Intersection Theorems for t-Valued Functions

R. H. SCHELP, M. SIMONOVITS AND V. T. SÓS

This paper investigates the maximum possible size of families \mathscr{F} of *t*-valued functions on an *n*-element set $S = \{1, 2, \ldots, n\}$, assuming any two functions of \mathscr{F} agree in sufficiently many places. More precisely, given a family \mathscr{B} of *k*-element subsets of *S*, it is assumed for each pair *h*, $g \in \mathscr{F}$ that there exists a *B* in \mathscr{B} such that h = g on *B*. If \mathscr{B} is 'not too large' it is shown that the maximal families have t^{n-k} members.

INTRODUCTION

Recently, theories have been developed relating set systems which have some specific *intersection properties* with intersection properties of other structures.

Sets

A theorem of Erdös, Ko, and Rado [3] asserts if S is an *n*-element set and \mathcal{A} is a family of *k*-element subsets of S any two of which have a non-empty intersection, then

$$|\mathscr{A}| \leqslant \binom{n-1}{k-1}, \qquad n \ge 2k. \tag{1}$$

This result is sharp as shown by the family of k-tuples containing a fixed element of S.

An analogous but much simpler assertion is the following observation.

If \mathcal{A} is a family of subsets of an *n*-element set S such that the intersection of any two of them is non-empty, then

$$|\mathscr{A}| \leqslant 2^{n-1}.\tag{2}$$

This estimate is again sharp; simply take all subsets of S containing a fixed element x of S.

PROBLEM 1. Assume S is an *n*-element set and \mathscr{A} is a family of subsets of S such that the intersection of any two has at least k elements. What is the maximum cardinality of \mathscr{A} ?

One family \mathscr{A} satisfying the above condition is obtained by taking all supersets of a fixed *k*-element subset of S. For this family

$$|\mathscr{A}| = 2^{n-k}.$$
 (3)

Unfortunately, this is not the largest family satisfying the condition. Indeed, if n + k is even and \mathcal{A} is the family of all subsets of S with at least (n + k)/2 elements, then any two of them intersect in at least k elements. The number of sets in this family is

$$N = \sum_{i=0}^{(n-k)/2} \binom{n}{i}.$$
 (4)

This number is much greater than that given in (3) except when k = 1, when they are the same. Katona [7] proved that, indeed, (4) is the best possible result and also settled the case when n + k is odd.

DEFINITION 1. Let S be an *n*-element set and \mathscr{B} a family of subsets of S. The *intersection* problem corresponding to (S, \mathscr{B}) is to find the maximum sized family \mathscr{A} such that the intersection of any two members of \mathscr{A} belongs to \mathscr{B} . The families attaining the maximum cardinality are called the *extremal families* corresponding to (S, \mathscr{B}) .

Generally, one could distinguish between *strong* and *weak* intersection problems. If one requires that the intersection be an element of \mathcal{B} , then it is a *strong* intersection problem, while if one requires that the intersection only contains as a subset some element of \mathcal{B} , then it is a *weak* intersection problem.

REMARK. Here one should clarify that the distinction between strong and weak intersection problems is not a mathematical one, in the sense that \mathscr{B} can be enlarged to contain all supersets of the original members of \mathscr{B} . The strong intersection problem corresponding to the enlarged \mathscr{B} is identical with the weak intersection problem corresponding to the original \mathscr{B} .

Minimal Extremal Set Systems

Throughout, the strong version of the intersection problem is assumed, thus if $B \in \mathcal{B}$ and $B \subseteq B'$, then $B' \in \mathcal{B}$.

Surely the smaller \mathscr{B} the smaller the extremal system corresponding to (S, \mathscr{B}) . Whenever \mathscr{B} contains some k-tuples, then by letting \mathscr{A} be the family of all supersets of a fixed k-tuple in \mathscr{B} the family \mathscr{A} has 2^{n-k} elements each pair of which intersect in \mathscr{B} . This means that the minimal size of the extremal family corresponding to (S, \mathscr{B}) is 2^{n-k} . In the case when the extremal families contain at most 2^{n-k} members, the family or system is called a *minimal extremal system*. The aim of the paper is to investigate under which conditions *minimal extremal systems* are obtained.

Such questions were discussed in [2, 4, 6]. One result obtained independently in [2] and [4] is the following. Let S be an *n*-element set and let X_1, X_2, \ldots, X_l be a partition of S into non-empty subsets. If \mathscr{A} is a family of subsets of S in which the intersection of each pair of \mathscr{A} contain $k \ (k \leq l)$ elements Y_1, Y_2, \ldots, Y_k belonging respectively to k cyclically consecutive members of the partition X_1, X_2, \ldots, X_l , then $|\mathscr{A}| \leq 2^{n-k}$. Thus this extremal system is a minimal one and is already obtained by restricting oneself to a small intersection family.

Functions

In [4] and [6], in addition to intersecting families of sets the authors also consider *intersecting families of functions*. Given a family \mathscr{F} of functions mapping the *n*-element set S to a *t*-element set, two functions $h, g \in \mathscr{F}$ are said to intersect or agree at $U \subseteq S$ if $U = \{i \in S: h(i) = g(i)\}$. Usually, when h(i) = g(i) we simply say h and g agree at i.

Families of intersecting or agreeing functions are connected with families of intersecting sets. In particular, the family of characteristic functions defined on a family of intersecting sets gives an intersecting family of functions with t = 2. In the light of an earlier remark, it is not surprising that the following theorem holds.

THEOREM A [4]. If \mathscr{F} is a family of 2-valued functions on an n-element set S, and S is partitioned into l non-empty sets X_1, X_2, \ldots, X_l such that each pair in \mathscr{F} intersect or agree in at least $k \ (k \leq l)$ points y_1, y_2, \ldots, y_k belonging respectively to k cyclically consecutive members of the partition X_1, X_2, \ldots, X_l , then $|\mathscr{F}| \leq 2^{n-k}$.

RESULTS

One of the questions left unanswered in [4] is whether Theorem A holds for t-valued functions. We establish this and more, showing that the agreement of pairs of functions at points of k consecutive members of the partition can be replaced by agreement at points of k members whose indices form either an *arithmetic* or *geometric* progression with a fixed increment or ratio. This is the content of the next three theorems.

Throughout the remainder of the paper it is always assumed that S is an n-element set, \mathcal{F} is a family of t-valued functions defined on S, X_1, X_2, \ldots, X_l is a partition X of S into non-empty sets, and k is a positive integer, $k \leq l$. In addition, the l members of the partition X_1, X_2, \ldots, X_l will be assumed to be cyclically ordered.

THEOREM 1. If each pair of functions in \mathcal{F} agree at some point of each of k consecutive terms of the partition X, then $|\mathcal{F}| \leq t^{n-k}$.

THEOREM 2. Let d be a positive integer such that $id \neq 0 \pmod{l}, 1 \leq i \leq k - 1$. If each pair of functions in \mathscr{F} agree at some point of each of k terms of an arithmetic progression of terms of X with increment d, then $|\mathscr{F}| \leq t^{n-k}$.

THEOREM 3. Let $l = p^m - 1$ for some prime p and let r be a positive integer such that $r^i \neq 1 \pmod{l+1}, 1 \leq i \leq k-1$. If each pair of functions in \mathcal{F} agree at some point of each of k terms of a geometric progression of terms of X with ratio r, then $|\mathcal{F}| \leq t^{n-k}$.

Each of the above theorems result in a family \mathcal{F} that is minimal extremal. It will be apparent from the proof given, that a slightly more general 'agreement condition' for the family \mathcal{F} can be given such that \mathcal{F} is again minimal extremal. Since this amounts to an appropriate permutation of the partition X, there is no need to include it.

These theorems have obvious set intersection theorem consequences.

COROLLARY 1 (set system version). Let P be either the progression mentioned in Theorem 2 or the one in Theorem 3. If \mathcal{A} is a family of subsets of S such that the intersection of each pair in \mathcal{A} contains an element of each member of some progression P, then $|\mathcal{A}| \leq 2^{n-k}$.

Clearly, when d = 1 and t = 2 the results of Theorem 2 and Corollary 1 reduce to ones given in [4].

Dropping the Consecutiveness

In an earlier paper [6], Frankl and Füredi consider the family \mathcal{F} (of t-valued functions on *n* points) in which each pair of its members (functions) agree at k or more points of their domain S. They let f(n, t, k) denote the maximum size of such a family. They prove the following theorem.

THEOREM B [6]. For $t \ge 3$, $t^n/t^k \le f(n, t, k) \le t^n/(t-1)^k$ and for $k \ge 15$, $f(n, t, k) = t^{n-k}$ if and only if $t \ge k+1$ or $n \le k+1$.

Since then, Richard Wilson has shown that the condition $k \ge 15$ can be dropped in this theorem. We consider a generalization of the Frankl-Füredi bound.

THEOREM 4. If each pair of functions in \mathcal{F} agree at some point of each of k members of the partition X, then $|\mathcal{F}| \leq f(l, t, k)t^{n-l}$.

In particular, the Frankl-Füredi result shows that the family \mathcal{F} of Theorem 4 satisfies $|\mathcal{F}| \leq f(l, t, k)t^{n-l} = t^{l-k} \cdot t^{n-l} = t^{n-k}$ and is minimal extremal when $t \geq k+1$ or $n \leq k + 1$. Also, the inequality of Theorem B shows $t^n/t^k \leq f(l, t, k)t^{n-l} \leq t^n/(t-1)^k$.

Erdös posed and Kleitman [8] showed that

$$f(l, 2, k) = \begin{cases} \sum_{i=0}^{(l-k)/2} {l \choose i} & \text{if } l-k \text{ is even;} \\ 2 \sum_{i=0}^{[(l-k)/2]} {l-1 \choose i} & \text{if } l-k \text{ is odd.} \end{cases}$$
(5)

This gives an exact upper bound on $|\mathcal{F}|$ in Theorem 4 for t = 2.

When t is a power of some fixed positive integer one can prove the following theorem, which in some cases gives a more useful upper bound than the one in Theorem 4.

THEOREM 5. If $t = d^m$ and \mathscr{F} satisfies the condition of Theorem 4, then $|\mathscr{F}| \leq$ $[f(l, d, k)]^m \cdot t^{n-l}.$

To demonstrate the usefulness of the bound of Theorem 5 consider the case when d = 2and, consequently, f(l, 2, k) is known exactly. In particular, consider a comparison of the bounds of Theorems 4 and 5 in the case when l - k = d and m are both fixed with l large. To do this, observe by (5) that $(f(l, 2, k))^m \leq l^{dm/2}$, a polynomial upper bound in l, while $f(l, 2^m, k) \leq t^l/(t-1)^k = (t-1)^d (t/(t-1))^l$ by Theorem B, an exponential upper bound in *l*. Hence this is an instance where the bound of Theorem 5 is considerably more effective to use than the one of Theorem 4. Similarly, Theorem 5 is better in cases when mand l - k are not fixed but tend to infinity slowly (as functions of l).

One of the most interesting open questions left unanswered is a slight generalization of one initially posed in [2]. Select any k element set T of indices from the index set $L = \{1, 2, \dots, l\}$ of the partition $X = \{X_1, X_2, \dots, X_l\}$. Let \mathcal{B} have as elements the set T together will all its cyclic translates in L. If each pair of functions in \mathcal{F} agree at some point of each element of the partition indexed by an element B in \mathcal{B} , then is $|\mathcal{F}| \leq t^{n-k}$? Some evidence is given in [2] and [4] that the answer to this question is yes.

PROOFS

In order to prove Theorems 1, 2 and 3 a special case of the theorem is needed.

LEMMA 1. Let $l = n \leq 2k$ so that the partition X consists of singleton sets. If each pair of functions in \mathscr{F} agree at k consecutive terms of the partition X, then $|\mathscr{F}| \leq t^{n-k}$.

This lemma was proved in [4] for t = 2, and the proof for arbitrary t is similar. To make the paper self-contained an outline of the proof is provided.

PROOF (outline). Let $X_i = \{i\}$ for each member of the partition and let $Y \subseteq S =$ $\{1, 2, \ldots, n\}$ be the set on which all elements of \mathcal{F} agree (have the same values). Surely if $|Y| \ge k$ then the result follows. Using the 'agreement condition' for pairs of functions in \mathscr{F} it follows when i and j are at a distance at most k in either direction along the n-cycle (i.e. when $2n - k \leq |i - j| \leq k$), that either i or j belong to Y. Thus for each $i \notin Y$ there are 2k - n + 1 consecutive elements of S in Y, and each additional element not in Y accounts for an additional element in Y. Hence $|Y| \ge 2k - n + |S - Y| \ge k$.

PROOF (Theorem 1). For $l = uk + \rho$, $0 \le \rho \le k$, partition the index set of the partition $X = \{X_1, X_2, \ldots, X_l\}$ into $k + \varrho$ subsets $\{Y_i\}_{i=1}^{k+\varrho}$ by letting $Y_i = \{i, k + \varrho\}$ $i, \ldots, (\mu - 1)k + i$ for $1 \le i \le k$ and $Y_{k+i} = \{\mu k + i\}$ for $1 \le i \le \varrho$. Note that any

two distinct integers in the same term of this partition differ by at least k, so any k consecutive integers (1 and l are assumed consecutive) will be in k cyclically consecutive terms of the partition $Y_1, Y_2, \ldots, Y_{k+\varrho}$ of the index set of X. Let $W_1, W_2, \ldots, W_{k+\varrho}$ be the partition of S defined by $W_i = \bigcup_{j \in Y_i} X_j$ for $1 \le i \le k + \varrho$. Due to the choice of the Y_i 's each pair of functions in \mathscr{F} agree at some point of each of k cyclically consecutive terms of the partition $W_1, W_2, \ldots, W_{k+\varrho}$.

Let \mathscr{F}^* be the set of all *t*-valued functions defined on *S*. Clearly, \mathscr{F}^* has t^n functions which will be partitioned into $t^{n-\varrho-k}$ classes as follows. For each $g, h \in \mathscr{F}^*$ define $g \sim h$ (equivalent to) if g(x) - h(x) has a constant value on each W_j . Clearly '~' is an equivalence relation. Let [g] denote the equivalence class containing g. Observe that each class [g] contains $t^{k+\varrho}$ functions.

Let $w_j \in W_j$, $1 \le j \le k + \varrho$, be fixed elements of the partition $W_1, W_2, \ldots, W_{k+\varrho}$. Let \mathscr{F}^{**} be the set of all t-valued functions with domain $\{1, 2, \ldots, k + \varrho\}$. For each class [g] define a function γ : $[g] \to \mathscr{F}^{**}$ by $\gamma(h) = \tilde{h}, h \in [g]$, where $\tilde{h}(j) = h(w_j)$ for all j. Observe that $g(x) - h(x) = g(w_j) - h(w_j)$ for all j. Clearly γ is a one-to-one function. Also if $h_1, h_2 \in [g] \cap \mathscr{F}$, then h_1 and h_2 agree at points of at least k cyclically consecutive terms of $W_1, W_2, \ldots, W_{k+\varrho}$, so that \tilde{h}_1 and \tilde{h}_2 agree at k cyclically consecutive points of $\{1, 2, \ldots, k + \varrho\}$. Hence from the one-to-one correspondence of γ it follows from Lemma 1 that $|[g] \cap \mathscr{F}| \le t^{(\varrho+k)-k} = t^{\varrho}$. Since this is true for each equivalence class [g], $|\mathscr{F}| \le t^{n-\varrho-k}t^{\varrho} = t^{n-k}$.

Since the proofs of Theorems 2 and 3 are similar adaptions of the strategy used in the proof of Theorem 1, their proofs will be given as a single proof.

PROOF (Theorem 2 and Theorem 3). Consider a maximal length progression $X^{(1)} = \{X_{m_1}, X_{m_2}, \ldots, X_{m_s}\}$ of distinct terms of the partition $X = \{X_1, X_2, \ldots, X_l\}$ which is arithmetic with increment *d* in the case of Theorem 2 and geometric with ratio *r* in the case of Theorem 3. The conditions in each of the theorems make $s \ge k$. Consider this subpartition $X^{(1)} = \{X_{m_1}, X_{m_2}, \ldots, X_{m_s}\}$ of X ordered cyclically as listed. For $s = \mu k + \varrho$, $0 \le \varrho < k$, partition the set of indices of $X^{(1)}$ into $k + \varrho$ subsets $\{Y_i^{(1)}\}_{i=1}^{k+\varrho}$ by letting $Y_i^{(1)} = \{m_i, m_{k+i}, \ldots, m_{(\mu-1)k+i}\}$ for $1 \le i \le k$ and $Y_{k+i}^{(1)} = \{m_{\mu k+i}\}$ for $1 \le i \le \varrho$.

If s < l then find another maximal length progression $X^{(2)}$ of distinct terms of X disjoint from $X^{(1)}$. Clearly, its length is also s. Form the analogous sequence of indices $\{Y_i^{(2)}\}_{i=1}^{k+\varrho}$. Repeat this process sequentially until the maximal progressions exhaust all terms of X, giving subpartitions $X^{(1)}, X^{(2)}, \ldots, X^{(\nu)}$ (each cyclically ordered) with corresponding sequences of vertices $\{Y_i^{(j)}\}_{i=\ell}^{k+\varrho}, 1 \le j \le \nu$. Let $Y_i = \bigcup_{j=1}^{\nu} Y_i^{(j)}$ for $1 \le i \le k + \varrho$.

At this point the proof becomes identical with the proof of Theorem 1. Set $W_i = \bigcup_{j \in y_i} X_j$ for $1 \le i \le k + \varrho$. Note that if a pair of functions in \mathscr{F} agree at some point of each of k terms of a progression of terms of X, then they agree at some point of each of k cyclically consecutive terms of the partition $W_1, W_2, \ldots, W_{k+\varrho}$. Hence $|\mathscr{F}| \le t^{n-k}$ as required.

PROOF (Theorem 4). This proof is similar to part of the proof of Theorem 1. Let \mathscr{F}^* be the set of all *t*-valued functions defined on *S*. Surely \mathscr{F}^* has t^n functions which we partition into t^{n-l} classes as follows. For each $g, h \in \mathscr{F}^*$ define $g \sim h$ if g(x) - h(x) is constant on each X_i , $1 \leq i \leq l$. Thus the equivalence class [g] containing g has t^l elements. Select fixed elements $x_i \in X_i$, $1 \leq i \leq l$, and let \mathscr{F}^{**} be the set of all *t*-valued functions with domain $\{1, 2, \ldots, l\}$. For each class [g] define a function $\gamma: [g] \to \mathscr{F}^{**}$ by $\gamma(h) = \tilde{h}, h \in [g]$, where $\tilde{h}(j) = h(x_j)$ for all j. Surely γ is one to one and if $h_1, h_2 \in [g] \cap \mathscr{F}$ then \tilde{h}_1 and \tilde{h}_2 have values which agree at k points of their domain. Hence $|[g]| \cap \mathscr{F}| \leq f(l, t, k)$, so that $|\mathscr{F}| \leq f(l, t, k)t^{n-l}$.

Before Theorem 5 is proved some observations are needed. A family \mathscr{F}^* of *t*-valued functions defined on the *n*-element set S can be replaced by t = ab-valued functions where the set of values is $\{(z, w) | 1 \leq z \leq a, 1 \leq w \leq b\}$. For $\mathscr{C} \subseteq \mathscr{F}^*$ let $P_1(\mathscr{C})$ $(P_2(\mathscr{C}))$ be the projection of members of \mathscr{C} onto the first (second) coordinate. Surely $|\mathscr{F}^*| = |P_1(\mathscr{F}^*)| \cdot |P_2(\mathscr{F}^*)|$ with $|P_1(\mathscr{F}^*)| = a^n$, $|P_2(\mathscr{F}^*)| = b^n$, and $|\mathscr{C}| \leq |P_1(\mathscr{C})| \cdot |P_2(\mathscr{C})|$. Also, given the equivalence defined in the proof of Theorem 4, for $g \in F^*$, $|[g]| = |P_1[g]| \cdot |P_2[g]| = a^l \cdot b^l$.

PROOF (Theorem 5). We show by induction on *m* that $|[g] \cap F^*| \leq [f(l, d, k)]^m$ where F^* , is as given above, $ab = d^m = t$, $g \in \mathscr{F}^*$, and [g] is the equivalence relation defined in the proof of Theorem 4. It is clear that one may assume a = d and $b = d^{m-1}$. Further, since $[g] \cap \mathscr{F}$ satisfies the conditions of Theorem 4 so do $P_1([g] \cap \mathscr{F})$ and $P_2([g] \cap \mathscr{F})$. Thus as in the proof of Theorem 4 $|P_1([g] \cap \mathscr{F})| \leq f(l, d, k)$ and by induction on *m*, when m > 1, $|P_2([g] \cap \mathscr{F})| \leq f(l, d, k)|^{m-1}$.

Thus $|[g] \cap \mathscr{F}| \leq |P_1([g] \cap \mathscr{F})| |P_2([g] \cap F)| \leq [f(l, d, k)]^m$. Since this holds for each of the t^{n-l} equivalence classes $|\mathscr{F}| \leq [f(l, d, k)]^m \cdot t^{n-l}$.

ACKNOWLEDGEMENT

This research by the first author was carried out with the assistance of an IREX grant.

REFERENCES

- 1. C. Berge, Nombres de coloration de l'hypergraphe *h*-parti complet, *Hypergraph Seminar*, Columbus, Ohio, 1972, Springer-Verlag, New York, 1974, pp. 13–20.
- F. R. K. Chung, R. L. Graham, P. Frankl and J. B. Shearer, Some intersection theorems for ordered sets and graphs, J. Comb. Theory, Ser. A, 43 (1986), 23–37.
- 3. P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math., Oxford Ser., 12 (1961), 313-320.
- R. J. Faudree, R. H. Schelp and V. T. Sós, Some intersection theorems for two valued functions, *Combinatorics*, 6(4) (1986), 327-333.
- 5. P. Frankl, The Erdös-Ko-Rado theorem is true for n = ckt, Proc. Fifth Hung. Comb. Coll. Keszthely, 1976, North Holland, Amsterdam, 1978, pp. 365-375.
- 6. P. Frankl and Z. Füredi, The Erdös-Ko-Rado theorems for integer sequences, SIAM J. Algebraic Discr. Met., 1(4) (1980), 376-381.
- 7. G. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar., 15 (1964), 329-337.
- 8. D. J. Kleitman, On a combinatorial conjecture of Erdös, J. Comb. Theory Ser., B, 1 (1966), 153-155.

Received 12 May 1986

R. H. SCHELP Memphis State University and M. SIMONOVITS AND V. T. Sós Eötvös Loránd University, Budapest, Hungary