots, Y_{k+\varrho}$ of the index set of X. Let $W_{1}, W_{2}, \ldots, W_{k+e}$ be the partition of S defined by $W_{i}=\bigcup_{j \in Y_{i}} X_{j}$ for $1 \leqslant i \leqslant k+\varrho$. Due to the choice of the Y_{i} 's each pair of functions in \mathscr{F} agree at some point of each of k cyclically consecutive terms of the partition $W_{1}, W_{2}, \ldots, W_{k+e}$.

Let \mathscr{F}^{*} be the set of all t-valued functions defined on S. Clearly, \mathscr{F}^{*} has t^{n} functions which will be partitioned into $t^{n-e^{-k}}$ classes as follows. For each $g, h \in \mathscr{F}^{*}$ define $g \sim h$ (equivalent to) if $g(x)-h(x)$ has a constant value on each W_{j}. Clearly ' \sim ' is an equivalence relation. Let $[g$] denote the equivalence class containing g. Observe that each class [g] contains t^{k+e} functions.

Let $w_{j} \in W_{j}, 1 \leqslant j \leqslant k+\varrho$, be fixed elements of the partition $W_{1}, W_{2}, \ldots, W_{k+e}$. Let $\mathscr{F}^{* *}$ be the set of all t-valued functions with domain $\{1,2, \ldots, k+\varrho\}$. For each class $[g]$ define a function $\gamma:[g] \rightarrow \mathscr{F} * *$ by $\gamma(h)=\tilde{h}, h \in[g]$, where $\tilde{h}(j)=h\left(w_{j}\right)$ for all j. Observe that $g(x)-h(x)=g\left(w_{j}\right)-h\left(w_{j}\right)$ for all j. Clearly γ is a one-to-one function. Also if $h_{1}, h_{2} \in[g] \cap \mathscr{F}$, then h_{1} and h_{2} agree at points of at least k cyclically consecutive terms of $W_{1}, W_{2}, \ldots, W_{k+e}$, so that \widetilde{h}_{1} and \tilde{h}_{2} agree at k cyclically consecutive points of $\{1,2, \ldots, k+\varrho\}$. Hence from the one-to-one correspondence of γ it follows from Lemma 1 that $|[g] \cap \mathscr{F}| \leqslant t^{(\rho+k)-k}=t^{\ell}$. Since this is true for each equivalence class $[g]$, $|\mathscr{F}| \leqslant t^{n-\varrho-k} t^{\varrho}=t^{n-k}$.

Since the proofs of Theorems 2 and 3 are similar adaptions of the strategy used in the proof of Theorem 1, their proofs will be given as a single proof.

Proof (Theorem 2 and Theorem 3). Consider a maximal length progression $X^{(1)}=$ $\left\{X_{m_{1}}, X_{m_{2}}, \ldots, X_{m_{s}}\right\}$ of distinct terms of the partition $X=\left\{X_{1}, X_{2}, \ldots, X_{i}\right\}$ which is arithmetic with increment d in the case of Theorem 2 and geometric with ratio r in the case of Theorem 3. The conditions in each of the theorems make $s \geqslant k$. Consider this subpartition $X^{(1)}=\left\{X_{m_{1}}, X_{m_{2}}, \ldots, X_{m_{s}}\right\}$ of X ordered cyclically as listed. For $s=\mu k+\varrho$, $0 \leqslant \varrho<k$, partition the set of indices of $X^{(1)}$ into $k+\varrho$ subsets $\left\{Y_{i}^{(1)}\right\}_{i=1}^{k+\varrho}$ by letting $Y_{i}^{(1)}=\left\{m_{i}, m_{k+i}, \ldots, m_{(\mu-1) k+i}\right\}$ for $1 \leqslant i \leqslant k$ and $Y_{k+i}^{(1)}=\left\{m_{\mu k+i}\right\}$ for $1 \leqslant i \leqslant \varrho$.

If $s<l$ then find another maximal length progression $X^{(2)}$ of distinct terms of X disjoint from $X^{(1)}$. Clearly, its length is also s. Form the analogous sequence of indices $\left\{Y_{i}^{(2)}\right\}_{i=1}^{k+\rho}$. Repeat this process sequentially until the maximal progressions exhaust all terms of X, giving subpartitions $X^{(1)}, X^{(2)}, \ldots, X^{(1)}$ (each cyclically ordered) with corresponding sequences of vertices $\left\{Y_{i}^{(j)}\right\}_{i=1}^{k+0}, 1 \leqslant j \leqslant v$. Let $Y_{i}=\bigcup_{j=1}^{v} Y_{i}^{(j)}$ for $1 \leqslant i \leqslant k+\varrho$.

At this point the proof becomes identical with the proof of Theorem 1. Set $W_{i}=\bigcup_{j \in y_{i}} X_{j}$ for $1 \leqslant i \leqslant k+\varrho$. Note that if a pair of functions in \mathscr{F} agree at some point of each of k terms of a progression of terms of X, then they agree at some point of each of k cyclically consecutive terms of the partition $W_{1}, W_{2}, \ldots, W_{k+e}$. Hence $|\mathscr{F}| \leqslant t^{n-k}$ as required.

Proof (Theorem 4). This proof is similar to part of the proof of Theorem 1. Let \mathscr{F}^{*} be the set of all t-valued functions defined on S. Surely \mathscr{F}^{*} has t^{n} functions which we partition into t^{n-t} classes as follows. For each $g, h \in \mathscr{F}^{*}$ define $g \sim h$ if $g(x)-h(x)$ is constant on each $X_{i}, 1 \leqslant i \leqslant l$. Thus the equivalence class $[g]$ containing g has t^{\prime} elements. Select fixed elements $x_{i} \in X_{i}, 1 \leqslant i \leqslant l$, and let $\mathscr{F}^{* *}$ be the set of all t-valued functions with domain $\{1,2, \ldots, l\}$. For each class $[g]$ define a function $\gamma:[g] \rightarrow \mathscr{F}^{* *}$ by $\gamma(h)=$ $\tilde{h}, h \in[g]$, where $\tilde{h}(j)=h\left(x_{j}\right)$ for all j. Surely γ is one to one and if $h_{1}, h_{2} \in[g] \cap \mathscr{F}$ then \widetilde{h}_{1} and \widetilde{h}_{2} have values which agree at k points of their domain. Hence $|[g]| \cap \mathscr{F} \mid \leqslant f(l, t, k)$, so that $|\mathscr{F}| \leqslant f(l, t, k) t^{n-l}$.

Before Theorem 5 is proved some observations are needed. A family \mathscr{F}^{*} of t-valued functions defined on the n-element set S can be replaced by $t=a b$-valued functions where the set of values is $\{(z, w) \mid 1 \leqslant z \leqslant a, 1 \leqslant w \leqslant b\}$. For $\mathscr{C} \subseteq \mathscr{F}^{*}$ let $P_{1}(\mathscr{C})\left(P_{2}(\mathscr{C})\right)$ be the projection of members of \mathscr{C} onto the first (second) coordinate. Surely $|\mathscr{F} *|=$ $\left|P_{1}\left(\mathscr{F}^{*}\right)\right| \cdot\left|P_{2}\left(\mathscr{F}^{*}\right)\right| \quad$ with $\quad\left|P_{1}\left(\mathscr{F}^{*}\right)\right|=a^{n},\left|P_{2}\left(\mathscr{F}^{*}\right)\right|=b^{n}$, and $|\mathscr{C}| \leqslant\left|P_{1}(\mathscr{C})\right| \cdot\left|P_{2}(\mathscr{C})\right|$. Also, given the equivalence defined in the proof of Theorem 4, for $g \in F^{*},|[g]|=$ $\left|P_{1}[g]\right| \cdot\left|P_{2}[g]\right|=a^{l} \cdot b^{l}$.

Proof (Theorem 5). We show by induction on m that $\left|[g] \cap F^{*}\right| \leqslant[f(l, d, k)]^{m}$ where F^{*}, is as given above, $a b=d^{m}=t, g \in \mathscr{F}^{*}$, and $[g]$ is the equivalence relation defined in the proof of Theorem 4. It is clear that one may assume $a=d$ and $b=d^{m-1}$. Further, since $[g] \cap \mathscr{F}$ satisfies the conditions of Theorem 4 so do $P_{1}([g] \cap \mathscr{F})$ and $P_{2}([g] \cap \mathscr{F})$. Thus as in the proof of Theorem $4\left|P_{1}([g] \cap \mathscr{F})\right| \leqslant f(l, d, k)$ and by induction on m, when $\left.m>1,\left|P_{2}([g] \cap \mathscr{F})\right| \leqslant f(l, d, k)\right]^{m-1}$.

Thus $|[g] \cap \mathscr{F}| \leqslant\left|P_{1}([g] \cap \mathscr{F})\right|\left|P_{2}([g] \cap F)\right| \leqslant[f(l, d, k)]^{m}$. Since this holds for each of the t^{n-1} equivalence classes $|\mathscr{F}| \leqslant[f(l, d, k)]^{m} \cdot t^{n-1}$.

Acknowledgement

This research by the first author was carried out with the assistance of an IREX grant.

References

1. C. Berge, Nombres de coloration de l'hypergraphe h-parti complet, Hypergraph Seminar, Columbus, Ohio, 1972, Springer-Verlag, New York, 1974, pp. 13-20.
2. F. R. K. Chung, R. L. Graham, P. Frankl and J. B. Shearer, Some intersection theorems for ordered sets and graphs, J. Comb. Theory, Ser. A, 43 (1986), 23-37.
3. P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math., Oxford Ser., 12 (1961), 313-320.
4. R. J. Faudree, R. H. Schelp and V. T. Sós, Some intersection theorems for two valued functions, Combinatorics, 6(4) (1986), 327-333.
5. P. Frankl, The Erdös-Ko-Rado theorem is true for $n=c k t$, Proc. Fifth Hung. Comb. Coll. Keszthely, 1976, North Holland, Amsterdam, 1978, pp. 365-375.
6. P. Frankl and Z. Füredi, The Erdös-Ko-Rado theorems for integer sequences, SIAM J. Algebraic Discr. Met., 1(4) (1980), 376-381.
7. G. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar., 15 (1964), 329-337.
8. D. J. Kleitman, On a combinatorial conjecture of Erdös, J. Comb. Theory Ser., B, 1 (1966), 153-155.

Received 12 May 1986
R. H. Schelp

Memphis State University
and
M. Simonovits and V. T. Sós

Eötvös Loránd University, Budapest,

