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Let d b e  a family of two-valued functions defined on an n-element set in which each pair 
of functions in d sltisry a given intersection condition. For certain intersection conditions we 
determine the maximal value of [d]. 

The study of intersection theorems for systems was started by de Bruijn and 
Erd6s [2] and Erd6s, Ko and Rado [4]. In the last twenty years a wide theory deve- 
loped. 

A typical general problem is the following: Let ~ be a given set of integers 
and ~c=p(s) satisfying 

IA~MA~IELa for 1 <- i < j  _<- m, Ai, AjE.~¢. 

How large can m be under this condition? 

Thus we have a condition on the size of ]&MAgi. 
The general problem is the following: Let S be an n-element set and . / b e  a 

family of subsets of S. The family J will be called the intersection family. 

Strong intersection problem 

Let ~ P ( S )  satisfying 

(1) AI~AjCJ for l~=i<j<=m, Ai, A~E,rl. 

For n and J fixed let f(n; J) denote the cardinality of the largest family ~ satis- 
fying (1). Determine f ( n ;  d). 

An imp3rtant subcase is the following: 

Weak intersection problem 

Using the same notation as above, let d~=P(S) satisfying for As, A.IE,.~¢. 

(2) AINAj D= I for some IEJ. 

Let g(n; J) denote the cardinality of the largest family ~ satisfying (2). Determine 
g(n; J). 

AMS subject classification (1980): 05 C 35 
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In some cases the family ~ ¢ ~ P ( S )  (or one of the families) of maximum 
cardinality is a so called kernel system which in the weak intersection case means 
that 

(3) (~ A~EJ for 1 ~ i ~ m .  

Obviously this property implies the intersection property (2). In the general case 
(strong intersection problem) (3) does not automatically imply the intersection pro- 
perty (1). Still, for the most part, it gives enough information to get the extremal 
system. 

Structural type intersection theorems started in the paper of Simonovits and 
S6s [9] were followed by several others, e.g. [3, 5, 6, 7, 8, 10]. 

The structures considered are mostly ~raphs or subsets of integers and the 
intersection properties are given in graph theoretical or arithmetical terms. 

As a simple special case of a weak intersection problem P. Erdgs asked 
whether a family of subsets d =  {A1 . . . . .  A,,} of S =  {1 . . . . .  n} with the property 
that each pair of sets in d contains two consecutive integers must satisfy m =<2 "-~. 
The following clever argument by R. Graham verifies this fact. 

Consider a family dc=P(S) satisfying the above intersection property. 
Let E be the set of even integers in S and O be the set of odd integers. For A i E ~  
let Ei=Aif-lE and Oi=Aif'IO. The intersection property implies that Ei~Ei~O 

{Oi} <-1/2(21°1), from which and O,710,¢0.  Taus I{EiIl<-l/2(2! e!) a n d . [  I -  
1~1-<(I/4)(2[°1+1E1)=2 '-2. Obviously this result is sharp, for example, the kernel 
system of all subsets of S containing both 1 and 2 is an extremal one. 

If  the integers in S are considered modulo n (i.e. S is considered as a circular 
sequence, 1 and n are considered as consecutive elements), then the previous argu- 
ment gives the same result when n is even, but not when n is odd. 

Two natural generalizations of the above result will be considered here. 

The following notation will be used throughout the paper, unless otherwise 
stipulated : 

X will denote an n-element set, 
XI, )(2 . . . .  , Xt will be a partition of X into I nonempty sets, 
k will be a fixed positive integer less than or equal to l, and ~ will be the 

set of all functions from X into {0, 1}. 

In the principal results we will consider a family d of elements of ~ which 
satisfy one of the following intersection properties: 

(I,) For each f and g in , J ,  there are k consecutive sets X~, J(j+~ ..... Xj+~-I 
(the indices of the partition {)(i, )(2 . . . . .  Xt} are taken modulo l) and elements 
si~Xi such that f(si)=g(si) for each, i , j~_i~j+k-1 .  

(I2) For each f and g in s~ there are k sets Xjm . . . . .  Xick ) of the partition 
{Xa . . . . .  X,} and elements s, EXj( 0 such that f(si)=g(s~ ) for each i, 1 <=i<-k. 
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Results 

Theorem 1. I f  . dc=~ satisfies property (I1), then 1~¢1~_2~-~. 
Note that the bound on I~'l in Theorem 1 is the best possible, since there 

is a family of 2 '-k functions which satisfy property (I1). Select k elements sa, Sz ... . .  sk 
such that siCX~, (1 = t = k ) .  The set d of all functions on X with. value 1 on 
{st . . . . .  sk}, satisfies property (I0 and has 2 ''-k elements. 

To each subset d *  of P(X) we can consider the set of characteristic functions 
of sets in ~¢*. T~aus corresponding to d *  there is a subset .~1 of ~ ' ,  If each pair of 
elements of .~¢* have elements in common from k consecutive sets, then .d  satisfies 
property (I1). Thus the following corollary of Theorem 1 gives a generalization of 
the result stated in the introduction. 

Corollary 2. I f  ~ c = p ( x )  such that each pair of  elements of  d have elements in 
common from k consecutive terms of  )(1, X2 . . . . .  X1 (indices taken modulo l), 
then I~'l--<2~-k. II 

Theorem 3. I f  ~¢4 c= ~ satisfies property (L), then 

(4) I ~ 1  = < 
i = 0  

~ , [ ( 1 ) + ( / r l ) ] 2  " - '  for l - k = 2 r + l .  
i = 0  

The bound on [d[ in Theorem 3 is also sharp. To exhibit a set d of appro- 
priate cardinality satisfying property 02), select l fixed elements Y= {3'1 . . . . .  Y,} 
such that yiEXi. Let d l  be the set of all functions in ,~ which have value 1 on at 
least l - r  elements of Y, and let d 2  be those functions with value 0 at Yl and pre- 
cisely l - r - I  values of 1 on the remaining elements of ¥. The set d = , ~ ' x  when 
l - k = 2 r  and d = d l O d z  when 1 - k = 2 r + l  has thedesired properties. 

Corollary 4. I f  ,~c=p(x) such that each pair or elements of  ~ have elements in 
common from at least k terms of  )(1 . . . . .  X~, then Idl satisfies (4). | 

Corollary 4 was also proved independently by F. R. K. Chung; R. L. Graham, 
P. Frankl and J. Shearer. 

There is an interesting question involving a strengihening of Theorem 1. 
Consider fixed positive integers a l<ao< . . .<ak<- l ,  and the following intersection , 
property which generalizes property (I1). 

(I3) For each f and g in M, there is a non-negative integer t which determines 
a subsequence X,l+t, Xo~+r . . . . .  X,~+t (the indices taken modulo /) of the se- 
quence ;(1, X~ . . . . .  Xl and elements si~X~,+t such that f(si)=g(si)  for each i, 
(1 <=i<=k). 

Note that (I3) is just (11) when aj=i for each L It seems reasonable that the 
conclusion of Theorem 1 will hold when (Ix) is replaced by (13). Thus we state the 
following conjecture. 

Conjecture. I f  dc=,~ satifies property (I3), then 1~¢I--<2"-k- 



330 It. I. FAUDREE,  R.  H.  SCHELP. V. T. SOS 

The following special result also gives some evidence in support of the con- 
jecture. 

Theorem5. Let a l<a~<a z be elements o f  X'={1,2 . . . . .  n}. I f  Mc=~ r is such 
that for  each pair f ,  g~.~,  f (ai + t) = g (a~ + t ), (1 <= i <- 3), for  some t with az + t < n, 
then 1~] ~ 2  '-3. 

Note that the intersection property described in Theorem 5 is similar but 
not the same as Property (I~), since we are not allowing the indice arithmetic to be 
taken modulo L 

Proofs 

Before proving Theorem 1, a special case which will be used in the proof, 
is to be considered. 

Lemma 6. For l=n~_2k, let X1, ~(, . . . . .  .Yt be a partition of  X =  {1, 2 . . . . .  n} 
into I one-element subsets. I f  ~ satisfies (I1), then [~[-<2 ~'-k. 

Proof. For convenience we will assume Xi= {i} for each L (1 ~_i<=n). Also, all 
indices will be taken modulo n. Suppose the lemma is false and that [~¢l>2"-k- 
Let Y be the elements of X on which all functions of agree. Thus [Y[<k and 
IX-  Y[ > n - k ,  for otherwise I~¢1-<-2 '-k. 

We claim that if n-k<=[ i - j l<-k  for L j ( X  then either i E Y  or jEY.  We 
assume this is not the case (i.e. i , j~ Y) and show that this leads to a contradiction. 
With no loss of generality we can select f ,  g E d  such that f ( i ) = 0  and f ( j ) ~ g ( j ) .  
Since there are no k integers between i and j ( j  and i), g( i )=0.  Because i¢ Y, 
there is an hEJa¢ such that h ( i ) = l ,  and we can assume that h ( j ) ~ f ( j ) .  There- 
fore the pair f ,  h does not satisfy (Ii), which completes the proof of the claim. 

It follows that for each i¢ Y, there are 2 k - n + l  consecutive integers in Y, 
namely i + n - k ,  i + n - k +  I . . . . .  i+k .  Therefore a single element in X -  Y implies 
that 2 k - n +  1 elements are in Y, and each additional element in X - Y  gives an 
additional element in Y. Hence [ Y l ~ _ 2 k - n + [ X - Y l > 2 k - n + n - k > = k ,  a contra- 
diction, which completes the proof of the lemma, l 

With the preceding lemma we are now prepared to prove Theorem 1. 

Proof(Theorem I). For l = t k + r ,  0 ~ r < k ,  partition the index set {1,2 . . . . .  I)} 
into k + r  subsets tV~k+, by letting Y i = { i , k + i ,  .... ( t - 1 ) k + i }  for l~=i<-k 1~ i l l=l  
and Y~+~={tk+i} for I<=i<=r. Note that any two distinct integers in the same 
term of ihis partition differ by at least k, so any k consecutive positive integers 
modulo I will be in k-consecutive terms of 1his partition modulo k+r .  Let 
W~, I4"2 . . . . .  Wk+, be the partition of X defined by Wi= I.J X'j for 1 <=i<-k+r. 

J(YI  
Due to the choice of the Yi's, f ,  g6,~ ¢ implies that there is a sequence Sb, Sb+a . . . .  
.... So+k--I (indices taken modulo r + k )  with si~Wi such that f ( s i ) = g ( s i )  for 
b < = i ~ b + k - l .  

Partition the 2 ~ elements o f~"  into 2 . . . .  k classes as follows. For fixed A, =c Wi, 
(I <=i~_r+k) let S(A~, A2 . . . . .  A,+k) be those functions in ~- which are constant 
on Al and W~-Ai  but have different values on these sets. Clearly [S(A~, Az . . . .  
..., A,+k)[=T ÷~ and ~" can be partitioned into 2 . . . .  k sets of this type. 
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Let ~'* be the set of  all functions from {1, 2 . . . .  , r+k} into {0, 1}, and let 
the map from S=S(Ax,  As . . . .  , A,+k)N.~ into ~ *  defined by mapping f into 

f* ,  where f * ( i ) = f ( A 3  for each L Denote the image set of S under the one-to 
one map x by S*. Then S* satisfies (Ix) (where X =  {1, 2 . . . . .  k+r} and S*=M),  
so IS*I ~2 '  by Lemma 6. This last inequality is valid for each of the 2 "-~- '  classes 
of the partition of ~¢. Therefore we have 1~¢ l - - - - -2 " -k - ' 2 '=2" -k -  1 

We need some additional background and a counting result before proving 
Theorem 3. 

For 0 < t _ ~ n - I  and r=[t/2], let BxC=,. ~" be those functions with at least 
n - r  values equal to 1 and B : ~  those functions with value 0 at a fixed point of 
the domain and precisely n - r -  1 values equal to 1. Set 

Then 

B{~t for t even 
B =  U B, for t odd. 

1BI = 
i=0  

+ ~- for t odd. 
| = 0  

For f,  g 6 ~  we define the distance between f and g, denoted d(f,  g), to be the 
number of elements of X on which f and g differ. 

Theorem 7 |1|. Let t be fixed, 0<t_~n-1 ,  and let B be defined as above. I f  CC=~ 
with d(f,g)~_t forall  f ,  gEC, then ICt<-IBI. 1 

Proof (Theorem 3). Assume ~ @ "  satisfies property (Iz). For 1 ~_i~_l let A~C= Xz 
and define S(A 1, ,4~ . . . . .  .4z) as the set of functions in #" which have a constant 
value on At and a different but constant value on Xa-d~. Clearly S(A1, .42 . . . . .  ,41) 
has cardinality 2 ~ and ~r can be partitioned into 2 "-z sets of this type. From the 
condition (Is) satisfied by ~¢, it follows that S=S(A1, A~ . . . . .  Aj) fTd can be 
naturally identified with a collection of two valued functions on I points such that 
the distance between any pair is at most l - k .  Therefore by Theorem 7, 

and 

IS] < = 

t~o( l)i for l - k =  2r 

• l l -  for l - k  2r+l ,  

I d [  <= 

i for l - k  = 2r 

• l for l - k - -  2 r + l ,  

which completes the proof. 1 
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Proof(Theorem 5). Let a = a z - a a  and b=aa-a2 .  Consider the graph G with 
vertex set X=  {!, 2 . . . . .  n} and edge set E where xy is an edge i fand only if I x -y [  = 
= a ,  b or a+b.  Using induction on the number of vertices it is easy to verify that 
G is 4-colorable. Let 2"1, 2"2, X3, 2"4 be the four color classes under some 4-coloring 
of  G. 

By assumption, for each pair f ,  gE.~¢ there is an integer t such that f and 
g agree on a~+t, a l + r + a  and a ~ + t + a + b  respectively, so all of  these vertices 
are pairwise adjacent in the l~raph G. Hence they are elements of different members 
Of the  partition X~, X2, 2"3, X4 of X. Applying Theorem: 3 w i t h  1=4 and k = 3  
(thus r=O)  we have 

The argument used in the above proofcan be applied for k > 3 ,  but unfortuna- 
tely weaker upper bounds than 2 ''-k are obtained. 

Problems 

In addition to the problem raised in the conjecture stated in the introduction, 
there are several interesting open questions. We will mention two of  them. 

One of the most obvious questions deals with replacing the family ,~- of  
2-valued functions by a family of t-valued functions for some t_->3. For  this family 
of  functions, what would be the results analogous to those given Theorems 1 and 3? 

In both Theorems l and 3 examples were given of a subset ,~¢ of ,~ of maxi- 
mum cardinality satisfying the appropriate intersection property. Is it possible to 
find all such subsets ~ of maximum cardinality? In general there is not a unique 
.~¢ of maximum cardinality. For example we can exhibit a family d ~ -  with 
1,.Q¢]=2 '-k which satisfies (I0, but which is distinct from the family described in 
the introduction. Assume n = m . l  where rn~3,  m odd. Partition 2" into I sets 
X1, )(2 . . . . .  X~, each of cardinality m. Let ,~ be the functions ~" with domain X 
which have at least (m + I)/2 values equal to I on each of  the sets X~ for 1 <-i~_k. 
It is easily verified that d satisfies (I~) and ]~l  =2"-~. 
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